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R. N. Lee, A. I. Milstein," V. M. Strakhovenko”

* %

Budker Institute of Nuclear Physics
630090, Novosibirsk, Russia

0. Ya. Schwarz

Nowosibirsk State University
630090, Novosibirsk, Russia

Submitted 29 April 2004

We consider the differential and partially integrated cross sections for bremsstrahlung from high-energy electrons
in the atomic field, with this field taken into account exactly. We use the semiclassical electron Green's function
and wave functions in an external electric field. It is shown that the Coulomb corrections to the differential cross
section are very susceptible to screening. Nevertheless, the Coulomb corrections to the cross section summed
over the final-electron states are independent of screening in the leading approximation in the small parameter
1/m7rser (rser is the screening radius and m is the electron mass, i = ¢ = 1). We also consider bremsstrahlung
from a finite-size electron beam on a heavy nucleus. The Coulomb corrections to the differential probability
are also very susceptible to the beam shape, while the corrections to the probability integrated over momentum
transfer are independent of it, apart from the trivial factor, which is the electron-beam density at zero impact
parameter. For the Coulomb corrections to the bremsstrahlung spectrum, the next-to-leading terms with respect
to the parameters m/e (e is the electron energy) and 1/mr., are obtained.

PACS: 12.20.Ds, 95.30.Cq

1. INTRODUCTION

Bremsstrahlung in the electric field of atoms is a
fundamental QED process. Its investigation, started in
the 1930s, is important for various applications. In the
Born approximation, both the differential cross section
and the bremsstrahlung spectrum have been obtained
for arbitrary electron energies and atomic form fac-
tors [1] (see also Ref. [2]). High-energy asymptotics of
the bremsstrahlung cross section in a Coulomb field has
been studied in detail in Ref. [3] exactly in the parame-
ter Za (where Z is the atomic number and a = 1/137is
the fine-structure constant). In these papers, the differ-
ential cross sections and the bremsstrahlung spectrum
have been obtained. For a screened Coulomb field, the
high-energy asymptotics of the differential cross section
was derived in Ref. [4]. The effect of screening on the
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spectrum was studied in Refs. [5, 6]. For the spectrum,
it turned out that screening is essential only in the Born
approximation. In other words, the Coulomb correc-
tions to the spectrum are not significantly modified by
screening. By definition, Coulomb corrections are the
difference between the result obtained exactly in the
external field and that obtained in the Born approxi-
mation. In the recent paper [7], it was claimed that
Coulomb corrections to the differential cross section of
the bremsstrahlung are also independent of screening.

In the present paper, we investigate the bremsstrah-
lung cross section in the electric field of a heavy atom.
We assume that ¢, &' > m, where € and &’ are the ini-
tial and final electron energies, respectively. In Sec. 2,
we consider the differential cross section in detail in
the leading approximation, i.e., neglecting corrections
in the parameters m/e and 1/mrs... In contrast to
the statement in Ref. [7], screening may strongly mo-
dify Coulomb corrections to the differential cross sec-
tion. We demonstrate explicitly that this fact does
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not contradict the final-state integration theorem [5],
which implies that Coulomb corrections to the spec-
trum are independent of screening. We also study the
influence of the electron beam finite size on Coulomb
corrections. Again, Coulomb corrections to the differ-
ential cross section are very sensitive to the shape of
the electron beam, while the spectrum is independent
of it, except for a trivial factor. In Sec. 3, we consider
corrections to Coulomb corrections in the spectrum. It
turns out that in the first nonvanishing order, they en-
ter the spectrum as a sum of two terms. The first term
is proportional to m /e and is independent of screening,.
The second term is small in the parameter 1/mr., and
is independent of the energy.

Our approach is based on the use of the semiclas-
sical Green’s function and the semiclassical wave func-
tion of the electron in an external field. Previously, this
method was successfully applied to the investigation of
the photoproduction process at high energy [8, 9].

2. DIFFERENTIAL CROSS SECTION

The cross section of the electron bremsstrahlung in
the external field has the form

do? =

a
onw dp' dk §(c — &' — w)|M|?, (1)

where k is the photon momentum, p and p’ are the
respective initial and final electron momenta,

e =¢p = V/p>+m?,

The matrix element M is given by

w = |k, el =¢p.

