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The energies of baryon states with positive strangeness, or anticharm (antibeauty) are estimated in the chiral
soliton approach, in the «rigid oscillator» version of the bound-state soliton model proposed by Klebanov and
Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (O-hypernuclei), the states
with heavy antiflavors can be bound with respect to strong interactions in the original Skyrme variant of the
model (SK4 variant). The binding energies of antiflavored states are also estimated in the variant of the model
with a 6-th order term in chiral derivatives added to the Lagrangian to stabilize solitons (SK6 variant). This
variant is less attractive, and nuclear states with anticharm and antibeauty can be unstable relative to strong
interactions. The chances to obtain bound hypernuclei with heavy antiflavors increase within the «nuclear
variant» of the model with a rescaled model parameter (the Skyrme constant e or e’ decreased by about 30 %),
which is expected to be valid for baryon numbers greater than B ~ 10. The rational map approximation is used
to describe multiskyrmions with the baryon number up to about 30 and to calculate the quantities necessary
for their quantization (moments of inertia, sigma-term, etc.).

© 2005

PACS: 12.39.Dc, 21.60.Ev, 21.80.+a

1. INTRODUCTION

The remarkable recent discovery of the positive-
strangeness pentaquark state [1] and its confirmation
by several experiments [2] provided strong motivation
for searches of other exotic states and revision of the
existing ideas on the structure of hadrons and the role
of the valence-quark picture in their description [3-8].
Subsequently, the discovery of the strangeness S = —2
state with charge —2, also manifestly exotic [9] (see [10]
for a review of the previously existing data), and evi-
dence for a narrow anticharmed baryon state [11] have
been reported. Some experiments, however, did not
confirm these results, see, e.g., [12] and [13], where
some negative results were summarized and a pes-
simistic point of view was formulated. The high-ener-
gy physics community is now waiting for the results of
high-statistics experiments; some plans for future pen-
taquark searches are presented, e.g., in [14].

*E-mail: kopelio@al20.inr.troitsk.ru, kopelio@cpe.inr.ac.ru

The possible existence of such states has been
forseen theoretically within the quark models [15-17]"),
as well as in chiral soliton models. The prediction
of exotic states in chiral soliton models has not sim-
ple and instructive history, from the papers where the
exotic antidecuplet and 27-plet of baryons were men-
tioned [18], a resonant behavior of the kaon—nucleon
phase shift in the © channel was obtained in some ver-
sion of the Skyrme model [19], first estimates of the
antidecuplet mass were made [20, 21|, and the masses
of exotic baryon states were roughly estimated for ar-
bitrary Baryon numbers B [22], to papers where more
detailed calculations of the antidecuplet spectrum were
performed [23-25], see also [26] for a recent discussion.
The mass of the dibaryon with S = +1, T = 1/2
was determined to be only 590 MeV above nucleon—
nucleon threshold within the soft rotator quantization

1) The parity of lowest exotic states considered here is negative
(see [7], however), in contrast with the chiral soliton model pre-
dictions, where it is positive. Spin and parity of exotic baryons

are not yet measured.
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scheme [27]. We note that paper [24], which predicted
narrow width and low mass of the positive-strangeness
state called? ©7, stimulated experimental searches for
such states, in particular, experiments [1] have been
arranged specially to check the prediction of [24].

Theoretical ideas and methods that led to the pre-
diction of such states within the chiral soliton mod-
els [23-25] have been criticized with quite sound rea-
soning in [4] and, in the large-N, limit, in [29, 30].
In the absence of the complete theory of strong inter-
actions, it was impossible in principle to provide firm
predictions for the masses of states with the accuracy
better than about several tens of MeV, and similarly
for the widths of such states. One can agree with [29]:
the fact that in some cases predictions coincided with
the observed mass of the ©F hyperon can be considered
as «accidentaly, see also [28].

On the other hand, from the practical standpoint,
the chiral soliton approach is useful and has a remark-
able predictive power when at least one of the exotic
baryon masses is fitted. The masses of exotic baryons
with strangeness S = —2 and isospin I = 3/2 predicted
in this way [31], 1.79 GeV for the antidecuplet com-
ponent and 1.85 GeV for the 27-plet component, are
close to the value 1.86 GeV measured later [9]. Calcu-
lations of the baryons spectra within the chiral soliton
approach were more recently made in papers [32-36],
not in contradiction with [31]; recent paper [37], where
the interplay of rotational and vibrational modes has
been investigated, should be mentioned specially. Some
reviews and comparison of the chiral soliton approach
with other models can be found, e.g., in [38].

The particular case of strangeness is in a certain re-
spect more complicated in comparison with the case of
other flavors: the rigid rotator quantization scheme is
not quite valid in this case [29], whereas the bound-sta-
te approach is not quite good either [30]. In case of
heavy flavors, the rotator quantization is not valid at
all, but the bound-state approach becomes more ade-
quate a compared to strangeness [30].

Baryons with heavy antiflavors are certainly not a
new issue: they have been discussed in the literature
long ago, with various results obtained for the energies
of such states. The strange anticharmed pentaquark
was obtained bound [39] in a quark model with the
(u,d,s) SU(3) flavor symmetry and in the limit of a
very heavy c-quark. Long ago, there were already state-
ments and suggestions in the literature that anticharm
or antibeauty can be bound by chiral solitons in case

2) As was admitted recently in [28], the prediction of the low
value of the mass Mg & 1530 MeV «was to some extent a luck».

of the baryon number B =1 [40, 41] (the so called P-
baryons). In [42], the mass differences of exotic baryons
(0 and its analogies for anticharm and antibeauty)
and nucleons were estimated in the flavor-symmetric
limit for decay constants, Fp = F, in the chiral quark
meson model. In [43], the antiflavor excitation ener-
gies were calculated in the rigid oscillator version [44]
of the bound-state soliton model [45], for baryon num-
bers between 1 and 8. The rational map ansatz for
multiskyrmions [46] was used as the starting config-
uration in the three-dimensional minimization SU(3)
program [47]. These energies were found to be close to
0.59 GeV for antistrangeness, 1.75 GeV for anticharm
and 4.95 GeV for antibeauty, in the last two cases these
energies are smaller than the masses of D- and B-
mesons entering the Lagrangian [43]. The flavor sym-
metry breaking in flavor decay constants (Fp/Fyr > 1)
plays an important role for these estimates. This was
therefore clear hint that such baryonic systems can be
bound relative to strong interactions.

Similar results, in principle, follow from recent anal-
ysis within the bound-state soliton model [30] and
within the diquark model [4]. The spectra of ex-
otic states with heavy flavors have been estimated
in different models, already after the discovery of
the positive-strangeness pentaquark [48] (any baryon
number), [49-53], and others. The possibility of the
existence of nuclear matter fragments with positive
strangeness was recently discussed in [54].

In this paper, we estimate the energies of ground
states of multibaryons with baryon numbers up to
approximately 30 with different (anti)flavors using a
very transparent «rigid oscillator» model [44]. In the
next section, the properties of multiskyrmions are con-
sidered that are required in calculating the energies
of flavor excitations using the rational map approx-
imation for B > 1 [46]. It is shown that the ©T
baryon is bound by nuclear systems, providing posi-
tive-strangeness multibaryons (©-hypernuclei), whose
binding energy can reach several tens of MeV. The mul-
tiskyrmion configurations have some remarkable scal-
ing properties, and as a result, the flavor and antifla-
vor excitation energies are close to those for B = 1.
The quantization scheme (a slightly modified rigid os-
cillator version [44]) is described in Sec. 3, where the
flavor and antiflavor excitation energies are also calcu-
lated. The masses (binding energies) of ground states
of positive-strangeness states — ©-hypernuclei — are
presented in Sec. 4, followed by those for anticharmed
or antibeautiful states. The last section contains some
conclusions and prospects.

1056



MWITD, Tom 127, BhIm. 5, 2005

Flavored exotic multibaryons . ..

2. PROPERTIES OF MULTISKYRMIONS

Here, we calculate the properties of multiskyrmion
configurations necessary for calculation of the flavor ex-
citation energies and hyperfine splitting constants that
govern the 1/N,-corrections to the energies of the quan-
tized states. As already noted, the details of baryon—
baryon interactions do not enter the calculations ex-
plicitly, although their effect is implicit via the integral
characteristics of the bound states of skyrmions shown
in Tables 1 and 2.

