МЕТАСТАБИЛЬНЫЙ КЛАСТЕР ГЕЛИЯ He_4^*

В. Ф. Елесин, Н. Н. Дегтяренко, Н. В. Матвеев, А. И. Подливаев, Л. А. Опенов*

Московский инженерно-физический институт (государственный университет) 115409, Москва, Россия

Поступила в редакцию 27 января 2005 г.

Предсказано существование метастабильного кластера He^{*}₄ с полным спином S = 2, состоящего из двух ковалентно-связанных возбужденных спин-поляризованных триплетных молекул He^{*}₂ и имеющего прямоугольную форму. Первопринципными методами рассчитаны электронные волновые функции, зависимость энергии системы He^{*}₄ от расстояния между триплетными молекулами He^{*}₂, межатомные расстояния, спектр частот собственных колебаний кластера и другие характеристики. Показано, что метастабильное состояние формируется, если одна из возбужденных молекул He^{*}₂ находится в состоянии $^{3}\Sigma_{u}^{+}$, а другая — в состоянии $^{3}\Pi_{g}$. Вычислено радиационное время жизни метастабильного кластера He^{*}₄, которое оказалось равным $\tau = 100-200$ с, что существенно больше времени жизни $\tau \approx 20$ с триплетной молекулы He^{*}₂ ($^{3}\Sigma_{u}^{+}$). Определена высота потенциального барьера $U \approx 0.5$ эВ, препятствующего уходу из локального минимума энергии. Рассчитана запасаемая в кластере He^{*}₄ энергия $E_{acc} \approx 9$ эВ/атом, что значительно превосходит энергию известных химических энергоносителей. Показано, что запасаемая энергия выделяется практически полностью при делении кластера He^{*}₄ на отдельные атомы гелия. Это говорит о перспективности использования кластеров гелия в качестве материала с высокой плотностью запасаемой энергии (HEDM).

PACS: 31.10.+z, 31.30.Jv, 36.40.-c

1. ВВЕДЕНИЕ

Одной из главных целей нанофизики и нанотехнологии является создание из известных элементов таблицы Менделеева принципиально новых веществ с требуемыми свойствами. Элементарным «кирпичиком» такого вещества является кластер из небольшого числа атомов (с размером порядка нанометра), структура и свойства которого радикально отличаются от обычного конденсированного вещества.

Если кластеры объединить в ансамбль таким образом, чтобы, будучи связанными друг с другом, они при этом сохраняли свои индивидуальные свойства, то получится новое вещество — нановещество. Ярким примером является кластер углерода фуллерен С₆₀, открытый в 1985 г. [1]. Ансамбль из фуллеренов — фуллерит — имеет множество уникальных свойств. Например, в фуллеритах были обнаружены ферромагнетизм [2] и сверхпроводимость [3], в то время как известные углеродные структуры, такие как графит и алмаз, являются полупроводниками. Возникает вопрос: нельзя ли создать нановещество, способное запасать и выделять большую энергию? В настоящее время имеется потребность в энергоносителях нового типа, что обусловлено большим разрывом между характерными энергиями химических и ядерных носителей. Следующий вопрос: из каких химических элементов нужно формировать энергоемкие вещества? В настоящей работе дается следующий ответ: имеется принципиальная возможность создания кластеров гелия — элемента, не образующего конденсированного вещества в нормальных условиях (т. е. при комнатной температуре и атмосферном давлении).

В работе предсказано существование метастабильного кластера He^{*}₄, состоящего из четырех атомов гелия, и показано, что запасаемая энергия более чем на порядок превосходит энергию известных химических энергоносителей (предварительные результаты были опубликованы в [4]). Путем расчетов из первых принципов детально изучены структура и энергетические параметры кластера He^{*}₄, его устойчивость и время жизни. Показано, что запасенная в кластере энергия практически полностью выделяет-

^{*}E-mail: opn@supercon.mephi.ru

ся при его делении на отдельные атомы гелия.

Следует отметить, что гелий является одним из представителей группы элементов, не образующих конденсированного вещества при нормальных условиях. К этой группе относятся также азот, кислород и некоторые другие элементы. В работе [4] было показано, что такие элементы могут образовывать метастабильные кластеры, энергия связи которых уменьшается с ростом числа атомов в кластере (кластеры 2-го типа, согласно предложенной в [4] терминологии). Энергия, запасенная в кластерах 2-го типа, выделяется при делении кластеров на молекулы или отдельные атомы. Заметим, что большинство химических элементов образуют кластеры 1-го типа (см. [4]), энергия связи которых возрастает при увеличении числа атомов в кластере, а запасенная энергия выделяется при слиянии малых кластеров в большие.

Как было отмечено нами ранее в работе [4], кластеры 2-го типа формально аналогичны тяжелым метастабильным ядрам (например, урана), а кластеры 1-го типа — легким ядрам (например, дейтерия). Действительно, энергия связи тяжелых ядер уменьшается при увеличении числа нуклонов N в ядре, а выделение энергии происходит при делении ядер. Напротив, в легких ядрах энергия связи увеличивается с ростом N, делая энергетически выгодным слияние ядер (синтез). Свойства кластеров 1-го и 2-го типов были теоретически изучены нами в [4] на примере кластеров, соответственно углерода и азота.

Чтобы лучше понять причину такого выбора химических элементов, рассмотрим полную энергию $E(\{\mathbf{R}_i\})$ кластера из N атомов как функцию координат всех атомов $\{\mathbf{R}_i\}$, $i = 1, \ldots, N$. Минимумы $E(\{\mathbf{R}_i\})$ соответствуют различным структурам, которые могут образовывать эти атомы. Глобальный минимум с наименьшей энергией E_0 отвечает так называемому основному состоянию системы. Этот минимум ограничен бесконечно длинным барьером, обеспечивающим бесконечно большое время жизни в основном состоянии (в отсутствие внешних воздействий). Большинство известных в природе веществ находится в основном состоянии.