M = /drexp(—ikm)zﬁgm) (r)é*lﬁgn) (r), (2)

where z/)gn) and wgfm) are the respective wave functions
of the in- and out-state of the electron in an external
field, containing the diverging and converging spherical
waves and the plain wave with 4-momentum P in their
asymptotics, €* = e;y", e, is the photon polarization
4-vector, and y* are the Dirac matrices.

In Ref. [10], the semiclassical wave function of the
electron in an arbitrary localized potential was found
with the first correction in m/e taken into account.
In calculating bremsstrahlung and the ete~ photopro-
duction cross section in the leading approximation, the
following form of the wave function can be used [10]:
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(in, out) dq
=4 —
Up (r) i x
X exp ip-riiq2:Fi)\/dacV(rm) X
0
. (3)
x<1F —/dxa-VV(rm) up,
2p
0
r, =rFan+qy/2r-nl/p,
A=signP’, n=p/p.

In this formula, q is a two-dimensional vector ly-
ing in the plane perpendicular to p, the upper sign
corresponds to wpm , and up is the conventional
Dirac spinor. ~ We recall that the wave function
ZD((l,ns)p’,p) corresponds to the positron in the final state
with the 4-momentum (¢,,p). For a Coulomb field,
wave function (3) coincides with the standard Furry —
Sommerfeld - Maue wave function. When the angles
between p and r in ngn) (r), and between p and —r in
wgfm) (r) are not small, it is possible to replace r, in
Eq. (3) by R, =r F zn. Then the integral over q can
be taken, and we obtain the conventional eikonal wave
function

oo

wpzv;(])fut)(r) = exp ZpI':FZ)\/de(Rz) %
0

1 o0
X 1:F2—p/dxa-VV(Rm) up. (4)
0

We direct the z axis along the vector v = k/w,
then r = zv + p. In this frame, the polar angles of
p and p’ are small. We split the integration region in
Eq. (2) into two: z > 0 and z < 0. The corresponding
contributions to M are denoted as My and M_, with
M = M, + M_. For z > 0, the function wl(f“t) (r) has
the eikonal form and we obtain

My = /dr/?—qexp{ti—iAm—
™

230
—i/dac [V
0

U ——/daz a- VV r nr+qy/2z/ )

o

1
—Q—pl/dxa-VV(r—}—n'x)é* up, (5)

0

(r—nac-l—q\/%) + V(r-l—n'x)} X
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where A = p’ + k — p is the momentum transfer.

In Eq. (5), we have replaced y/2|r - n|/p in the defi-
nition of r, in Eq. (3) by 4/2z/p. It is easy to see that
within our accuracy, we can also replace the quantity
V(r+n'z) in Eq. (5) by V(r+n'z+q4/2z/p) and con-
sider the vector q to be perpendicular to z axis. After
that, we shift p — p — q\/22/p and take the integral
over q. We obtain

.2 .
M, = / drexp{ —22—pA3_ —iA -r—
2>0

- i/dx[V(r —nz)+V(r+n'z)] p x
X Uy ——/dx a -VV(r—nx)—

1 S
—2—p,/dxa~VV(r-|—nx)e Up. (6)
0

In the same way, we obtain

/ dr exp {ZQLpIAi —iA - r—

2<0

- i/dac[V(r —nz)+V(r+n'z)] p x
0

X Upy ——/dx *a-VV(r —nx) —

/xa VV(r+n'z)ée | uy. (7)
0

There are two overlapping regions of the momentum
transfer A,

1A<<@

2 (8)
LA Ay, = =<
2¢ee!

In the first region, we can neglect the terms pro-
portional to A? in the exponents in Egs. (6) and (7).
Then the sum

M=M,+M._

becomes

M:/drexp —iA-r—

—i / dz[V(r —nz) + V(r+n'z)] 3 x
0

o
1
X Uy |€" — %/dxé*orVV(r—nx)—

/xa VV(r+n'z)ée* | uy. (9)
0

We can make the replacement n,n’ — v in the pre-
factor in Eq. (9). In the exponent, we must take the
linear term of the expansion of the integral in n — v
and n’ — v into account. As a result, we have

M= /dr exp [—iA - r —ix(p)] x

x/dyupr [e iy(n—v)—a/2p] - VV(r—vy)+
0

(10)
+[—iy(m' —v)—a/2p'] - VV(r+vy)ée*|u,,
W)= [ d:v).

