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PYROELECTRIC AND ELECTROMECHANICAL PROPERTIESOF ANTIFERROELECTRIC LIQUID CRYSTAL MHPOBCS. V. Yablonskii *a;b, K. Nakano a, M. Ozaki a, K. Yoshino aaDepartment of Ele
troni
 Engineering, Graduate S
hool of Engineering, Osaka University2-1 Yamada-Oka, Suita, Osaka 565-0871, JapanbInstitute of Crystallography, Russian A
ademy of S
ien
e117333, Mos
ow, RussiaSubmitted 30 June 2004We study pyroele
tri
 and ele
trome
hani
al e�e
ts in the prototype antiferroele
tri
 liquid 
rystal 4-(1-me-thylheptyloxy
arbonyl-phenyl)40-o
tylbiphenil-4-
arboxylate (MHPOBC). The linear ele
trome
hani
al e�e
t inthe freely suspended liquid 
rystal �lms of MHPOBC has been dete
ted in the broad temperature range in
lusiveof the antiferroele
tri
 SmC�A as well as paralele
tri
 SmA. The anomalous behavior of the hysteresis loop ofSmC�� in the (pyroele
tri
 
oe�
ient, d
 bias ele
tri
 voltage) 
oordinates has been found.PACS: 64.70.Md, 68.15.+e, 62.30.+d1. INTRODUCTIONAntiferroele
tri
ity of a liquid 
rystal was �rst dis-
overed in 4-(1-methylheptyloxy
arbonyl-phenyl)40-o
-tylbiphenil-4-
arboxylate (MHPOBC) [1; 2℄. This ma-terial has three 
hiral sme
ti
 subphases (SmC��,SmC�� , and SmC�
 ) between paraele
tri
 SmA and anti-ferroele
tri
 SmC�A. The arrangements of the mole
ulesin these phases are shown in Fig. 1. Di�erent ex-perimental te
hniques, su
h as resonant x-ray s
at-tering [4℄, diele
tri
 spe
tros
opy [5; 6℄, opti
al ro-tation [7℄, 
onos
opi
 observation [8℄, ellipsometryon freely suspended �lms [9℄, di�erential s
anning
alorimetry [10℄, and ele
tri
 
urrent and opti
al trans-mittan
e responses [1; 11℄ have been used to identifyand 
hara
terize the stru
ture of these phases.In 
hiral mesophases, a spontaneous polarizationarises as a se
ondary order parameter due to a mole
u-lar tilt with respe
t to the sme
ti
 layer normal; the Psve
tor lies in the tilt plane, re�e
ting the polar prop-erties of a liquid 
rystal [12℄. Chirality plays a 
ru
ialrole for the emergen
e of polarization in the dire
tionof the tilt plane normal. In sme
ti
 phases, where rod-like mole
ules are organized into �uid sta
ks of planarlayers, weak 
hiral twisting for
es indu
e a heli
al or-der with the heli
al axis parallel to the layer normal.*E-mail: lbf�ns.
rys.ras.ru

The resulting heli
al pit
h is in the opti
al wavelengthrange. If the pit
h is large, it is easy to unwind thehelix by appli
ation of a weak strain, for example, im-posed by a me
hani
al shear or by a weak applied ele
-tri
 �eld. Then the sample has a ferroele
tri
 responseunder moderate applied ele
tri
 and me
hani
al �elds.In this paper, the polar properties of 
hiral sme
-ti
 subphases of the 
lassi
 antiferroele
tri
 liquid 
rys-tal MHPOBC are investigated by re
ording its pyro-ele
tri
 
oe�
ient and studying the vibration of freelysuspended �lms indu
ed by alternating ele
tri
 volt-age (the so-
alled linear ele
trome
hani
al e�e
t) [13℄.The pyroele
tri
 a
tivity of the �unwound� 
hiral liq-uid 
rystal 
on�rms the polar stru
ture of mesophases,whereas the thermal behavior of the linear ele
trome-
hani
al response reveals spe
i�
 features related tophase transitions of sme
ti
 subphases and their stru
-ture. 2. EXPERIMENTAL2.1. Pyroele
tri
 set-up and 
ellTo study the antiferroele
tri
 and ferriele
tri
 be-havior of our material, we used a pulse pyroele
tri
 set-up shown in Fig. 2 [14℄. A 100�s pulse of a Nd3+ YAGlaser was used to provide a small lo
al temperature471
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SmA Sm C∗