The Lagrangian of the Skyrme model in its
well-known form depends on parameters F, Fp, and
e and can be written as [55, 56]

F? L 1 9
L=——Z"Tr(l,0") + @Tr[lu,ly] +

16
F2 2
+”1—6m”Tr(U+UT—2)+

F2 2 _F2 2
™Mb Fn My (1—\/§>\8) U+ Ut —2)4

24
F2 — F?

e (1= Vaxs) L + 1,007, (1)

where U € SU(3) is a unitary matrix incorporating chi-
ral (meson) fields and I, = 9,UU". In this model, Fy
is fixed at the physical value F;; = 186 MeV and mp is
the mass of the K-, D- or B-meson. The ratios Fp/F;
are known to be 1.22 and 2.28]"] for kaons and D-me-
sons respectively. The Skyrme parameter e is close to
4 in numerical fits of the hyperons spectra (see the dis-
cussion at the end of this section). In the variant of the
model with a 6-th order term added to stabilize soli-
tons, the contribution added to the lagrangian density
is [57-59]

L= =28 T (N 1Nl ), (2)
where we introduce the coefficient 1/48 in the definition
of the constant cg for further convenience. It is known
that this term can be considered as an approximation to
the exchange of w-meson in the limit as m, — oo [57]).
The flavor symmetry breaking (FSB) in the Lagrangian
is of the usual form and is sufficient to describe the mass
splittings of the octet and decuplet of baryons within
the collective coordinate quantization approach [60]. A
nice and useful feature of the Lagrangian in (1) and (2)
is that it contains only the second power of the time

3) In (2), we use one of several possible forms of 6-th order
term, all of which give the same contribution to the static mass
of the SU(2) solitons, see also a discussion in [57]. General con-
sideration of higher-order terms and the discussion of their role
in establishing skyrmion properties can be found in [58].

9 ZKIT®, Bein. 5

derivative, which allows quantization to be performed
without problems (see the next section).

The Wess—Zumino term, which is to be added to
the action and which can be written as a five-dimen-
sional differential form [56], plays an important role in
the quantization procedure. It is given by

—iN,

Wz _ i &P 27 Te(l,1, 1N l,),  (3)
Q

where () is a five-dimensional domain whose boundary
is the four-dimensional space —time. Action (3) deter-
mines important topological properties of skyrmions,
but it does not contribute to the static masses of classi-
cal configurations [21,61]. The variation of this action
can be represented as a well-defined contribution to
the Lagrangian (an integral over the four-dimensional
space—time).

We begin our calculations with U € SU(2). The
classical mass of SU(2) solitons, in the most general
case, depends on three profile functions: f, o, and 3
and is given by

F? 1
M, = / {?[1§+1g+1§]+@[[1112]2+[1213]2+

1
+ [1311]2] + Zijﬁ_(l — Cf) + 206(111213)2} d3’f’, (4)

where 1, are the SU(2) chiral derivatives defined by
oUU' = ilymy,, k = 1,2,3. The general parameteriza-
tion of Uy for an SU(2) soliton used here is given by

Uy=cy+spTn

with

N, =Cq, Ng=8aC3, Ny =5,53,

sp=sinf, ¢y =cosf.

For the rational map ansatz, we here use as the
starting configurations [46]

2Re R(¢)

S 2Im R(&)
TR

YT IFIREOP

1-[R)I
L+ [R(P

n. =

where R() is a ratio of polynomials of the maximal
power B in the variable

§ = tg(0/2) exp(io),
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Table 1.  Static characteristics of multiskyrmions: moments of inertia and the S-term T, I in the SK4 variant of the
model with e = 4.12, and for the SK6 variant of the model with ¢/ = 4.11, in GeV~!

B ®§1\’4 G)E.,?)SI“ [SK4 [SK4 @?1\’6 G;Q)SKG [SK6 [SK6
1 5.56 2.05 4.80 14.9 5.13 2.28 6.08 15.8
2 11.5 4.18 9.35 22.0 9.26 4.94 14.0 24.7
3 14.4 6.34 14.0 27.0 12.7 7.35 20.7 30.4
4 16.8 8.27 18.0 31.0 15.2 8.93 24.5 33.7
5 23.5 10.8 23.8 35.0 18.7 11.8 32.8 38.3
6 254 13.1 29.0 38.0 21.7 14.1 39.3 41.6
7 28.9 14.7 32.3 44.0 23.9 15.4 42.5 43.4
8 33.4 17.4 38.9 47.0 27.2 18.5 51.6 46.9
9 37.8 20.6 46.3 47.5 30.2 21.1 59.1 49.7
10 414 23.0 52.0 50.0 32.9 23.5 65.8 51.9
11 45.2 25.6 58.5 52.4 35.8 26.1 73.6 54.3
12 48.5 28.0 64.1 54.6 38.4 28.3 79.9 56.2
13 52.1 30.5 70.2 56.8 41.2 30.8 87.1 58.1
14 56.1 33.6 78.2 58.9 44.3 34.0 96.9 60.5
15 59.8 36.3 85.1 60.9 47.1 36.7 105 62.4
16 63.2 38.9 91.5 62.8 49.7 39.3 112 64.1
17 66.2 41.2 96.8 64.6 52.1 41.3 118 65.4
18 70.3 44.5 106 66.4 55.2 44.8 129 67.5
19 73.9 474 113 68.2 58.0 47.8 138 69.2
20 77.5 50.4 121 69.9 60.8 50.8 147 70.8
21 80.9 53.2 128 71.5 63.5 53.6 156 72.4
22 84.3 56.0 136 73.1 66.1 56.4 164 73.8
23 88.0 59.2 144 74.7 69.0 59.7 174 75.4
24 91.3 62.0 151 76.2 71.6 62.5 183 76.7
25 94.7 64.9 159 77.6 74.2 65.4 192 78.0
26 98.2 68.1 168 79.1 77.0 68.7 202 79.4
27 102 71.1 176 80.5 79.7 1.7 211 80.8
28 105 74.3 185 81.9 82.5 75.1 222 82.2
32 118 86.4 217 87.2 93.0 87.4 260 86.9

with 6 and ¢ being polar and azimuthal angles defin- variables,

ing the (%irec‘tion of the radius vector r. An important 1 , ,

assumption is that the vector m depends on angular N = /7 (Oymy)°dQ,

variables but is independent of r, whereas the profile 1 L (6)

f(r) depends on the distance from the soliton center T = 3 /r4[8ni8nk]2dﬁ,

only. The explicit form of R(&) is given in [46, 62] for
different values of B. Within the rational map approx-
imation, all characteristics of multiskyrmions that we
need (including the mass and moments of inertia) de-
pend on two quantities given by integrals over angular

which satisfy the inequality Z > N? [46]. For the
lowest-energy configuration, N' = B, f(0) — f(x) =,
and the value of Z should be found by minimization
of the map S? — S? [46]. The classical mass of the
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Table 2.  Static characteristics of multiskyrmions: moments of inertia and S-term, T', T for rescaled, or nuclear variants
of the model: e = 3.00 in the SK4 and e’ = 2.84 in the SK6 variants, in GeV ™!
B 9?1\’4* GEE)SKZL* [SK4* [SK4* @?1\’6* G;Q)SKG* ICLCH [SK6*
1 12.8 4.66 10.1 19.6 14.2 6.21 15.3 22.3
2 24.3 9.87 20.9 28.8 25.7 13.6 35.9 34.7
3 34.7 15.1 31.7 35.6 35.5 20.4 53.9 42.5
4 42.9 19.4 40.1 41.1 43.2 25.0 64.6 46.9
5 53.5 254 53.2 46.2 52.9 32.9 86.2 53.1
6 62.6 30.7 64.7 50.6 61.4 394 103 57.4
7 69.6 34.9 72.5 54.4 68.0 43.3 112 59.8
8 79.9 41.3 87.4 58.2 77.3 51.7 135 64.4
9 88.9 47.1 101 61.7 85.7 58.9 154 67.9
10 97.4 52.6 113 64.9 93.5 65.3 171 70.8
11 106 58.5 126 67.9 102 72.5 191 73.8
12 114 63.8 138 70.8 109 78.7 207 76.1
13 122 69.5 151 73.6 117 85.4 225 78.6
14 132 76.3 168 76.3 125 94.0 249 81.5
15 140 82.3 182 78.8 133 101 269 83.9
16 148 88.1 196 81.2 141 108 287 86.0
17 155 93.2 207 83.5 148 114 302 87.6
18 164 100 225 85.9 156 123 328 90.1
19 173 107 241 88.1 164 131 350 92.2
20 181 113 257 90.3 172 139 372 94.1
24 213 138 320 98.2 202 170 457 101
28 245 165 387 105 232 202 950 107
32 275 191 454 112 261 234 640 113
multiskyrmion then simplifies to or \
Iy 2 2 = F2e't
Mer = 47T/ [?ﬁ (flz + QBT_£> + 262fr2 x For the pure SK6 variant (A = 1, e — oo, and
. e/ = ey/1 — X is fixed), there is the relation
X <2f'23 + s;%> + 4c62f’2i—£ + pM_t,] r2dr, (7) 1
c6 = W.

which should and can be easily minimized for definite B
and Z. The mass term density is simple for the starting
SU(2) skyrmion,

pye = Frmz(1—cp)/4.