Остальные минимумы (локальные) с энергией $E_n > E_0$ соответствуют метастабильным структурам. Время жизни метастабильной структуры конечно, поскольку имеется конечная вероятность перехода системы в основное состояние с выделением энергии $E_{acc} = E_n - E_0$, запасенной в метастабильном состоянии. Следует отметить, что время жизни τ метастабильной структуры может быть очень большим

Рис. 1. Схема заполнения электронами орбиталей молекулы ${\rm He}_2^*$ в триплетном состоянии $^3\Sigma^+_u$ с полным спином S=1

(например, многие годы для алмаза), так как величина τ экспоненциально зависит от температуры, $\tau(T) = \tau_0 \exp(U/k_B T)$, где U — высота энергетического барьера, отделяющего метастабильное состояние от основного, τ_0 — микроскопическая величина порядка 1 фс–1 пс, k_B — постоянная Больцмана.

Поскольку азот, кислород, водород, а также благородные газы (гелий и др.) не образуют конденсированного вещества в нормальных условиях (мы отвлекаемся от конденсации за счет очень слабых ван-дер-ваальсовых сил), можно предположить, что кластеры этих элементов не имеют глобального минимума полной энергии $E({\bf R}_i)$. В то же время понятно, что локальные минимумы (если они существуют) должны реализовываться при сравнительно больших энергиях (иначе о них имелись бы экспериментальные данные). Отсюда следует, что, во-первых, метастабильные структуры гелия, азота и других элементов из этой группы должны запасать большие энергии и, во-вторых, что выделение энергии при переходе из метастабильного в основное состояние должно происходить при делении кластеров на атомы (например, Не) или молекулы (например, N₂). Это приводит к практически полному выделению запасенной энергии, что является большим преимуществом таких структур с точки зрения перспективы их использования в качестве энергоносителей.

Имеющиеся экспериментальные и теоретические данные свидетельствуют о том, что атомы гелия

в основном состоянии не образуют кластеров Не_n (п = 2,3,4,...) с ковалентными связями. Однако в работе [5] было экспериментально продемонстрировано существование метастабильного ковалентно-связанного кластера (триплетной молекулы) He_2^* в возбужденном состоянии ${}^3\Sigma_u^+$, ранее теоретически изученного в работах [6, 7]. На рис. 1 схематически изображено заполнение орбиталей молекулы Не^{*} электронами. Три электрона занимают «внутренние» орбитали, образованные атомными 1s-орбиталями, а четвертый электрон находится на «внешней» возбужденной орбитали, образованной атомными 2s-орбиталями. Важно отметить, что молекула Не^{*} находится в триплетном состоянии с полным спином S = 1 (см. рис. 1), что увеличивает его устойчивость и время жизни из-за налагаемого принципом Паули запрета на рекомбинацию.

Триплетная молекула He₂ запасает энергию, приблизительно равную 9 эВ/атом и выделяет ее при делении на атомы гелия. Это подтверждено экспериментально [5]. Таким образом, молекула He₂ может играть роль кирпичика, свойства которого радикально отличаются от свойств обычного гелия. Возникает вопрос, можно ли образовать ансамбль из молекул He₂? Кирпичики He₂ этого ансамбля можно рассматривать как «квазиатомы» [4].

В настоящей работе проводится поиск таких ансамблей на основании расчетов из первых принципов. В качестве первого шага теоретически изучен кластер He^{*}₄, состоящий из двух квазиатомов He^{*}₂. Показано, что образование такого кластера в принципе возможно за счет перекрытия волновых функций внешних электронов, причем его полный спин равен S = 2, т.е. он находится в «ферромагнитном» состоянии. Установлено, что энергия, запасаемая в кластере He_4^* , примерно в два раза превышает энергию, запасаемую в возбужденной молекуле He^{*}₂, т.е. удельная запасаемая в кластере Не^{*} энергия $E_{acc} \approx 9$ эВ/атом практически не изменяется при объединении двух триплетных молекул («квазиатомов») Не^{*}₂ в кластер Не^{*}₄. В работе рассчитано радиационное время жизни кластера $\operatorname{He}_{4}^{*}(\tau \sim 100 \,\mathrm{c})$, которое оказывается на порядок больше времени жизни $\tau \sim 10$ с триплетной молекулы He^{*}₂.

Статья организована следующим образом. В разд. 2 описаны использованные нами методы расчета. В разд. 3 приведены результаты расчета электронной структуры триплетных молекул He_2^* и запасаемой в них энергии. В разд. 4 рассчитано радиационное время жизни молекулы He_2^* в состоянии ${}^{3}\Sigma_{u}^{+}$. В разд. 5 определены структурные и энергетические характеристики метастабильного класте-

ра Не^{*} и рассчитана запасаемая в нем энергия. В

ЖЭТФ, том **128**, вып. 1 (7), 2005

ра пе₄ и рассчитана запасаемая в нем энергия. В разд. 6 получено радиационное время жизни кластера He₄^{*}. Краткое обсуждение результатов дано в Заключении.

2. МЕТОДИКА РАСЧЕТА

При теоретических исследованиях метастабильных состояний малых атомных кластеров даже самые современные первопринципные методы расчета зачастую приводят к противоречивым результатам (см., например, работу [8] и ссылки в ней). Это имеет место в случае, когда разность энергий двух или нескольких состояний кластера сравнима с погрешностью метода, которая составляет, как правило, не менее 0.1-1 эВ. При описании известных структур выбирают метод, дающий правильные результаты для тех физических величин, значения которых уже известны из эксперимента (например, длины связи и энергия связи). Совершенно по-другому обстоит дело, когда речь идет о поиске и расчете характеристик новых, еще не открытых (или пока экспериментально не изученных) физических объектов. При этом о достоверности результатов можно говорить лишь в том случае, если данные, полученные разными методами, совпадают с разумной степенью точности.

В силу сказанного выше для расчетов энергий и волновых функций кластеров гелия мы использовали несколько различных первопринципных методов, включая обычный метод Хартри-Фока без ограничения на электронный спин (UHF) [9], метод Хартри-Фока с поправкой Меллера-Плессета второго порядка (MP2) [9], метод функционала плотности [10, 11] в приближении локальной плотности [12] (LDA) и метод функционала плотности с обменно-корреляционным функционалом, предложенным в работах [13,14] (B3LYP). Часть расчетов была выполнена с использованием программы «GAMESS» (General Atomic and Molecular Electronic Structure System) [15,16]. Мы проводили расчеты с разными наборами базисных функций, добиваясь сходимости результатов по мере увеличения числа функций в базисе, а для триплетной молекулы Не^{*} — соответствия с данными метода конфигурационного взаимодействия в рамках теории самосогласованного поля (SCF-CI) [6]. В большинстве случаев приемлемая точность достигалась при использовании базиса (7s5p2d), образованного s-, p- и d-орбиталями каждого атома.