In the arguments of V(r + vy), we make the sub-
stitutions z — z Fy. After that, we take the integral
over y and obtain

n—n')é*

= aia) (o [0

aé*
+—2p’Az Up |

A(A)=—i / drexp[—iA -t —ix(p)|V,V(r)

e*a

_ 11
A (11)

We now pass to the calculation of M in the sec-
ond region, where A > A,;,. In Eq. (6) for My, we
can replace n’ — n and zA? /2p — A% /2p, where
Z = r-n. Because the polar angle of n is small, we can
integrate in Eq. (6) over the half-space Z > 0. After
the integration over Z, we obtain

My =i [dpexpl-it - p = ix(p) x

» Uy é*2p+a- Ay Juy,
2pA -n+ A?

(12)
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The calculation of M_
As a result, we have

is performed quite similarly.

M = —i/dpexp [—iA - p—ix(p)] x

i e (2pta-Ay)
P 2pA - n+A?

(2p'+a- A, )é*
2p’A~n’—Aﬁ_

[ 13

Now we can write the representation for M that is
valid in both regions,

ee! _ WPl +DP)
M = UA(A) . {Upr [—26 T +
o et 14
+g(sf‘m}“p}7 o
d=m’+pl, & =m’+p.

Within our accuracy, this expression coincides with
Eq. (11) in region T and with Eq. (13) in region II. Us-
ing the explicit form of the Dirac spinors, we finally
obtain

1
M= o5 AA) {so’* [(m +p') x
+ ! * . *
X (6 =" (pL4p))—ilo x e*]- (pL+p)) +

+ 2imlo x e*]z) — (540" x

e* — i[o x e*]L)}go} . (15)

e+¢
< (

This expression is in agreement with that obtained
in [4] by another method. We emphasize that the po-
tential enters amplitude (15) only via A(A).

2.1. Coulomb corrections to the differential
cross section in a screened Coulomb potential

We discuss Coulomb corrections to the differential
cross section of bremsstrahlung. We recall that these
corrections are the difference between the exact (in the
external field strength) cross section and that obtained
in the Born approximation, which is proportional to
[J[A(A)]?2 — |Ap(A)]?] with A(A) from Eq. (11) and

Ag(A) = —i/drexp[—iA . r]VpV(r) =
=A / dr exp[—iA -]V (r). (16)

The screening modifies the Coulomb potential of the
nucleus at distances

Tser > Ao = 1/m.

In the region
A > max(Apin, Tob),

the quantities A(A) and Ap(A) are of the form

T(1—iZa) [ 4\
A(A) = AB(A)F(I +iZa) <A—>
F( ZZCM) 1-iZa
Therefore,
JA(A)> = |Ag(A)> for A > max(Apin, o)

and Coulomb corrections to the differential cross sec-
tion vanish in this region in the leading approximation.
Hence, Coulomb corrections are important only in the
region

A < max(Apin, 7o) K m.

In this region, we can use Eq. (11) for the matrix
element. For the Coulomb corrections, substituting
Eq. (11) in Eq. (1), using the relation

dpdA | dA,

A0 e = ==

and integrating over the azimuthal angle ¢ and sum-
mating over polarizations, we obtain

adwdA | dA., ) m2w miw?
doc = 16733’ A2 e +e+2 A~ ge! A2
x [JA(A)P —[AB(A)P] . (1)

We note that in this formula, we can assume that the z
axis is directed along the vector p. Then A, is negative

and

m2w

ALl > Apin = —.
8| 2¢ee!
The potential V(r) and the transverse momentum
transfer A | enter Eq. (18) only as the factor dR,
dR = dAL [AA)P - |Ag(A)] . (19)

It follows from the definition of A(A) that for
Tser > |A,|7!, screening can be neglected. However,
it is obvious from Eq. (19) that screening drastically
modifies the A -dependence of the differential cross
section for rg., < |A,|7t. We illustrate this statement
with the example of the Yukawa potential

V(r) = =Zaexp[—pr]/r.
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Fig.1. The quantity A; dR/dA | as a function of ¢

for Z = 80 and v = 1 (solid curve), v = 0.5 (dashed

curve), and v = 0.01 (dotted curve). The variable ( is
defined in Eq. (20)