The quantity A can be introduced [59] that character-
izes the relative weight of the 6-th order term as

=cgF2e?,

(1—=A)?

The «flavor» moment of inertia plays a very im-
portant role in the procedure of SU(3) quantiza-
tion [61, 23], see formulas (16), (17), and (23) below.
It defines the SU(3) rotational energy

Erot(SUs) = Op(Q] + Q2 + QF + 03)/2

with Q,, a = 4,...,7, being the angular velocities of
rotation in the SU(3) configuration space. For SU(2)
skyrmions as starting configurations and the rational
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map ansatz describing the classical field configurations,
OF is given by [63, 64]

GF:%/(I_C)“)

+2c6L - <2Bf’2 +121 )

F2 1 12 2BS§
D-|'e—2 o+ 7'_2 +

Zdr. (8)

It is simply related with @SE)
case (Fp = Fy),

of the flavor symmetric

Op =0\ + (F3/F2 - 1)T /4, (9)

with T' defined in Eq. (11) below.

The isotopic momenta of inertia are the components
of the corresponding tensor of inertia presented and
discussed in many papers, see, e.g., [23,61,63]. For
majority of multiskyrmions that we discuss, this tensor
of inertia is close to the unit matrix multiplied by the
isotopic moment of inertia:

Oap = O10ap, O1=07144/3.

This is exactly the case for B = 1 and, to within a
good accuracy, for B = 3 and 7. Considerable devia-
tions take place for the torus with B = 2, smaller ones
for B =4, 5, and 6, and, generally, deviations decrease
with increasing the B-number. In our estimates, we use
a very simple expression obtained within the rational
map approximation [63, 64]:

4m o [Fa 2 2 8?‘

A f/2 )
+8CGBSfT_2 rdr. (10)

At large enough baryon numbers, isotopic inertia (10)
receives the leading contribution from the spherical en-
velope of the multiskyrmion where its mass is concen-
trated. The dimensions of this spherical bubble grow
as Rp ~ v/B [63], and moments of inertia are roughly
proportional to the baryon number.

The quantity ' (or the ¥-term) determines the con-
tribution of the mass term to the classical mass of soli-
tons, and I enters due to the presence of the FSB term
proportional to the difference Fp — F2 in (1), the last
term in (1). They define the potential in which the
rigid oscillator moves and are given by

2
I'= FQ (1 - Cf) d

£ =1 [erl@n? + s

—

LONE

The relation
[ =2MP/F} -e

can also be established, where Mc(f) is the second-order

term contribution to the classical mass of the soliton
and ©3%* is the Skyrme term contribution to the fla-
vor moment of inertia. The calculated momenta of in-
ertia Op, O7, T (or X-term), and [ for solitons with
the baryon numbers up to 32 are presented in Tables 1
and 2. The ¥-term T receives contribution from the
bulk of the multiskyrmion, where ¢y ~ —1, and there-
fore grows faster than the moment of inertia ©;. The
flavor inertia © g receives contribution from the surface
and the bulk of the multiskyrmion, and its behavior is
intermediate between that of I and ©;.

For both variants of the model, SK4 and SK6, we
calculated static characteristics of multiskyrmions for
two values of the only parameter of the model, the
constant e (or e') for the SK6 variant, related to cg
via

2@%K4)

1
(Feg)/t

For the SK4 variant of the model and e = 4.12, the
numbers given in Table 1 for B = 1-8 are obtained
as a result of direct numerical energy minimization in
three dimensions performed using the calculation algo-
rythm developed in [47]. Therefore, they differ slightly
from those obtained in the pure rational-map approx-
imation. This difference is maximum for B = 2 and
decreases with increasing B. In all other cases, we
used the rational map approximation with values of
the Morse function Z given in [46, 62].

The second value of the constants, e = 3.00 and
e’ = 2.84, leads to the «nuclear varianty of the model,
which allows a quite successful description of the mass
splittings of nuclear isotopes for atomic (baryon) num-
bers between approximately 10 and 30 [65]. The static
characteristics of multiskyrmions change considerably
when the constants e or e’ change by about 30 %, see
Table 2, because the dimensions of solitons scale as
1/Fye and the isotopic mass splittings scale as Fye?.
However, the flavor excitation energies change not cru-
cially, even slightly for charm and beauty, according to
the scale invariance of these quantities [63], as described
in the next section.

!

3. FLAVOR AND ANTIFLAVOR EXCITATION
ENERGIES

The SU(3) effective action defined by (1), (3) leads
to the collective Lagrangian obtained in [61]. To quan-
tize the solitons in their SU(3) configuration space,
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in the spirit of the bound-state approach to the de-
scription of strangeness proposed in [45, 44] and used
in [63, 43], we consider the collective coordinate motion
of the meson fields incorporated into the matrix U:

U(r.t) = R(t)Us(O(t)r) R (1),
R(t) = A(t)S(t),

(12)

where Uy is the SU(2) soliton embedded into
SU(3) in the usual way (into the upper-left cor-
ner), A(t) € SU(2) describes SU(2) rotations, and
S(t) € SU(3) describes rotations in the «strange,
«charmy» or «beauty» directions and O(t¢) describes
rigid rotations in real space. In the quantization
procedure of the rotator with the help of SU(3)
collective coordinates, the following definition of
angular velocities in the SU(3) configuration space is
accepted [61]:

R (t)R(t) = —%ana. (13)
Here, Ao, @ = 1,... .8, are the SU(3) Gell-Mann ma-
trices. For the quantization method proposed in [44]
and used here, parameterization (12) is more conve-
nient, the components ), can be expressed via collec-
tive coordinates introduced in (12).

For definiteness, we consider the extension of the
(u,d) SU(2) Skyrme model in the (u,d,s) direction,
with D being the field of K-mesons, but it is clear that
quite similar extensions can also be made in the direc-
tions of charm or bottom. Therefore,

S Da(ihan  (14)

a=4,...7

S(t) = exp(iD(t)), D(t)=

where A\, are the Gell-Mann matrices of the (u,d, s),
(u,d,c) or (u,d,b) SU(3) groups. The (u,d,c) and
(u,d,b) SU(3) groups are quite analogous to the
(u,d,s) one. For the (u,d,c) group, a simple redefi-
nition of hypercharge should be made. For the (u,d, s)
group,

K+ 4+ K- (K+ — K~

Dy=——F— D ;
R ’ V2
For the (u,d, ¢) group,
D° 4+ D°
D, = L, etc.

V2

The angular velocities of the isospin rotations w are
defined in the standard way [61]:

AtA = —iw - 7/2.

Here, we do not consider the usual space rotations in
detail because the corresponding momenta of inertia
for baryonic systems are much greater than the isospin
momenta of inertia, and for the lowest possible values
of the angular momentum J, the corresponding quan-
tum correction is either exactly zero (for even B) or
small. The field D is small in magnitude. In fact, it is
of the order 1//N, at least, where N, is the number of
colors in QCD, see Eq. (22). Therefore, the expansion
of the matrix S in D can be made safely.

The mass term of Lagrangian (1) can be calculated
exactly, without expansion in the powers of the field D,
because the matrix S is given by [44]

S =1+ iDsin d/d — D*(1 — cosd)/d?

with
Tr D? = 242.

We find that

2.2 2,2
ALy = —M(l —cy)s3. (15)
This term can easily be expanded up to any order
in d. The comparison of this expression with ALy,
within the collective coordinate approach of the quan-
tization of SU(2) solitons in the SU(3) configuration
space [23,61], allows us to establish the relation

sin? d = sin® v,

where v is the angle of the Ay rotation or the rotation
into the «strange» («charmy, «beauty») direction. Af-
ter some calculations, we find that the Lagrangian of
the model, to the lowest order in the field D, can be
written as

L =— cl,B+4®F7BDTD_
—|T 5m2 —m?2 ) +Tp(F3 - F2)| D'D -
B F,% D may B\'D s

- i%(mb - D'D). (16)

Here and below, D is the doublet K+, K% (D% D~, or
B*, BY):
d?> = TrD?*/2 = 2D'D.