3. МЕТАСТАБИЛЬНЫЕ МОЛЕКУЛЫ Не^{*}₂

Как известно, два атома гелия (Не), каждый из которых находится в основном состоянии, не образуют ковалентно-связанной молекулы Не₂. Однако если один из атомов гелия находится в возбужденном состоянии Не*, то возможно формирование метастабильных молекул Не^{*}. Далее нас будут интересовать триплетные молекулы $\operatorname{He}_2^* ({}^3\Sigma_u^+)$ и $\operatorname{He}_{2}^{*}(^{3}\Pi_{q})$ с полным спином S = 1. Именно они претендуют на роль кирпичиков для создания спин-поляризованных ансамблей (He^{*}₂)_N (см. Введение). В молекуле $\operatorname{He}_2^* ({}^3\Sigma_u^+)$ электроны со спином «вверх» занимают три молекулярные а-орбитали $(1s\sigma_g, 2p\sigma_u, 2s\sigma_g)$, а один электрон со спином «вниз» занимает β -орбиталь $(1s\sigma_g)$, что соответствует конфигурации | $\uparrow \downarrow_1, \uparrow_2, \uparrow_3 \rangle$, см. рис. 1. Орбитали $1s\sigma_q$ и $2p\sigma_u$ представляют собой, соответственно, связывающую и антисвязывающую орбитали, образующиеся при перекрытии атомных 1*s*-волновых функций, а орбиталь $2s\sigma_g$ является связывающей орбиталью, которая формируется из атомных 2s-волновых функций. Молекула $\operatorname{He}_{2}^{*}({}^{3}\Sigma_{u}^{+})$ является долгоживущей по атомным меркам (ее время жизни составляет $\tau \sim 10 \ {\rm c} \ [5-7])$ и хорошо изучена как теоретически, так и экспериментально.

В триплетной молекуле $\operatorname{He}_2^*({}^{3}\Pi_g)$ возбужденный электрон занимает орбиталь, формирующуюся из атомных 2*p*-функций. Эта молекула также является метастабильной [6], но ее радиационное время жизни по отношению к переходу в состояние $\operatorname{He}_2^*({}^{3}\Sigma_u^+)$ очень мало.

С целью проверки и отработки наших расчетных методик мы провели детальные вычисления волновых функций, энергии и других характеристик молекул He^{*}₂ различными методами (см. разд. 2). Самосогласованные одноэлектронные волновые функции молекулы He^{*}₂ (${}^{3}\Sigma_{u}^{+}$) изображены на рис. 2. Волновые функции, рассчитанные различными методами, визуально практически не отличаются друг от друга. Они имеют такую же форму, как и соответствующие одноэлектронные волновые функции молекулярного иона He³⁺₂ [9].

На рис. За приведены рассчитанные различными методами зависимости (в том числе имеющиеся в литературе [6]) полной энергии E системы He_2^* (${}^{3}\Sigma_u^+$) от расстояния R между атомами. На рисунке видно, что для всех использованных методов на кривой E(R) имеется локальный минимум при межатомном расстоянии $R_0 \approx 2a_B$. Изображенные на этом рисунке кривые имеют почти одинаковую форму и различаются лишь сдвигом по оси энергий. Триплет-

Рис.2. Самосогла сованные одноэлектронные волновые функции метастабильной молекулы He_2^* в триплетном состоянии ${}^3\Sigma_u^+$ с полным спином S=1 вдоль линии, проходящей через атомы (y=z=0). Атомы гелия расположены в точках с координатами ($\pm a_B, 0, 0$). Сплошная линия — первая α -орбиталь, пунктирная — вторая α -орбиталь, штриховая — третья α -орбиталь (волновые функции β -орбитали и первой α -орбитали визуально практически не различаются)

ная молекула $\operatorname{He}_2^*({}^3\Sigma_u^+)$ имеет единственную колебательную моду. Ее частота, определяемая кривизной E(R) в точке минимума, действительна. Из факта наличия локального минимума E(R) следует, что молекула $\operatorname{He}_2^*({}^3\Sigma_u^+)$ является метастабильной. Высота потенциального барьера, препятствующего уходу из локального минимума, зависит от метода расчета и составляет U = 1.1 - 1.7 эВ.

Чтобы найти энергию, запасаемую в молекуле $\operatorname{He}_2^*({}^3\Sigma_u^+)$, мы рассчитали энергию системы He_2 из двух атомов гелия в синглетном основном состоянии ${}^1\Sigma_g^+$ с полным спином S = 0 (см. рис. 36). При этом по два электрона занимают две нижние α -орбитали (спин «вверх») и β -орбитали (спин «вниз»), что соответствует конфигурации $|\uparrow\downarrow_1,\uparrow\downarrow_2\rangle$. Как видно на рис. 36, энергия как функция межатомного расстояния не имеет локального минимума, т.е. молекула He_2 из атомов в основном состоянии не образуется. Теперь можно оценить разность энергий в триплетном возбужденном $\operatorname{He}_2^*({}^3\Sigma_u^+)$ и синглетном основном $\operatorname{He}_2({}^1\Sigma_g^+)$ состояниях при $R \approx 2a_B$. Она незначительно зависит от метода расчета и составляет

Рис. 3. Зависимости полной энергии E от расстояния R между атомами для системы He_2^* из двух атомов гелия, находящейся в триплетном состоянии ${}^3\Sigma_u^+$ с суммарным спином S = 1 (a) и для системы из двух атомов гелия в синглетном состоянии ${}^1\Sigma_g^+$ с полным спином S = 0 (δ). Величины E и R выражены в атомных единицах, соответственно, me^4/\hbar^2 и \hbar^2/me^2 . Расчеты выполнены методами UHF (тонкая пунктирная линия), MP2 (жирная пунктирная), LDA (тонкая штриховая), B3LYP (жирная штриховая линия). Для сравнения приведены результаты расчетов методом SCF-CI [6] (сплошная линия)

14–15 эВ. Конечным продуктом распада молекулы $\operatorname{He}_2^*({}^{3}\Sigma_u^+)$ являются два удаленных друг от друга атома He в синглетных состояниях $1s^2$. Разность $E_{acc} = E(\operatorname{He}_2^*) - 2E(\operatorname{He}) \approx 18$ эВ ≈ 9 эВ/атом представляет собой энергию, запасенную в молекуле

ЖЭТФ, том **128**, вып. 1 (7), 2005

 $\operatorname{He}_{2}^{*}({}^{3}\Sigma_{u}^{+})$. Запасаемая энергия может выделяться, например, за счет испускания фотона электроном, занимающим третью α -орбиталь при его переходе на вторую β -орбиталь (см. рис. 1) с переворотом спина.