Sm C∗

γ Sm C∗

β Sm C∗

AFig. 1. Model stru
tures of the paraele
tri
 SmA, ferroele
tri
 SmC�, ferriele
tri
 SmC�
 , SmC��, and antiferroele
tri
 SmC�Aphases. The unit 
ells are marked by frames. In SmC�� (not shown in the pi
ture), the superlatti
e in
ommensurate period(
orresponding to the heli
al pit
h) ranges between 5 and 8 sme
ti
 layers [3℄
hange in the sample. Laser radiation (� = 1:06�m)was partly absorbed in indium-tin-oxide (ITO) layers.The pyroele
tri
 response was measured as a pulse volt-age a
ross the load resistor RL = 100 k
 with a wi-de-band ampli�er and a storage os
illos
ope. A d
 �eldof various strengths was applied to the sample in orderto measure hysteresis loops in the 
oordinates (pyro-ele
tri
 response, d
 bias voltage).The temperature dependen
e of the spontaneouspolarization (on an arbitrary s
ale) was 
al
ulated byintegrating the pyroele
tri
 
oe�
ient 
 in a

ordan
ewith the expression [14℄Ps(T ) = TZTi 
(T ) dT; (1)where Ti is the temperature of the transition to theparaele
tri
 phase. Then the 
orre
t s
ale for 
 andPs was introdu
ed by 
omparison of the pyroele
-tri
 response at a 
ertain temperature with the valuemeasured for a well-known ferroele
tri
 liquid 
rystal.Stri
tly speaking, Eq. (1) is valid only for the �eld-o�regime. When an external d
 �eld is applied to preparea ferroele
tri
 monodomain or an �unwound� antifer-roele
tri
 (or ferriele
tri
), the a
tually measured quan-tity is the total polarization P = Ps +Pi, where Pi isthe �eld-indu
ed 
ontribution, for example, observed in

the isotropi
 phase. Be
ause Pi is mu
h smaller thanPs, we 
an use Eq. (1) for the measurements of Ps inthe �unwound� antiferroele
tri
 phase.The shape of the hysteresis loop is one of the major
riteria to refer the nonlinear diele
tri
s to ferro-, ferri-or antiferroele
tri
 types. Hysteresis loops are usuallyrepresented in 
oordinates of the ele
tri
 displa
ementagainst the external ele
tri
 �eld. But it is possible todemonstrate that the representation of hysteresis loopsin the 
oordinates given by the pyroele
tri
 
oe�
ientvs the external ele
tri
 �eld di�ers only quantitatively.Indeed, using the de�nition of the volume polarizationPs = (N�=V )h
os'i and the pyroele
tri
 
oe�
ient
 = d�dT NV h
os'i;where N is the number of dipoles of moment � withinthe volume V and h
os'i is the average value of the
osine of the angle between the dipole dire
tion andthe net polarization dire
tion, we 
an dedu
e that theratio Ps=
 is 
onstant at a given temperature.2.2. Linear ele
trome
hani
al e�e
t inferroele
tri
 freely suspended �lmUnlike in the standard 
ase of a liquid 
rystal sam-ple in a 
on�ned geometry, the surfa
e of a freely sus-pended liquid 
rystal �lm 
an easily be deformed under472
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Fig. 2. Pulse pyroele
tri
 set-up: 1 � liquid 
rystal 
ell, 2 � ampli�er, 3 � time-delay line, 4 � os
illos
ope, 5 �photomultiplier to 
ontrol the form of the laser pulse, 6 � photomultiplier to start-up the line s
anning, 7 � load resistor(100 k
), 8 � YAG laserthe a
tion of weak a
ousti
 or ele
tri
 �elds [15; 16℄.Su
h a �lm is 
onsidered a perfe
t membrane, whosevibrational motion depends only on the �lm geometry,the isotropi
 surfa
e tension �, and the homogeneoustwo-dimensional density �s (in
luding the inertia of theair moving with the �lm) [17℄. For ex
itation of thetransverse �lm vibrations, a linear 
oupling of the la-teral ele
tri
 �eld to the spontaneous polarization ofa ferroele
tri
 liquid 
rystal has been exploited [13℄.In the experiment, the azimuthal motion of the liquid
rystal dire
tor is a