We keep the standard notation for the moment of in-
ertia of the rotation into the «flavor» direction O
for ©., O, or O4 [60,61]; different notation is used
in [44] (the index ¢ denotes the charm quantum num-
ber, except in N.). The contribution proportional to
['p is suppressed by a small factor proportional to
(F3 — F?)/m3 in comparison with the term of the
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order of T', and is more important for strangeness. The
term proportional to N.B in (1) arises from the Wess—
Zumino term in the action and is responsible for the
difference of the excitation energies of strangeness and
antistrangeness (flavor and antiflavor in the general
case) [44,45].

Following the canonical quantization procedure, the
Hamiltonian of the system, including the terms of the
order of N?, can be written as [44]

1

Hp = M, ot
B 1,B + 4®F’B +
. N2pB?
+ |Tpmp +Tp(Fp — F})+ —<—| D'D +
16@}7‘73
N.B
+i——— (D' -1tD), (17)
8Or.B

where

mp = (Fp/F7)mp — m3.

The momentum IT is canonically conjugate to variable
D (see Eq. (18) below). Equation (17) describes an
oscillator-type motion of the field D in the background
formed by the (u,d) SU(2) soliton. After diagonaliza-
tion, which can be done explicitly following [44], the
normal-ordered Hamiltonian can be written as

Hp :MCl’B+wF’BaTa+fDF’BbTb+O(I/NC), (18)

where a', b being the operators of creation of the
strangeness (i.e., antikaons) and antistrangeness (flavor
and antiflavor) quantum number, and wp p and ©F p
are the frequencies of flavor (antiflavor) excitations. D
and II are related with a and b as [44]

. 1 .

D' = (b + a“),
NCBMF,B (19)

Hi _ NCQBMF,B (bz Tl)’

i
where
N 1/2

16[m%4T F2—F2)T'gl6

irs = |1+ (mpls+(Fp—F7)'|OFs (20)

(N.B)?

is slowly varying quantity. For large mass mp, it sim-
plifies as

VIsOrs (21)

UF.B —4mp N.B

Obviously, at large N., u ~ N? ~ 1, and the de-
pendence on the B-number is also weak, because both

Cp, Opp ~ N.BY. For the lowest states, the values
of D are small,

|D| ~ [IGI‘B@F’Bﬁ’L% + NEBQ] 1/ s (22)

and increase as (2|F| 4 1)'/? with increasing the flavor
number |F|. As follows from (22) [44, 43], deviations of
the field D from the vacuum one decrease with increas-
ing the mass mp, as well as with increasing the number
of colors N.; this explains why the method works for
any mp, including charm and beauty quantum num-
bers.
The excitation frequencies w and @ are

N.B
WF,B = (nrB — 1),
8Or B
: (23)
5 N.B ( +1)
w = .
F.B S0 1F B

The oscillation time can be estimated as

™ QW(G)B/FB)l/Q
Tosc ™~ ~ )
WF,B mp

and hence it decreases with increasing mp. As was
observed in [63, 43], the difference

_ N,B
a 4®F7B

Wr,B — WF,B

coincides, to the leading order in N,., with the ex-
pression obtained in the collective coordinate ap-
proach [60,61], see the Appendix. At large mp, us-
ing (21) for the difference wp; — wp p, we obtain

(Nc = 3)
) ()
Or,1 OrB

3 B 1
+ = - . 24
8 <®F,B 9F,1> (24)

Obviously, at large mp, the first term in (24) dominates
and is positive if

_|_

- - _mp
Op1—@rp R

T S I'p .
Or1 ~ Orp

This is confirmed by the data in Table 1. We also note
that the bracket in the first term in (24) is independent
of the parameters of the model if the background SU (2)
soliton is calculated in the chirally symmetrical limit:

4) Strictly, at large B, 'z ~ B3/2, as explained above. But
numerically at B < 30, I'g ~ B, as can be seen from Tables 1
and 2.
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both T and © scale as 1/Fe?. In a realistic case where
the physical pion mass is included in (1), there is some
weak dependence on the parameters of the model.

The FSB in the flavor decay constants, i.e., the fact
that Fr/F, ~ 1.22 and Fp/F, = 2.28"11, should
be taken into account. In the Skyrme model, this fact
leads to the increase of the flavor excitation frequencies,
which changes the spectra of flavored (¢, b) baryons and
puts them in a better agreement with the data [40]. It
also leads to some changes of the total binding ener-
gies of baryonic system [43]. This is partly due to the
large contribution of the Skyrme term to the flavor mo-
ment of inertia @ . We note that in [44], the FSB in
strangeness decay constant was not taken into account,
and this led to underestimation of the strangeness ex-
citation energies. Heavy flavors (¢, b) have not been
considered in these papers.

The addition of the term Lg into starting La-
grangian (1) leads to modification of the flavored mo-
ment of inertia, according to the simple relation

Or = OF" + O3 + 03,

But in order to adequately take the symmetry breaking
terms into account, we have to express (in some order
of N1) first set of coordinates (13) in terms of the
collective coordinates A(t) and S(t) and substitute the
result into L.

The terms of the order of N! in the Hamiltonian,
which also depend on the angular velocities of rota-
tions in the isospin and the usual space, are not crucial
but important for the numerical estimates of the spec-
tra of baryonic systems. To calculate them, we should
first obtain the Lagrangian of baryonic system includ-
ing all the terms up to O(1/N,). The Lagrangian can
be written in a compact form, slightly different from
that in [44], as [42]

L d?
L~—-My+20p3 [QDTD<1 - §>_

- g(DTDDTD —(D'D)? = (D'D)?) + (w .ﬂ)} +

0 3
+%(w—5)2—{er?ﬁ(Fg—Fj)rB}DfDx
d? N.B 2\ . .
1-— ) +i——(1-—)(D'D-D'D) -
<(1-5) (-5 )
N.B
- —<—wD'rD, (25)
where
d*> =2D'D

and
B =—i(D'rD - DtrD). (26)

As we mentioned already, the role of the term Lg re-
duces to the modification of the flavored inertia O in
(25). Tt is a remarkable property of the starting La-
grangian including Lg that only quadratic terms in €,
enter (25). To obtain this expression, we used the con-
nection between components Q, and D, D, w;:
. s d?
Q4. +02=8D'D (1—§> -

_ L;(DTDDTD —(D'D)> — (D'D)?) + 4(w - B),

and the component Qg that determines the WZW term
contribution,

Qs = \/5[2‘(1 —d*/3)(D'D - D'D) + wDTTD} :

Taking the terms proportional to 1/N, into account,
we find that the canonical variable IT conjugate to D is

9Dt
. 2 . .
=40rg|D 1—d— —EDTDD+§DTDD +
: 3 3 3
-I-i(@I,B—QGF’B)M“I'D—Z.@],Bﬂ'TD-F
N.B d?
j 1—-2)D. (2
+1 5 ( 3) (27)

From (25), the body-fixed isospin operator is

oL
Ib‘f = % = @I,Bw + (2®F,B - ®I,B)IB -
_ N_;BDTTQ (28)

which can also be written as

01\, _NBO;
20p) ©

1" = 0w+ (1 - DirD (29)
with the operator

< 1
Tr = %(DTTH ~1'rD) = S ('rb - a"ra'T). (30)

Using the connection between II, D, and D given
by (27) in the leading order, we obtain

1 N.B
~—|T DirD). 31
px o (14 2E0ien). ()
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For the states with a definite flavor quantum number,
we should make the substitution

2Ip
DirD — —
N¢Bup
for flavor or o1
DirD —» =L
N¢Bur

for antiflavor; for matrix elements of states with a def-
inite flavor, we can then write

1" = 07 pw + crpIF (32)
with
O1.B
c =1- — —1). 33
F.B O pir (upB — 1) (33)

We also used that within our approximation,

®I,B,BN(1_CF,B)IF- (34)

A relation similar to (32) also holds for antiflavor with
OB

cpp=1— —"7"— +1), 35

F.B ST (hr.B+1), (35)

and it therefore differs from (33) by the change
i — —u. Using the identities
—iB-rD =2D'DD — (D'D + D'D)D (36)
and
B2 =4D'DD'D — (D'D + DID)?, (37)

we find that the proportional to 1/N, zero mode quan-
tum corrections to the energies of skyrmions can be
estimated [44] as

=——lepl, (I, + 1) + (1 — cp) (I + 1)+

+ (EF’B—CF’B)IF(IF-I-I)], (38)

where I = I’/ is the value of the isospin of the baryon
or baryon system, I, is the quantity analogous to
the «right» isospin I, in the collective coordinate ap-
proach [61], and

I, =17 —1p.