After the straightforward calculation, we have

dR
Al —— =327°(Za)?
IAL 3271 (Za)” x

o0

x |2 /dmel(xC)Kl(x) X

0
2 (20)
<4
(1+¢%)°

Ay _ B
VSRR
We emphasize that A enters the right-hand side of
Eq. (20) only via the variable ¢, and hence /A2 + 32
is the characteristic scale of the distribution (20). For
B > |A,|, this scale is entirely determined by the
screening radius ry., = B~ !. In this case, the A |-
distribution is much wider than that in the absence of
screening. We therefore conclude that in contrast to
the statement in Ref. [7], Coulomb corrections to the
differential cross section strongly depend on screening.
We note that screening also affects the shape of the
A | -distribution (20) via the parameter v, which varies
from 0 to 1. In Fig. 1, we show the dependence of
A dR/dA | on the scaling variable ¢ for Z = 80 and
different values of the parameter ~.

We note that in contrast to bremsstrahlung,
Coulomb corrections to the differential cross section
of ete™ photoproduction in the atomic field are
important only in the region A ~ m, where screening
may be neglected [4].

x exp[2iZaKy(yz)]| —

<:

2.2. Integrated cross section

It was shown in Ref. [5] that Coulomb corrections
to the cross section of bremsstrahlung integrated over
A | areindependent of screening in the leading approx-
imation. The statement was based on the possibility to
obtain this cross section from that for the eTe~ photo-
production. In this subsection, we perform the explicit
integration of do/,, Eq. (18), over A ;. We show that
the strong influence of screening on the shape of do/,
does not contradict the statement in Ref. [5]. Our con-
sideration is quite similar to that used in Ref. [11] in
the calculation of Coulomb corrections to the ete™ pair
production in ultrarelativistic heavy-ion collisions.

We consider the quantity

R=[dr= [an. (A@)E - s (20

This integral converges due to the compensation in the
integrand, and the main contribution comes from the
region

AL S max(|Az], re),

see Eq. (17). Substituting the integral representation
for A(A), Eq. (11), and for Ap(A), Eq. (16), in
Eq. (21), we have

RZ/dAL/ dI‘l dI‘Q X

x exp[iA - (r1 —r2)] {exp[ix(p1) — ix(p2)] — 1} x
X [VU_V(Ij)] . [VQJ_V(I'Q)] . (22)

3 3

It is necessary to treat this repeated integral with
care. If one naively changes the order of integration
over A and r;, the integration over A in infinite
limits leads to 6(p1 — p2). Then the quantity R van-
ishes after the integration over p;, which is not correct.
Such an erroneous change of the order of integrations
was made in Ref. [4] in explicitly verifying that the in-
tegrated cross section is independent of screening. Al-
though this independence itself takes place, the proof of
this fact given in Ref. [4] and widely cited in textbooks
is not consistent. The correct integration in Eq. (22)
can be performed as follows. We restrict the region of
integration over A by the condition

AJ_<Q7

where
Q > max(|A.], rb).

In this region, integral (21) is saturated and hence the
result of integration must be independent of Q). We can
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then change the order of integrations over r; » and A |
in Eq. (22) and take the integral over A | :
J1(Qlp1—p2|) %

—27TQ//dI‘1 dI‘2 |p1—p2‘

x expliA;(21—22)] {explix(p1)—ix(p2)] -1} X

X [Vi V()] - [VarVi(r2)]. (23)
It is seen from this formula that the main contribution
to the integral is given by the region |p1 — pa2| ~ 1/Q.
If p12>1/Q and |p1 — p2| ~ 1/Q, then

lexplix(p1) —ix(p2)] = 1| < 1

and the integrand is suppressed. Therefore, inte-
gral (23) is determined by the region where both
p1 1/Q and ps 1/Q. Due to the factor
V11V (r1)V21V(ra) in the integrand, z; » ~ 1/Q also.
If r € 7r5¢p, then

~ ~

V(r) ~ —Za/r

and
x(p) =~ 2Za(ln p + const).
In addition, for r1» < |A,|™", we can omit the factor

expliA;(z1 — z2)] in (23). We then perform the substi-
tution ry » — r1,2/Q and obtain

J —
R=87T(ZCM)2/ dpl dpg( Pz 1(|p1 pQ‘)
pipslp1 — P2

x {(%)Ma - 1} . (24)

