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THERMAL CORRECTION TO RESISTIVITY IN DILUTE Si-MOSFETTWO-DIMENSIONAL SYSTEMSM. V. Cheremisin *Io�e Institute for Physi
s and Te
hnology194021, St. Petersburg, RussiaSubmitted 15 April 2003,after revision 24 April 2004Negle
ting ele
tron�ele
tron intera
tions and quantum interferen
e e�e
ts, we 
al
ulate the 
lassi
al resistivityof a two-dimensional ele
tron (hole) gas taking the degenera
y and the thermal 
orre
tion due to the 
ombinedPeltier and Seebe
k e�e
ts into a

ount. The resistivity is found to be a universal fun
tion of the temperature,expressed in the units of (h=e2)(kF l)�1. Analysis of the 
ompressibility and thermopower points to the thermo-dynami
 nature of the metal�insulator transition in two-dimensional systems. We reprodu
e the beating patternof Shubnikov � de Haas os
illations in both the 
rossed �eld 
on�guration and Si-MOSFET valley splitting 
ases.The 
onsequen
es of the integer quantum Hall e�e
t in a dilute Si-MOSFET two-dimensional ele
tron gas aredis
ussed. The giant parallel magnetoresistivity is argued to result from the magneti
-�eld-driven disorder.PACS: 73.40.Qv, 71.30.+h, 73.20.Fz1. INTRODUCTIONRe
ently, mu
h interest has been fo
used on theanomalous transport behavior of a variety of low-den-sity two-dimensional (2D) systems [1�5℄. It has beenfound that below some 
riti
al density, the 
ooling
auses an in
rease in resistivity, whereas in the oppositehigh-density 
ase, the resistivity de
reases. Anotherproperty of dilute 2D systems is their unusual responseto the parallel magneti
 �eld. At low temperatures,the magneti
 �eld was found to suppress the metalli
behavior and result in in
reasing the resistivity uponenhan
ement of the spin polarization degree [6; 7℄. Astrong perpendi
ular magneti
 �eld, if applied simulta-neously with the parallel one, results in suppression ofthe parallel magnetoresistivity [8℄. Although numeroustheories have been put forward to a

ount for these ef-fe
ts, the origin of the above behavior is still the subje
tof a heated debate.The ohmi
 measurements are known to be 
arriedout at a low 
urrent (I ! 0) in order to prevent Jouleheating. In 
ontrast to the Joule heat, the Peltier andThomson e�e
ts are linear in the 
urrent. As shownin Refs. [9�11℄, the Peltier e�e
t results in a 
orre
-*E-mail: maksim.vip1�pop.io�e.rssi.ru

tion to the measured resistan
e. When the 
urrentis running, one of the sample 
onta
ts is heated, andthe other is 
ooled be
ause of the Peltier e�e
t. The
onta
t temperatures are di�erent. The voltage dropa
ross the 
ir
uit in
ludes thermoele
tromotive for
e,whi
h is linear in the 
urrent. There exists a thermal
orre
tion �� to the ohmi
 resistivity � of the sam-ple. For low-density 2D ele
tron gas (2DEG), the 
or-re
tion may be 
omparable to the resistivity be
ause��=� � (kT=�)2, where � is the Fermi energy. In thepresent paper, we report on a study of low-T transportin 2D systems, taking both the 
arrier degenera
y andthe Peltier-e�e
t-indu
ed 
orre
tion to resistivity intoa

ount. 2. GENERAL FORMALISMFor 
larity, we 
onsider the (100) Si-MOSFET2DEG system. Within the strong inversion regime,we further negle
t a depletion layer 
harge in thesemi
ondu
tor bulk. At a �xed gate voltage, thequasi-Fermi level � in the semi
ondu
tor is shifted withrespe
t to that in the metal gate. The number of o
-
upied states below the quasi-Fermi level determinesthe density of ele
trons assumed to o

upy the �rst674
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Fig. 1. The experimental setupquantum-well subband with the isotropi
 energy spe
-trum "(k) = ~2k2=2m.We 
onsider a sample 
onne
ted to the 
urrentsour
e by means of two identi
al leads (Fig. 1). Both
onta
ts are ohmi
. The voltage is measured betweenthe open ends 
 and d kept at the temperature of theexternal thermal reservoir. The sample is pla
ed in a
hamber with the mean temperature T0. A

ording toour basi
 assumption, the 
onta
ts a and b may havedi�erent respe
tive temperatures, Ta and Tb. In
lud-ing the temperature gradient term, the 
urrent densityj and the energy �ux density q are given byj = �(E� �rT ); q = (�T � �=e)j� �rT; (1)where E = r�=e is the ele
tri
 �eld, � = � � e' isthe ele
tro
hemi
al potential, � is the thermopower,� = Ne�0 is the 
ondu
tivity, �0 = e�=m is the mo-bility, � is the momentum relaxation time, � = LT�is the thermal 
ondu
tivity, and L = �2k2=3e2 is theLorentz number.In general, one 
an solve Eq. (1) and then �nd thedi�eren
e of 
onta
t temperatures, �T = Ta � Tb, foran arbitrary 
ir
uit 
ooling. But below approximately1 K, the ele
tron�phonon 
oupling is known to be weak[12℄. In the a
tual 
ase where I ! 0, we 
an then omitthe Joule heating. We therefore 
onsider a simple 
aseof adiabati
 