The hyperfine structure constants cg g are given in (33)
and cp p are defined by the relations

Or1.8
1—-¢ = - 1),
F.B Ornlirn) (ur,B — 1)
(39)
_ Or.8
1—c¢s - + 1).
F.,B @F,B(MF,B)2 (/J’F,B )

For nucleons,

I=1,=1/2, Ip=0
and AE N 3
1/Nc( ) - Wl,la
for the A-isobar,
I=1,=3/2, Ir=0,
and 15
AFE A) = ,
1/n. (D) Tep

as in the SU(2) quantization scheme. The A-N mass
splitting is described satisfactorily according to the val-
ues of ©; presented in Table 1.

As can be seen in Table 3, the flavor excitation en-
ergies somewhat decrease in the SK4 variant as the
B-number increases from 1 to 7, but further these en-
ergies increase again and exceed the B = 1 value for
B > 20. The last property can be connected, how-
ever, with specific charachter of the rational-map ap-
proximation (the quantity T' increases faster than the
flavored inertia O, see (24)), which becomes less re-
alistic for larger values of B. Such a behavior of the
frequencies is important for conclusions about the pos-
sible existence of hypernuclei [66]. The Table 3 is pre-
sented here for comparison with antiflavor excitation
energies presented in Table 4. Generally, the rigid os-
cillator version of the bound state model that we use
here overestimates the flavor excitation energies. But
phenomenological consequences derived in [63, 66] for
the binding energies of strange S = —1 hypernuclei are
based mainly on the differences of these energies. The
qualitative and in some cases quantitative agreement
takes place between the data for binding energies of
ground states of hypernuclei with atomic numbers be-
tween 5 and 20 and the results of calculations within
the SK4 variant of the chiral soliton model, with the
collective motion of solitons in the SU(3) configuration
space taken into account [66].

Another peculiarity of interest is that for the
rescaled variant of the model, the charm and beauty
excitation energies are very close to those of the origi-
nal variant (scaling property), but differ more substan-
tially for strangeness, being greater by approximately
30-40 MeV. This somewhat unexpected behavior is
related with the fact that flavor excitation energies ap-
pear as a result of subtraction of two quantities that
behave differently under rescaling, see (23).

Similar to flavor energies, there is remarkable uni-
versality of antiflavor excitation energies for differ-
ent baryon numbers, especially for anticharm and an-
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Table 3.

Flavor excitation energies for strangeness, charm, and beauty, in GeV. e = 4.12 for the SK4 variant and

e’ = 4.11 for the SK6 variant. For rescaled variants (the numbers marked with *), e = 3.00 and ¢’ = 2.84 for SK4 and
SK6 variants, correspondingly. The ratio Fp/Fr = 1.5 for charm and F/Fr = 2 for beauty

B | wSK4 | ,SK4 | ,SK4 | SK6 | ,SK6 | ,5K6 WwSKE | ySKA wl;sm* WwSKE" | ySKeE® WI;SKG*
1 10307 | 1.54 | 480 | 0.336 | 1.61 493 | 0.345 1.55 4.77 0.375 1.62 4.89
2 10298 | 1.52 4.77 | 0.346 | 1.64 | 498 | 0.339 1.54 4.75 0.386 1.66 4.95
310293 | 1.51 476 | 0342 | 1.64 | 498 | 0.336 1.54 4.74 0.385 1.66 4.95
4 1028 | 1.50 474 | 0.328 | 1.62 4.95 | 0.330 1.52 4.72 0.377 1.64 4.93
5 10290 | 1.51 4.75 | 0.334 | 1.63 496 | 0.334 1.53 4.74 0.380 1.65 4.94
6 | 0.290 | 1.51 4.76 | 0.332 | 1.63 496 | 0.334 1.54 4.74 0.379 1.65 4.94
7 10285 | 1.50 474 | 0324 | 1.62 4.95 | 0.331 1.53 4.73 0.374 1.64 4.93
8 10.290 | 1.51 476 | 0.329 | 1.63 496 | 0.335 1.54 4.75 0.377 1.65 4.94
9 |1 0.292 | 1.52 4.77 | 0.331 | 1.63 4.97 | 0.336 1.54 4.76 0.378 1.65 4.94
10 | 0.293 | 1.52 4.78 | 0.331 | 1.63 4.97 | 0.337 1.55 4.76 0.378 1.65 4.94
11 ] 0.295 | 1.53 479 | 0332 | 1.63 4.97 | 0.338 1.55 4.77 0.378 1.65 4.95
12 1 0.295 | 1.53 479 | 0331 | 1.63 4.97 | 0.338 1.55 4.77 0.378 1.65 4.95
13 ] 0.296 | 1.53 4.79 | 0332 | 1.63 498 | 0.339 1.55 4.77 0.378 1.65 4.95
14 1 0.300 | 1.54 | 4.80 | 0.335 | 1.64 | 4.98 | 0.342 1.56 4.79 0.379 1.65 4.95
15 1 0301 | 1.54 | 481 | 0336 | 1.64 | 499 | 0.343 1.56 4.79 0.380 1.66 4.95
16 | 0.302 | 1.54 | 481 | 0.336 | 1.64 | 4.99 | 0.343 1.56 4.79 0.380 1.66 4.96
171 0302 | 1.54 | 481 | 0335 | 1.64 | 499 | 0.343 1.56 4.79 0.379 1.66 4.95
20 | 0.308 | 1.56 4.84 | 0.340 | 1.65 5.00 | 0.347 1.58 4.81 0.382 1.66 4.96
24 1 0312 | 1.57 | 485 | 0.343 | 1.66 5.01 0.351 1.58 4.83 0.384 1.66 4.97
28 | 0.316 | 1.58 4.87 | 0.347 | 1.66 5.02 | 0.354 1.59 4.85 0.385 1.67 4.98
32 1 0319 | 1.59 4.88 | 0.349 | 1.67 5.02 | 0.356 1.60 4.86 0.386 1.67 4.98

tibeauty: variations do not exceed few percent. It fol-
lows from Table 4 that there is some decrease of the an-
tiflavor excitation energies as B increases from 1; this
effect is striking for the SK4 variant and especially for
strangeness. Within the SK6 variant, the B = 1 ener-
gies for anticharm and antibeauty are slightly smaller
than for B > 2.

For strangeness, w; decreases with increasing the
B-number in most cases, as can be seen in Table 4
(except in the rescaled SK6 variant, where the B = 1
energy is slightly smaller than the B = 2 one), but it is
always greater than the kaon mass, and therefore the
state with positive strangeness can decay strongly into
kaon and some final nucleus or nuclear fragments.

The heavy antiflavor excitation energies also reveal
a notable scale independence, i.e., the values obtained
with constant e = 4.12 and 3.00 (SK4 variant) shown
in Tables 3 and 4, are close to each other within sev-
eral percent, as well as the values for ¢/ = 4.11 and

2.84 for the SK6 variant. This was actually expected
from general arguments for large values of the FSB me-
son mass [43]. The change of numerical values of these
energies is, however, important for conclusions concern-
ing the binding energies of nuclear states with antifla-
vors. All excitation energies of antiflavors are smaller
for rescaled variants, i.e., when the constants e or e’ are
decreased by about 30 %. This seems natural because
dimensions of multiskyrmions, which scale as 1/Fye,
increase due to this change, and all energies become
«softery. Such a behavior occurs because antiflavor en-
ergies are the sum of two terms (see above (23)) that
behave (roughly!) similarly under rescaling. Remark-
ably, the decrease of energies due to the rescaling is
of the order of 100 MeV in all cases (e.g., for antis-
trangeness and B = 1, it is 119 MeV in the SK4 variant
and 116 MeV in the SK6 variant), and slightly smaller
for ¢ (decrease due to rescaling about 100 MeV) and b
(decrease by 110 MeV).
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Table 4.