Аналогичные вычисления были проведены для триплетной молекулы $\operatorname{He}_2^*({}^3\Pi_g)$. Как и приведенные выше данные, они также хорошо согласуются с известными экспериментальными и теоретическими результатами. Таким образом, мы подтвердили имеющиеся в литературе результаты и проверили надежность используемых нами методов расчета.

4. ВРЕМЯ ЖИЗНИ ТРИПЛЕТНОЙ МОЛЕКУЛЫ $\operatorname{He}_2^*({}^3\Sigma_u^+)$

Принципиальным является вопрос о времени жизни метастабильного состояния. Экспериментально измеренное время жизни триплетной молекулы $\operatorname{He}_2^* ({}^{3}\Sigma_u^+)$ составляет $\tau = 13 \pm 2$ с [5], что согласуется с данными численных теоретических расчетов $\tau \approx 18$ с [6] и $\tau \approx 10$ с [7]. Большое (по атомным меркам) время жизни спин-поляризованного состояния связано с запретом, который накладывает принцип Паули на электронные переходы.

С целью проверки и отработки методики вычислений мы рассчитали время жизни метастабильной триплетной молекулы $\operatorname{He}_2^*({}^3\Sigma_u^+)$. Запрет по полному спину на переход ${}^3\Sigma_u^+ \rightarrow {}^1\Sigma_g^+$ снимается при учете зависящих от спина релятивистских поправок в гамильтониане взаимодействия He_2^* с электромагнитным полем. В результате этого вероятность излучательного перехода ${}^3\Sigma_u^+ \rightarrow {}^1\Sigma_g^+$ становится отличной от нуля, хотя и имеет малость порядка α^4 по сравнению с вероятностью обычного (разрешенного по спину) дипольного перехода. Здесь $\alpha = e^2/\hbar c$ – постоянная Планка, c – скорость света.

Оставляя в гамильтониане \hat{V}_{int} взаимодействия электронов с фотонным полем [17] слагаемые одного порядка по степеням α , получим

$$\hat{V}_{int} = -\frac{e\hbar}{2mc} \sum_{j} \boldsymbol{\sigma}_{j} \cdot \mathbf{H}_{j} - \frac{e\hbar}{4m^{2}c^{2}} \sum_{j} \boldsymbol{\sigma}_{j} \cdot [\mathbf{E}_{j} \times \hat{\mathbf{p}}_{j}] - \frac{Ze^{3}\hbar}{4m^{2}c^{3}} \sum_{j} \sum_{n} \frac{\boldsymbol{\sigma}_{j} \cdot [\mathbf{r}_{jn} \times \mathbf{A}_{j}]}{r_{jn}^{3}} - \frac{e^{3}\hbar}{2m^{2}c^{3}} \sum_{j} \sum_{j' \neq j} \frac{\boldsymbol{\sigma}_{j} \cdot [\mathbf{r}_{jj'} \times \mathbf{A}_{j'}]}{r_{jj'}^{3}} + \frac{e^{3}\hbar}{4m^{2}c^{3}} \sum_{j} \sum_{j' \neq j} \frac{\boldsymbol{\sigma}_{j} \cdot [\mathbf{r}_{jj'} \times \mathbf{A}_{j'}]}{r_{jj'}^{3}} + (1)$$

где m — масса электрона; σ_j , \mathbf{r}_j и $\hat{\mathbf{p}}_j$ — соответственно, матрица Паули, координата и оператор импульса j-го электрона, $\mathbf{r}_{jk} = \mathbf{r}_j - \mathbf{r}_k$, $\mathbf{r}_{jn} = \mathbf{r}_j - \mathbf{R}_n$, \mathbf{R}_n координата n-го атома гелия, Z = 2, $\mathbf{H} = \operatorname{rot} \mathbf{A}$ и $\mathbf{E} = -(1/c)(\partial \mathbf{A}/\partial t)$ — напряженности, соответственно, магнитного и электрического поля фотона. Векторный потенциал \mathbf{A} в точке нахождения j-го электрона имеет вид линейной комбинации операторов рождения $\hat{a}_{k\lambda}^+$ и уничтожения $\hat{a}_{k\lambda}$ фотона в состоянии с волновым вектором \mathbf{k} и поляризацией λ :

$$\mathbf{A}_{j} = \sum_{\mathbf{k}\lambda} \left(\frac{2\pi\hbar c^{2}}{V\omega_{\mathbf{k}\lambda}} \right)^{1/2} \times \\ \times \mathbf{e}_{\mathbf{k}\lambda} \left[\hat{a}_{\mathbf{k}\lambda} \exp\left(i\mathbf{k}\cdot\mathbf{r}_{j} - i\omega_{\mathbf{k}\lambda}t\right) + \\ + \hat{a}_{\mathbf{k}\lambda}^{+} \exp\left(-i\mathbf{k}\cdot\mathbf{r}_{j} + i\omega_{\mathbf{k}\lambda}t\right) \right], \quad (2)$$

где V — нормировочный объем, $\omega_{\mathbf{k}\lambda} = kc$ — частота фотона, $\mathbf{e}_{\mathbf{k}\lambda}$ — единичные орты поляризации фотона ($\lambda = 1, 2$), $\mathbf{k} \cdot \mathbf{e}_{\mathbf{k}\lambda} = 0$ в калибровке div $\mathbf{A} = 0$. Суммирование по j и j' в (1) проводится по всем электронам.