ompanied by the so-
alled ba
k-�ow, whi
h indu
es vis
ous stress a
ting on the �lmsurfa
e as shown in Fig. 3. This me
hanism assumes avelo
ity gradient along the normal to the �lm surfa
e,whi
h implies the presen
e of an internal stru
ture infreely suspended �lms. The resulting �lm deformationstrongly depends on the surfa
e vis
osity of the liquid
rystal and also on the value and sign of spontaneouspolarization. This 
ombination of properties makes themeasurements of freely suspended �lm os
illations auseful tool for studying the spontaneous polarizationphenomenon in liquid 
rystals [13℄.The periodi
al displa
ement of the �lm surfa
e re-sults in de�e
tion of the probing beam of a low-powerHe-Ne laser (Fig. 4). By passing the beam through aniris diaphragm, the de�e
tion of the beam is 
onvertedinto an amplitude modulation of the laser intensity, de-te
ted by a photodiode. The photodiode response 
ur-rent is analyzed by a lo
k-in ampli�er tuned to the �rstharmoni
 of the 
ontrol voltage. Mi
ros
ope observa-tions were 
arried out by inserting the sample holderon the turntable of the polarization mi
ros
ope.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

I IIII IIIIIII III 'l
(t) �l
(t)
x��xy ��xy1 12 23 Ey

z
SmC� SmA

�V �VP
�xy �xyV V

P

Fig. 3. S
hemati
 representation of a sme
ti
 liquid
rystal freely suspended �lm: 1 � frame, 2 � menis-
us, 3 � uniform part of the freely suspended �lm.The insets illustrate a me
hanism responsible for thedevelopment of a vis
ous stress �xy in both ferroele
-tri
 and paraele
tri
 phases. 'l
(t) and �l
(t) are there
pe
tive variable azimuthal and zenithal angles. Vis the liquid 
rystal velo
ity �eld, inhomogeneous alongthe z axis, P is the spontaneous polarization. Romannumerals I and II 
orrespond to the respe
tive positionsof liquid 
rystal mole
ules for the positive and negativeele
tri
 �eld
473
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Fig. 4. Experimental set-up for the study of the linear ele
trome
hani
al e�e
t in freely suspended �lms. 1 � ferroele
tri
freely suspended liquid 
rystal �lm (MHPOBC), 2 � two Au ele
trodes, 3 � He-Ne laser (s-polarization), 4 � two polari-zers, 5 � slit diaphragm, 6 � photodiode, 7 � lo
k-in ampli�er, 8 � audio frequen
y generator, 9 � two glasses pla
ednear the �lm surfa
es to prevent the in�uen
e draughts, 10 � polarization mi
ros
ope2.3. Materials and samplesThe antiferroele
tri
 liquid 
rystal used in our ex-periment is S-MHPOBC with a moderate spontaneouspolarization (about 70 nC/
m2 at 112 ÆC) and the fol-lowing sequen
e of phase transitions:Iso-(149:8 ÆC)-SmA-(122 ÆC)-SmC��-(120:9 ÆC)--SmC��-(119:2 ÆC)-SmC�
 -(118:4 ÆC)-SmC�A:For pyroele
tri
 measurements, the liquid 
rystalwas introdu
ed in a �at 
apillary 
ell made up ofITO-
overed, nontreated glass plates with 10 �m thi
kTe�on spa
ers. ITO surfa
es were 
leaned with a
etoneand used without any orienting layers. The 
ell (withthe area between ele
trodes A = 5� 5 mm2) was �lledwith the liquid 
rystal in the isotropi
 phase. Cells werepla
ed in a thermal ja
ket with opti
al windows.The ele
trome
hani
al e�e
t was studied in freelysuspended �lms fabri
ated by the standard pro
eduredes
ribed in [18℄. The experiment was performed witha glass frame of �xed geometry (re
tangular slit withthe area 2 � 10 mm2 and the thi
kness 1 mm). Theframe with a spanned �lm of MHPOBC was mountedin a heating stage and the �lm 
ould be stabilized at agiven temperature to �0:3 ÆC.