We emphasize that this formula does not contain Q.
Using the identity

X

(p1-p2)Ji(lp1 — p2))

|p1 — p2|
P12 9 9 )
— JE—— J p R 25
p%_p%< 5~ Py ) ollen = pal). (29
and the relation
27
aoa (Y= A=) -
0
=2nJo(p1)Jo(p2), (26)

10

which follows from the summation theorem for the
Bessel functions, we have

R = 327*(Za)?

ik

dpi d
& pi p2Jo(p2)J1(p1) — p1Jo(p1)Ji(p2)] %

x {(%)MQ - 1} (27

Making the change of variables py » = rexp(+t/4) and
integrating over r, we finally obtain

cos Zat) 1
exp(t) — 1

R = 3271 (Za) /dt

= -327*(Za)’Rey(1 +iZa) + C] =

= -327%(Za)? f(Za), (28)

where C is the Euler constant and

Y(x) =dInT(z)/dx.

Using this formula and taking the integral over A, from
—00 to —A,, in Eq. (18), we reproduce the well-
known result obtained in Ref. [3]. We note that the
value of R following from the numerical integration of
Eq. (20) over A, agrees with the universal result (28).

Thus, we come to a remarkable conclusion:
Coulomb corrections to the cross section integrated
over A are independent of screening, although the
main contribution to the integral comes from the
region

Al < maX(Amm, Ts_‘;q)

where, for A, < r;.L, the differential cross section is
essentially modified by screening. We emphasize that
this result is valid in the leading approximation with
respect to the parameters m/c < 1 and A\¢/rser < 1.
In the next section, we show that in the limit m/e — 0,
the screening contributes to do/,/dw only as a correc-
tion in the parameter A¢/rsep.

2.3. Beam-size effect on Coulomb corrections

It is interesting to consider the effect of a finite
transverse size b of the electron beam on Coulomb
corrections to bremsstrahlung in a Coulomb field of
a heavy nucleus. This consideration should be per-
formed in terms of the probability dW rather than the
cross section. Similarly to the effect of screening, the
finite beam size can lead to a substantial modification
of Coulomb corrections to the differential probability
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dWe, while Coulomb corrections to the probability in-
tegrated over A is a universal function. To illustrate
this statement, we consider bremsstrahlung from the
electron described in the initial state by the wave func-
tion of the form

(r) = / a0 h(p)i™ (x), (20)

where the function h(p) is peaked at p = pg. If the
width dp of the peak satisfies the condition

5]9 < v/ Aming S m,
then
vy [ dfp o) explilp -~ po) - plufy () =
= d(p)ip" (), (30)
where the function ¢(p) is normalized as
[ doloto =1

and has the width

b> 1/\/Amin5 Z /\C~

The quantity dWe is given by the right-hand side of
formula (18), where the functions A(A) and Ag(A)

are given by Eq. (11) and Eq. (16) with the additional
factor ¢(p) in the integrands. Substituting

V(r)=-Za/r,
we have
AA) = —2iZozAz/dp¢(p) X
x exp[—iA L - p]Ki(A. e
xp[—iAL - plK1(Azp)p/p S
Ap(A) = —2iZozAz/dp¢(p) X
x exp[—iA | - plKi(A.p)p/p.
If
b> AT~ AL

then we can simply replace ¢(p) — ¢(0) in Eq. (31),
such the differential distribution does not change com-
pared with the case of a plain wave. Therefore, we
consider the case b < A;nin, where the finiteness of
the beam size is very important. In this case we can
replace Ki(A.p) — (A.p)~! in Eq. (31).

Substituting the functions A(A ) and Ag(A.)
from Eq. (31) in dR defined by Eq. (19) and repeat-

ing all the steps of the derivation of

R:/dR

11

ﬂp(Z)ALdR/dAL
20_"'|,'~'\'|"'|"'|

-~

of /
_a0f
1o
—60;