В начальном состоянии $|i; 0_{\mathbf{k}\lambda}\rangle$ фотоны отсутствуют, а электронная подсистема описывается волновой функцией $\Psi_i(\{\mathbf{r}_j\}, \{\sigma_j\})$, отвечающей конфигурации $|\uparrow\downarrow_1,\uparrow_2,\uparrow_3\rangle$ $({}^{3}\Sigma_{u}^{+})$ и зависящей от координат и проекций спинов всех электронов. В конечном состоянии $|f; 1_{\mathbf{k}\lambda}\rangle$ имеется один фотон (\mathbf{k},λ) , а электронная подсистема описывается волновой функцией $\Psi_f(\{\mathbf{r}_j\}, \{\sigma_j\})$, которая соответствует конфигурации $|\uparrow\downarrow_1,\uparrow\downarrow_2\rangle$ $({}^{1}\Sigma_{g}^{+})$. Вероятность перехода $|i\rangle \rightarrow |f\rangle$ в единицу времени определяется «золотым правилом Ферми»:

$$W_{i \to f} = \frac{2\pi}{\hbar} \sum_{\mathbf{k}\lambda} \left| \langle f; \mathbf{1}_{\mathbf{k}\lambda} | \hat{V}_{int} | i; \mathbf{0}_{\mathbf{k}\lambda} \rangle \right|^2 \times \delta(E_i - E_f - \hbar \omega_{\mathbf{k}\lambda}), \quad (3)$$

где E_i и E_f — полные энергии, соответственно, начального и конечного состояний электронной подсистемы, а δ -функция отражает закон сохранения энергии при испускании фотона, $E_i = E_f + \hbar \omega_{\mathbf{k}\lambda}$. Время жизни метастабильного состояния равно

$$\tau = \frac{1}{W_{i \to f}}.\tag{4}$$

Расчет $W_{i \rightarrow f}$ сводится к вычислению матричных элементов

$$\langle f | \hat{V}_m | i \rangle = \int \Psi_f^* \left(\{ \mathbf{r}_j \}, \{ \sigma_j \} \right) \hat{V}_m \left(\{ \mathbf{r}_j \}, \{ \hat{\mathbf{p}}_j \} \right) \times \\ \times \Psi_i \left(\{ \mathbf{r}_j \}, \{ \sigma_j \} \right) \prod_j d\mathbf{r}_j, \quad (5)$$

где операторы $\hat{V}_m(\{\mathbf{r}_j\}, \{\hat{\mathbf{p}}_j\})$ определяются видом слагаемых в гамильтониане взаимодействия (1). При этом, поскольку разность энергий начального и конечного состояний $E_i - E_f \sim 10$ эВ, длина волны испускаемого фотона

$$\frac{2\pi}{k} = \frac{2\pi c}{\omega} = \frac{2\pi\hbar c}{E_i - E_f} \sim 100$$
нм

много больше размеров молекулы He_2^* , и поэтому в формуле (2) можно разложить экспоненту ехр($-i\mathbf{k}\cdot\mathbf{r}$) в ряд Тейлора по степеням $\mathbf{k}\cdot\mathbf{r}$. Каждый следующий член в этом разложении дает дополнительную малость по α . Учитывая ортогональность электронных волновых функций начального и конечного состояний, оставляя в (1) после разложения $\exp(-i\mathbf{k}\cdot\mathbf{r})$ по степеням $\mathbf{k}\cdot\mathbf{r}$ только слагаемые одного порядка по α и принимая во внимание тождество

$$\langle f | \hat{\mathbf{p}}_j | i \rangle = -\frac{im}{\hbar} (E_i - E_f) \langle f | \hat{\mathbf{r}}_j | i \rangle,$$

получим из (3) после вычисления суммы по поляризациям фотона, интегрирования по углам, усреднения по начальным и суммирования по конечным спиновым состояниям:

$$W_{i\to f} = \frac{1}{9} \frac{c}{a_B} \alpha^8 \Delta E_{if}^5 (\mathbf{r}_{if}^2 + \mathbf{a}_{if}^2). \tag{6}$$

Здесь a_B — боровский радиус, $\Delta E_{if} = E_i - E_f$,

$$\mathbf{r}_{if} = \langle f | \mathbf{r}_j | i \rangle, \mathbf{a}_{if} = \langle f | \frac{Z}{\Delta E_{if}^2} \sum_n \frac{\mathbf{r}_{jn}}{r_{jn}^3} + \frac{1}{\Delta E_{if}^2} \sum_{j' \neq j} \frac{\mathbf{r}_{jj'}}{r_{jj'}^3} | i \rangle,$$
(7)

все величины с размерностью энергии и длины выражены в атомных единицах, соответственно, me^4/\hbar^2 и \hbar^2/me^2 .

Численный расчет матричных элементов (7) с использованием волновых функций, найденных методами UHF, MP2, LDA, приводит к значениям вероятности излучательного перехода, соответственно, $W_{i \to f} = 3.0 \cdot 10^{-2} \text{ c}^{-1}, \ 4.1 \cdot 10^{-2} \text{ c}^{-1}, \ 4.3 \cdot 10^{-2} \text{ c}^{-1},$ что отвечает временам жизни $\tau = 33, 24, 23$ с. Эти значения τ качественно согласуются как с экспериментом, $\tau = 13 \pm 2$ с [5], так и с имеющимися в литературе данными численных расчетов, $\tau \approx 18$ с [6] и $\tau \approx 10$ с [7]. Некоторый разброс теоретических результатов связан, по-видимому, главным образом с различием методов численного решения многоэлектронного уравнения Шредингера. Таким образом, мы подтвердили известные результаты и убедились в надежности нашего подхода к расчету радиационных времен жизни метастабильных гелиевых систем.

5. МЕТАСТАБИЛЬНЫЙ КЛАСТЕР He_4^*

В разд. 3 было показано, что триплетная молекула He_2^* в возбужденном состоянии обладает свойствами, радикально отличающимися от свойств гелия в обычном основном состоянии. Действительно, молекула He_2^* представляет собой ковалентно связанное образование и запасает очень большую энергию, которую выделяет при делении на атомы гелия. Она имеет достаточно большое радиационное время жизни и термически устойчива. Возникает вопрос: можно ли образовать из триплетных молекул He_2^* ансамбли, причем такие, чтобы перечисленные свойства сохранялись? Другими словами, способна ли молекула He_2^* играть роль кирпичика при формировании метастабильных гелиевых структур (см. Введение)?

