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Neglecting electron—electron interactions and quantum interference effects, we calculate the classical resistivity
of a two-dimensional electron (hole) gas taking the degeneracy and the thermal correction due to the combined
Peltier and Seebeck effects into account. The resistivity is found to be a universal function of the temperature,
expressed in the units of (h/e?)(krl)™". Analysis of the compressibility and thermopower points to the thermo-
dynamic nature of the metal-insulator transition in two-dimensional systems. We reproduce the beating pattern
of Shubnikov—de Haas oscillations in both the crossed field configuration and Si-MOSFET valley splitting cases.
The consequences of the integer quantum Hall effect in a dilute Si-MOSFET two-dimensional electron gas are
discussed. The giant parallel magnetoresistivity is argued to result from the magnetic-field-driven disorder.

PACS: 73.40.Qv, 71.30.+h, 73.20.Fz

1. INTRODUCTION

Recently, much interest has been focused on the
anomalous transport behavior of a variety of low-den-
sity two-dimensional (2D) systems [1-5]. It has been
found that below some critical density, the cooling
causes an increase in resistivity, whereas in the opposite
high-density case, the resistivity decreases. Another
property of dilute 2D systems is their unusual response
to the parallel magnetic field. At low temperatures,
the magnetic field was found to suppress the metallic
behavior and result in increasing the resistivity upon
enhancement of the spin polarization degree [6,7]. A
strong perpendicular magnetic field, if applied simulta-
neously with the parallel one, results in suppression of
the parallel magnetoresistivity [8]. Although numerous
theories have been put forward to account for these ef-
fects, the origin of the above behavior is still the subject
of a heated debate.

The ohmic measurements are known to be carried
out at a low current (I — 0) in order to prevent Joule
heating. In contrast to the Joule heat, the Peltier and
Thomson effects are linear in the current. As shown
in Refs. [9-11], the Peltier effect results in a correc-
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tion to the measured resistance. When the current
is running, one of the sample contacts is heated, and
the other is cooled because of the Peltier effect. The
contact temperatures are different. The voltage drop
across the circuit includes thermoelectromotive force,
which is linear in the current. There exists a thermal
correction Ap to the ohmic resistivity p of the sam-
ple. For low-density 2D electron gas (2DEG), the cor-
rection may be comparable to the resistivity because
Ap/p ~ (kT/p)?, where i is the Fermi energy. In the
present paper, we report on a study of low-7T" transport
in 2D systems, taking both the carrier degeneracy and
the Peltier-effect-induced correction to resistivity into
account.

2. GENERAL FORMALISM

For clarity, we consider the (100) Si-MOSFET
2DEG system. Within the strong inversion regime,
we further neglect a depletion layer charge in the
semiconductor bulk. At a fixed gate voltage, the
quasi-Fermi level 4 in the semiconductor is shifted with
respect to that in the metal gate. The number of oc-
cupied states below the quasi-Fermi level determines
the density of electrons assumed to occupy the first
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Fig.1. The experimental setup

quantum-well subband with the isotropic energy spec-
trum (k) = h?k%/2m.

We consider a sample connected to the current
source by means of two identical leads (Fig. 1). Both
contacts are ohmic. The voltage is measured between
the open ends ¢ and d kept at the temperature of the
external thermal reservoir. The sample is placed in a
chamber with the mean temperature Tp. According to
our basic assumption, the contacts a and b may have
different respective temperatures, 7, and T3. Includ-
ing the temperature gradient term, the current density
j and the energy flux density q are given by

J=0(E—-aVT), q=(aT =(/e)j-sVT, (1)

where E = V(/e is the electric field, { = u — ep is
the electrochemical potential, a is the thermopower,
o = Neyyg is the conductivity, ugp = er/m is the mo-
bility, 7 is the momentum relaxation time, k = LT o
is the thermal conductivity, and L = 72k?/3e? is the
Lorentz number.

