НЕМАРКОВСКАЯ ТЕОРИЯ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА ЛОКАЛИЗОВАННЫХ И КВАЗИЛОКАЛИЗОВАННЫХ ЭЛЕКТРОННЫХ СПИНОВ НА ПРИМЕРЕ МАНГАНИТОВ С КОЛОССАЛЬНЫМ МАГНИТОСОПРОТИВЛЕНИЕМ

Э. Х. Халваши

Батумский политехнический институт Грузинского технического университета 384500 (6000), Батуми, Грузия

Поступила в редакцию 3 июня 2004 г.

В подходе, который основывается на формализме функций памяти, на примере манганитов с колоссальным магнитосопротивлением, находящихся в условиях электронного парамагнитного резонанса (ЭПР), получены немарковские уравнения движения для x-, y- и z-компонент намагниченностей локализованных и квазилокализованных электронных спинов. Общие уравнения, являющиеся уравнениями типа уравнений Хасегавы – Блоха, применены для описания некоторых экспериментальных данных, касающихся формы и ширины линий ЭПР, продольной и поперечной скоростей релаксации, а также содержат в себе в качестве частных случаев некоторые хорошо известные теоретические результаты, касающиеся ЭПР в манганитах с колоссальным магнитосопротивлением. Полученные результаты объясняют некоторые хорошо известные экспериментальные данные, а также могут содействовать выявлению и объяснению новых данных.

PACS: 71.10.-w, 71.30.+h, 74.70.Wz, 76.30.-v, 76.30.Pk

1. ВВЕДЕНИЕ

Формализм функций памяти, являющийся одним из мощных и простых методов неравновесной статистической физики, связан с именем Цванцига, впервые введшего в неравновесную статистическую механику проекционный оператор Р, получившего основное кинетическое уравнение для статистического оператора $\rho(t)$, немарковское основное кинетическое уравнение, описывающее эволюцию макроскопического состояния физической системы, а также предложившего вывод выражений для кинетических ядер переноса (интегральных ядер интегродифференциальных уравнений — функций памяти) в самом общем виде, избавив, тем самым, пользователя от довольно сложной задачи — построения неравновесного статистического оператора $\rho(t)$. Формализм функций памяти связан также с именем Мори, предложившего метод построения проекционного оператора P (супероператора) и, таким образом, положившего начало модифицированной неравновесной динамике в ее нынешнем виде [1–3].

В магнитном резонансе формализм функций памяти впервые был использован Ладо, Мемори и Паркером [4–6].

Немарковская теория магнитного резонанса в твердых телах для системы локализованных спинов с преобладающим диполь-дипольным взаимодействием была построена в работах [7,8].

В этой статье мы будем следовать работе [7] и найдем в общем виде уравнения, описывающие тривиальную и нетривиальную (релаксационную) немарковскую динамику намагниченности трех компонент локализованных электронных спинов и трех компонент квазилокализованных электронных спинов (соответственно электроны *s* и *e*) в условиях ЭПР. Полученные в этой статье общие уравнения будут применены для нахождения скоростей релаксации, расчета формы линии ЭПР, зависимости ши-

^{*}E-mail: bpi@mail.ge, omaric@rambler.ru

рины линии ЭПР от температуры и для исследования релаксационного узкого горла. Для конкретности рассмотрим спиновую систему соединений манганитов.

Большой интерес к манганитам с примесью щелочно-земельных металлов с общей dopмулой $A_{1-x}A'_{x}MnO_{3}$ (где A = La, Pr,..., A' = Ca, Sr, Ba,...) и структурой перовскита обусловлен обнаруженным в этих материалах явлением колоссального магнитосопротивления. ЭПР-исследования посвящены различным образцам манганитов с колоссальным магнитосопротивлением в широком температурном диапазоне. В частности, исследуются ширина линии ЭПР, поперечное T₂ и продольное T_1 электронные спиновые времена релаксации, электронная спиновая восприимчивость, поведение спиновой системы в зависимости от температуры и концентрации дивалентных ионов и т. п. (см., например, работы [9–17]).

При исследовании манганитов с колоссальным магнитосопротивлением формализм функций памяти впервые был использован в работе [9], в которой анализировались и интерпретировались данные для ширины линии ЭПР, отождествленной со скоростью релаксации поперечной (по отношению к приложенному постоянному магнитному полю) компоненты полного спина. Прежде чем перейти к осуществлению поставленной задачи — применению формализма функций памяти для построения немарковской динамики спиновой системы манганита, — сделаем несколько замечаний общего характера.

Недостаток применяемого метода, на наш взгляд, несущественный, характерен для всей современной теории неравновесных процессов: это отсутствие критерия для выбора набора релевантных операторов. Выбор делается интуитивно с учетом предшествующих экспериментальных и теоретических данных и, как правило, весьма успешен. Если набор релевантных операторов окажется неполным, то характеристики неравновесного процесса — кинетические коэффициенты (скорости релаксации, коэффициенты переноса и т.п.) — определяются лишь приблизительно. Если же указанный набор содержит больше операторов, чем необходимо для описания неравновесного состояния, то это никак не влияет на вычисление кинетических коэффициентов [2]. К сильным сторонам используемого метода – формализма функций памяти — можно отнести следующее. Полученные с его помощью уравнения динамики справедливы для любых взаимодействий и являются «точными», так как при выводе основного

кинетического уравнения Цванцига не было сделано никаких приближений [1, 5, 6]. Кроме того, как было отмечено выше, здесь нет необходимости в весьма сложной процедуре построения и использования неравновесной матрицы плотности, что позволяет, и это немаловажно, избежать введения концепции спиновой температуры [6]. Наконец, этот метод прост в применении, так как почти все сводится к вычислению коммутаторов или (и) оперированию с производными релевантных операторов (потоками) под знаком Sp внутри функций памяти (внутри соответствующих корреляционных функций составленных из операторов потоков) и применению к указанным корреляционным функциям аппроксимаций (гауссовой (чаще всего), лоренцевой и т. п.) [1, 18].

2. ГАМИЛЬТОНИАН

Рассмотрим магнитную систему как ансамбль, состоящий из двух подсистем локализованных и квазилокализованных электронных спинов с гамильтонианом

$$H = H_{ex}^{is} + H_{ex}^{doub} + H^{anis} + H^{z} + H_{1}, \qquad (1)$$

где

$$H_{ex}^{is} = \sum_{ij} \lambda_{ij}^{is} \mathbf{M}_{si} \mathbf{M}_{sj}$$
(2)

— изотропное гейзенберговское суперобменное взаимодействие между ионами марганца, находящимися в узлах *i* и *j* (оно может состоять из двух частей с обменными константами внутри плоскости *ac* и между плоскостями *ac* [9]),

$$H_{ex}^{doub} = H_H + H_t \tag{3}$$

— гамильтониан двойного обмена [19],

$$H_H = -\lambda_H \sum_i \mathbf{M}_{si} \mathbf{M}_{ei} \tag{4}$$

- гамильтониан Хунда,

$$H_t = -t \sum_{ij\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{i\sigma} c_{j\sigma}^{\dagger} \right)$$
(5)

- гамильтониан прыжковых электронов,

$$H^{anis} = H_{CF} + H_{DM}, ag{6}$$

$$H_{CF} = \lambda_{CF}^{x} (M^{x})^{2} - \lambda_{CF}^{y} (M^{y})^{2} - \lambda_{CF}^{z} (M^{z})^{2}$$
(7)

 – гамильтониан взаимодействия ионов марганца с некубическим кристаллическим полем от соседних ионов кислорода [9],

$$H_{DM} = \sum_{i>j} \frac{d_{ij}}{\gamma_s^2} \mathbf{M}_{si} \times \mathbf{M}_{sj} = \sum_{i>j} \sum_{\alpha\beta} \lambda_{ij} M_i^{\alpha} M_i^{\beta} =$$
$$= \sum_{i>j} (G_0^{DM} + G_1^{DM} + G_{-1}^{DM}) \quad (8)$$

описывает антисимметричное обменное взаимодействие Дзялошинского-Мория между локализованными спинами [15, 20], где

$$G_{0}^{DM} = \frac{1}{2} i \lambda_{ij}^{xy} (M_{si}^{+} M_{sj}^{-} - M_{si}^{-} M_{sj}^{+}),$$

$$G_{1}^{DM} = \frac{1}{2} (\lambda_{ij}^{xz} - i \lambda_{ij}^{yz}) (M_{si}^{+} M_{sj}^{z} - M_{si}^{z} M_{sj}^{+}), \qquad (9)$$

$$G_{-1}^{DM} = \frac{1}{2} (\lambda_{ij}^{xz} + i \lambda_{ij}^{yz}) (M_{si}^{-} M_{sj}^{z} - M_{si}^{z} M_{sj}^{-}),$$

$$\lambda_{ij}^{xy} = \frac{1}{2} (d_{ij}^X \sin \theta \cos \varphi - d_{ij}^Y \sin \theta \sin \varphi + d_{ij}^Z \cos \theta),$$

$$\lambda_{ij}^{xz} = d_{ij}^X \sin \varphi - d_{ij}^Y \cos \varphi,$$

$$\lambda_{ij}^{yz} = d_{ij}^X \cos \theta \cos \varphi - d_{ij}^Y \cos \theta \sin \varphi + d_{ij}^Z \sin \theta,$$