ooling, with the 2DEG thermally insu-lated from the environment. We emphasize that underthe above 
onditions, the sample is not heated. In-deed, at small 
urrents, we have Ta � Tb � T0. Hen
e,the amount of the Peltier heat Qa = I��T0 evolvedat 
onta
t a and that absorbed at 
onta
t b are equal.Here, �� is the di�eren
e of the 2DEG and metal 
on-du
tor thermopowers. We re
all that the energy �ux is
ontinuous at ea
h 
onta
t,��rT ja;b = j��Ta;b;and therefore the temperature gradient is 
onstantdownstream the 
urrent. The di�eren
e of the 
onta
ttemperatures is then given by [9, 10℄�T = ��l0L�w I;

where l0 and w are respe
tively the sample length andwidth. For example, for a 2 � 2-mm sample, the typi-
al 
urrent I = 1 nA, the 2D resistivity of the order ofh=e2, and � � k2T=e� � 0:01k=e, the 
onta
t temper-ature di�eren
e is �T = 10 mK � T0, and thereforeour approa
h is well justi�ed. From Eq. (1), the voltagedrop between ends 
 and d is given byU = RI +���T;where R is the ohmi
 resistan
e of the 
ir
uit. These
ond term is the 
onventional Seebe
k thermoele
-tromotive for
e. Be
ause �T / I , we �nally obtainthe total 2DEG resistivity as�tot = �(1 + �2=L); (2)where we assume that �� � ��. We note that withinthe adiabati
 approa
h, Eq. (2) 
an also be applied forthe 2D hole gas and in the 
ase of four-point 
onta
tmeasurements. In the Appendix, we dis
uss the 
ase of2DEG realisti
 
ooling in more detail.3. RESULTS3.1. 2D density and thermopowerUsing Gibbs statisti
s, we �nd that the 2DEG den-sity N = �(�
=��)T is given byN = N0�F0(1=�); (3)where 
 = �kTXk ln �1 + exp��� "(k)kT ��is the thermodynami
 potential, � = kT=� = T=TF isthe dimensionless temperature, TF is the Fermi tem-perature, and Fn(z) is the Fermi integral. At the mo-ment, we disregard the valley splitting, reported to beof the order of 1 K in the (100) Si-MOSFET 2DEGsystem [13℄. Below we dis
uss the importan
e of anonzero valley splitting in the 
ontext of low-�eld Shub-nikov � de Haas os
illations. Next, we introdu
e thedensity of states D = 2m=�~2, where m is the e�e
tivemass. For the density of strongly degenerate 2DEG,we have N0 = D�. In what follows, we 
onsider boththe 
lassi
al Boltzman (� < 0) and Fermi (� > 0)
ases, and therefore use the dimensionless 
on
entra-tion n = N= jN0j (Fig. 2a). In the 
lassi
al Boltzmanlimit (� < 0, j�j � 1), the 2D ele
tron density is ther-mally a
tivated: n = j�j exp(�1= j�j):675 11*
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Fig. 2. The zero-�eld 2DEG density (a) and ther-mopower (b) given by Eqs. (3) and (4) respe
tively vsthe dimensionless temperature �. Asymptotes shownby dotted lines 
orrespond to j�j � 1 and those shownby thin lines to j�j � 1. Insets: 2DEG density (a 0)and thermopower (b 0) for the spin polarization degreep = 0, 0:3, 0:6, 1For strongly degenerate ele
trons (� � 1), we obtainn = 1 + � exp(�1=�):Then, at elevated temperatures (� � 1), the densityn = 1=2 + � ln 2be
omes linear in the temperature. We note that ata �xed temperature, the 2DEG density always ex
eedsthe zero-temperature value, i. e., N > N0 (see Fig. 3, in-set). Experimentally, the 
on
entration extra
ted fromthe period of the Shubnikov � de Haas quantum os
il-lations [14, 15℄ determines the density of strongly de-generate 2DEG, i. e., NSdH = N0. In 
ontrast, the
lassi
al low-�eld Hall measurements [4, 14℄ allow �nd-ing the total 
arrier density NHall = N , whi
h 
o-in
ides with the density of strongly degenerate ele
-trons for � � 1. We argue that in dilute 2D systems,
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Fig. 3. Temperature dependen
e of the thermopowergiven by Eq. (4) for TF [K℄ = 2 � 0:25 (step 0:25),0:2 � 0:05 (the step 0:05), 0:01, 0 (bold line), �0:1,�0:2. Inset: density vs Fermi energy at the �xed tem-perature T [K℄ = 0 (pie
ewise bold line), 0:15, 0:25 inSi-MOSFET systemthe a