In general, one can solve Eq. (1) and then find the
difference of contact temperatures, AT = T, — T, for
an arbitrary circuit cooling. But below approximately
1 K, the electron—phonon coupling is known to be weak
[12]. In the actual case where I — 0, we can then omit
the Joule heating. We therefore consider a simple case
of adiabatic cooling, with the 2DEG thermally insu-
lated from the environment. We emphasize that under
the above conditions, the sample is not heated. In-
deed, at small currents, we have T, ~ Tj, ~ Ty. Hence,
the amount of the Peltier heat Q, = IAaT, evolved
at contact a and that absorbed at contact b are equal.
Here, Aa is the difference of the 2DEG and metal con-
ductor thermopowers. We recall that the energy flux is
continuous at each contact,

—KVT‘a,b = jAO{Ta,b,

and therefore the temperature gradient is constant
downstream the current. The difference of the contact
temperatures is then given by [9, 10]

_ AOélo I

AT =
Low

bl

where [y and w are respectively the sample length and
width. For example, for a 2 x 2-mm sample, the typi-
cal current I =1 nA, the 2D resistivity of the order of
h/e?, and a ~ k*T /ey ~ 0.01k /e, the contact temper-
ature difference is AT = 10 mK <« Ty, and therefore
our approach is well justified. From Eq. (1), the voltage
drop between ends ¢ and d is given by

U = RI + AaAT,

where R is the ohmic resistance of the circuit. The
second term is the conventional Seebeck thermoelec-
tromotive force. Because AT o I, we finally obtain
the total 2DEG resistivity as

p' = p(1+a®/L), (2)

where we assume that Aa &~ —a. We note that within
the adiabatic approach, Eq. (2) can also be applied for
the 2D hole gas and in the case of four-point contact
measurements. In the Appendix, we discuss the case of
2DEG realistic cooling in more detail.

3. RESULTS

3.1. 2D density and thermopower

Using Gibbs statistics, we find that the 2DEG den-
sity N = —(9Q/0u)r is given by

N = No&Fo(1/8), (3)

where
_ p—e(k)
Q=—kT Ek ln{l-l—exp( T )}

is the thermodynamic potential, £ = kT'/u = T/Tp is
the dimensionless temperature, Tr is the Fermi tem-
perature, and F,(z) is the Fermi integral. At the mo-
ment, we disregard the valley splitting, reported to be
of the order of 1 K in the (100) Si-MOSFET 2DEG
system [13]. Below we discuss the importance of a
nonzero valley splitting in the context of low-field Shub-
nikov—de Haas oscillations. Next, we introduce the
density of states D = 2m/mh?, where m is the effective
mass. For the density of strongly degenerate 2DEG,
we have Ny = Dpu. In what follows, we consider both
the classical Boltzman (u < 0) and Fermi (u > 0)
cases, and therefore use the dimensionless concentra-
tion n = N/ |Np| (Fig. 2a). In the classical Boltzman
limit (1 < 0, || < 1), the 2D electron density is ther-
mally activated:

n = |¢exp(=1/[¢]).

11*
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Fig.2. The zero-field 2DEG density (a) and ther-

mopower (b) given by Egs. (3) and (4) respectively vs

the dimensionless temperature {. Asymptotes shown

by dotted lines correspond to |¢| < 1 and those shown

by thin lines to |£| > 1. Insets: 2DEG density (a')

and thermopower (') for the spin polarization degree
p=0,03, 06 1

For strongly degenerate electrons (£ < 1), we obtain
n =1+ exp(—1/¢&).
Then, at elevated temperatures (¢ > 1), the density
n=1/24+¢In2

becomes linear in the temperature. We note that at
a fixed temperature, the 2DEG density always exceeds
the zero-temperature value, i.e., N > Ny (see Fig. 3, in-
set). Experimentally, the concentration extracted from
the period of the Shubnikov—de Haas quantum oscil-
lations [14, 15] determines the density of strongly de-
generate 2DEG, i.e., Nggg = Np. In contrast, the
classical low-field Hall measurements [4, 14] allow find-
ing the total carrier density Npo; = N, which co-
incides with the density of strongly degenerate elec-
trons for £ < 1. We argue that in dilute 2D systems,
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Fig.3. Temperature dependence of the thermopower

given by Eq. (4) for Tr [K] = 2-0.25 (step 0.25),

0.2-0.05 (the step 0.05), 0.01, 0 (bold line), —0.1,

—0.2. Inset: density vs Fermi energy at the fixed tem-

perature T' [K] = 0 (piecewise bold line), 0.15, 0.25 in
Si-MOSFET system

the accuracy provided by both methods becomes ques-
tionable, which seems to be the reason for the sample
and temperature-dependent deviation Nga.y — Nsam
observed in Si-MOSFETs [14].