(10)

оси X, Y, Z являются фиксированными кристаллическими осями a, b, c, ось Z параллельна оси c, внешнее магнитное поле \mathbf{H}_0 параллельно оси z и направлено под полярным θ и азимутальным φ углами относительно оси c,

$$H^{z} = -\mathbf{H}_{0} \cdot (\gamma_{s} \mathbf{M}_{s} + \gamma_{e} \mathbf{M}_{e}) \tag{11}$$

— зеемановское взаимодействие спинов с полем \mathbf{H}_0 , H_1 — взаимодействие спинов с внешним переменным (радиочастотным, РЧ) полем,

$$M_s = \gamma_s \sum_i S_i, \quad M_e = \gamma_e \sum_i s_i = \gamma_e \sum_i c^{\dagger}_{i\sigma} \tau_{\sigma\nu} c_{i\nu}$$

— намагниченности локализованных (M_s) и квазилокализованных (M_e) спинов, $c_{i\sigma}^{\dagger}(c_{i\sigma})$ — операторы рождения (уничтожения) квазилокализованного электрона с ориентацией спина $\boldsymbol{\sigma}(\nu), \tau_{\sigma\nu}$ — спиновые матрицы Паули,

$$\begin{split} \lambda_{ij}^{is} &= \frac{2J_{ij}}{\gamma_s^2}, \quad \lambda_{CF}^x = \lambda_{CF}^y = \frac{E}{\gamma_s^2}, \\ \lambda_{CF}^z &= \frac{D}{\gamma_s^2}, \quad \lambda_H = \frac{2J_H}{g_s g_e \mu_B^2}, \end{split}$$

 J_{ij}, J_H и d_{ij} — константы суперобменного, хундовского взаимодействий и обменного взаимодействия Дзялошинского – Мория, E и D — константы кристаллического поля, t — прыжковый интеграл, $\gamma_{s,e}$ и $g_{s,e}$ — гиромагнитное отношение и g-фактор спинов S и s, μ_B — магнетон Бора.

3. УРАВНЕНИЯ ДВИЖЕНИЯ

В данном случае выбор релевантного набора очевиден — это x-, y- и z-составляющие операторов намагниченностей локализованных и квазилокализованных электронных спинов M_k^{α} ($\alpha = x, y, z, k = s, e$). С их помощью опишем динамику спиновой системы манганита. В отличие от работы [7], где секулярная часть диполь-дипольного взаимодействия, уширяя линию магнитного резонанса, принимает участие в нетривиальной спиновой динамике [21], здесь мы не берем в качестве релевантного, например, оператор H_{ex}^{is} , так как он коммутирует с x-, y- и z-компонентами намагниченности.

При подобной постановке задачи оператор проектирования Мори имеет вид

$$P = \sum_{\alpha k} |M_k^{\alpha}\rangle \langle M_k^{\alpha}| / \langle M_k^{\alpha}| M_k^{\alpha}\rangle, \qquad (12)$$

где $\langle Q | Q \rangle = \text{Sp}(Q)^2$. Кроме того, выполняется характерное для этого супероператора тождество $P^2 = P$.

Следуя работам [5–7], можно получить уравнения движения для намагниченностей M_k^{α} :

$$\sum_{k\alpha} \frac{d\langle M_k^{\alpha}(t) \rangle}{dt} =$$

$$= \sum_{k\alpha} \left[\left(\frac{d\langle M_k^{\alpha}(t) \rangle}{dt} \right)_{TD} + \left(\frac{d\langle M_k^{\alpha}(t) \rangle}{dt} \right)_{NTD} \right], \quad (13)$$

где члены

$$\sum_{k\alpha} \left(\frac{d\langle M_k^{\alpha}(t) \rangle}{dt} \right)_{TD} =$$

= $-\operatorname{Sp} \left\{ \sum_{k\alpha} [M_k^{\alpha}, H] \sum_{l\beta} \frac{M_l^{\beta}}{\operatorname{Sp}(M_l^{\beta})^2} \right\} \langle M_l^{\beta}(t) \rangle$ (14)

И

$$\sum_{k\alpha} \left(\frac{d\langle M_k^{\alpha}(t) \rangle}{dt} \right)_{NTD} =$$
$$= -\sum_{k\alpha} \int_0^t dt' K_k^{\alpha}(\tau) \langle M_k^{\alpha}(t') \rangle \quad (15)$$

описывают соответственно тривиальную и нетривиальную (релаксационную) динамики, функции

$$K_k^{\alpha}(\tau) = \operatorname{Sp}\left\{ \left[M_k^{\alpha}, H \right] \sum_{l,\beta} \frac{\left[M_l^{\beta}, H(\tau) \right]}{\operatorname{Sp}(M_l^{\beta})^2} \right\}$$
(16)

представляют собой функции памяти, $\tau = t - t'$, $\alpha \neq \beta = x, y, z, k \neq l = s, e$,

$$\langle Q(t) \rangle = \operatorname{Sp}\{Q\rho(t)\}, \quad Q(\tau) = e^{-iH\tau}Q(0)e^{iH\tau}.$$

Надо отметить, что в интегралах (15), (16) нетривиальной динамики мы для упрощения задачи учли следующее. В экспоненциальных «обкладках» функций памяти приняли во внимание, что

$$(1-P)H = H_{ex}^{is} + H^{doub} + H_{ex}^{anis},$$

так как

$$P(H_{ex}^{is} + H^{doub} + H_{ex}^{anis}) = 0, \quad P(H^z + H_1) = H^z + H_1.$$

В гамильтонианах, содержащихся в коммутаторах, отбросили зеемановский и РЧ-члены (последними членами мы пренебрегли и в (14)), после чего руководствовались тем, что

$$(1-P)[M_k^{\alpha}, H(\tau)] = [M_k^{\alpha}, H(\tau)],$$

так как

$$\langle M_k^{\alpha} | H \rangle = \langle M_k^{\alpha} | [M_k^{\alpha}, H(\tau)] \rangle = 0.$$

Если мы вычислим коммутаторы в выражениях (14) и (15) (см. также (16)), отбросим, ради краткости, угловые скобки и скобки с зависимостью от времени t, то из уравнений (13) найдем

$$\begin{aligned} \frac{dM_s^{\alpha}}{dt} &= \left(\frac{dM_s^{\alpha}}{dt}\right)_{HB} + \left(\frac{dM_s^{\alpha}}{dt}\right)_{CF} + \\ &+ \left(\frac{dM_s^{\alpha}}{dt}\right)_{DM}^{dir} + \left(\frac{dM_s^{\alpha}}{dt}\right)_{DM}^{cr}, \quad (17) \\ &\frac{dM_e^{\alpha}}{dt} = \left(\frac{dM_e^{\alpha}}{dt}\right)_{HB}, \quad (18) \end{aligned}$$

где слагаемые

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{HB} = \left(\frac{dM_s^{\alpha}}{dt}\right)_{HB}^{TD} + \left(\frac{dM_s^{\alpha}}{dt}\right)_{HB}^{NTD} - \frac{M_s^{\alpha} - M_{s0}^{\alpha}}{T_s^{\alpha}}, \quad (19)$$

$$\left(\frac{dM_e^{\alpha}}{dt}\right)_{HB} = \left(\frac{dM_e^{\alpha}}{dt}\right)_{HB}^{TD} - \frac{\gamma_e}{\gamma_s} \left(\frac{dM_s^{\alpha}}{dt}\right)_{HB}^{NTD} - \frac{M_e^{\alpha} - M_{e0}^{\alpha}}{T_e^{\alpha}} \quad (20)$$

представляют собой аналог уравнений Хасегавы – Блоха, которые ранее были получены феноменологически для описания ЭПР в металлах (можно сказать, что и выражения (17) и (18) являются уравнениями типа уравнений Хасегавы – Блоха) [22, 23]; члены

$$\left(\frac{d\mathbf{M}_{s,e}^{\alpha}}{dt}\right)_{HB}^{TD} = \gamma_{s,e}\mathbf{M}_{s,e} \times (\mathbf{H}_0 + \lambda_H \mathbf{M}_{e,s}) \qquad (21)$$

описывает тривиальную динамику операторов M_s^{α} и M_e^{α} (здесь, как было отмечено выше, мы пренебрегли РЧ-полем); члены $(M_{s,e}^{\alpha} - M_{s,e0}^{\alpha})/T_{s,eL}^{\alpha}$ добавленные в правую часть уравнений (19) и (20) феноменологически, описывают спин-решеточную релаксацию *s*- и *e*-спинов и, для наглядности, выделены из нетривиальной динамики (эти члены также можно было получить с помощью формализма функций памяти, добавив к гамильтониану задачи соответствующие взаимодействия); слагаемое