ura
y provided by both methods be
omes ques-tionable, whi
h seems to be the reason for the sampleand temperature-dependent deviation NHall � NSdHobserved in Si-MOSFETs [14℄.Following the 
onventional Boltzman equation for-malism, the expli
it formula for the 2DEG ther-mopower 
an be written as� = �ke �2F1(1=�)F0(1=�) � 1� � : (4)For simpli
ity, we assume that the ele
tron s
atteringis 
hara
terized by the energy-independent momentumrelaxation time. In the 
lassi
al limit (� < 0, j�j � 1),the thermopower is given by the 
onventional formula� = �ke �2� 1�� :For strongly degenerate 2DEG (� � 1), we obtain the676
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tion to resistivity : : :temperature dependen
e of the thermopower (Fig. 2b)as � = �ke ��2�3 � (1 + 3�) exp��1��� :At elevated temperatures (� > 1), the thermopower�rst grows with the temperature and then approa
hesthe universal value�s = �ke 2F1(0)F0(0) = �ke �26 ln 2 :The above behavior is 
on�rmed by low-temperaturethermopower measurement data [16℄, found to divergeat a 
ertain value near 0:6k=e, whi
h is of the order of�s (see the bold line in Fig. 3).3.2. Zero-�eld resistivityWe now 
al
ulate the total 2DEG resistivity givenby Eq. (2). Figure 4 represents the T -dependent resis-tivity at �xed Fermi temperatures that 
orrespond toa 
ertain 2DEG density range (see Fig. 3, inset). For a�xed disorder strength, we represent the data found atdi�erent densities (or TF ) in a single plot (Fig. 4). Inreal units, in
reasing the disorder results in the upshiftof resistivity 
urves. The temperature dependen
e ofthe resistivity (see, e.g., the 
urve at TF = 0:25 K inFig. 4) exhibits the metalli
 behavior (i. e. d�=dT > 0)for T � TF and then be
omes insulating (d�=dT < 0)at T � TF . Within the low-temperature metalli
 re-gion, the 2DEG resistivity 
an be approximated (seethe dotted line in Fig. 4) by�tot = �0(1 + �2�2=3);where �0 = 1N0e�0 = h2e2 1kF lis the resistivity at T ! 0, kF = p2m�=~ is the Fermive
tor, and l = ~kF �=m is the mean free path. For thehigh-temperature insulating region, we then obtain theasymptote �tot = �0 1 + �2s=L� ln 2 / 1T ;depi
ted in Fig. 4 by the thin line. The metalli
-to-insulating behavior 
rossover o

urs at T � 0:8TF .In fa
t, the low-temperature metalli
 resistivity is ex-plained within our model in terms of the thermal 
or-re
tion given by Eq. (2), while the high-temperatureinsulating behavior results from a de
rease of the 2Ddegenera
y. It is to be spe
ially noted that in the Boltz-man limit (see 
urves at � < 0 in Fig. 4), the resistivity
an be s
aled in units of the disorder parameter kF l,where the substitution �! j�j must be made.
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TF ; Ê�tot ;(h=2e2 )jk F
lj�1 10

b

20

102

1

10 T; Ê1010 1(p
; n
)

Fig. 4. Zero-�eld temperature dependen
e of resistivitygiven by Eq. (2) for Fermi temperatures depi
ted in themain panel of Fig. 3. The dotted line 
orresponds tothe asymptote � � 1, the thin line to � > 1 for �xedTF = 0:25 K. The arrows depi
t the region of temper-atures explored in inset b. Inset a: temperature depen-den
e of the inverse resistivity �tot at TF [K℄ = 0:25,0:5, 1:0 (marked by verti
al bars). Inset b: density de-penden
e of the resistivity depi
ted in the main panelin the temperature range T = 0:5�0:9 KThe resistivity data (Fig. 4, inset b), being repre-sented as a fun
tion of the 2D density (or TF ), exhibita well-pronoun
ed transition point. The 
riti
al resis-tivity �
 is roughly inversely proportional to the 
riti
aldensity n
. We note that the same experimental range(0.1�10)h=e2 expe
ted to eliminate the metal�insulatortransition in Si-MOSFETs with di�erent mobilities pro-vides the higher temperature range, 
riti
al density n
,and hen
e lower �
 for more disordered samples. Thisresult is 
on�rmed by experimental observations [17℄.Re
ent experiments [4; 18�20℄ 
on�rm our predi
-tions and demonstrate that the metalli
-region dataobey a s
aling where the disorder parameter kF l (notthe ratio of the Coulomb intera
tion energy to theFermi energy [20℄) and the dimensionless temperatureT=TF appear expli
itly. These experimental �ndings677
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tron�ele
tron intera
-tions [4℄, the shape of the potential well [18℄, spin�orbite�e
ts, and quantum interferen
e e�e
ts [19; 20℄ as pos-sible origins of the metalli
 behavior me
hanism. In ad-dition, our 
on
ept of the high-temperature insulatingbehavior is qualitatively 
on�rmed by the experimentaldata [21; 22℄ within the insulating side of the metal�insulator transition exhibiting the nonhopping 1=T de-penden
e. As an example, for the p-GaAs/AlGaAstwo-dimensional hole gas [22℄ with the peak mobility�0 = 2 � 105 
m2=V � s, we obtain the linear dependen
e(see the thin-line asymptote in Fig. 4, inset a) of the in-verse resistivity, �tot[e2=h℄ = 1=�tot = 1:4T [K℄, whi
his 
onsistent with the experimental value 3:3T [K℄. It isto be noted that the 
onventional theory [23; 24℄ usedto explain the 2D metalli
 behavior [7; 21; 25℄ fails toa