Antiflavor excitation energies for strangeness, charm and beauty, as in Table 3. In the original variants of the

model, e = 4.12 for the SK4 variant and e’ = 4.11 for the SK6 variant. The numbers with * are for the rescaled variants
of the model, e = 3.0 for the SK4 variant and e’ = 2.84 for the SK6 variant. The ratio Fp/Fr = 1.5 for charm and
Fp/F; =2 for beauty

B | @SKt | pSK4 | gSK4 | pSKE | 5SK6 | 5SKG pSKY | pSK4 @EM* pSKE" | pSKe® (DBS‘KG*
1 10591 | 1.75 494 | 0584 | 1.79 5.04 | 0472 1.65 4.83 0.468 1.69 4.93
2 10571 1.72 490 | 0.571 | 1.80 5.08 | 0.459 1.63 4.81 0.470 1.72 4.99
3 10564 | 1.71 4.89 | 0.569 | 1.80 5.07 | 0.455 1.63 4.80 0.468 1.72 4.99
4 | 0567 | 1.71 4.87 | 0.580 | 1.80 5.06 | 0.454 1.62 4.78 0.468 1.71 4.97
5 0558 | 1.71 488 | 0.571 | 1.80 5.07 | 0.452 1.62 4.80 0.466 1.71 4.98
6 | 0.555 | 1.71 4.88 | 0.571 | 1.80 5.07 | 0.451 1.62 4.80 0.465 1.71 4.98
7 10559 | 1.71 4.88 | 0.578 | 1.80 5.06 | 0.451 1.62 4.79 0.466 1.71 4.97
8 10553 | 1.71 489 | 0571 | 1.80 5.07 | 0.450 1.63 4.80 0.465 1.71 4.98
9 | 0550 | 1.71 490 | 0.569 | 1.80 5.07 | 0.450 1.63 4.81 0.465 1.71 4.98
10 | 0.549 | 1.71 490 | 0.569 | 1.80 5.07 | 0.450 1.63 4.82 0.465 1.71 4.98
11 ] 0.547 | 1.71 490 | 0.567 | 1.80 5.08 | 0.450 1.63 4.82 0.464 1.71 4.98
12 | 0.547 | 1.72 491 | 0.568 | 1.80 5.08 | 0.450 1.63 4.82 0.464 1.71 4.98
13 | 0.546 | 1.72 491 | 0.567 | 1.80 5.08 | 0.450 1.64 4.83 0.464 1.71 4.99
14 | 0.543 | 1.72 4.92 | 0.564 | 1.80 5.08 | 0.450 1.64 4.84 0.464 1.72 4.99
15 ] 0.542 | 1.72 492 | 0.563 | 1.80 5.08 | 0.450 1.64 4.84 0.464 1.72 4.99
16 | 0.541 | 1.72 493 | 0.562 | 1.80 5.08 | 0.450 1.64 4.85 0.464 1.72 4.99
17 | 0.542 | 1.72 493 | 0.564 | 1.80 5.09 | 0.450 1.64 4.85 0.464 1.72 4.99
18 | 0.540 | 1.72 493 | 0561 | 1.81 5.09 | 0451 1.65 4.85 0.464 1.72 5.00
19 1 0.539 | 1.73 494 | 0.559 | 1.81 5.09 | 0.451 1.65 4.86 0.464 1.72 5.00
20 | 0.538 | 1.73 494 | 0.558 | 1.81 5.09 | 0.451 1.65 4.86 0.464 1.72 5.00
24 | 0.536 | 1.73 496 | 0.555 | 1.81 5.10 | 0.452 1.66 4.88 0.463 1.72 5.00
28 | 0.533 | 1.74 497 | 05352 | 1.81 5.10 | 0.453 1.67 4.89 0.463 1.72 5.01
32 10532 | 1.74 498 | 0.550 | 1.81 5.11 0.453 1.67 4.90 0.463 1.73 5.01

4. THE BINDING ENERGIES OF
®T-HYPERNUCLEI AND ANTICHARMED
(ANTIBEAUTIFUL) HYPERNUCLEI

In view of large enough values of the antistrangeness
excitation energies, one cannot speak about positi-
ve-strangeness hypernuclei that decay weakly, similarly
to ordinary S = —1 hypernuclei. But one can speak
about O-hypernuclei where the @-hyperon is bound by
several nucleons. A puzzling property of pentaquarks
is their small width, I'g <~ 10 MeV according to
experiments where ©F has been observed [1, 2|, and
probably even smaller, according to analyses of kaon—
nucleon interaction data [67]. Possible explanations,
from some numerical cancellation [24] and cancellation
in a large- N, expansion [68] to qualitative one in terms

of the quark-model wave function [3, 4] and calcula-
tion using operator product expansion [69] have been
proposed®. The width of nuclear bound states of ©
should be of the same order of magnitude as the width
of O itself or smaller: besides the smaller energy re-
lease, some suppression due to the Pauli blocking for
the final nucleon from © decay can occur for heavier
nuclei.

For anticharm and antibeauty, the excitation ener-
gies are smaller than the masses of the D- or B-meson,
and it makes sense to consider the possibility of the ex-

5) In most of variants of the explanation, it is difficult to ex-
pect the width of the ®-hyperon of the order 1 MeV, as obtained
in [67]. Therefore, verification of the data analyzed in [67] seems

to be of first priority.
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istence of anticharmed or antibeauty hypernuclei that
have the life time characteristic of weak interactions.

In the bound-state soliton model, and in its rigid
oscillator version as well, the states predicted do not
correspond a priory to definite SU(3) or SU(4) repre-
sentations. They can be ascribed to definite irreducible
SU(3) representations as was shown in [44, 43]. Due
to configuration mixing caused by the flavor symme-
try breaking, each state with a definite value of flavor,
s, ¢ or b, is some mixture of the components of several
irreducible SU(3) representations with a given value
of F' and isospin I, which is strictly conserved in our
approach (unless manifestly isospin-violating terms are
included into the Lagrangian). In case of strangeness,
as calculations show (see, e.g., [27]), this mixture is
usually dominated by the lowest irreducible SU(3) rep-
resentation, and admixtures do not exceed several per-
cents. The situation changes for charm or beauty quan-
tum numbers, where admixtures can have the weight
comparable with the weight of the lowest configura-
tion. However, we here consider the simplest possibil-
ity of one lowest irreducible representation, for rough
estimates.

Let (p,q) characterize the irreducible SU(3) repre-
sentation to which baryon system belongs. The quan-
tization condition [61]

p+2q= N.B,

for arbitrary N, then changes to
p+2qg = N.B + 3m,

where m is related to the number of additional quark —
antiquark pairs ng,; present in the quantized states,
ngg > m [22, 70]. The nonexotic states with m = 0, or
minimal states, have

p+2q =3B,

(N. = 3 in what follows), and states with the lowest
«right» isospin I, = p/2 have

(p,a) = (0,3B/2)
for even B and
(p,a) = (1,(3B-1)/2)

for odd B [22, 27]. For example, the state with B = 1,
|F| =1, I =0 and nyg = 0 should belong to the octet
of the (u,d,s) or (u,d,c) SU(3) group, if N, = 3; see
also [44]. For the first exotic states, the lowest possible
irreducible SU(3) representations (p, ¢) for each value
of the baryon number B are defined by the relations

p+2¢=3(B+1),

p=1 q¢=(3B+2)/2
for even B, and
p=0, q=(3B+3)/2

for odd B. For example, we have 35, 80, 143, and
224-plets for B = 2, 4, 6, and 8, and 28, 55 and 91-plets
for B=3,5, and 7.

Because we are interested in the lowest energy
states, we here discuss the baryonic systems with the
lowest allowed angular momentum, i.e., J = 0, for
B =4, 6, etc. and J = 1/2 for odd values of the
B-number. There are some deviations from this simple
law for the ground states of real nuclei, but anyway, the
correction to the energy of quantized states due to col-
lective rotation of solitons is small and decreases with
increasing B because the corresponding moment of in-
ertia increases proportionally to B2 [63, 64]. Moreover,
the J-dependent correction to the energy may cancel
in the differences of energies of flavored and flavorless
states, and we therefore neglect these contributions in
our rough estimates.

For the nonexotic states, we previously considered
the energy difference between the state with flavor F'
belonging to the (p,q) irreducible representation and
the ground state with F' = 0 and the same angular mo-
mentum and (p,q) [66]. The situation is different for
exotic states, because exotic and nonexotic states have
different values of (p, q). The difference between @ and
W,

J— Nc
~ 40p
takes this distinction into account in the values of (p, q),
as shown explicitly in Appendix.
ForB=1,3,5...,wehave [ =1, =1/2,Ip =0
for the ground state, and therefore the correction
I(I+1) 3

AEyN. = 2018 - 805

w—-w

For exotic antiflavored state, we have I = 0,
I, = Ir = 1/2, and the corrections equal to

3Cr,B
8@1,3.