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{HB}^{NTD} = -\int_0^t dt' K_H^{\alpha}(\tau) \times \left[M_s^{\alpha}(t') - \frac{\gamma_e}{\gamma_s} \frac{\operatorname{Sp}(M_s^{\alpha})^2}{\operatorname{Sp}(M_e^{\alpha})^2} M_e^{\alpha}(t')\right] \quad (22)$$

есть явный вид нетривиальной динамической части уравнений (19) и (20) (без спин-решеточной динамики); члены

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{CF} = -\int_0^t dt' K_{CF}^{\alpha}(\tau) M_s^{\alpha}(t') \qquad (23)$$

И

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{DM}^{dir} = -\int_0^t dt' K_{DM}^{\alpha}(\tau) M_s^{\alpha}(t')$$
(24)

описывают релаксацию компонент M_s^{α} вследствие соответственно взаимодействия с кристаллическим полем и взаимодействия Дзялошинского-Мория; слагаемое

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{DM}^{cr} =$$

$$= -\int_0^t dt' \left[K_{DM}^{\alpha\beta}(\tau) M_s^{\beta}(t') + K_{DM}^{\alpha\gamma}(\tau) M_s^{\gamma}(t') \right] \quad (25)$$

— перекрестный вклад двух компонент M_s^{α} в релаксацию третьей компоненты. Величины

$$K^{\alpha}_{H,CF}(\tau) = K^{\alpha}_{H,CF}(0)G^{\beta\gamma}_{H,CF}(\tau), \qquad (26)$$

$$K^{\alpha}_{DM}(\tau) = K^{\alpha\beta dir}_{DM}(0)G^{\alpha\gamma}_{DM}(\tau) + K^{\alpha\gamma dir}_{DM}(0)G^{\alpha\beta}_{DM}(\tau), \quad (27)$$

$$K_{DM}^{\alpha\beta,\gamma}(\tau) = K_{DM}^{\alpha\beta,\gamma cr}(0)G_{DM}^{\alpha\beta}(\tau)$$
(28)

— функции памяти, полученные из (16),

$$K^{\alpha}_{H,CF}(0) = (\gamma_s \lambda^{\alpha}_{H,CF})^2 \sum_i \frac{\operatorname{Sp}(F^{\beta\gamma}_{iH,CF})^2}{\operatorname{Sp}(M^{\alpha}_s)^2}, \qquad (29)$$

$$K_{DM}^{\alpha\beta,\gamma dir}(0) = \sum_{i>j} (\gamma_s \lambda_{ij}^{\alpha\beta,\gamma})^2 \frac{\operatorname{Sp}(F_{ij}^{\alpha\beta,\gamma})^2}{\operatorname{Sp}(M_s^{\alpha})^2}, \qquad (30)$$

$$K_{DM}^{\alpha\beta,\gamma cr}(0) = \gamma_s^2 \sum_{i>j} A_{ij}^{\alpha\beta,\gamma} \frac{\operatorname{Sp}(F_{ij}^{\alpha\beta,\gamma})^2}{\operatorname{Sp}(M_s^{\beta,\gamma})^2} \qquad (31)$$

представляют собой вклады хундовского и анизотропных взаимодействий во второй момент M_2 резонансной линии, так как $M_2 = K(0)$ [12,13], а

$$G_{H,CF}^{\beta\gamma}(\tau) = \frac{\operatorname{Sp} F_{iH,CF}^{\beta\gamma}(0) F_{iH,CF}^{\beta\gamma}(\tau)}{\operatorname{Sp}(F_{iH,CF}^{\beta\gamma})^2}, \quad (32)$$

$$G_{DM}^{\alpha\beta,\gamma}(\tau) = \frac{\operatorname{Sp} F_{ij}^{\alpha\beta,\gamma}(0) F_{ij}^{\alpha\beta,\gamma}(\tau)}{\operatorname{Sp} (F_{ij}^{\alpha\beta,\gamma})^2}, \qquad (33)$$

четырехспиновые корреляционные функции.
 Здесь мы также использовали обозначения

$$\begin{aligned} A_{ij}^{xy} &= \lambda_{ij}^{xz} \lambda_{ij}^{yz}, \quad A_{ij}^{zx} &= \lambda_{ij}^{zx} \lambda_{ij}^{xy}, \\ A_{ij}^{yz} &= \lambda_{ij}^{xy} \lambda_{ij}^{yz}, \\ F_{iH,CF}^{\beta\gamma} &= M_{si}^{\beta} M_{ei,si}^{\gamma} - M_{si}^{\gamma} M_{ei,si}^{\beta}, \\ F_{ij}^{\alpha\beta,\gamma} &= M_{si}^{\alpha} M_{sj}^{\beta,\gamma} - M_{si}^{\beta,\gamma} M_{si}^{\alpha}, \\ \alpha &\neq \beta \neq \gamma = x, y, z. \end{aligned}$$
(34)

Заметим, что при получении уравнений (21) тривиальной динамики мы использовали приближение молекулярного поля [24]. Из тривиальной части уравнений (21) видно, что локализованные и квазилокализованные спины сдвигают резонансные частоты друг друга.

Отметим также, что после выключения РЧ-поля величины $\langle M^{x,y}(t) \rangle$ стремятся к нулю, а $\langle M^z(t) \rangle - \kappa$ своему равновесному значению $\langle M^z \rangle_0 = M_0^z$. Поэтому в уравнениях (22)–(25) во всех выражениях для $\langle M^z(t) \rangle$ (напомним, что $\langle Q(t) \rangle = \text{Sp}\{Q\rho(t)\})$ надо использовать замену $\rho \to \rho - \rho_0$ (ρ_0 — равновесная матрица плотности), как это сделано в [25], т.е. вместо $\langle M^z(t) \rangle$ надо брать $\langle M^z(t) \rangle - M_0^z$.

Необходимо отметить также, что, в отличие от работы [9], в нашем рассмотрении релаксация носит тензорный характер. Кроме того, видно, что из-за присутствия произведений различных констант взаимодействия Дзялошинского – Мория (см. (25), (28), (31) и (33)) вклад перекрестных скоростей релаксации в релаксацию локализованных спинов зависит от строения манганита с колоссальным магнитосопротивлением и экспериментальных условий (направления магнитного поля и т. п.). Например, если в уравнениях (8)–(10) считать, что вектор \mathbf{d}_{ij} направлен вдоль оси *с*, поле \mathbf{H}_0 параллельно (т.е. $\theta = 0$) или перпендикулярно (т. е. $\theta = \pi/2$) оси *с*, то, согласно (34), вклад перекрестной релаксации (25) равен нулю. Вклад перекрестной релаксации равен нулю, например, и в случае, когда $\theta = \pi/2$, $\varphi = \pi/4$, а $d_{ij}^X = d_{ij}^Y$ и $d_{ij}^Z \neq 0$. Если же $d_{ij}^X, d_{ij}^Y, d_{ij}^Z \neq 0$, то могут возникнуть различные, более сложные, ситуации. В частности, при произвольном направлении \mathbf{H}_0 (при произвольном направлении полярного θ и азимутального φ углов) вклад перекрестной релаксации (26) в большинстве случаев не равен нулю. Более того, например, при $\theta = \varphi = 0$, когда

$$\lambda_{ij}^{xy} = d_{ij}^Z, \quad \lambda_{ij}^{yz} = d_{ij}^X, \quad \lambda_{ij}^{xz} = -d_{ij}^Y,$$

возможен как положительный, так и отрицательный вклад в релаксацию (как увеличение, так и уменьшение ширины линии ЭПР) локализованных s-спинов. Заметим, что тензорный характер релаксации и, возможно, заметный вклад перекрестных членов в релаксацию локализованных спинов, выявленный нашим теоретическим рассмотрением, может проявиться в изменении, например, ширины линии ЭПР при варьировании экспериментальных условий (направления магнитного поля и т. п.) и при использовании различных образцов манганита с колоссальным магнитосопротивлением.

Из уравнений (17) и (18) можно получить также хорошо известные результаты.

1. В равновесии из уравнений (17) и (18) (точнее, из уравнений (19)-(21)) легко найти соотношения [23,26]

$$\chi_s^{\alpha} = \chi_{s0}^{\alpha} \frac{1 + \lambda_H \chi_{e0}^{\alpha}}{1 - \lambda_H^2 \chi_{s0}^{\alpha} \chi_{e0}^{\alpha}},$$

$$\chi_e^{\alpha} = \chi_{e0}^{\alpha} \frac{1 + \lambda_H \chi_{s0}^{\alpha}}{1 - \lambda_H^2 \chi_{s0}^{\alpha} \chi_{e0}^{\alpha}}.$$
(35)

Необходимо отметить, что в классических выражениях, с которыми мы сравниваем соотношения (35), фигурируют восприимчивости ионов Mn^{3+} и Mn^{4+} по отдельности. Согласно же нашей модели, в выражениях (35) одна из восприимчивостей связана с суммарной намагниченностью локализованных спинов s (ионов Mn^{3+} и Mn^{4+}), а другая — с намагниченностью квазилокализованных электронных спинов e. В случае доминирующего изотропного обменного взаимодействия эта модель представляется более общей и адекватной.