ount for both T ! 0 and T � TF 
ases.We emphasize that Eq. (2) provides the a
tuallymeasured e�e
tive 2D mobility and yields�eff = �01 + �2=L:Experimentally, at a �xed temperature, the mobil-ity data 
an be unambiguously extra
ted using inde-pendent measurements of the 2D resistivity and thelow-�eld Hall density NHall � N . With the help ofEq. (3), we plot the density dependen
e of �eff in Fig. 5.Upon depletion of 2DEG, the dependen
e �eff (N) fallsdown at low densities near 109 
m�2 as � ! 0. Inthe high-density 
ase, we predi
t �eff � �0. We ar-gue that in real experiment, the above behavior 
anbe masked by impurity-assisted (Si�SiO2 roughness-asso
iated) suppression of the momentum s
atteringtime in the respe
tive 
ases of low (high) densities [26℄.3.3. 2DEG magnetoresistivityIn 
ontrast to the 
onventional Shubnikov � de Haasformalism extensively used to reprodu
e low-�eld data,we use the alternative approa
h [27℄ that seems tobe aimed at resolving the magnetotransport problemwithin both Shubnikov � de Haas and integer-quantum-Hall-e�e
t regimes.The Si-MOSFET energy spe
trum modi�ed withrespe
t to the valley and spin splitting is given by"n = ~!
�nL + 12�� �s2 � �v2 ; (5)where nL = 0; 1; : : : is the Landau level number,!
 = eB?=m
 is the 
y
lotron frequen
y, �s = g��BBis the Zeeman splitting, g� is the e�e
tive g-fa
tor, andB = qB2? +B2k is the total magneti
 �eld. Next,

0:5
N; 1010 
m�2

�e� =�0

0 21 3 4

1:0 0:25Ê0:15Ê

Fig. 5. The dimensionless e�e
tive mobility spe
i�ed inthe text vs the 2D density for the Si-MOSFET systemat T = 0:15 K and T = 0:25 K�v [K℄= �0v +0:6B?[T℄ is the density-independent [28℄valley splitting. In 
ontrast to the valley splitting, thespin sus
eptibility � = g�m=2m0 (where m0 is the freeele
tron mass) is known to exhibit strong enhan
ementupon 2D 
arrier depletion. This result is 
on�rmed in-dependently by magnetotransport measurements in atilted magneti
 �eld [6; 29℄, the perpendi
ular �eld [30℄,and by the beating pattern of the Shubnikov � de Haasos
illations [31℄ in 
rossed �elds.We re
all that in strong magneti
 �elds(~!
 � kT; ~=�), the ele
trons 
an be 
onsidereddissipationless, and therefore �xx; �xx � 0. Under
urrent 
arrying 
onditions, the only reason for a�nite longitudinal resistivity seems to be the thermal
orre
tion me
hanism dis
ussed earlier [27℄. FollowingRef. [27℄, we obtain � = �yx�2=L; (6)where � is the thermopower, ��1yx = Ne
=B? is the Hallresistivity, N = �(�
=��)T is the 2D density,
 = �kT�Xn ln �1 + exp��� "nkT ��is the thermodynami
 potential modi�ed with re-spe
t to the energy spe
trum mentioned above, and678
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tion to resistivity : : :� = eB?=h
 is the zero-width of the Landau-leveldensity of states. In strong magneti
 �elds, the 2Dthermopower is a universal quantity [32℄, proportionalto the entropy per ele
tron, � = �S=eN , whereS = �(�
=�T )� is the entropy. Both S and N ,and hen
e � and � are universal fun
tions of � andthe dimensionless magneti
 �eld ~!
=� = 4=�, where� = N0=� is the 
onventional �lling fa
tor.Using the Lifshitz �Kosevi
h formalism, we 
aneasily derive asymptoti
 formulas for N and S, andhen
e for �yx and �, valid at low temperatures � < 1and weak magneti
 �elds ��1 < 1:N = N0�F0 �1��++ 2��N0 1Xb=1 (�1)b sin(�b�=2)sh rb R(�); (7)S = S0 � 2�2�kN0 1Xb=1(�1)b�(rb) 
os��b�2 �R(�);where S0 = kN0 dd� ��2F1�1���is the entropy at B? = 0, Fn(z) is the Fermi integral,�(z) = 1� z 
th zz sh z ;and rb = �2��b=2 is the dimensionless parameter.Then R(�) = 
os(�bs) 
os(�bv) is the form fa
tor,s = �s=~!
 = �B=B? is the dimensionless Zeemanspin splitting, and v = �v=~!
 = �0v�=4�+0:12 is thedimensionless valley splitting.We �rst 
onsider the zero-Bk 
ase, where the Zee-man spin splitting is redu
ed to a �eld-independent
onstant, i. e., s = �. In the low-T;B? limit, thevalley splitting �0v is then known to be resolved [13℄,and therefore leads to beating of the Shubnikov � deHaas os
illations. In the a
tual �rst-harmoni
 