SmASmC��SmC��SmC�
SmC�A
112 116 120 124Temperature, ÆC

504070603020100
Ps; nC/
m2 
max = 12:3nC/
m2K

Fig. 5. The pyroele
tri
 
oe�
ient 
 (open 
ir
les)and the spontaneous polarization Ps (�lled 
ir
les) of10 �m-thi
k 
ell measured as fun
tions of temperaturefor the bias d
 voltage 10 V3. RESULTS AND DISCUSSIONSFigure 5 presents the results of the measurementsof the pyroele
tri
 
oe�
ient 
 and spontaneous po-larization Ps as fun
tions of the temperature obtainedin 
ooling pro
ess. In Fig. 5, from the analysis of thepyroele
tri
 
urve, we 
an 
learly distinguish three fer-riele
tri
 phases (SmC��, SmC�� , and SmC�
 ) from SmA474
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Fig. 6. Hysreresis loop in the 
oordinates (pyroele
tri

oe�
ient, bias d
 voltage) for MHPOBC measured atthe �xed temperature T = 120 ÆC 
orresponding to theSmC�� phase. Arrows show the dire
tion of the roundand SmC�A. A

ording to this plot, the pyroele
tri
 sig-nal is dete
table not only in polar ferrielle
tri
 phasesbut also in antiferroele
tri
 SmC�A. The pyroele
tri
signal in these phases appears to be due to a distor-tion of the heli
al stru
ture indu
ed by the externalele
tri
 �eld. The maximum of the pyroele
tri
 e�e
to

urs in ferriele
tri
 SmC�� (whi
h some authors iden-ti�ed as SmC� [19℄) at T = 120:3 ÆC. It is interestingto note that the temperature dependen
e of the realpart of the diele
tri
 
onstant of MHPOBC peaked atthe same temperature [20℄. A similar behavior has alsobeen dete
ted in other antiferroele
tri
 systems [21℄.The polarization shown in Fig. 5 is obtained by in-tegrating the pyroele
tri
 
oe�
ient over temperature,starting from the temperature T0 = 126 ÆC, about 4 ÆCabove the transition from paraele
tri
 SmA to ferriele
-tri
 SmC��: a small pyroele
tri
 signal indu
ed by the�eld in SmA (about 0.04 nC/
m2 � K) was subtra
tedas a ba
kground value. The maximum value of polar-ization in SmC�A of 60 nC/
m2 is 
omparable with thatobtained by the repolarization 
urrent te
hnique [22℄.The bias dependen
e of the sum of the indu
edand spontaneous pyroele
tri
 
oe�
ients mearured atT = 120 ÆC in SmC�� is shown in Fig. 6. This plotdrasti
ally di�ers from the standard hysteresis loop ofsolid ferroele
tri
s [23℄. First of all, the hysteresis loopshrinks to a thin line, whi
h is typi
al of ferroele
tri
liquid 
rystal materials, where dipoles are ordered in aheli
al fashion [24℄. Se
ond, the nonmonotoni
 behav-ior of the pyroele
tri
 signal, shown in this plot, is not
ommon for solid and liquid ferroele
tri
s. The initiallinear growth 
orresponding to the helix distortion is

SmASmC��SmC��SmC�
SmC�AMHPOBC3210
4
Vibrationampl
itude,mV
110 114 118 122 126Temperature, ÆC

�3:5
Fig. 7. Temperature dependen
e of the vibration am-plitude in a freely suspended �lm in MHPOBC of thelinear (�lled 
ir
les) and quadrati
 (open 
ir
les) ele
-trome
hani
al e�e
ts. Quadrati
 amplitudes were mul-tiplied by the fa
tor 3.5. The 
ooling rate is 5 ÆC/minwith the temperature resolution 0:3 ÆC. The re
tangu-lar �lm size is 2 � 10 mm2 (a = 2 mm, b = 10 mm).The number of layers is N = 205. Sinusoidal volt-age with the amplitude U = 115 V and frequen
y� = 2200 Hz was applied to ele
trodes. A photo-voltage of 10 mV 
orresponds to displa
ement of the�lm surfa
e by 800 nmfollowed by the de
rease of the pyroele
tri
 responseat elevated bias �eld. A de
rease in the pyroele
tri
response with a further in
rease in the �eld 
an be a
onsequen
e of two reasons. One of them is explainedin [21℄ as the e�e
t of the 
ompetition between the in-du
ed and spontaneous polarizations having the oppo-site signs of the pyroele
tri
 