Following the conventional Boltzman equation for-
malism, the explicit formula for the 2DEG ther-
mopower can be written as

|

For simplicity, we assume that the electron scattering
is characterized by the energy-independent momentum
relaxation time. In the classical limit (1 < 0, [{] < 1),
the thermopower is given by the conventional formula

(t-¢)

For strongly degenerate 2DEG (£ <« 1), we obtain the
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temperature dependence of the thermopower (Fig. 2b)

) 3

¢
At elevated temperatures (¢ > 1), the thermopower
first grows with the temperature and then approaches
the universal value

_ k2F(0)

s = =

e F[) (0)

(14 3¢) eXp<

ko
e 6ln2’

The above behavior is confirmed by low-temperature
thermopower measurement data [16], found to diverge
at a certain value near 0.6k /e, which is of the order of
as (see the bold line in Fig. 3).

3.2. Zero-field resistivity

We now calculate the total 2DEG resistivity given
by Eq. (2). Figure 4 represents the T-dependent resis-
tivity at fixed Fermi temperatures that correspond to
a certain 2DEG density range (see Fig. 3, inset). For a
fixed disorder strength, we represent the data found at
different densities (or Tr) in a single plot (Fig. 4). In
real units, increasing the disorder results in the upshift
of resistivity curves. The temperature dependence of
the resistivity (see, e.g., the curve at Tr = 0.25 K in
Fig. 4) exhibits the metallic behavior (i.e. dp/dT > 0)
for T < Ty and then becomes insulating (dp/dT < 0)
at T > Tr. Within the low-temperature metallic re-
gion, the 2DEG resistivity can be approximated (see
the dotted line in Fig. 4) by

p' = po(1+m2€2/3),
where
1 h 1
~ Noepo  2€2 kpl
is the resistivity at T'— 0, kg = \/2mu/h is the Fermi
vector, and | = hkp7/m is the mean free path. For the

high-temperature insulating region, we then obtain the
asymptote

Po

1+a2/L 1
Y e N
&ln2 T
depicted in Fig. 4 by the thin line. The metallic-to-
insulating behavior crossover occurs at T 0.8TF.
In fact, the low-temperature metallic resistivity is ex-
plained within our model in terms of the thermal cor-
rection given by Eq. (2), while the high-temperature
insulating behavior results from a decrease of the 2D
degeneracy. It is to be specially noted that in the Boltz-
man limit (see curves at u < 0 in Fig. 4), the resistivity
can be scaled in units of the disorder parameter kpl,
where the substitution p — || must be made.

tot

= Po

~
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Fig.4. Zero-field temperature dependence of resistivity
given by Eq. (2) for Fermi temperatures depicted in the
main panel of Fig. 3. The dotted line corresponds to
the asymptote ¢ < 1, the thin line to £ > 1 for fixed
Tr = 0.25 K. The arrows depict the region of temper-
atures explored in inset b. Inset a: temperature depen-
dence of the inverse resistivity 0/ at Tp[K] = 0.25,
0.5, 1.0 (marked by vertical bars). Inset b: density de-
pendence of the resistivity depicted in the main panel
in the temperature range T = 0.5-0.9 K

The resistivity data (Fig. 4, inset b), being repre-
sented as a function of the 2D density (or TF), exhibit
a well-pronounced transition point. The critical resis-
tivity p. is roughly inversely proportional to the critical
density n.. We note that the same experimental range
(0.1-10)h /e expected to eliminate the metal-insulator
transition in Si-MOSFETSs with different mobilities pro-
vides the higher temperature range, critical density n.,
and hence lower p. for more disordered samples. This
result is confirmed by experimental observations [17].

Recent experiments [4, 18-20] confirm our predic-
tions and demonstrate that the metallic-region data
obey a scaling where the disorder parameter kpl (not
the ratio of the Coulomb interaction energy to the
Fermi energy [20]) and the dimensionless temperature
T/Tr appear explicitly. These experimental findings
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were argued to rule out the electron—electron interac-
tions [4], the shape of the potential well [18], spin—orbit
effects, and quantum interference effects [19, 20] as pos-
sible origins of the metallic behavior mechanism. In ad-
dition, our concept of the high-temperature insulating
behavior is qualitatively confirmed by the experimental
data [21,22] within the insulating side of the metal—
insulator transition exhibiting the nonhopping 1/T" de-
pendence. As an example, for the p-GaAs/AlGaAs
two-dimensional hole gas [22] with the peak mobility
fo = 2-10% ¢cm?/V - s, we obtain the linear dependence
(see the thin-line asymptote in Fig. 4, inset a) of the in-
verse resistivity, o?°t[e?/h] = 1/pt°t = 1.4T [K], which
is consistent with the experimental value 3.3T [K]. It is
to be noted that the conventional theory [23,24] used
to explain the 2D metallic behavior [7,21,25] fails to
account for both T'— 0 and T > T cases.