AEy N, =

For the difference of energies between exotic and nonex-
otic ground states, we obtain
3cpp—1)

AFE = —_ =
B,F = WF,B + 307

3(urB +1)

. (40
8”%’B@F,B (40)

= WF,B

We note that the moment of inertia ©; does not enter
the difference of energies (40).
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For B = 4, 6,... the ground
I =1, =1Ir =0 (as for nucleus “He) and

state has

AEl/NC = 0

For the first exotic states, I = I = 1/2, and we have
a choice for I, I, =0 or 1. If

C) 1
cpg=1- 1.8(prB+1)

> 0,
: 20F BUF.B

we have I, = 0, and if cp g < 0, we should take I, = 1.

In the first case, the correction to the energy of the

state

3(1 + EF7B — 2CF,B)
8@173

_ 3(upp +1)?
8®F,BN%:',B) .

AEI/NC ==

For B = 1, the difference of the ©®p and nucleon
masses is

3(1—¢py)
A =W - T =
Me,N =WFr1 011
3(pr1 +1)
= 2 41
WR1t 8”%,19F’1 (4D

The difference of masses of the ® and A-hyperons also
is of interest and can be represented in the simple form

3(5F,1 - 5F,1) o
80711 B

4pF 1071

AMe pp = Wr1 —wr1 +

The binding energy differences Ae;.; are the
changes of binding energies of the lowest baryon sys-
tem with flavor 5, @ or b and isospin I = 0 (for odd
B) and T = 1/2 (for even B) in comparison with the
usual u, d nuclei (when one nucleon is replaced by the
©-hyperon). The classical masses of skyrmions are can-
celled in such differences:

AEB,F = AEgr.st.(B) - AE(BaF) + AMeopN. (43)

It follows from (40) that for an odd B-number, this
change of the binding energy of the system is

_ _ 3(ura + 1)
AepFp = W0p1 — OF B+ —5>——" —
B,F F1 F.B 84200,
3(urp +1)

- (44
8417 5 OF,B ()

Evidently, in the limit of very heavy flavor, up — oo,

A637F—>Q)F,1 — WF,B- (45)

For B-numbers 4, 6, ..., we obtain

B B 3(purpq +1
Aep,r =wWr1 —Wp B+ % -
8MF71®F,1

3 1)?
e
8,URB@F,B

In the limit of very heavy flavor, it follows from (46)

that
3

8@1:',3’

Aepp = Wp1 —WF,B — (47)
and hence, in comparison with the case of odd
B-numbers, there is an additional contribution decreas-
ing with the increase of the B-number (because iner-
tia increases with B) from approximately 25 MeV for
B =3.

The formulas (44) and (46) allow us to perform nu-
merical estimates for the binding energies of antifla-
vored states, using the results for frequencies and mo-
ments of inertia presented in previous Tables.

For a special case of B = 2, we present in Tables 5-7
the binding energies of flavored .J = 0 states relative to
NN scattering state (I = 1, J = 0), which differ from
(46) by adding 1/01 p=».

One should keep in mind that for the SK4 model,
the value of the ©F mass is equal to 1588 MeV,
which is approximately 150 MeV above the kaon-—
nucleon threshold. Therefore, the states with the
largest binding energy shown in Table 5 are unstable
relative to strong interactions. For the SK6 variant,
Mg = 1566 MeV and the binding energies are consid-
erably smaller, by approximately 40-50 MeV in some
cases (this is the main feature of the SK6 variant). For
the rescaled variants, the difference between both vari-
ants is reduced considerably, but the binding energies
are then underestimated.

From the phenomenological standpoint, we should
describe the B = 1 states with the original variants
of models, i.e., e = 4.12, ¢/ = 4.11 and states with
10 < B = A < 30, using rescaled variants, as is sug-
gested by results of [65]. This procedure gives most
optimistic values of Aes—11, about 145 MeV for the
SK4 variant and approximately 140 MeV for the SK6
variant. However, uncertainty of this prediction is few
tens of MeV, at least.

For anticharm and antibeauty, there is considerable
difference between the SK4 and SK6 variants (Tables 6
and 7). The mass of the ©.-hyperon in the SK4 model
is equal to 2700 MeV and the mass of 0, is 5830 MeV,
both well below the threshold for strong decay. For
the SK6 variant, these masses are by 40 and 100 MeV
greater, but also below the threshold. The SK6 variant
is less attractive than the SK4 variant, mainly because
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Table 5. The binding energy differences and total binding energies of positive strangeness @ -hypernuclei (in MeV)
for the SK4 and SK6 variants of the model in rational-map approximation
B AeSE4 ¢SK4 AeSK6 ¢SK6 AeSK4 SK4 AeSK6” (SK6*
2 47 47 75 75 25 25 17 17
3 67 76 45 53 26 34 4 12
4 20 49 -4 24 9 38 -8 20
5 81 108 47 74 30 57 6 33
6 56 88 24 56 20 52 -1 31
7 83 121 41 80 32 70 7 45
8 69 126 31 87 24 81 2 58
9 94 152 53 110 33 90 8 66
10 79 144 39 103 27 92 4 68
11 99 173 56 130 33 108 9 84
12 86 178 43 135 28 120 5 97
13 101 196 56 152 33 129 9 104
14 93 197 50 154 29 133 6 111
15 105 219 61 175 33 147 9 123
16 96 224 53 181 29 157 7 134
17 105 235 61 191 33 163 9 139
18 100 237 56 194 29 167 7 144
19 109 255 65 211 33 178 10 156
20 103 263 60 220 29 190 8 168
21 111 276 67 232 32 197 10 175
22 105 279 62 236 29 203 8 182
23 113 297 69 253 32 216 10 194
24 107 305 64 263 29 228 8 206
25 113 316 70 273 31 235 10 213
26 109 321 66 278 29 241 8 220
27 115 337 72 294 31 253 10 232
28 111 347 69 305 29 265 9 245
29 116 358 73 315 31 273 10 252
30 112 363 70 321 29 279 9 259
31 117 376 75 335 30 290 10 270
32 113 385 71 343 29 300 9 281

the antiflavor excitation energies for B = 1 in the SK6
variant are smaller than for B > 2, which leads to re-
pulsion for B > 1, in comparison with the more familiar
SK4 model. Considerable decrease of binding energies
for large B, greater than B ~ 20, may be connected
with fact that the rational-map approximation becomes
unrealistic for such large baryon numbers. The beauty
decay constant Fj is not measured yet, which intro-

duces additional uncertainty in our predictions. Prob-
ably, the value Fj/F, = 1.8 is the best one for the
description of the A, mass.

In Table 7, we present the binding energies of hyper-
nuclei with anticharm and antibeauty quantum num-
bers for the rescaled SK4 and SK6 variants of the
model.
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Table 6. The total binding energy differences and binding energies themselves (in MeV) for the antiflavored states,
SK4 variant (first 4 columns), and SK6 variant (last 4 columns). Fp/F, =1.5, Fg/Fr = 2.
B AesK4 €z Aeg € AeZK6 €z A6 €5
2 61 61 90 90 56 56 44 44
3 38 46 49 Y -8 0 —36 —28
4 15 44 48 76 —-29 -1 —36 -7
) 44 71 55 82 -5 22 —-30 -3
6 27 59 43 75 —20 12 -39 -7
7 47 85 62 101 -5 34 —23 16
8 31 87 41 98 —-17 40 —37 19
9 42 100 43 100 —6 o1 —-33 24
10 31 96 33 98 -15 50 —40 25
11 40 114 34 108 -7 68 -37 37
12 31 123 27 119 -15 78 —42 50
16 27 154 8 136 -15 113 —50 78
17 32 162 11 141 —10 120 —47 83
20 22 183 -7 154 -15 145 —57 104
24 19 217 —19 179 —16 182 —62 136
28 15 251 -31 205 —-17 220 —68 169
32 12 283 —40 232 —18 254 —72 200
Table 7. The same as in Table 6, for the rescaled SK4 and SK6 variants of the model
B AeSKY €z Aefl"“* € AeSK6 €z Aefl"ﬁ* €
2 36 36 54 54 -5 -5 —-30 -30
3 24 32 35 43 —-27 -19 —59 -51
4 19 48 44 72 —26 —45 —16
) 27 54 39 66 —22 —50 —-23
6 18 50 31 63 —-27 —52 —20
7 30 69 46 84 —-17 22 —38
8 19 75 27 84 —24 32 —49
9 21 78 23 80 —21 36 —49
10 15 80 17 82 —25 40 —52 13
11 17 91 13 88 —22 52 —52 23
12 12 104 9 101 —25 67 —53 39
16 3 131 —-12 115 —28 100 —61 66
17 6 136 —10 120 —26 104 —60 70
20 —4 156 -30 131 —-31 130 —68 93
24 —10 188 —43 155 —-33 166 —-73 125
28 —-17 220 —57 179 —-35 202 —78 158
32 —-21 251 —67 205 —37 235 —82 190

1070




MWITD, Tom 127, BhIm. 5, 2005

Flavored exotic multibaryons . ..