oe�
ients. The other
ause 
an be 
onne
ted with the ele
tro
lini
 e�e
t,promoting the de
rease of pyroele
tri
 response withthe in
reasing d
 bias voltage [25℄.Figure 7 demonstrates the temperature dependen
eof the linear and quadrati
 ele
trome
hani
al e�e
ts ina relatively thi
k, about 800 nm, freely suspended �lmmade from MHPOBC. Su
h a thi
kness 
orrespondsapproximately to two 
omplete turns of the naturalsme
ti
 helix in long-pit
h phases. A

ording to theseplots, the linear and quadrati
 ele
trome
hani
al e�e
tsare present in all phases (with the ex
eption of SmC��in the 
ase of the linear ele
trome
hani
al e�e
t). Thelinear e�e
t is rather strong in SmC�� , SmC�
 , and (un-expe
tedly) SmC�A. The temperature dependen
e ofthe quadrati
 ele
trome
hani
al e�e
t 
orrelates 
loselywith the temperature dependen
e of the real part of thediele
tri
 permittivity [20℄. This 
ondition is not o

a-sional but simply re�e
ts the in�uen
e of the diele
tri
475
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Fig. 8. Spe
tra of the linear ele
trome
hani
al e�e
tin a freely suspended �lm due to: the ele
tro
lini
e�e
t (a), T = 135 ÆC (SmA) and the ferroele
tri
swit
hing (b), T = 114:5 ÆC (SmC�A). MHPOBC,N = 205, U = 115 Vtorque, quadrati
 in the ele
tri
 �eld, on the shape ofthe �lm surfa
e. Thus, the 
ause of the quadrati
 e�e
tin a freely suspended �lm is ele
trostri
tion, whereasthe dominating ferroele
tri
 torque is responsible forthe linear e�e
t in unwound ferroele
tri
s. In the ge-neral 
ase of 
hiral sme
ti
s, one should also take �ex-oele
tri
 and �ele
tro
lini
� torques into a

ount. (Weuse �ele
tro
lini
� in quotation marks be
ause the ele
-tri
 �eld exerts no torque on the dire
tor in the ele
-tro
lini
 a
tion but in�uen
es only the whole medium,shifting the dire
tion of the equilibrium in spa
e [24℄).Obviously, the linear ele
trome
hani
al e�e
ts, shownin Fig. 8, in antiferroele
tri
 SmC�A and paraele
tri
SmA are due to the in�uen
e of the sum of the �exoele
-tri
 and �ele
tro
lini
� torques. The external torquesindu
e a �ba
k-�ow�, whi
h is linearly 
oupled with ame
hani
al stress tensor [26℄. A

ordingly, the �lms vi-brate with the fundamental and double frequen
ies ofthe applied a
 ele
tri
 �eld.As one 
an see in Fig. 7, the linear ele
trome
han-i
al e�e
t is absent in in
ommensurate tilted SmC��.

This phase has an extremely short heli
al period thattypi
ally extends over ten sme
ti
 layers and, 
onse-quently, requires large power expenses for its distur-ban
e, whi
h evidently 
ould not be realized by rela-tively weak lateral ele
tri
 �elds used in the experiment(of the order 0.05 V/�m). The di�
ulty of the gener-ation of the linear e�e
t is also favored by smallness ofthe spontaneous polarization in SmC��, as one 
an seein Fig. 5, and spa
e averaging of the �exoele
tri
 andspontaneous polarization over the 
hiral stru
ture.4. SUMMARYIn 
on
lusions, by pyroele
tri
 and ele
trome-
hani
al methods sensitive to both the polar andnon-
entral-symmetri
 ordering of mole
ules in liquid
rystalline media, we investigated the prototypeantiferroele
tri
 liquid 
rystal MHPOBC. Our obser-vations 
on�rm the polar properties of MHPOBC inferriele
tri
 phases and in the �unwound� antiferro-ele
tri
 state. We also found that MHPOBC manifestsa linear ele
trome
hani
al e�e
t in unpolar non-
ent-ral-symmetri
 SmA and SmC�A. This phenomenon
an be interpreted as the e�e
t of ele
tro
lini
 and�exoele
tri
 tourqes. In addition, we did not su

edin observation of the linear ele
trome
hani
al e�e
tin non
ommensurate SmC��, whi
h is seemengly 
on-ne
ted with its nano-s
ale orientational order.We a
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