We emphasize that Eq. (2) provides the actually
measured effective 2D mobility and yields

_ Ho
Heff = 1-I-a/,2/L.

Experimentally, at a fixed temperature, the mobil-
ity data can be unambiguously extracted using inde-
pendent measurements of the 2D resistivity and the
low-field Hall density Ngqy ~ N. With the help of
Eq. (3), we plot the density dependence of y.¢ in Fig. 5.
Upon depletion of 2DEG, the dependence pierr (V) falls
down at low densities near 10 cm=2 as & — 0.
the high-density case, we predict pep ~ pg. We ar-
gue that in real experiment, the above behavior can
be masked by impurity-assisted (Si-SiO, roughness-
associated) suppression of the momentum scattering
time in the respective cases of low (high) densities [26].

In

3.3. 2DEG magnetoresistivity

In contrast to the conventional Shubnikov —de Haas
formalism extensively used to reproduce low-field data,
we use the alternative approach [27] that seems to
be aimed at resolving the magnetotransport problem
within both Shubnikov—de Haas and integer-quantum-
Hall-effect regimes.

The Si-MOSFET energy spectrum modified with
respect to the valley and spin splitting is given by

zsnzho.)c<nL—|—l>:I:&:I:ﬁ7

2)7 2 72 (5)

where n; = 0,1,... is the Landau level number,
we = eB} /mc is the cyclotron frequency, Ay = ¢*upB
is the Zeeman splitting, g* is the effective g-factor, and

B = ,/B% +Bﬁ is the total magnetic field. Next,
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Fig.5. The dimensionless effective mobility specified in
the text vs the 2D density for the Si-MOSFET system
at T=0.15Kand T=0.25 K

A,|K]= AY +0.6B|T] is the density-independent [28]
valley splitting. In contrast to the valley splitting, the
spin susceptibility x = g*m/2mq (where myg is the free
electron mass) is known to exhibit strong enhancement
upon 2D carrier depletion. This result is confirmed in-
dependently by magnetotransport measurements in a
tilted magnetic field [6,29], the perpendicular field [30],
and by the beating pattern of the Shubnikov —de Haas
oscillations [31] in crossed fields.

We recall that in strong magnetic fields
(hw. > kT,h/T), the electrons can be considered
dissipationless, and therefore 0.4, pue 0. Under
current carrying conditions, the only reason for a
finite longitudinal resistivity seems to be the thermal
correction mechanism discussed earlier [27]. Following
Ref. [27], we obtain

~

(6)

where « is the thermopower, p;zl = Nec/B, is the Hall
resistivity, N = —(9/0u)r is the 2D density,

Q:-kTan:ln [1—|—exp< )}

is the thermodynamic potential modified with re-
spect to the energy spectrum mentioned above, and

p= pyxa2/La

K —En
k
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r eB /he is the zero-width of the Landau-level
density of states. In strong magnetic fields, the 2D
thermopower is a universal quantity [32], proportional
to the entropy per electron, « —S/eN, where
S —(0Q/0T), is the entropy. Both S and N,
and hence a and p are universal functions of ¢ and
the dimensionless magnetic field fw./u = 4/v, where
v = Ny /T is the conventional filling factor.

Using the Lifshitz - Kosevich formalism, we can
easily derive asymptotic formulas for N and S, and
hence for p,, and p, valid at low temperatures { < 1
and weak magnetic fields v~ ! < 1:

N = NoéFp <%> +

roreny Y ST gy
b=1

why

S = Sy — 2n%¢kNy Z(—l)bd)(rb) cos < 5

) R

b=1
where p .
So = kNo— |&Fy | =
o=oge [0 ()

is the entropy at B, =0, F,(z) is the Fermi integral,

1—zcthz

®(z) = ———,

(2) zshz

and r, = 7w2¢vb/2 is the dimensionless parameter.
Then R(v) = cos(wbs)cos(mbv) is the form factor,

s = Ag/hw. = xB/B, is the dimensionless Zeeman
spin splitting, and v = A, /hw, = A% /4 +0.12 is the
dimensionless valley splitting.