Several peculiarities should be emphasized. The
binding energies for the rescaled variants are in general
smaller than those for the original variants (Table 6),
mainly due to the decrease of excitation energies for
the B = 1 configuration (by approximately 100 MeV
for the anticharm and 110 MeV for antibeauty). For
greater B-numbers, this decrease is smaller. However,
because the rescaled or nuclear variant is valid for large
enough baryon numbers, the binding energies can be
greater than the values given in Tables 6 and 7, at least
for B-numbers greater than approximately 10. This is
similar to the situation with the strangeness quantum
number (see Table 5 and its discussion).

5. CONCLUSIONS

The excitation energies of antiflavors are estimated
within the bound state version of the chiral soliton
model in two different variants of the model, SK4 and
SK6, and for two values of the model parameter (e
or e/, see Tables 3 and 4). The bounds for the ex-
pected binding energies of hypernuclei are obtained in
this way. These bounds are wide: variations of the to-
tal binding energy for the SK4 and SK6 models can
reach 40-50 MeV. The difference between the original
(baryon) variant and the rescaled (nuclear) variant is
greater for strangeness and smaller for anticharm and
antibeauty, where it is not greater than approximately
20-30 MeV for baryon numbers between 3 and approx-
imately 20. If the logic is correct that the rescaled
or nuclear variant of the model should be applied for
large enough B-numbers, beginning with B ~ 10, then
we should expect the existence of weakly decaying hy-
pernuclei with anticharm and antibeauty.

The properties of multiskyrmion configurations that
are necessary for these numerical estimates have been
calculated within the rational-map approximation [46],
which provides remarkable scaling laws for the excita-
tion energies of heavy antiflavors. This scaling prop-
erty of heavy flavors (antiflavors) excitation energies,
noted previously [43, 63] and confirmed in the present
paper by numerical calculations, is fulfilled with good
accuracy. The relative role of the quantum correction
of the order 1/N, (hyperfine splitting) decreases with
increasing the baryon number as 1/B, and therefore,
besides the 1/N_.-expansion widely used and discussed
in the literature, the 1/ B-expansion and arguments can
be used to justify the chiral soliton approach at large
enough values of the baryon number.

Positive strangeness nuclear states are mostly
bound relative to the decay into ©®1 and nuclear frag-
ments, and one can therefore speak about ©% hypernu-
clei [54, 71]. The particular value of the binding energy

depends on the variant of the model and is greater for
the original SK4 variant (Table 5). The existence of
deeply bound states is not excluded by our treatment,
although the energy of the state is in most cases suffi-
cient for the strong decay into kaon and residual nucleus
or nuclear fragments.

The binding energies of the ground states of hy-
pernuclei with heavy antiflavors (¢ or b) shown in Ta-
bles 6 and 7 are more stable relative to variations of the
model parameters (e or e'), but more sensitive to the
model itself. Similarly to the case of antistrangeness,
the binding energies for the SK6 variant of the model
are systematically smaller than for the SK4 variant.

Within our approach, it is possible to obtain the
spectra of excited states with greater values of the
isospin and angular momentum. The energy scale in
the first case is given by 1/0; and in the second by
1/©,, which is much smaller for large baryon num-
bers. Because 1/0; = 1/0; ~ 180 MeV for B = 1
(see Table 1), it seems difficult, within the chiral soli-
ton approach, to obtain such small spacing between the
ground state and excited levels as derived, e.g., in [53]
within the quark models.

Although we performed considerable numerical
work, we feel that further refinements, improvements,
and more precise calculations are necessary. For ex-
ample, possible contributions of the order 1/N. to
the flavor excitation energies mentioned, e.g., in [44],
might change our conclusions. When calculations for
the present paper have been finished, we became aware
of papers [71] and [72], where the possibility of the ex-
istence of antistrange © hypernuclei is discussed within
more conventional approaches. The results obtained
in [71] and [72] qualitatively agree with ours.

We thank V. A. Matveev and V. A. Rubakov for dis-
cussions and remarks. V. B. K. isindebted to Ya. I. Az-
imov and I. I. Strakovsky for useful E-mail conversa-
tions, and to M. Karliner, H. Walliser, and H. Weigel
for numerous valuable discussions. The results in the
present paper have been reported in part at the Confer-
ence QFTHEP, Peterhof, Russia, 19-25 June 2004 and
Symposium of London Mathematical Society, Durham,
UK, 2-12 August 2004.

APPENDIX

Comparison of the flavor and antiflavor
excitation energy difference in the rigid rotator
and bound state models

Here, we show that the difference between flavor
and antiflavor excitation energies given by (23) coin-
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cides with the difference of the SU(3) rotation ener-
gies between exotic and nonexotic multiplets within the
rigid rotator approach, in the leading-N, approxima-
tion. The method used here is similar to that in [22]
applied for arbitrary B-numbers and N, = 3. The gen-
eralization to arbitrary N, and Ny was recently made
in [70]. For nonexotic multiplets, we have the quantiza-
tion condition p+2q = N.B [61]; we take p = 1 for odd
B-numbers, and p = 0 for even B. The contribution to
the SU(3) rotation energy depending on the «flavor»
moment of inertia, which is of interest here, is equal
to [61]

1
Emt(SUS) = E X

% |Co(SUR) (p,q) = I(I, +1) = N2B*/12|  (48)

with
2 2
+¢ +
Co(SUy) = FL P 4 p oy g =
+2¢)% + 3p? 2
_p+20°+3p° pt+2  p
12 2 2

The «right» isospin for the lowest nonexotic states is
I, = p/2 = 0 for even B (as for the nuclei *He, '2C,
160, etc.) and I, = p/2 = 1/2 for odd B (as for the
isodoublets *H-2He, He-5Li, etc.).

The lowest possible exotic irreducible SU(3) repre-
sentation (p, ¢) for each value of the baryon number B
is defined by the relations

p' +2¢ = N.B+ 3m;

m coincides with the number of additional quark—
antiquark pairs for several lowest values of p'. The
difference of the SU(3) rotation energies for exotic and
nonexotic multiplets is given by

1
AErot —
20r B

[Co(SU3)" — Co(SU3) —
—I(Il+ 1)+ L(I, + 1)].  (49)

After simple transformations, it can be written as

Aprot — L [m@NeB +3m) +p” — p*)
2@}7‘73 4

+

3 =
+7m+l¥+(b—fi)(fr+ff~+1) - (50)

If m = 1, for the lowest irreducible SU(3) representa-
tions, we have

p’=1 and ¢ =(N.B+2)/2

for even B, and
p'=0 and ¢ =(N.B+3)/2

for odd B. We should keep in mind that the right
isospin is given by

=1, +1

for B=2,4,... and

I = =1,

for B =1, 3, 5... For charm or beauty, due to the large
configuration mixing caused by large values of D- or
B-meson masses present in the Lagrangian, such low-
est irreducible representations are often not the main
component of the mixed state (papers [51] may be of
interest in this relation), but for strangeness they are.
For even B (m =1,p=10,p' = 1), we have
1

F.B

AETOt — 1 [NCB + 2] (51)
For odd B (p = 1,p' = 0), we obtain

1
40F B

)

AErot _

[NeB + 3]. (52)

For N, = 3 and B = 1, this coincides with well-known
expression for the mass difference between the antide-
cuplet and the octet of baryons.

The leading-N, contribution is the same as given
by (23). For arbitrary m, the leading contribution is

N.B
AErot — miVe
4@}773

for any multiplets with the final values of p’ and I,
including the values not considered here. It is worth
noting that the correction to the leading contribution
decreases not only with increasing N, but also with in-
creasing B (we recall that ©p g ~ N.B). Therefore,
convergence of both methods is better for larger values
of B.
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