ase(i. e., b = 1), the beating nodes 
an be observed when
os(�v) = 0, or �vi = 4�(i=2� 0:12)�0v ;where i = 1; 3; : : : is the beating node index. For 2DEGparameters reported in Ref. [13℄ (Fig. 6), we estimate�v1 = 101, and therefore �0v = 0:92 K. The se
ond nodeis expe
ted to appear at �v3 = 368. However, the Shub-nikov � de Haas os
illations are in fa
t resolved when� � 1=� = 203, and therefore the se
ond beating nodewas not observed in experiment [13℄. Moreover, the
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Fig. 6. The Shubnikov� de Haas os
illations atT = 0:3 K for a Si-MOSFET sample [13℄: N0 == 8:39 � 1011 
m�2, the spin sus
eptibility � = 0:305,and the valley splitting �v[K℄=�0v + 0:6B? [T℄. Thezero-�eld valley splitting �0v = 0:92 K is a �ttingparameter. The arrows depi
t the beating nodes ati = 1; 3. Inset: an enlarged plot of the beating nodefrom the main paneldisappearan
e of the �rst beating node upon 2D 
ar-rier depletion N < 3 � 1011 
m�2 is governed by thesame 
ondition be
ause in this 
ase � � 1=� = 73 isof the order of the �rst beating node. We note, how-ever, that suppression of the beating nodes at higherdensities (N > 9 � 1011 
m�2) reported in Ref. [13℄ isunexpe
ted within our simple s
enario.We now analyze the 
ase of a low-density 2D sys-tem in a strong magneti
 �eld with only the lowestLandau levels o

upied. For an extremely dilute 2DEG(N � 1011 
m�2), the energy spe
trum (see the insetin Fig. 7) is known to be strongly a�e
ted by enhan
edspin sus
eptibility. In 
ontrast to the high-density 
asewith 
y
lotron minima o

urring at � = 4; 8; 12; : : : ,only the spin minima (� = 2; 6; 10; : : : ) are observedin dilute 2DEG [33℄. As expe
ted, the spin (
y
lotron)minimum �llings are proportional to odd (even) num-679
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Fig. 7. Magnetoresistivity at T = 0:36 K (upper 
urve)and T = 0:18 K for dilute 2DEG Si-MOSFET [33℄:N0 = 1011 
m�2, the spin sus
eptibility � = 0:5, andthe valley splitting spe
i�ed in the 
apture Fig. 6. In-set: energy spe
trum given by Eq. (5) for two lowestLandau levelsbers multiplied by a fa
tor of two due to the valleydegenera
y. In stronger �elds, the magnetoresistivitydata exhibit a � = 1 minimum asso
iated with val-ley splitting. Using the energy spe
trum implied byEq. (5), we 
an easily �nd that the last minimum o

urswhen the Fermi level lies between the lowest valley-splitLandau levels, i. e., at � = ~!
(1��)=2. The sequen
eof minima at B = 4; 2; 0:66 T reported in Ref. [33℄ pro-vides an independent test for spin sus
eptibility in thehigh-B? limit. In Fig. 7, we represent the magnetore-sistivity spe
i�ed by Eq. (6) and then use � = 0:5 inorder to �t the observed sequen
e of minima. Surpris-ingly, the value of spin sus
eptibility is lower than thevalue � = 0:86 extra
ted from the 
rossed-�eld low-�eldShubnikov � de Haas beating pattern analysis [31℄. Weattribute this dis
repan
y, for example, to a possiblemagneti
-�eld dependen
e of spin sus
eptibility.Finally, we fo
us on the magnetotransport prob-lem in the 
rossed magneti
 �eld 
on�guration. Fol-lowing experiments [13℄, we further negle
t the zero-