2. Если в уравнениях (23) за знак интегрирования вынести величины $M_s^{\alpha}(t)$ и $M_e^{\alpha}(t)$ и верхний предел интеграла заменить на бесконечность, что некорректно по отношению к $M_e^{\alpha}(t)$, однако дает возможность качественно оценить поведение спиновой под-

системы квазилокализованных электронов *e*, в равновесии найдем

$$T_{es}^{\alpha}/T_{se}^{\alpha} = g_s \chi_e^{\alpha}/g_e \chi_s^{\alpha}.$$
 (36)

Это хорошо известный результат (см., например, работу [27]).

Количественные оценки величин поперечной и продольной скоростей релаксации, формы и ширины резонансной линии, их зависимости от концентрации примеси, температуры и строения образца можно получить из строгого решения и детального анализа уравнений (17) и (18). Такое изучение выходит за рамки данной работы.

4. ШИРИНА И ФОРМА ЛИНИИ ЭПР: АППРОКСИМАЦИИ И НЕКОТОРЫЕ ВЫВОДЫ

Приведем несколько аппроксимаций для корреляционных функций (32), (33) и вторых моментов (30), (31), из которых составлены функции памяти (26)–(28). Это может позволить нам судить о форме, ширине и зависимости ширины резонансной линии от температуры, а также о «принадлежности» спектральных линий ЭПР.

4.1. Гауссова аппроксимация для корреляционных функций: форма и ширина резонансной линии (связь вторых моментов и времен корреляций функций памяти с вторым и четвертым моментами линий ЭПР)

Для функций памяти (16) (см. также их явный вид (26)–(28)), точнее, для входящих в них корреляционных функций (32), (33), можно взять хорошо известную гауссову аппроксимацию [5, 6, 8, 24]:

$$G_{H,CF}^{\beta\gamma}(\tau) \propto \exp(-N_{2H,CF}^{\alpha}\tau^2/2), \qquad (37)$$

$$G_{DM}^{\alpha\beta,\gamma}(\tau) \propto \exp(-N_{DM}^{\alpha}\tau^2/2), \qquad (38)$$

где

$$N_2 = M_2(\mu - 1), \quad \mu = M_4/M_2^2,$$
 (39)

 N_2 — второй момент функции памяти, а M_2 и M_4 — второй и четвертый спектральные моменты линии ЭПР.

Заметим, что если для корреляционных функций (32), (33) воспользоваться гауссовой аппроксимацией, определяемой с помощью времени корреляции τ_{INT} (где INT = H, CF, DM),

$$G(\tau) \propto \exp(-\tau^2/\tau_{INT}^2),$$

то легко можно установить связь между соответствующими величинами N₂ и τ_{INT} :

$$\tau_{INT} = \left(\frac{N_{2INT}^{\beta\gamma}}{2}\right)^{-1/2} = \left[\frac{M_{2INT}^2}{2} \left(\frac{M_{4INT}}{2M_{2INT}^2} - 1\right)\right]^{-1/2}.$$
 (40)

Согласно работам [5, 6], можно утверждать, что а) при обменном сужении

$$\tau_{INT} = \left(\frac{N_{2INT}^{\beta\gamma}}{2}\right)^{-1/2} = \left(\frac{M_{4INT}}{2M_{2INT}^2}\right)^{-1/2},$$

так как в этом случае выполняется условие $M_4/M_2^2 \gg 1$ и форма линии ЭПР близка к лоренцевой форме;

б) в отсутствие обменного сужения $\tau_{INT} = M_{2INT}^{-1/2}$, так как в этом случае $M_4/M_2^2 \approx 3$ и формалинии ЭПР напоминает гауссову форму.

Заметим, что суперобменное взаимодействие H_{ex}^{is} дает вклад в резонансную линию только локализованных спинов через N_{2CF} и N_{2DM} (через M_{4CF} и M_{4DM}), поэтому обменно-суженную линию ЭПР с формой лоренцева типа могут дать только локализованные спины, тогда как близкую к гауссовой форму могут дать спины обоих сортов. Необходимо отметить также, что если имеется единственная линия ЭПР, то она обязательно будет содержать в себе вклад от спинов обоих сортов, но из-за преобладания одного из взаимодействий (H^{doub} или H^{is}_{ex}) гауссова линия перекрывает лоренцеву или наоборот (случай одной линии с формой лоренцевого типа рассмотрен ниже в разд. 6 и в Приложении). Если же резонансные частоты локализованных и квазилокализованных спинов достаточно «разведены» и имеются две линии ЭПР, то каждую из них можно идентифицировать с тем или иным сортом спинов при условии, что форма линии является чисто гауссовой или чисто лоренцевой (лоренцева «принадлежит» локализованным, а гауссова — квазилокализованным спинам). В случае, когда обе линии гауссовы (здесь $H^{doub} > H^{is}_{ex}$), идентификация может быть осуществлена только по резонансным частотам. Таким образом, формы и резонансные частоты экспериментальных линий ЭПР могут помочь установить, какое из спин-спиновых взаимодействий доминирует и какому сорту электронов «принадлежит» та или иная резонансная линия. Необходимо при этом иметь в виду, что реальность может оказаться сложнее, так как в ширину и форму линии

ЭПР могут дать вклад не учтенные настоящим теоретическим подходом взаимодействия (сопровождающее прыжковую проводимость возмущение электронной структуры ионов марганца и кристаллического поля на них, неоднородность магнитного поля, наличие неучтенных примесей и т. п.).

4.2. Приближение из теории Блоха – Вангснесса – Редфильда — спин в флуктуирующем поле

В этом приближении [25], например, произведение $M_{si}^{\beta}M_{ei}^{\gamma}$, взятое из четырехспиновых корреляционных функций (32), (33), можно представить в виде

$$M_{si}^{\beta}M_{ei}^{\gamma} \approx \frac{1}{2\lambda_H} \left(M_{si}^{\beta}H_{ei}^{\gamma} + M_{ei}^{\gamma}H_{si}^{\beta} \right), \qquad (41)$$

где $H_{s,ei}^{\alpha} = \sqrt{\lambda_{H}^{2} \langle (\delta M_{s,ei}^{\alpha})^{2} \rangle}$ — среднеквадратичные флуктуации полей, создаваемых спином s(e) на спине e(s), а $\delta M_{s,ei}^{\alpha} = M_{s,ei}^{\alpha} - \langle M_{s,ei}^{\alpha} \rangle$. Кроме того, в рассматриваемой теории [25] используется аппроксимация

$$\overline{H_{s,ei}^{\alpha}H_{s,ei}^{\alpha}(t)} = (H_{s,ei}^{\alpha})^2 \exp(-t/\tau_{e,s}), \qquad (42)$$

где черта сверху означает усреднение по ансамблю, а $\tau_{s,e}$ — времена корреляции флуктуирующих полей, создаваемых соответственно локализованными *s* и квазилокализованными *e* электронными спинами.

Получим теперь с помощью уравнений (17), (18) и приведенных выше приближений теории [25], например, выражения для скоростей $(T_{se}^{\alpha})^{-1}$ хундовской релаксации локализованных спинов *s* к квазилокализованным спинам *e*. Запишем для этого выражение для $(T_{se}^{\alpha})^{-1}$ в явном виде с помощью соотношений (23), (29), (34):

$$\begin{split} (T_{se}^{\alpha})^{-1} &\approx \int_{0}^{\infty} dt \, K_{H}^{\alpha}(t) = \frac{(K_{H}^{\alpha}(0))^{2}}{\operatorname{Sp}(F_{iH}^{\beta\gamma})^{2}} \int_{0}^{\infty} dt \times \\ &\times \operatorname{Sp}(M_{si}^{\beta}M_{ei}^{\gamma} - M_{si}^{\gamma}M_{ei}^{\beta})(M_{si}^{\beta}M_{ei}^{\gamma} - M_{si}^{\gamma}M_{ei}^{\beta})(t). \end{split}$$
(43)

Заметим, что временная зависимость четырехспиновых корреляционных функций под интегралом в (43) определяется экспоненциальными обкладками вида $\exp[i(H_{DM} + H_{CF} + H_H + H_s^z + H_e^z)t]$ с некоммутирующими операторами (оператор $H_{DM} + H_{CF} + H_H$ не коммутирует с H_s^z , а H_H с H_e^z).