В качестве первого шага естественно рассмотреть ансамбль из двух молекул He^{*}₂. Следующие физические соображения (приведенные впервые в работе [4]) позволяют надеяться на успех. Прежде всего, обратим внимание на пространственное распределение электронной плотности в молекуле He^{*}₂ (см. рис. 2). Три электрона на нижних орбиталях локализованы вблизи ядер, в то время как четвертый (возбужденный) электрон имеет гораздо больший радиус локализации. Поэтому молекула He^{*}₂ аналогична атому с частично заполненными нижними орбиталями и одним «внешним» электроном. Для краткости (и наглядности), следуя [4], далее будем называть He^{*}₂ квазиатомом.

Тогда задача сводится к образованию ансамбля (кластера) He_4^* из двух квазиатомов He_2^* за счет ковалентной связи, осуществляемой двумя возбужденными электронами (см. рис. 4), электронная конфигурация $|\uparrow\downarrow_1,\uparrow\downarrow_2,\uparrow_3,\uparrow_4,\uparrow_5,\uparrow_6\rangle$. При этом есть основания предполагать, что спины внешних связывающих электронов будут выстраиваться параллельно друг другу, так что полный спин кластера Не^{*} станет равным S = 2 и возникнет «ферромагнитное» состояние (см. рис. 4). Это очень важно для повышения устойчивости и увеличения времени жизни, поскольку принцип Паули будет препятствовать (как и в He^{*}₂) рекомбинации. Именно так происходит, например, в молекуле кислорода O_2 , когда спины внешних электронов параллельны друг другу (согласно правилу Хунда, расчетам и эксперименту, см. [18]). Наконец, можно ожидать, что квазиатомы Не^{*}₂ (кирпичики) сохранят свои индивидуальные свойства и в ансамбле (кластере) Не^{*}₄, так как орбиты «внешних» и «внутренних» электронов сильно различаются.

Рис.4. Схема заполнения электронами орбиталей кластера ${\sf He}_4^*$ с полным спином S=2

Рис. 5. Метастабильный кластер He_4^* с полным спином S = 2, образованный из двух триплетных молекул He_2^* («квазиатомов»); R_0 — расстояние между атомами в квазиатомах He_2^* , R_1 — расстояние между квазиатомами He_2^*

В настоящем разделе приведены результаты расчетов, доказывающие существование кластера He_4^* , свойства которого практически совпадают с изложенными выше. Прежде всего, заметим, что можно ожидать различные геометрические конфигурации атомов гелия в кластере He_4^* , например, в форме одномерной цепочки, прямоугольника (см. рис. 5) и др. С использованием перечисленных в разд. 2 теоретических подходов были проведены многочисленные расчеты полной энергии различных конфигураций системы He_4^* со спином S = 2 в зависимости от расстояния между квазиатомами He_2^* . Кроме того, вычислялся спектр колебаний, позволяющий судить об устойчивости той или иной атомной конфигурации.

Большое число изученных конфигураций оказались неустойчивыми, в частности, конфигурация в форме одномерной цепочки. В этом случае было показано, что энергия имеет минимум как функция расстояния между квазиатомами He^{*}₂. Такая атомная конфигурация не является, однако, метастабильной, поскольку неустойчива относительно поперечных смещений атомов (в спектре колебаний имеются соответствующие мнимые частоты). Иными слова-

Рис. 6. Зависимость полной энергии E системы He_4^* из четырех атомов гелия с суммарным спином S = 2 от расстояния R между квазиатомами He_2^* , см. рис. 5. Расчеты выполнены методами UHF (1), LDA (2), MP2 (3), B3LYP (4)

ми, эта конфигурация представляет собой седловую точку на энергетической поверхности (зависимости полной энергии системы $E({\mathbf{R}_i})$ от координат всех атомов).

Мы нашли единственную метастабильную конфигурацию. В этой конфигурации кластер He_4^* имеет форму прямоугольника, см. рис. 5. Расстояние между атомами гелия в каждом квазиатоме He_2^* составляет $R_0 \approx 2a_B$ и практически не отличается от расстояния между атомами гелия в изолированном квазиатоме He_2^* . Зависимость полной энергии E системы He_4^* от расстояния R между квазиатомами He_2^* изображена на рис. 6.

На рис. 6 видно, что для всех использованных методов расчета величина E имеет минимум при одном и том же расстоянии между квазиатомами $R_1 \approx 6a_B$. Все частоты в спектре колебаний кластера He⁴₄ действительны (минимальная частота равна 174 см⁻¹). Из этого можно сделать вывод, что изображенная на рис. 5 конфигурация He⁴₄ отвечает локальному минимуму $E({\bf R}_i)$ и является метастабильной. Высота потенциального барьера, ограничивающего локальный минимум, составляет $U \approx 0.5$ эВ и слабо зависит от метода расчета.

Самосогласованные одноэлектронные волновые функции шести α-орбиталей (спин «вверх») кластера Не^{*} изображены на рис. 7*a-e*. Волновые функции двух β -орбиталей (спин «вниз») визуально практически не отличаются от соответствующих волновых функций α -орбиталей (рис. 7*a*, δ). В согласии с изложенной выше физической картиной рис. 7 наглядно демонстрирует, что шесть «нижних» электронов (четыре α -орбитали и две β -орбитали) локализованы на квазиатомах, в то время как два «верхних» электрона делокализованы между квазиатомами и осуществляют ковалентную связь между ними.

Анализ показывает, что состояние кластера He_4^* с набором самосогласованных одноэлектронных волновых функций, изображенных на рис. 7 (назовем его состоянием $|A\rangle$), не является единственным собственным состоянием системы He_4^* с суммарным спином S = 2. Указанием на это служит, в частности, излом на кривых E(R) при $\tilde{R} \approx 8.5 a_B$ (см. рис. 6). Наличие такого излома E(R) свидетельствует о том, что при увеличении R система переходит из состояния $|A\rangle$ в некоторое состояние $|B\rangle$ с другой симметрией многоэлектронной волновой функции. Это связано с тем, что энергия $E_A(R)$ состояния $|A\rangle$ меньше энергии $E_B(R)$ состояния $|B\rangle$ при $R < \tilde{R}$, тогда как $E_B(R) < E_A(R)$ при $R > \tilde{R}$.