We first consider the zero-B) case, where the Zee-
man spin splitting is reduced to a field-independent
constant, i.e., s x- In the low-T, B, limit, the
valley splitting AY is then known to be resolved [13],
and therefore leads to beating of the Shubnikov-de
Haas oscillations. In the actual first-harmonic case
(i.e., b = 1), the beating nodes can be observed when
cos(mv) =0, or

Ap(i/2 - 0.12)

vy
wherei = 1,3, ... is the beating node index. For 2DEG
parameters reported in Ref. [13] (Fig. 6), we estimate
v{ =101, and therefore AY = 0.92 K. The second node
is expected to appear at v§ = 368. However, the Shub-
nikov—de Haas oscillations are in fact resolved when
v < 1/& = 203, and therefore the second beating node
was not observed in experiment [13]. Moreover, the
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Fig.6. The Shubnikov—de Haas oscillations at
T = 0.3 K for a Si-MOSFET sample [13]: Ny =

=8.39-10"" cm™?, the spin susceptibility y = 0.305,

and the valley splitting A,[K]=AY + 0.6B [T]. The

zero-field valley splitting A9 0.92 K is a fitting

parameter. The arrows depict the beating nodes at

i = 1,3. Inset: an enlarged plot of the beating node
from the main panel

disappearance of the first beating node upon 2D car-
rier depletion N < 3 - 10" em~?2 is governed by the
same condition because in this case v < 1/ = 73 is
of the order of the first beating node. We note, how-
ever, that suppression of the beating nodes at higher
densities (N > 910" ecm~2) reported in Ref. [13] is
unexpected within our simple scenario.

We now analyze the case of a low-density 2D sys-
tem in a strong magnetic field with only the lowest
Landau levels occupied. For an extremely dilute 2DEG
(N =~ 10! cm~2), the energy spectrum (see the inset
in Fig. 7) is known to be strongly affected by enhanced
spin susceptibility. In contrast to the high-density case
with cyclotron minima occurring at v = 4,8,12,...,
only the spin minima (v = 2,6,10,...) are observed
in dilute 2DEG [33]. As expected, the spin (cyclotron)
minimum fillings are proportional to odd (even) num-



M. V. Cheremisin

MWITD, Tom 127, BhIm. 3, 2005

0.15 T T

0.10
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Fig. 7. Magnetoresistivity at T = 0.36 K (upper curve)

and T = 0.18 K for dilute 2DEG Si-MOSFET [33]:

No = 10"" cm™2, the spin susceptibility y = 0.5, and

the valley splitting specified in the capture Fig. 6. In-

set: energy spectrum given by Eq. (5) for two lowest
Landau levels

bers multiplied by a factor of two due to the valley
degeneracy. In stronger fields, the magnetoresistivity
data exhibit a ¥ = 1 minimum associated with val-
ley splitting. Using the energy spectrum implied by
Eq. (5), we can easily find that the last minimum occurs
when the Fermi level lies between the lowest valley-split
Landau levels, i.e., at u = hw.(1—x)/2. The sequence
of minima at B = 4,2,0.66 T reported in Ref. [33] pro-
vides an independent test for spin susceptibility in the
high-B, limit. In Fig. 7, we represent the magnetore-
sistivity specified by Eq. (6) and then use y = 0.5 in
order to fit the observed sequence of minima. Surpris-
ingly, the value of spin susceptibility is lower than the
value y = 0.86 extracted from the crossed-field low-field
Shubnikov — de Haas beating pattern analysis [31]. We
attribute this discrepancy, for example, to a possible
magnetic-field dependence of spin susceptibility.

Finally, we focus on the magnetotransport prob-

lem in the crossed magnetic field configuration. Fol-
lowing experiments [13]|, we further neglect the zero-
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field valley splitting in the actual high-density case
(N >9-10" ecm™2). At a fixed parallel magnetic field,
the dimensionless Zeeman splitting is given by

s =xy/1+ 02/,

where we introduce the auxiliary «filling factors»
v| = hcNg/eB) associated with the parallel field. In
the low-B, limit, the spin splitting induced by the
parallel field also results in the beating of the Shub-
nikov —de Haas oscillations. We can easily derive the
condition for the Shubnikov—de Haas beating nodes as
cos(ws) = 0 or

vi =y (G/2x) =1, j

The sequence of the beating nodes observed in Ref. [31]
allowed the authors to deduce the density dependence
of the spin susceptibility. As an example, in Fig. 8, we
reproduce the magnetoresistivity implied by Eqs. (6)
and (7) for 2DEG parameters [31]. The phase of the
Shubnikov —de Haas oscillations remains the same be-
tween the adjacent beating nodes and changes by =
through the node in agreement with experiments.