�eld valley splitting in the a
tual high-density 
ase(N > 9 � 1011 
m�2). At a �xed parallel magneti
 �eld,the dimensionless Zeeman splitting is given bys = �q1 + �2=�2k ;where we introdu
e the auxiliary ��lling fa
tor��k = h
N0=eBk asso
iated with the parallel �eld. Inthe low-B? limit, the spin splitting indu
ed by theparallel �eld also results in the beating of the Shub-nikov � de Haas os
illations. We 
an easily derive the
ondition for the Shubnikov � de Haas beating nodes as
os(�s) = 0 or�sj = �kp(j=2�)2 � 1; j = 1; 3; : : :The sequen
e of the beating nodes observed in Ref. [31℄allowed the authors to dedu
e the density dependen
eof the spin sus
eptibility. As an example, in Fig. 8, wereprodu
e the magnetoresistivity implied by Eqs. (6)and (7) for 2DEG parameters [31℄. The phase of theShubnikov � de Haas os
illations remains the same be-tween the adja
ent beating nodes and 
hanges by �through the node in agreement with experiments.We now 
onsider the 2DEG magnetotransport in atilted 
on�guration with the sample rotated in a 
on-stant magneti
 �eld [6; 7; 29℄. In this 
ase, the Shub-nikov � de Haas beating pattern is known to dependon the spin polarization degree p = �s=2� = 2�=�tot,where we introdu
e the auxiliary ��lling fa
tor��tot = h
N0=eB asso
iated with the total magneti
�eld. Conventionally, the spin polarization degree isrelated to the parallel �eld B
 required for the 
om-plete spin polarization, and therefore p = B=B
. Per-forming a minor modi�
ation in Eq. (6), namely thats = ��=�tot, in Fig. 9 we represent the magnetoresis-tivity as a fun
tion of the �lling fa
tor for a 2DEGplane rotated with respe
t to the 
onstant magneti
�eld B = 18 T [7℄. For simpli
ity, we omit the zero-�eldvalley splitting. Then, assuming that the Landau-levelbroadening is negle
ted within our simple approa
h,we use a somewhat higher temperature 
ompared tothat in experiment [7℄. For a spin-polarized system, theShubnikov � de Haas os
illations (p = 1:01 in Fig. 9a)are 
aused by the only lowest valley-degenerate spin-up subband. At low temperatures, the valley split-ting at � = 3 is resolved. With the energy spe
-trum spe
i�ed by Eq. (5), the high-�lling maxima o
-
ur at 4(N + 1=2)=(1 + p) � 2N+1 and therefore havethe period �� = 2. In 
ontrast, the partially polar-ized high-density 2DEG 
ase (p = 0:29) depi
ted inFig. 9b demonstrates a rather 
ompli
ated beating pat-tern 
aused by both spin-up and spin-down subbands.680
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Fig. 8. The Shubnikov� de Haas beating pattern os
il-lations at T = 0:35 K for a Si-MOSFET sample [31℄:N0 = 10:6�1011 
m�2, the spin sus
eptibility � = 0:27,�0v = 0 and Bk = 0 (a), Bk = 4:5 T (b), �k = 9:25.The arrows depi
t the beating nodes at j = 3, 5, 7It 
an be easily demonstrated that high-�lling maximao

ur at 4(N + 1=2)=(1� p) (dots in Fig. 9b) and hen
edepend on the spin polarization degree. The ratio ofos
illation frequen
ies for the two spin subbands isf#f" = 1� p1 + p ;
onsistently with experiment [7℄. At the moment, how-ever, we 
annot explain the puzzling behavior of low-�lling magnetoresistivity data known to be insensitiveto the parallel �eld 
omponent [6; 33℄.We emphasize that the data represented inFigs. 6�9 di�er from those provided by the 
onven-tional formalism in the following aspe
ts: i) thelow-�eld (!
� � 1) quantum interferen
e and 
lassi
alnegative magnetoresistivity ba
kground is ex
ludedwithin our approa
h and ii) in 
ontrast to the 
on-ventional Shubnikov � de Haas analysis, our approa
h
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40Fig. 9. The small-angle Shubnikov� de Haas os
il-lations at T = 1:35 K for a Si-MOSFET sys-tem [7℄: a) spin polarized ele
trons (p = 1:01)at N0 = 3:72 � 1011 
m�2, the spin sus
eptibility� = 0:42 [31℄, the �e�e
tive �lling fa
tor� �tot = 0:83,and b) the partially polarized 
ase (p = 0:29) atN0 = 9:28 �1011 
m�2, the spin sus
eptibility � = 0:30[31℄, and �tot = 2:06. The positions of maxima arerepresented by empty dots. Insets: s
hemati
 band di-agrams at B = Bkdetermines (at !
� � 1) the absolute value of mag-netoresistivity and, moreover, provides a 
ontinuoustransition from the Shubnikov � de Haas regime to thequantum Hall e�e
t (~!
 � kT ). A minor point isthat our approa
h predi
ts a somewhat lower Shub-nikov � de Haas os
illation amplitude 
ompared to thatin experiment. However, in the integer-quantum Halle�e
t regime, the magnetoresistivity magnitude is well
omparable with experimental values [27℄.3.4. Parallel-�eld magnetoresistivityOne of the most intriguing features of the Si-MOSFET 2D system is its enormous response to the681
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 �eld applied in the plane of the ele
trons.At a �xed temperature, the parallel-�eld resistivity isknown to exhibit a dramati
 in
rease at both sides ofthe zero-�eld metal�insulator transition. On the metal-li
 side, the resistivity in
reases by more than an orderof magnitude and then saturates above a 
ertain valueof the parallel magneti
 �eld. The saturation �eld 
or-responds to the 
omplete spin polarization [6℄, whenp = 1. On the insulating metal�insulator transitionside, the saturation of the magnetoresistivity is not ob-served [6℄. We now give a qualitative argument in favorof the magneti
-�eld-driven disorder origin of the ob-served magnetoresistivity data.At a �xed parallel magneti
 �eld, behavior of theT -dependent resistivity is reported [17℄ to be similarto that in the zero-�eld 
ase (see Fig. 4). Moreover,the same data plotted as a fun
tion of density also ex-hibit a well-pronoun
ed transition point as in the 
aseof the zero-�eld metal�insulator transition (see Fig. 4,inset b). Both the 
riti
al resistivity �B
 and the den-sity nB
 depend on the magneti
 �eld strength. Sur-prisingly, the 
riti
al diagram �B
 vs nB
 was found [17℄to 
oin
ide with that obtained in the 
ase of the zero-�eld metal�insulator transition for di�erent mobility Si-MOSFET samples. Assuming that the thermal 
orre
-tion me
hanism is also valid in the presen
e of the par-allel �eld, we attribute the observed magnetoresistivitybehavior to the �eld-driven disorder enhan
ement, i. e.,�(p) < �(0). Indeed, with the energy spe
trum spe
-i�ed by Eq. (5), the expli
it formulas for the 2DEGdensity and thermopower areN = N0�2 Xi F0 �1� "i� � ;� = �ke �� 2664Pi �2F1�1� "i� �+ "i� F0�1� "i� ��Pi F0�1� "i� � � 1�3775 ; (8)
where "i = �p is the dimensionless energy de�
it be-tween the bottom of spin subbands and that of theground state. For simpli
ity, we here negle
t the zero-�eld valley splitting. Both the 2D density and ther-mopower exhibit (see Fig. 2, insets a 0 and b 0) onlya minor perturbation upon parallel �eld enhan
ementwithin 0 < p < 1. We therefore 
on
lude that the�eld-driven disorder enhan
ement 
an be responsiblefor the observed magnetoresistivity behavior. The de-tailed analysis of the prevailing �(p) me
hanism (see,e.g., Ref. [34℄) is beyond the s
ope of the present paper.