Можно показать, что кластер Не^{*} в состоянии $|A\rangle$ образуется из квазиатомов $\operatorname{He}_{2}^{*}({}^{3}\Sigma_{u}^{+})$ и He_2^* (³ Π_q), см. разд. 3, тогда как в состоянии $|B\rangle$ — из двух квазиатомов $\operatorname{He}_{2}^{*}(^{3}\Sigma_{u}^{+})$. Точнее говоря, в состоянии $|A\rangle$ волновая функция шестой α -орбитали представляет собой симметричную суперпозицию атомных $2p_z$ -функций (ось z перпендикулярна плоскости кластера), см. рис. 7е, или, по-другому, — симметричную суперпозицию молекулярных $2p\pi_u$ -функций; она равна нулю в плоскости кластера (z = 0) и имеет разные знаки при z > 0и z < 0. В состоянии $|B\rangle$ волновая функция шестой α -орбитали является антисимметричной суперпозицией молекулярных $2s\sigma_q$ -функций (волновые функции остальных орбиталей практически одинаковы в состояниях $|A\rangle$ и $|B\rangle$).

Чтобы проверить изложенную концепцию, была вычислена энергия системы в состояниях $|A\rangle$ и $|B\rangle$. На рис. 8 приведены зависимости E_A и E_B от R, рассчитанные методом MP2. Вид кривых $E_A(R)$ и $E_B(R)$ и их пересечение при $R = \tilde{R}$ позволяют понять причину наличия излома на кривой E(R), см. рис. 6. Другой принципиальный результат, вытекающий из вида зависимостей $E_{A,B}(R)$, состоит в том, что наиболее глубокий локальный минимум (и, следовательно, наибольшая устойчивость) кластера He_4^* реализуется в состоянии $|A\rangle$. Следует отметить, что глубина минимума в состоянии $|B\rangle$ очень мала и находится в пределах точности расчетов. Таким

Рис. 7. Самосогласованные одноэлектронные волновые функции шести нижних α -орбиталей метастабильного кластера He^{*}₄ с полным спином S = 2 (состояние $|A\rangle$), см. рис. 4, 5. Атомы гелия расположены в точках с координатами ($\pm 3a_B, \pm a_B, 0$). z = 0 ($a - \partial$), $0.25a_B$ (e), см. текст. Волновые функции двух β -орбиталей визуально практически не отличаются от волновых функций двух соответствующих нижних α -орбиталей (a, δ)

образом, кластер He_4^* необходимо формировать из квазиатомов He_2^* в состояниях $^3\Sigma_u^+$ и $^3\Pi_g.$

Оценим запасаемую в кластере He_4^* энергию. Конечным продуктом распада метастабильного кластера He_4^* являются четыре атома He в синглетных состояниях $1s^2$. Разность $E_{acc} = E(\text{He}_4^*) - 4E(\text{He})$ представляет собой энергию, запасенную в метастабильном состоянии. Эта энергия может выделяться в виде энергии фотонов, испускаемых при последовательном перевороте спинов двух электронов и переходе этих электронов с возбужденных α-орбиталей на нижние β-орбитали, а также в виде кинетической

Рис.7. (продолжение)

энергии атомов гелия (при изменении полного спина с S = 2 на S = 1 и далее на S = 0 система из четырех атомов гелия оказывается в состояниях, которые не отвечают локальному минимуму полной энергии как функции координат атомов, т. е. не являются метастабильными и поэтому распадаются на отдельные атомы). Наши расчеты дают для запасаемой в кластере He_4^* энергии значение $E_{acc} = 33-36$ эВ, что примерно в два раза больше величины энергии $E_{acc} = E(\text{He}_2^*) - 2E(\text{He}) \approx 18$ эВ, запасаемой в триплетной молекуле He₂. Таким образом, удельная (в расчете на один атом гелия) величина запасаемой энергии $E_{acc} \approx 9$ эВ/атом практически одинакова в He₂^{*} и He₄^{*}. Это связано с тем, что взаимодействие между квазиатомами He₂^{*} в кластере He₄^{*} значительно слабее, чем взаимодействие между дву-

Рис.7. (продолжение)

мя атомами Не в квазиатоме He_2^* (что проявляется и в сильном различии соответствующих длин связей, см. рис. 5).

6. ВРЕМЯ ЖИЗНИ КЛАСТЕРА Не4

Найдем время жизни кластера He^{*}₄. Насколько нам известно, ранее этот вопрос в литературе не рас-

сматривался. Метастабильный кластер He_4^* с S = 2может перейти в конечное состояние системы из четырех атомов гелия с S = 0, испуская фотоны. Этот переход происходит через промежуточное состояние со спином S = 1, в котором пять электронов занимают α -орбитали, а три электрона — β -орбитали (электронная конфигурация $\uparrow\downarrow_1, \uparrow\downarrow_2, \uparrow\downarrow_3, \uparrow_4, \uparrow_5$). Такой переход происходит при перевороте спина од-

Рис. 8. Зависимость энергий E_A (сплошная линия) и E_B (пунктирная) двух собственных состояний системы He₄^{*} с суммарным спином S = 2 от расстояния R между квазиатомами He₂^{*}, см. текст. Расчет методом MP2

ного из возбужденных электронов. Поскольку для изображенной на рис. 5 конфигурации четырех атомов гелия промежуточное состояние не имеет локального минимума, оно очень быстро распадается. Таким образом, время жизни τ кластера He_4^* фактически определяется временем его перехода в состояние с S = 1.