Итак, с помощью выражения (43), а также учитывая, что, например,

$$\exp(-i\omega_s S^z t) M_{si}^y \exp(i\omega_s S^z t) = = M_{si}^y \cos\omega_s t - M_{si}^x \sin\omega_s t,$$

легко получить

$$(T_{se}^{\perp})^{-1} = \left(\frac{\gamma_s}{2}\right)^2 \times \\ \times \sum_i \left\{ (H_{ei}^{\perp})^2 \tau_e + (H_{ei}^z)^2 \frac{\tau_e}{1 + \omega_s^2 \tau_e^2} + \frac{\operatorname{Sp}(M_{ei}^{\alpha})^2}{\operatorname{Sp}(M_{si}^{\alpha})^2} \times \right. \\ \left. \times \left[(H_{si}^{\perp})^2 \tau_s + (H_{si}^z)^2 \frac{\tau_s}{1 + \omega_e^2 \tau_s^2} \right] \right\},$$
(44)

$$(T_{se}^{z})^{-1} = \left(\frac{\gamma_{s}}{2}\right)^{2} \sum_{i} \left\{ (H_{ei}^{y})^{2} \frac{\tau_{e}}{1 + \omega_{s}^{2} \tau_{e}^{2}} + \frac{\operatorname{Sp}(M_{ei}^{\alpha})^{2}}{\operatorname{Sp}(M_{si}^{\alpha})^{2}} (H_{si}^{x})^{2} \frac{\tau_{s}}{1 + \omega_{e}^{2} \tau_{s}^{2}} \right\}, \quad (45)$$

где $\perp = x, y$ и $\omega_{s,e}$ — зеемановские частоты s- и e-спинов. Заметим, что тепловое усреднение позволяет провести в (44) и (45) замену

$$\operatorname{Sp}(M_e^{\alpha})^2/\operatorname{Sp}(M_s^{\alpha})^2 = \chi_e^{\alpha}(T)/\chi_s^{\alpha}(T).$$

Видно, что полученные выражения имеют вид, сходный с выражениями теории Блоха-Вангснесса – Редфильда для T_2^{-1}
и T_1^{-1} (см. формулы (5.210) из [25]). Анализ подобных выражений можно найти в [25]. Напомним, что в величины $(T_{se}^{\alpha})^{-1}$ не дает вклад суперобменное взаимодействие H_{ex}^{is} и, так же как в [25], они пропорциональны $(H_{s\,e}^{\alpha})^2$. Заметим, что величина τ_e отличается от τ_s , так как $[M_{e}^{\alpha}, H^{anis}] = 0$, а $[M_{s}^{\alpha}, H^{anis}] \neq 0$, однако это различие может оказаться несущественным, поскольку $M^{\alpha}_{s,e}$ не коммутируют с взаимодействием H^{doub} (точнее, с его хундовской частью H_H), которое в определенной области концентраций и температур может оказаться доминирующим в манганитах с колоссальным магнитосопротивлением. Кроме того, из-за различия между приближением «флуктуирующих» полей и приближением, связанным с гауссовой аппроксимацией в формализме функций памяти, величины $\tau_{e,s}$ и τ_{INT} отличаются друг от друга: первые характеризуют корреляцию между $H^{\alpha}_{s,e}(0)$ и $H^{\alpha}_{s,e}(t)$, т.е. фактически между $M^{\alpha}_{s,e}(0)$ и $M^{\alpha}_{s,e}(t)$, тогда как вторые — корреляцию между потоками $\dot{M}^{\alpha}_{s,e}(0)$ и $\dot{M}^{lpha}_{s,e}(t),$ т.е. между $[M^{lpha}_{s,e},H](0)$ и $[M_{s,e},H](t)$ из (16). Преимущество формализма функций памяти, по нашему мнению, заключается в том, что времена $\tau_{H,CF,DM}$ можно рассчитать количественно, выражая их через второй момент соответствующей функции памяти (38), т. е. через соответственные второй и четвертый моменты линии ЭПР (через M_2 и M_4). Данный формализм позволяет учесть и более высокие моменты линии ЭПР [5,6].

 13^{*}

Заметим, наконец, что в пределе быстрого движения имеем $T_{se}^{\perp} = T_{se}^{z}$, тогда как в противном случае, при $\omega_{s,e}\tau_{e} \ll 1$, отношение $T_{se}^{z}/T_{se}^{\perp}$ велико [10–12].

4.3. Температурная аппроксимация: релаксация и ширина резонансных линий

Следуя работе [9], для кинетических коэффициентов уравнений нетривиальной динамики (22)-(25), точнее для их немарковской разновидности (49)-(52), т.е. для скоростей спиновой релаксации в общем виде можно получить

$$(T_{s,e}^{\alpha})^{-1} = \frac{\chi_{0s,e}}{\chi_{s,e}(T)} \frac{1}{4kC\gamma_{s,e}^2} \times \\ \times \int_{-\infty}^{\infty} dt \operatorname{Sp} \frac{dM_{s,e}^{\alpha}(t)}{dt} \frac{dM_{s,e}^{\alpha}(0)}{dt}, \quad (46)$$

где выражениями $\operatorname{Sp}\{[dM_{s,e}^{\alpha}(t)/dt][dM_{s,e}^{\alpha}(0)/dt]\}$ обобщенно представлены числители функций памяти из (16), $\chi_{s,e}(T)$ — зависящая от температуры восприимчивость, тогда как $\chi_{0s,e} = C/T$ является восприимчивостью Кюри, C — постоянная Кюри, k — постоянная Больцмана, T — температура.

С учетом соотношения (46) для ширины линии ЭПР легко получить «закон Хьюбера» [9]:

$$\Delta H_{s,e}(T) = \frac{2(T_{s,e}^{\perp})^{-1}}{\sqrt{3}\gamma_{s,e}k} = \frac{\chi_{0s,e}}{\chi_{s,e}(T)}\Delta H_{s,e}(\infty), \quad (47)$$

где

$$\Delta H_{s,e}(\infty) = \frac{2}{\sqrt{3} \gamma_{s,e}^{3} kC} \times \\ \times \int_{-\infty}^{\infty} dt \operatorname{Sp} \frac{dM_{s,e}^{\alpha}(t)}{dt} \frac{dM_{s,e}^{\alpha}(0)}{dt}. \quad (48)$$

В случае рассматриваемого нами парамагнитного состояния наиболее приемлемым приближением для восприимчивости является закон Кюри-Вейса [10–12]

$$\chi_{s,e}(T) = C/(T - \Theta),$$

где Θ — температура Кюри – Вейса. Подстановка закона Кюри – Вейса в выражение (47) дает хорошее согласие со множеством экспериментальных данных для температурной зависимости восприимчивости, ширины линии ЭПР, поперечной и продольной релаксаций в широком диапазоне температур и концентраций примеси [10–12].

5. РЕЛАКСАЦИОННОЕ УЗКОЕ ГОРЛО

Продемонстрируем теперь возможности уравнений (17) и (18) при исследовании релаксации и релаксационного узкого горла в связанной друг с другом системе локализованных *s* и квазилокализованных *e* спинов в случаях сильной и слабой связанности между ними.

Для простоты пренебрежем вкладом перекрестных членов, $(dM_s^{\alpha}/dt)_{DM}^{cr} = 0$ (см. замечание в разд. 3). Кроме того, для упрощения нетривиальной части уравнений (17) и (18) обратим внимание на следующее. Из коммутационных соотношений

$$\sum_{i} [M_{si}^{\alpha} M_{ei}^{\beta}, H_{ex}^{is}] = 0, \quad \sum_{i} [M_{si}^{\alpha} M_{si}^{\beta}, H_{ex}^{is}] \neq 0,$$
$$\sum_{i>i} [M_{si}^{\alpha} M_{sj}^{\beta}, H_{ex}^{is}] \neq 0$$