3.5. 2D 
ompressibilityHereafter, we refer the reader to the experimentaldata mostly obtained for the n-GaAs/AlGaAs 2DEGsystem, and therefore we should substitute D ! D=2in what follows. In general, of parti
ular interest is the2DEG 
ompressibilityK = dNd� = �d2
d�2 ;known to be a fundamental quantity, generally moreamenable to theoreti
al and experimental analy-sis [15; 35℄. For nonintera
ting ele
trons, Eq. (3)yields K(�) = DF 00(1=�);where F 0n(z) = dFn(z)=dz is the derivative of the Fermiintegral. Figure 10 represents the dependen
e of the a
-tually measured inverse 
ompressibility d(�) = "=Ke2.For strongly degenerate ele
trons (� � 1), we obtaina 
onstant value d0 = "=De2, 
onsistent with the 
on-ventional 
apa
itan
e measurements [36℄. But as the2DEG degenera
y de
reases, the AC ele
tri
 �eld pen-etration data [15; 35℄ demonstrates diminution and, fur-thermore, the negative inverse 
ompressibility also de-
reases 
ompared to d0.Conventionally, this behavior is explained [15℄ interms of a Hartree � Fo
k ex
hange, whi
h is omittedin our simple approa
h. In 
ontrast, for extremelydepleted 2DEG, the inverse 
ompressibility data al-ways exhibit an abrupt upturn, whi
h 
annot be ex-plained within the Hartree � Fo
k s
enario [35℄. We as-sume that the above feature has a natural explanationwithin our model (see the dotted line in Fig. 10) be-
ause d = d0 exp(�1= j�j) at � < 0, j�j � 1, and hen
ethe inverse 
ompressibility exhibits the T -a
tivated be-havior. For example, upon depletion, the inverse 
om-pressibility [15℄ strongly in
reases at TF = 0:63 K(N = 2 � 109 
m�2), being of the order of the bathtemperature T = 0:3 K.In the general 
ase of 2DEG pla
ed in the perpen-di
ular magneti
 �eld, the 
ompressibility isK = ���
���T = D�� Xn 
h�2�"n � �2kT � ;orK � D "F 00�1��+�2��Xb (�1)bb 
os(�b�=2)sh rb # ; (9)where we use the thermodynami
 potential modi�edwith respe
t to the single-valley spin-unresolved Lan-dau level energy spe
trum. A

ording to Eq. (9), at the682
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Fig. 10. The dimensionless inverse 
ompressibility vsthe Fermi temperature at zero magneti
 �eld (thinlines) and ~!
 = 1 K (bold lines) at �xed tempera-tures T = 0:15 K and T = 0:25 K. Dotted lines depi
tasymptotes at � < 0; j�j � 1�xed magneti
 �eld and temperature, the dependen
ed(�) 
an be viewed (see Fig. 10) as a superposition ofthe zero-�eld dependen
e and the Landau-level-relatedos
illations. For a typi
al GaAs/AlGaAs system [15℄,we represent the data for B = 0:5 T (~!
 = 1 K > T )in Fig. 10. The Landau-level-assisted os
illations at� = 2; 4; 6; : : : are well resolved. We note that for adilute 2DEG system at � < 0; j�j � 1 in the presen
eof a strong magneti
 �eld, ~!
 � kT (i. e., �� � 1), weobtain the T -a
tivated behavior asd = d0��2 exp� 1�� � 1j�j� ;similarly to the zero-�eld 
ase (see dotted lines inFig. 10). 4. CONCLUSIONSIn 
on
lusion, the total resistivity of a dilute 2Dsystem in Si-MOSFET with the thermal 
orre
tionin
luded is found to be a universal fun
tion of the