We now consider the 2DEG magnetotransport in a
tilted configuration with the sample rotated in a con-
stant magnetic field [6,7,29]. In this case, the Shub-
nikov—de Haas beating pattern is known to depend
on the spin polarization degree p = Ag/2u = 2X/Viot,
where we introduce the auxiliary «filling factors»
viot = heNg/eB associated with the total magnetic
field. Conventionally, the spin polarization degree is
related to the parallel field B, required for the com-
plete spin polarization, and therefore p = B/B,.. Per-
forming a minor modification in Eq. (6), namely that
s = \V/Vtot, in Fig. 9 we represent the magnetoresis-
tivity as a function of the filling factor for a 2DEG
plane rotated with respect to the constant magnetic
field B = 18 T [7]. For simplicity, we omit the zero-field
valley splitting. Then, assuming that the Landau-level
broadening is neglected within our simple approach,
we use a somewhat higher temperature compared to
that in experiment [7]. For a spin-polarized system, the
Shubnikov —de Haas oscillations (p = 1.01 in Fig. 9a)
are caused by the only lowest valley-degenerate spin-
up subband. At low temperatures, the valley split-
ting at v 3 is resolved. With the energy spec-
trum specified by Eq. (5), the high-filling maxima oc-
cur at 4(N +1/2)/(1 4+ p) ~ 2N + 1 and therefore have
the period Av = 2. In contrast, the partially polar-
ized high-density 2DEG case (p = 0.29) depicted in
Fig. 9b demonstrates a rather complicated beating pat-
tern caused by both spin-up and spin-down subbands.

1,3,...
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Fig.9. The small-angle Shubnikov—-de Haas oscil-
Fig.8. The Shubnikov—-de Haas beating pattern oscil- lations at T = 1.35 K for a Si-MOSFET sys-
lations at 7' = 0.35 K for a Si-MOSFET sample [31]: tem [7]: a) spin polarized electrons (p = 1.01)
Ny = 10.6-10' cm 2, the spin susceptibility y = 0.27, at No = 3.72 - 10" cm™2, the spin susceptibility

A) =0and B =0 (a), By = 4.5 T (b), v = 9.25.
The arrows depict the beating nodes at j =3, 5, 7

It can be easily demonstrated that high-filling maxima
occur at 4(N + 1/2)/(1 £ p) (dots in Fig. 9b) and hence
depend on the spin polarization degree. The ratio of
oscillation frequencies for the two spin subbands is

fi _1-p

fr  14p
consistently with experiment [7]. At the moment, how-
ever, we cannot explain the puzzling behavior of low-
filling magnetoresistivity data known to be insensitive
to the parallel field component [6, 33].

We emphasize that the data represented in
Figs. 6-9 differ from those provided by the conven-
tional formalism in the following aspects: 1) the
low-field (w.7 < 1) quantum interference and classical
negative magnetoresistivity background is excluded
within our approach and ii) in contrast to the con-
ventional Shubnikov—de Haas analysis, our approach
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x = 0.42 [31], the «effective filling factor» v = 0.83,

and b) the partially polarized case (p 0.29) at

Ny = 9.28 10" cm™2, the spin susceptibility y = 0.30

[31], and vyt = 2.06. The positions of maxima are

represented by empty dots. Insets: schematic band di-
agrams at B = B

determines (at w.r > 1) the absolute value of mag-
netoresistivity and, moreover, provides a continuous
transition from the Shubnikov—de Haas regime to the
quantum Hall effect (fiw. > kT). A minor point is
that our approach predicts a somewhat lower Shub-
nikov —de Haas oscillation amplitude compared to that
in experiment. However, in the integer-quantum Hall
effect regime, the magnetoresistivity magnitude is well
comparable with experimental values [27].

3.4. Parallel-field magnetoresistivity

One of the most intriguing features of the Si-
MOSFET 2D system is its enormous response to the
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magnetic field applied in the plane of the electrons.
At a fixed temperature, the parallel-field resistivity is
known to exhibit a dramatic increase at both sides of
the zero-field metal-insulator transition. On the metal-
lic side, the resistivity increases by more than an order
of magnitude and then saturates above a certain value
of the parallel magnetic field. The saturation field cor-
responds to the complete spin polarization [6], when
p = 1. On the insulating metal-insulator transition
side, the saturation of the magnetoresistivity is not ob-
served [6]. We now give a qualitative argument in favor
of the magnetic-field-driven disorder origin of the ob-
served magnetoresistivity data.