Для расчета τ мы использовали формулы (6), (7), в которых начальное состояние представляет собой состояние $|A\rangle$ (см. разд. 5), а роль конечного состояния $|f\rangle$ играет состояние с S = 1. Существуют несколько возможных промежуточных состояний со спином S = 1. Здесь для иллюстрации мы рассмотрим два из них, состояния |I> и |II>. Состояние |I> имеет наинизшую из возможных при S = 1 энергию. Оно получается при переходе возбужденного электрона с атомной p_z-орбитали, поэтому в |I) у всех орбиталей отсутствует p_z -компонента (при этом самосогласованные одноэлектронные волновые функции имеют такой же вид, как и волновые функции нижних пяти α -орбиталей кластера He_4^* , см. рис. 7). В силу этого матричные элементы \mathbf{r}_{if} и \mathbf{a}_{if} в формуле (7) равны нулю. Поэтому вероятность $W_{i \to f}$ перехода электрона в состояние |I> обращается в нуль из-за различной симметрии волновых функций начального и конечного состояний.

В промежуточном состоянии |II> одна из орбиталей имеет *p*_z-компоненту. Энергия этого состояния больше энергии состояния $|I\rangle$. Мы рассчитали многоэлектронную волновую функцию состояния $|II\rangle$ и показали, что самосогласованные одноэлектронные волновые функции нижних четырех α -орбиталей и трех β -орбиталей имеют такой же вид, как и волновые функции соответствующих орбиталей кластера He^{*}₄ (см. рис. 7), тогда как волновая функция пятой α -орбитали представляет собой суперпозицию атомных $2p_z$ -функций, как для шестой α -орбитали кластера He^{*}₄.

Как и в случае триплетной молекулы Не^{*}₂, мы вычислили матричные элементы \mathbf{r}_{if} и \mathbf{a}_{if} , см. (7), используя волновые функции, найденные различными методами. Для вероятности излучательного перехода мы получили $W_{i \to f} = 4.7 \cdot 10^{-3} \ \mathrm{c}^{-1}, \, 6.9 \cdot 10^{-3} \ \mathrm{c}^{-1},$ $1.05 \cdot 10^{-2}$ с⁻¹ при использовании методов UHF, MP2, LDA соответственно, что отвечает временам жизни $\tau = 213, 144, 95$ с. Хотя результаты, полученные различными методами, довольно сильно различаются, можно сделать вывод, что радиационное время жизни $\tau = 100-200$ с метастабильного спин-поляризованного кластера Не^{*} примерно на порядок больше времени жизни $\tau \approx 20$ с триплетной молекулы Не^{*}. Возможная причина увеличения времени жизни связана с появлением нового типа симметрии (подобно трансляционной симметрии в больших системах).

7. ЗАКЛЮЧЕНИЕ

Изученный в настоящей работе кластер гелия He_4^* является простейшим ансамблем, состоящим из двух квазиатомов $\operatorname{He}_2^*(^3\Sigma_u^+)$ и $\operatorname{He}_2^*(^3\Pi_g)$. Нами также получены предварительные результаты, свидетельствующие о возможности существования больших ансамблей $(\operatorname{He}_2^*)_N$ вплоть до N = 8. Удельная величина запасаемой в таких ансамблях энергии $E_{acc} \approx 9$ эВ/атом такая же, как в кластере He_4^* .

На примере He_2^* и He_4^* мы показали, что радиационное время жизни τ метастабильного состояния возрастает при увеличении числа атомов в системе. Поэтому есть основания надеяться, что ансамбли $(\text{He}_2^*)_N$ с N > 2 окажутся еще более долгоживущими. Кроме того, наши расчеты свидетельствуют о том, что заряженный кластер $(\text{He}_4^*)^+$ также является метастабильным. Это делает возможной экспериментальную регистрацию метастабильных кластеров гелия стандартными методами масс-спектроскопии [19, 20].

Заметим, что имеется определенная аналогия между ансамблями $(\mathrm{He}_2^*)_N$ и так называемыми

⁵ ЖЭТФ, вып. 1 (7)

ридберговскими системами, детально изученными на примере щелочных металлов в работе [21]. Однако принципиальное отличие состоит в том, что щелочные металлы конденсируются в обычных условиях и формируют кластеры 1-го типа. Напротив, спин-поляризованные кластеры гелия (кластеры 2-го типа) формируются только в возбужденных состояниях из блоков (квазиатомов); они не имеют глобального минимума энергии как функции координат атомов и запасают большую энергию.

Работа выполнена при поддержке фонда CRDF, проект «Фундаментальные свойства материи в экстремальных условиях».

ЛИТЕРАТУРА

- H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature **318**, 162 (1985).
- T. L. Makarova, B. Sundqvist, R. Hohne et al., Nature 413, 716 (2001).
- A. F. Hebard, M. J. Rosseinsky, R. C. Haddon et al., Nature 350, 600 (1991).
- В. Ф. Елесин, Н. Н. Дегтяренко, Л. А. Опенов, Инж. физика № 3, 2 (2002).
- D. N. McKinsey, C. R. Brome, J. S. Butterworth et al., Phys. Rev. A 59, 200 (1999).
- C. F. Chabalowski, J. O. Jensen, D. R. Yarkony, and B. H. Lengsfield III, J. Chem. Phys. 90, 2504 (1989).

ЖЭТФ, том **128**, вып. 1 (7), 2005

- А. В. Коновалов, Г. В. Шляпников, ЖЭТФ 100, 521 (1991).
- S. Sokolova, A. Lüchow, and J. B. Anderson, Chem. Phys. Lett. **323**, 229 (2000).
- 9. С. Фудзинага, *Метод молекулярных орбиталей*, Мир, Москва (1983).
- P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- 11. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- 12. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
- 13. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
- 14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., J. Comput. Chem. 14, 1347 (1993).
- 16. G. D. Fletcher, M. W. Schmidt, and M. S. Gordon, Adv. Chem. Phys. 110, 267 (1999).
- 17. C. W. H. Drake, Phys. Rev. A 3, 908 (1971).
- C. A. Coulson, Valence, Oxford Univ. Press, Oxford (1961).
- H. Buchenau, J. P. Toennies, and J. A. Northby, J. Chem. Phys. 95, 8134 (1991).
- B. von Issendorff, H. Haberland, R. Fröchtenicht, and J. P. Toennies, Chem. Phys. Lett. 233, 23 (1995).
- Э. А. Маныкин, М. И. Ожован, П. П. Полуэктов, Хим. физика 18, 88 (1999).