что $\exp(-iH_{ex}^{is}t)M_s^{\alpha}\exp(iH_{ex}^{is}t)$ вытекает, $= M_s^{\alpha}, \ [K_H^{lpha}, \exp(i H_{ex}^{is} t)] = 0$ и $\exp(-i H_{ex}^{is} t) \times$ $\times K^{\alpha}_{CF,DM} \exp(iH^{is}_{ex}t) = K^{\alpha}_{CF,DM}(t)$, T.e. onepatop H_{ex}^{is} отсутствует в экспоненциальных обкладках величин $M_s^{\alpha}(t)$ и $K_H^{\alpha}(t)$, но присутствует в экспоненциальных обкладках величин $K_{CF,DM}^{\alpha}(t)$. Поэтому, если взаимодействие H_{ex}^{is} преобладает над H^{doub} и остальными взаимодействиями, функции $K^{\alpha}_{CF,DM}(t)$ меняются (убывают) «быстро», а $M_s^{\alpha}(t)$ и $K_H^{\alpha}(t)$ — «медленно». Следовательно, в уравнениях (23)–(25) намагниченности $M_s^{\alpha}(t)$ убывают медленнее, чем соответствующие функции памяти, поэтому здесь, так же как это было указано в п. 1 (разд. 3), мы можем применить марковскую аппроксимацию: вынести $M^{\alpha}_{s}(t)$ из-под знака интегрирования и заменить верхний предел на бесконечность. В этом случае вместе с функциями $M^{\alpha}_{s}(t)$ и $K^{\alpha}_{H}(t)$ «медленно» меняется и $M^{\alpha}_{e}(t)$, следовательно, это приближение неприменимо к интегралам уравнений (19) и (20), см. также (22). В случае, когда $H^{is}_{ex} < H^{doub}$, подобное марковское приближение неприменимо вовсе, так как все переменные под знаками интеграла меняются одинаково «быстро» (соответствующие операторы не коммутируют с H^{doub}). Исходя из сказанного, необходимо отметить, что для строгого решения системы уравнений (17) и (18) к ней надо применить преобразование Лапласа и т.д., как это сделано, например, в работе [7]. Однако для качественной оценки поведения спиновой системы мы применим марковскую аппроксимацию к уравнениям движения (19)-(25), в результате чего нетривиальные

слагаемые этих уравнений (см. (22)-(25)) примут вид

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{HB}^{NTD} = -\sqrt{\frac{\pi}{2N_{2H}^{\alpha}}} K_H^{\alpha}(0) \times \\ \times \left[M_s^{\alpha}(t) - \frac{\gamma_e \operatorname{Sp}(M_s^{\alpha})^2}{\gamma_s \operatorname{Sp}(M_e^{\alpha})^2} M_e^{\alpha}(t)\right], \quad (49)$$

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{CF} = -\sqrt{\frac{\pi}{2N_{2CF}^{\alpha}}} K_{CF}^{\alpha}(0)M_s^{\alpha}(t), \qquad (50)$$

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{DM}^{dir} = -\sqrt{\frac{\pi}{2N_{2DM}^{\alpha}}} \times \\ \times \left[K_{DM}^{\alpha\beta dir}(0) + K_{DM}^{\alpha\gamma dir}(0)\right] M_s^{\alpha}(t), \quad (51)$$

$$\left(\frac{dM_s^{\alpha}}{dt}\right)_{DM}^{cr} = -\sqrt{\frac{\pi}{2N_{2DM}^{\alpha}}} \times \\ \times \left[K_{DM}^{\alpha\beta cr}(0)M_s^{\beta}(t) + K_{DM}^{\alpha\gamma cr}(0)M_s^{\gamma}(t)\right].$$
(52)

Итак, с учетом уравнений (49)–(52), для нетривиальной части уравнений (17) и (18) получим

$$\begin{pmatrix} \frac{dM_s^{\alpha}}{dt} \end{pmatrix}^{NTD} = \\ = -\left[(T_{DM}^{\alpha})^{-1} + (T_{CF}^{\alpha})^{-1} + (T_{sL}^{\alpha})^{-1} + (T_{se}^{\alpha})^{-1} \right] \times \\ \times (M_s^{\alpha} - M_{s0}^{\alpha}) + (T_{es}^{\alpha})^{-1} (M_e^{\alpha} - M_{e0}^{\alpha}), \quad (53)$$

$$\left(\frac{dM_e^{\alpha}}{dt}\right)^{NTD} = -\left[(T_{eL}^{\alpha})^{-1} + (T_{es}^{\alpha})^{-1}\right] \times \\ \times \left(M_e^{\alpha} - M_{e0}^{\alpha}\right) + (T_{se}^{\alpha})^{-1}(M_s^{\alpha} - M_{s0}^{\alpha}), \quad (54)$$

где величины $(T^{\alpha}_{DM})^{-1}$ и $(T^{\alpha}_{CF})^{-1}$ представлены кинетическими коэффициентами при членах $M^{\alpha}_{s}(t)$ в правых частях уравнений (50) и (51); скорости релаксаций $(T^{\alpha}_{se})^{-1}$ и $(T^{\alpha}_{es})^{-1}$ могут быть представлены кинетическими коэффициентами из уравнений (49) или (44) и (45) в зависимости от выбора аппроксимации к функциям памяти. Напомним, что $M^{x,y}_{s,e0} = 0$ в уравнениях (53) и (54).

Итак, для исследования релаксации (релаксационного узкого горла) в системе связанных *s*- и *e*-спинов мы имеем уравнения (17) и (18) с тривиальной частью в виде (21) (в эти выражения возвращены члены, обусловленные учетом взаимодействия спинов с РЧ-полем) и нетривиальной частью в виде (53) и (54). Заметим, что здесь мы положили *g*-факторы *s*- и *e*-спинов равными, поскольку для решения данной системы уравнений мы используем результаты работ [28, 29], в которых при решении феноменологических уравнений Хасегавы – Блоха с помощью теории связанных осцилляторов рассмотрен, для простоты, именно этот случай. Кроме того, в этих работах считается, что как локализованный, так и делокализованный спины равны 1/2, тогда как в манганитах с колоссальным магнитосопротивлением с остовом иона марганца связан спин 3/2. Однако указанная разница не влияет на оценочные результаты настоящего раздела. Заметим также, что в указанных работах роль $(T^{\alpha}_{se})^{-1}$ и $(T^{\alpha}_{es})^{-1}$ играют соответственно релаксации Корринга и Оверхаузера. Рассмотрим теперь решение уравнений (53), (54) совместно с (21) (упрощенного варианта уравнений (17) и (18)) в указанных выше случаях сильной и слабой связанности между локализованными *s* и квазилокализованными е спинами. Всюду ниже будем использовать обозначения работ [28, 29], а также иметь в виду, что $\alpha = x, y$.

5.1. Сильная связанность спинов *s* и *e* (релаксационное узкое горло)

В этой ситуации справедливо условие

$$\sigma^{\alpha} = \frac{(T_{se}^{\alpha})^{-1} + (T_{es}^{\alpha})^{-1}}{|\delta^{*\alpha} + (T_{sL}^{\alpha})^{-1} - (T_{eL}^{\alpha})^{-1}|} \gg 1.$$

где σ^{α} — параметр «связанности» спиновых подсистем s и e,

$$\delta^{*\alpha} = \frac{(\delta^{0\alpha})^2}{(T_{se}^{\alpha})^{-1}}, \quad \delta^{0\alpha} = (T_{CF}^{\alpha})^{-1} + (T_{DM}^{\alpha})^{-1}.$$

Заметим, что в работах [28,29] в качестве уширяющего взаимодействия, дающего основной вклад в $\delta^{0\alpha}$, фигурирует диполь-дипольное взаимодействие локализованных *s*-спинов, которое в манганитах с колоссальным магнитосопротивлением не существенно [9]. Итак, в этом случае для нормального затухания поперечных компонент намагниченностей *s*- и *e*-спинов, т. е. в качестве решений соответственно уравнений (53) и (54), можно использовать выражения (19) из работы [29]:

$$\begin{split} \omega_{(t=+)}^{\prime\prime} &\approx (T_{se}^{\alpha})^{-1} + (T_{es}^{\alpha})^{-1} + \\ &+ \frac{\chi_{e}^{\alpha}(T_{sL}^{\alpha})^{-1} + \chi_{s}^{\alpha}(T_{eL}^{\alpha})^{-1}}{\chi_{e}^{\alpha} + \chi_{s}^{\alpha}} + \frac{\chi_{e}^{\alpha}}{\chi_{e}^{\alpha} + \chi_{s}^{\alpha}} \delta^{*\alpha}, \\ \omega_{(-t=-)}^{\prime\prime} &\approx \frac{\chi_{s}^{\alpha}(T_{sL}^{\alpha})^{-1} + \chi_{e}^{\alpha}(T_{eL}^{\alpha})^{-1}}{\chi_{e}^{\alpha} + \chi_{s}^{\alpha}} + \\ &+ \frac{\chi_{s}^{\alpha}}{\chi_{e}^{\alpha} + \chi_{s}^{\alpha}} \delta^{0\alpha}, \end{split}$$
(55)

где ω_t'' и ω_{-t}'' — нормальные скорости затухания (наблюдаемые ширины линии ЭПР); t обозначает моду и принимает значения «+» и «-», t-мода всегда s-подобна, а (-t)-мода — e-подобна.