At a fixed parallel magnetic field, behavior of the
T-dependent resistivity is reported [17] to be similar
to that in the zero-field case (see Fig. 4). Moreover,
the same data plotted as a function of density also ex-
hibit a well-pronounced transition point as in the case
of the zero-field metal-insulator transition (see Fig. 4,
inset b). Both the critical resistivity p? and the den-
sity n? depend on the magnetic field strength. Sur-
prisingly, the critical diagram p? vs nB was found [17]
to coincide with that obtained in the case of the zero-
field metal-insulator transition for different mobility Si-
MOSFET samples. Assuming that the thermal correc-
tion mechanism is also valid in the presence of the par-
allel field, we attribute the observed magnetoresistivity
behavior to the field-driven disorder enhancement, i. e.,
7(p) < 7(0). Indeed, with the energy spectrum spec-
ified by Eq. (5), the explicit formulas for the 2DEG
density and thermopower are

No& 1—¢
NZT?“}( )
k
a=——x
e

—&; Ei 1

=) en(

&)

where ¢; = +p is the dimensionless energy deficit be-
tween the bottom of spin subbands and that of the
ground state. For simplicity, we here neglect the zero-
field valley splitting. Both the 2D density and ther-
mopower exhibit (see Fig. 2, insets a’ and b') only
a minor perturbation upon parallel field enhancement
within 0 < p < 1. We therefore conclude that the
field-driven disorder enhancement can be responsible
for the observed magnetoresistivity behavior. The de-
tailed analysis of the prevailing 7(p) mechanism (see,
e.g., Ref. [34]) is beyond the scope of the present paper.

_Ei

§

)
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3.5. 2D compressibility

Hereafter, we refer the reader to the experimental
data mostly obtained for the n-GaAs/AlGaAs 2DEG
system, and therefore we should substitute D — D/2
in what follows. In general, of particular interest is the
2DEG compressibility
d*Q

du?’

K= — — _
K an

known to be a fundamental quantity, generally more
amenable to theoretical and experimental analy-
sis [15,35].  For noninteracting electrons, Eq. (3)
yields
K(§) = DFy(1/¢),

where F! (z) = dF,(z)/dz is the derivative of the Fermi
integral. Figure 10 represents the dependence of the ac-
tually measured inverse compressibility d(u) = ¢/Ke?.
For strongly degenerate electrons (§ < 1), we obtain
a constant value dy = £/De?, consistent with the con-
ventional capacitance measurements [36]. But as the
2DEG degeneracy decreases, the AC electric field pen-
etration data [15, 35] demonstrates diminution and, fur-
thermore, the negative inverse compressibility also de-
creases compared to dy.

Conventionally, this behavior is explained [15] in
terms of a Hartree—Fock exchange, which is omitted
in our simple approach. In contrast, for extremely
depleted 2DEG, the inverse compressibility data al-
ways exhibit an abrupt upturn, which cannot be ex-
plained within the Hartree — Fock scenario [35]. We as-
sume that the above feature has a natural explanation
within our model (see the dotted line in Fig. 10) be-
cause d = dgexp(—1/[¢]) at p < 0, || < 1, and hence
the inverse compressibility exhibits the T-activated be-
havior. For example, upon depletion, the inverse com-
pressibility [15] strongly increases at Tp = 0.63 K
(N = 2-10° em~?), being of the order of the bath
temperature 7' = 0.3 K.

In the general case of 2DEG placed in the perpen-
dicular magnetic field, the compressibility is

- o0 _ 2 —2(En—H
(), B (5)
or
/1 _1)%b cos(wbr /2
IX’ ~ D F() <E> +7T2€VZ ( ) Scli)iiﬂ- l// )‘| , (9)

b

where we use the thermodynamic potential modified
with respect to the single-valley spin-unresolved Lan-
dau level energy spectrum. According to Eq. (9), at the
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Fig.10. The dimensionless inverse compressibility vs

the Fermi temperature at zero magnetic field (thin

lines) and hw. = 1 K (bold lines) at fixed tempera-

tures T'=0.15 K and T = 0.25 K. Dotted lines depict
asymptotes at £ < 0, || < 1

fixed magnetic field and temperature, the dependence
d(u) can be viewed (see Fig. 10) as a superposition of
the zero-field dependence and the Landau-level-related
oscillations. For a typical GaAs/AlGaAs system [15],
we represent the data for B=0.5T (hw, =1K > T)
in Fig. 10. The Landau-level-assisted oscillations at
v = 2,4,6,... are well resolved. We note that for a
dilute 2DEG system at £ < 0, || < 1 in the presence
of a strong magnetic field, fiw, > kT (i.e., v < 1), we
obtain the T-activated behavior as