temperature, expressed in units (h=e2)(kF l)�1. Wehave demonstrated the relevan
e of the approa
hsuggested in Ref. [27℄ to the low-�eld beating pat-tern of the Shubnikov � de Haas os
illations in both
rossed and tilted magneti
 �eld 
on�gurations.The features 
on
erning the integer quantum Halle�e
t in dilute Si-MOSFET systems are dis
ussed.The strong in
rease of the parallel magnetiresistiv-ity was argued to result from spin-dependent disorder.This work was supported by the RFBR (grant� 03-02-17588) and LSF (HPRI-CT-2001-00114, Weiz-mann Institute). APPENDIXReal 
ooling of the 2D systemWe 
onsider the more realisti
 situation of ele
tron
ooling 
aused by a �nite strength of the ele
tron�phonon 
oupling. The phonon-to-mixing-
hamber
ooling 
ould then predominately o

ur over the samplesurfa
e. The power balan
e equations linearized withrespe
t to small temperature perturbations arediv(�rT ) + j2� � jTr�� �(T � Tp) = 0;div(�prTp)� 
(Tp � T )� �(Tp � T0) = 0; (10)where �p is the phonon thermal 
ondu
tivity, Tp is thelo
al phonon temperature, and � and 
 are the respe
-tive ele
tron�phonon and sample-to-mixing-
hamber
ooling strengths. With the phonon di�usion assumedweak in the sample bulk, the phonon temperatureTp = 
T + �T0
 + �
oin
ides with the ele
tron (bath) temperature uponpredominant 
ooling. In general, T0 < Tp < T . Theele
tron�phonon 
oupling term in Eq. (??), rewrittenin terms of the bath temperature, is��(T � T0) = 
�
 + � (T � T0);whi
h depends on both 
oupling 
onstants. As ex-pe
ted, a weak heat path 
hannel provides thermal
ooling of the 2DEG system.With T �0 = T0 + j2=��� being the Joule heat en-han
ed temperature, Eq. (??) yields��2 � ur�2 � 2(�� 1) = 0; (11)where � = T=T �0 is the dimensionless ele
tron tem-perature, � = x=� is the dimensionless 
oordinate,683



M. V. Cheremisin ÆÝÒÔ, òîì 127, âûï. 3, 2005� = (L�T �0 =��)1=2 is the thermal di�usion length s
ale,and u(�) = (�j=L�)d�=dT is the dimensionless pa-rameter. Be
ause T � T0, the 2D thermopower 
anbe 
onsidered 
onstant, and we therefore omit the se
-ond term in Eq. (10). Then the energy �ux 
onti-nuity at both ends of the sample provides symmet-ri
 boundary 
onditions with the temperature gradi-ents r�ja;b = �j���=L�T �0 . Under these 
onditions,solving Eq. (10) is straightforward [10℄. The tempera-ture pro�le downstream the sample is governed by thesample-to-thermal di�usion length ratio l0=�. Our ap-proa
h of the adiabati
 
ooling is justi�ed when l0 � �.In the opposite 
ase of strong 
ooling (l0 � �), the ele
-tron temperature exhibits sharp deviation with respe
tto T �0 near the 
onta
ts and then 
oin
ides with T �0 inthe sample bulk.Considering that the use of interior potential probesgives uniform resistivity data, Prus et al. [37℄ suggestedthese data as a pre
ursor of strong 
ooling in real Si-MOSFETs. With the T -dependent resistivity of 2DEGused as a thermometer, the ele
tron�phonon 
oupling
onstant was extra
ted [37℄ from the simpli�ed energybalan
e 
ondition T = T �0 valid in the sample bulkwhen l0 � �. We stress that the above pro
edure isonly justi�ed when the ele
tron�phonon 
oupling, andhen
e the thermal di�usion length are known a pri-ori. Indeed, the weak 
oupling, if present, provides a
onstant temperature gradient, and hen
e a uniform re-sistivity as well. Nevertheless, the simple balan
e 
on-dition used in [37℄ be
omes useless be
ause T 6= T �0throughout the sample. It turns out that the weakele
tron�phonon 
oupling 
onstant 
annot be extra
tedin the 
onventional manner. One 
an estimate the 
rit-i
al ele
tron�phonon 
oupling at whi
h our adiabati
approa
h is valid, i. e., l0 < � or �� < L�T �0 =l20. Forl0 = 3 mm, � � e2=h, and T0 = 100 mK, we obtain�� < 1:1 � 10�10 W/K� 
m2.It is to be noted that the Peltier e�e
t 
orre
-tion to resistivity be
omes strongly damped at higherfrequen
ies be
ause of the thermal inertial e�e
ts [9℄.Our d
 approa
h is valid below some 
riti
al frequen
yf
r � ~=ml20 = 0:3 kHz, and therefore the spe
tral de-penden
e of the 2D resistivity 
an be used to estimatethe thermal 
orre
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