5.2. Слабая связанность между спиновыми подсистемами s и $e~(\sigma^{lpha}\ll 1)$

Здесь в качестве решения уравнений (53), (54) необходимо использовать выражения (11) из работы [29]:

$$\omega_{(t=+)}^{\prime\prime} \approx (T_{se}^{\alpha})^{-1} + (T_{sL}^{\alpha})^{-1} + \delta_s^{0\alpha} + \frac{\sigma^{\alpha}}{4} \left[(T_{se}^{\alpha})^{-1} + (T_{es}^{\alpha})^{-1} \right], \quad (56)$$

$$\omega_{(-t=-)}^{\prime\prime} \approx (T_{es}^{\alpha})^{-1} + (T_{eL}^{\alpha})^{-1} - \frac{\sigma^{\alpha}}{4} \left[(T_{se}^{\alpha})^{-1} + (T_{es}^{\alpha})^{-1} \right].$$
(57)

При получении выражений (56) и (57) было использовано условие

$$(T_{es}^{\alpha})^{-1} + (T_{sL}^{\alpha})^{-1} < \delta_s^{0\alpha} + (T_{se}^{\alpha})^{-1} + (T_{sL}^{\alpha})^{-1},$$

которое осуществимо и в манганитах с колоссальным магнитосопротивлением.

Заметим, что ситуация, рассмотренная в работах [28, 29], ведет к тому, что секулярное диполь-дипольное взаимодействие локализованных *s*-спинов дает вклад только в поперечную релаксацию (в T_2). В нашем же случае взаимодействие с кристаллическим полем и взаимодействие Дзялошинского – Мория, а через них и суперобменное взаимодействие дают вклад как в T_2 , так и в продольную релаксацию T_1 .

Детальный анализ выражений, из которых вытекают соотношения (54)–(57), можно найти в работах [28, 29].

Итак, из приведенного в данном разделе примера использования уравнений (17) и (18) видно, что они являются квантовостатистическим аналогом уравнений типа Хасегавы – Блоха, причем каждому феноменологическому члену последних соответствует один из членов уравнений (17) и (18), естественным образом получающийся с помощью метода статистической физики неравновесных процессов — формализма функций памяти.

6. УРАВНЕНИЯ БЛОХА

Применим теперь уравнения (17) и (18) для описания ситуации, когда имеется одна линия ЭПР лоренцева типа. Такая ситуация может возникнуть, когда манганит с колоссальным магнитосопротивлением находится в парамагнитном и изоляторном состояниях¹⁾.

В этом случае, как было отмечено выше, в рамках предлагаемой модели взаимодействие H_{ex}^{is} является доминирующим и линия ЭПР — кривая лоренцева типа, обусловленная локализованными спинами, перекрывает резонансную линию гауссова вида от спинов обоих сортов. Исходя из сказанного можно пренебречь ролью квазилокализованных спинов и положить $\mathbf{M}_e = 0$.

В результате из уравнений (17) и (18) получим уравнения типа уравнений Блоха (см. Приложение):

$$\frac{d\mathbf{M}_{s}}{dt} = \gamma_{s}\mathbf{M}_{s} \times \mathbf{H}_{0} - \mathbf{i}\frac{M_{s}^{x}}{T^{x}} - \mathbf{j}\frac{M_{s}^{y}}{T^{y}} - \mathbf{k}\frac{M_{s}^{z} - M_{s0}^{z}}{T^{z}} + \mathbf{i}\left(\frac{dM_{s}^{x}}{dt}\right)_{DM}^{cr} + \mathbf{j}\left(\frac{dM_{s}^{y}}{dt}\right)_{DM}^{cr} + \mathbf{k}\left(\frac{dM_{s}^{z}}{dt}\right)_{DM}^{cr}, \quad (58)$$

где

$$\begin{split} (T^{x,y})^{-1} &= (T^{x,y}_{CF})^{-1} + (T^{x,y}_{DM})^{-1}, \\ (T^z)^{-1} &= (T^z_{CF})^{-1} + (T^z_{DM})^{-1} + (T^z_{sL})^{-1}, \end{split}$$

 $(T_{CF,DM}^{\alpha})^{-1}$ — кинетические (релаксационные) коэффициенты в уравнениях (50) и (51) при соответствующих компонентах намагниченности \mathbf{M}_s ; член $(dM_s^{\alpha}(t)/dt)_{DM}^{cr}$ представлен выражениями (25) и (52), **i**, **j** и **k** — единичные векторы, направленные соответственно вдоль координатных осей x, y и z. Этот случай соответствует ситуации, рассмотренной в работах [9, 31], поскольку намагниченность \mathbf{M}_s есть сумма намагниченностей локализованных спинов ионов Mn^{3+} и Mn^{4+} . Кроме того, вследствие обменного сужения [5, 6], справедливо неравенство $\mu \gg 1$. Поэтому из соотношений (39) имеем

$$N_{2CF} \approx \frac{M_{4CF}}{M_{2CF}}, \quad N_{2DM} \approx \frac{M_{4DM}}{M_{2DM}}$$

На основе сказанного выше с помощью кинетических (релаксационных) коэффициентов из уравнений (49)–(52) можно сделать следующие качественные выводы.

1. Принимая во внимание, что $\mu \gg 1$ $(N_2 \approx M_4/M_2)$, и учитывая, что $K(0) = M_2$, например, из релаксационного коэффициента в выражении (50) легко найдем, что

¹⁾ Подобные области, например, на фазовых диаграммах из работ [15,30] для $La_{1-x}Sr_xMnO_3$ и $La_{1-x}Ca_xMnO_3$ обозначены соответственно как O/I, PM; O'/I, PM и PI. Сходные области концентраций примеси и температур можно найти, например, в работах [10-13].

$$T_2^{-1} = \sqrt{\frac{\pi}{2} \frac{M_2^3}{M_4}} \tag{59}$$

в соответствии с результатами работ [9, 32]. Если воспользоваться выражениями для второго и четвертого моментов из [9], то, согласно (59), имеем

$$(T_{CF}^{x,y})^{-1} = (T_{CF}^{\perp})^{-1} \sim T_2^{-1} \sim D^2 / \langle J \rangle$$

где $\langle J \rangle$ — суперобменная константа для ближайших соседей. Таким же по порядку величины будет вклад в поперечную релаксацию (59) от взаимодействия Дзялошинского-Мория.

2. Если мы последуем работе [9], то для ширины линии найдем

$$\Delta H_{p,p}(\infty) = \frac{2\sqrt{3}}{\gamma_s T_2} = \frac{1}{\gamma_s} \sqrt{\frac{2\pi}{3} \frac{M_2^3}{M_4}} \,. \tag{60}$$

Естественно, что вклад в ширины линий вследствие взаимодействий с кристаллическим полем и Дзялошинского – Мория можно оценить так же, как и в предыдущем пункте данного раздела. Здесь, как было указано ранее, изотропное суперобменное взаимодействие (через вклад в M_4) обусловливает обменное сужение резонансной линии.

3. Если в этой температурной и концентрационной области пренебречь анизотропией, что, как будет отмечено в Приложении, вполне реально из-за присутствия доминирующего взаимодействия H_{ex}^{is} , то можно предположить, что все вторые и четвертые моменты одинаковы для направлений x, y и z, т.е. $M_{2,4}^x = M_{2,4}^y = M_{2,4}^z$ и, следовательно, будут равны друг другу обусловленные ими соответствующие времена релаксации $(T^x = T^y = T^z = T_1 = T_2)$ из уравнений (58) (см. выражения (50)–(52)), что соответствует экспериментальным данным работ [10–12].

7. ЗАКЛЮЧЕНИЕ

В работе получены следующие оригинальные результаты.

1. С помощью формализма функций памяти получена в общем виде система уравнений, описывающая тривиальную и нетривиальную (релаксационную) динамику *x*-, *y*- и *z*-компонент спиновых намагниченностей локализованных и квазилокализованных электронов манганита с колоссальным магнитосопротивлением в условиях ЭПР. 2. Из указанных выше уравнений динамики в качестве частных случаев получены уравнения типа уравнений Хасегавы – Блоха, уравнений Блоха и выражения, подобные выражениям из теории Блоха – Вангснесса – Редфильда, в которых каждый кинетический коэффициент (скорость релаксации) при динамической переменной количественно связан с тем или иным взаимодействием в спиновой системе манганита. Полученные уравнения воспроизводят ряд хорошо известных теоретических результатов, а также описывают некоторые экспериментальные данные, касающиеся скоростей поперечной и продольной релаксации в манганитах с колоссальным магнитосопротивлением.

3. Если к корреляционным функциям кинетических коэффициентов применить аппроксимацию, связанную с методом моментов, то по форме резонансной кривой становится возможным определить, какое из спин-спиновых взаимодействий доминирует и какому из двух сортов спинов «принадлежит» линия ЭПР. Применение же к указанным корреляционным функциям приближения ближайших соседей дает хорошо известную закономерность температурной зависимости ширины линии ЭПР — «закон Хьюбера», с помощью которого также появляется возможность идентификации линии ЭПР с одним из спиновых сортов спиновой системы манганита.

4. Впервые для спиновой системы манганитов с колоссальным магнитосопротивлением выявлен тензорный характер релаксации и получены выражения для так называемых перекрестных скоростей релаксации, в связи с чем указана экспериментальная возможность обнаружения их влияния на релаксацию и ширину линии ЭПР.