P <€v €

similarly to the zero-field case (see dotted lines in
Fig. 10).

doév 11

d=
2

4. CONCLUSIONS

In conclusion, the total resistivity of a dilute 2D
system in Si-MOSFET with the thermal correction
included is found to be a universal function of the
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temperature, expressed in units (h/e?)(kpl)~t. We
have demonstrated the relevance of the approach
suggested in Ref. [27] to the low-field beating pat-
tern of the Shubnikov—de Haas oscillations in both
crossed and tilted magnetic field configurations.
The features concerning the integer quantum Hall
effect in dilute Si-MOSFET systems are discussed.
The strong increase of the parallel magnetiresistiv-
ity was argued to result from spin-dependent disorder.

This work was supported by the RFBR (grant
Ne03-02-17588) and LSF (HPRI-CT-2001-00114, Weiz-
mann Institute).

APPENDIX

Real cooling of the 2D system

We consider the more realistic situation of electron
cooling caused by a finite strength of the electron—
phonon coupling.  The phonon-to-mixing-chamber
cooling could then predominately occur over the sample
surface. The power balance equations linearized with
respect to small temperature perturbations are

2
div(kVT) + L JTVa —p(T = T,) =0,
o

div(k,VTp) = (T, = T) = B(Tp — To) = 0,

(10)

where k), is the phonon thermal conductivity, T}, is the
local phonon temperature, and 5 and v are the respec-
tive electron—phonon and sample-to-mixing-chamber
cooling strengths. With the phonon diffusion assumed
weak in the sample bulk, the phonon temperature

_ 1T+ 0T
v+ 08

coincides with the electron (bath) temperature upon
predominant cooling. In general, Tp < T}, < T'. The
electron—phonon coupling term in Eq. (??), rewritten
in terms of the bath temperature, is

V3
+ 6

which depends on both coupling constants. As ex-
pected, a weak heat path channel provides thermal
cooling of the 2DEG system.

With Tg = Ty + j?/o3* being the Joule heat en-
hanced temperature, Eq. (?77?) yields

p

B (T — To) (T' = Ty),

AG? —uVO? —2(0 —1) =0, (11)

where § = T/T§ is the dimensionless electron tem-
perature, 7 x/X is the dimensionless coordinate,
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A= (Lchg‘/B*)l/2 is the thermal diffusion length scale,
and u(0®) = (Aj/Lo)da/dT is the dimensionless pa-
rameter. Because T' = Ty, the 2D thermopower can
be considered constant, and we therefore omit the sec-
ond term in Eq. (10). Then the energy flux conti-
nuity at both ends of the sample provides symmet-
ric boundary conditions with the temperature gradi-
ents VO|,, = —jAAa/LoT{§. Under these conditions,
solving Eq. (10) is straightforward [10]. The tempera-
ture profile downstream the sample is governed by the
sample-to-thermal diffusion length ratio lo/\. Our ap-
proach of the adiabatic cooling is justified when [y < A.
In the opposite case of strong cooling (ly >> \), the elec-
tron temperature exhibits sharp deviation with respect
to T near the contacts and then coincides with 7§ in
the sample bulk.

Considering that the use of interior potential probes
gives uniform resistivity data, Prus et al. [37] suggested
these data as a precursor of strong cooling in real Si-
MOSFETs. With the T-dependent resistivity of 2DEG
used as a thermometer, the electron-phonon coupling
constant was extracted [37] from the simplified energy
balance condition 7" = T} valid in the sample bulk
when Iy > A. We stress that the above procedure is
only justified when the electron—phonon coupling, and
hence the thermal diffusion length are known a pri-
ori. Indeed, the weak coupling, if present, provides a
constant temperature gradient, and hence a uniform re-
sistivity as well. Nevertheless, the simple balance con-
dition used in [37] becomes useless because T # Tg
throughout the sample. It turns out that the weak
electron—phonon coupling constant cannot be extracted
in the conventional manner. One can estimate the crit-
ical electron—phonon coupling at which our adiabatic
approach is valid, i.e., Iy < X or 3* < LoT;/I3. For
lo =3 mm, 0 ~ e?/h, and Ty = 100 mK, we obtain
B* <1.1-1071° W/K- em?.

It is to be noted that the Peltier effect correc-
tion to resistivity becomes strongly damped at higher
frequencies because of the thermal inertial effects [9].
Our dc approach is valid below some critical frequency
fer & B/ml2 = 0.3 kHz, and therefore the spectral de-
pendence of the 2D resistivity can be used to estimate
the thermal correction.
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