Заметим, наконец, что для более детального исследования спиновой системы манганитов с колоссальным магнитосопротивлением, а также для уточнения полученных в данной работе качественных результатов и получения новых (например, зависимости формы линии ЭПР от направления внешних магнитных полей и т.п.) необходимо использовать сведения о строении конкретного манганита с колоссальным магнитосопротивлением и об условиях эксперимента. В рамках данного теоретического подхода в дальнейшем можно будет исследовать динамику спиновой системы манганита с колоссальным магнитосопротивлением в условиях ферромагнитного резонанса (в областях температур и концентраций примеси, где материал находится в ферромагнитном состоянии).

Мы благодарны Л. Л. Буишвили за большую заботу. Мы благодарим Н. П. Фокину за привлечение нашего внимания к этой тематике, за полезные замечания и рекомендации, а также В. А. Ацаркина и В. В. Демидова за предоставление работы [11] до ее публикации и стимулирующие замечания.

приложение

Здесь мы продемонстрируем применение, например, уравнений (58). Если использовать вращающуюся с частотой ω систему координат, вернуть в уравнения (58) члены тривиальной динамики, обусловленные РЧ-полем, и для простоты рассмотреть случай, приведенный в разд. 5, когда члены перекрестной релаксации равны нулю, то из уравнений (58) получим классические уравнения Блоха [32] с T^x и T^y вместо T_2 и T^z вместо T_1 :

$$\frac{dM_s^x}{dt} = \Delta M_s^y - \frac{M_s^x}{T^x},\tag{\Pi.1}$$

$$\frac{dM_s^y}{dt} = -\Delta M_s^x - \frac{M_s^y}{T^y} - \omega_1 M_s^z, \qquad (\Pi.2)$$

$$\frac{dM_s^z}{dt} = -\frac{M_s^z - M_{s0}^z}{T^z} + \omega_1 M_s^y, \qquad (\Pi.3)$$

где $\Delta = \omega - \omega_s$, ω_s — зеемановская частота локализованных спинов, ω_1 — амплитуда РЧ-поля и, согласно уравнениям (50) и (51),

$$(T^{x})^{-1} = (T_{CF}^{x})^{-1} + (T_{DM}^{x})^{-1} = \sqrt{\frac{\pi}{2}} \times \left[\frac{K_{CF}^{x}(0)}{\sqrt{N_{2CF}^{x}}} + \frac{K_{DM}^{yxdir}(0) + K_{DM}^{xzdir}(0)}{\sqrt{N_{2DM}^{x}}}\right], \quad (\Pi.4)$$

$$(T^{y})^{-1} = (T^{y}_{DM})^{-1} = = \sqrt{\frac{\pi}{2N^{y}_{2DM}}} \left[K^{yzdir}_{DM}(0) + K^{yxdir}_{DM}(0) \right], \quad (\Pi.5)$$

$$(T^{z})^{-1} = (T^{z}_{DM})^{-1} = = \sqrt{\frac{\pi}{2N^{z}_{2DM}}} \left[K^{zxdir}_{DM}(0) + K^{zydir}_{DM}(0) \right]. \quad (\Pi.6)$$

Если принять во внимание выражения (49) и $K(0) = M_2$, а также учесть, что $\mu \gg 1$ при обменном сужении, то из (П.4)–(П.6) легко получить выражения, подобные (59). Подбирая далее константы взаимодействия с кристаллическим полем и взаимодействия Дзялошинского – Мория и вычисляя M_2 и M_4 , можно получить скорости релаксации для конкретного материала с колоссальным магнитосопротивлением.

Отметим, что, в отличие от предположения о полной изотропности в общих замечаниях в разд. 4, здесь видно, что величина T^x отличается от T^y и T^z , однако это существенно не сможет изменить общую картину из-за наличия в выражении для M_4 константы суперобменного взаимодействия H_{ex}^{is} .

Приравнивая нулю правые части выражений $(\Pi.1)-(\Pi.3)$, легко получить стационарные значения M_s^{α} , а следовательно, и выражения для формы резонансного поглощения и дисперсии. В частности, для стационарного значения M_s^y имеем соотношение

$$|M_s^y| = M_{s0}^z \omega_1 T^y (1 + T^y T^x \Delta^2 + T^y T^z \omega_1^2)^{-1}, \quad (\Pi.7)$$

точно такое же, как в [32], только с указанной выше заменой T^x и T^y на T_2 и T^z на T_1 . Из (П.3), аналогично [32], можно заключить, что форма линии резонансного поглощения в случае, когда нет заметного насыщения ($\omega_1^2 T^y T^z \ll 1$), является лоренцевой с полушириной на половине высоты равной (T^y)⁻¹ из (П.4). Кроме того, ближе к центру линии, где $\Delta \approx 0$, ширина линии определяется только величиной (T^y)⁻¹, т.е. выражением (60), в котором моменты M_2 и M_4 обусловлены взаимодействием Дзялошинского – Мория, но нет вклада от взаимодействия с кристаллическим полем, что, как было отмечено выше, несущественно из-за вклада взаимодействия H_{ex}^{is} в величину M_4 .

Наконец, заметим, что, подставив в выражения для T^x , T^y и T^z вторые и четвертые моменты, например из [9], с помощью выражений (П.5)–(П.7) можно получить графическое изображение формы линии резонансного поглощения [8].

ЛИТЕРАТУРА

- 1. Д. Н. Зубарев, в сб. Современные проблемы математики, т. 15 (Итоги науки и техники), ВИНИТИ АН СССР, Москва (1980).
- 2. Г. Рёпке, *Неравновесная статистическая механи*ка, Мир, Москва (1990).
- Р. Балеску, Равновесная и неравновесная статистическая механика, т. 2, Мир, Москва (1978).
- F. Lado, J. D. Memory, and J. W. Parker, Phys. Rev. B 4, 1406 (1971).
- 5. A. Abragam and M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon Press, Oxford (1982).
- M. Mehring, High Resolution NMR Spectroscopy in Solids, Springer-Verlag, Berlin-Heidelberg-New York (1976).

- 7. Э. Х. Халваши, ЖЭТФ 110, 703 (1996).
- Э. Х. Халваши, М. В. Чхартишвили, ФТТ 40, 1036 (1998).
- D. L. Huber, G. Alejandro, A. Caneiro et al., Phys. Rev. B 60, 12155 (1999).
- V. A. Atsarkin, V. V. Demidov, G. A. Vasneva et al., Phys. Rev. B 63, 092405 (2001).
- F. Simon, V. A. Atsarkin, V. V. Demidov et al., Phys. Rev. B 67, 223344 (2003).
- V. A. Atsarkin, V. V. Demidov, G. A. Vasneva et al., Appl. Magn. Reson. 21, 147 (2001).
- O. Chauvet, G. Goglio, P. Molinie et al., Phys. Rev. Lett. 81, 1102 (1998).
- 14. M. T. Causa, M. Tovar, A. Caneiero et al., Phys. Rev. B 58, 3233 (1988).
- 15. V. A. Ivanshin, J. Deisenhofer, H.-A. Krug von Nidda et al., Phys. Rev. B 61, 6213 (2000).
- A. Shengelaya, Guo-meng Zhao, H. Keller et al., Phys. Rev. Lett. 77, 5296 (1996).
- A. Shengelaya, Guo-meng Zhao, H. Keller et al., Phys. Rev. B 61, 5888 (2000).
- 18. Л. Л. Буишвили, Э. Х. Халваши, *Радиоспектроскопия*, Изд-во Пермского университета, Пермь (1987), с. 58.

- 19. C. Zener, Phys. Rev. 81, 440 (1951), 82, 403 (1951).
- 20. I. Yamada, H. Fujii, and M. Hidaka, J. Phys.: Condens. Matter 1, 3397 (1989).
- 21. Б. Н. Провоторов, ЖЭТФ 41, 1582 (1961).
- 22. H. Hasegawa, Progr. Theor. Phys. 23, 483 (1959).
- H. Hasegawa and A. M. Stewart, Progr. Theor. Phys. 74, 943 (1985).
- 24. А. Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, Москва (1973).
- C. P. Slichter, Principles of Magnetic Resonance, Springer, Berlin-Heidelberg-New York (1980).
- 26. S. E. Barnes, Adv. Phys. 30, 801 (1981).
- 27. N. P. Fokina and K. O. Khutsishvili, Appl. Magn. Reson. 17, 503 (1999).
- **28**. Н. П. Фокина, К. О. Хуцишвили, ЖЭТФ **123**, 98 (2003).
- **29**. Н. П. Фокина, М. О. Элизбарашвили, В. А. Ацаркин и др., ФТТ **45**, 1921 (2003).
- 30. V. Cataudella, G. De Filippis, and G. Ladonisi, Phys. Rev. B 63, 052406 (2001).
- 31. D. L. Huber, Phys. Rev. B 12, 31 (1975).
- 32. A. Abragam, The Principles of Nuclear Magnetism, Clarendon, Oxford (1961), pp. 435-440.