—80F

0 2 4 6 8

Fig.2. The quantity A; dR/dA | in the units (7p3) ™!
as a function of (¢ poA, for Z 80 and

d(p) = ¢o(p) (solid curve), d(p) = ¢1(p) (dashed
curve). The functions ¢o,1 are defined in Eq. (33)

in the previous subsection, we obtain

R=-32(Za) f(Za)|o(0)®.  (32)
We see that Coulomb corrections to the integrated
probability depend on the shape of the wave packet
only through the factor |¢(0)|? corresponding to the
electron density at zero impact parameter. Therefore,
their dependence on Za coincides with that in the case
of a plain wave (24). However, the shape of ¢(p) can
essentially modify the A -dependence of dWe. As
an illustration, in Fig. 2, we show the dependence of
A1 dR/dA | on ( for Z = 80 and ¢(p) = ¢o(p) (solid
curve) and ¢(p) = ¢1(p) (dashed curve), where

exp[—p®/2pj)

do(p) = Trp% . -
b1(p) = (p/po)” exp[=p” /2p3)] N

\/ 2mpl ’
Tt is seen that the behavior of A | dR/dA | differs dras-
tically for the two cases considered. In accordance with
Eq. (32),

R = -327*(Za)*f(Za) | 7p}
for ¢(p) = ¢o(p) and
R=0

for ¢(p) = ¢1(p). We note that in the latter case, the
function A dR/dA | itself is different from zero.
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do” dQ
3. NEXT-TO-LEADING TERMS IN THE ao’ _ / K / dr1 drs exp(—ik - 1) x
BREMSSTRAHLUNG SPECTRUM dw 26p

As is known [5], the modification of the high-energy
asymptotics of Coulomb corrections to the spectrum
due to the screening effect is small. Below, we show
that the same is also true for the next term in m/e. In
this section, we explicitly calculate the screening cor-
rection in the leading term of the high-energy asymp-
totics and neglect screening in calculating the next-
to-leading term in m/e. In other words, we calculate
the first corrections in the small parameters m/e and
1/mrg., to the bremsstrahlung spectrum

- O‘wpg /dQ A
,\e,,\ Ay

do?

M7,
dw

(34)

with the amplitude M given by Eq. (2) and summation
performed over the polarizations of all particles. It is
convenient to calculate do” /dw using the Green’s func-
tion G(ra,ri|e) of the Dirac equation in an external
field. This Green’s function can be represented as

l/)n ry /wn 1'1

Glrz rife) Z e—ep +i0
Aesn
Yp(ra)dp(r:)
+Z/ [ €—¢ep+10 *

Tﬁ p(r2)Y_p(r)
e+ep —i0

, (35)

where 1, is the discrete-spectrum wave function, &,
is the corresponding binding energy, and P = (¢,, p).
The set of either in- or out-wave functions can be

used in Eq. (35). The regularization of denominators

in Eq. (35) corresponds to the Feynman rule. From
Eq. (35),
A0 (in) 7(in) _
Z p ¥p (r1)vp (r2)
Ae
— Z/dgp ¢]§Ut ) Out (1‘2) —
2 2
_ ;20 5G(r1,1ale,),  (36)

EpD

where )y, is the solid angle of p and dG = G — G. The
function G is obtained from (35) by the replacement
1-0 < —i-0. Because the bremsstrahlung spectrum
is independent of the direction of the vector p, we can
average the right-hand side of Eq. (34) over the angles
of this vector. Using Eq. (36), we then obtain

12

X Y Sp{6G(ra,rile) €6G(ry,rale") €}, (37)

Ay

where r = ry — r; and &' = ¢ — w is the energy of the
final electron. Here and below, we use the linear po-
larization basis (e* = e). We note that the integration
over df)y is trivial because the integrand is independent
of the angles of k, and we therefore omit the integral
[ dQ /47 below. It is convenient to represent do” /dw
in another form using the Green’s function D(rs, 1<)
of the squared Dirac equation,

G(ra,ri)e) = [1%(e = V(r2)) — v - p2 + m] x

x D(ra,r1|e), p2=—iVa. (38)

Performing transformations as in Refs. [12, 9], we
can rewrite Eq. (37) as

do”
o= 45p/ dry dry exp(—ik - 1) x

X Z Sp{[(2e - p2 — ék)dD(ry,11]¢)] X
A"I

x [(2e - p1 + ék)dD(ry,ra]e")]}. (39)

For the first two terms of the high-energy asymp-
totic expansion of the spectrum, the leading contribu-
tion to the integral in Eqs. (37) and (39) is given by
the region

1 2 S 1
Amin B

’I“Z‘I‘Q—I'l"’v

wm? m

This estimate is in accordance with the uncertainty re-
lation. Substituting 6D = D — D in Eq. (39), we obtain
four terms. Within our accuracy, the terms containing
D(e)D(e') and D(g)D(&') can be omitted and we have

// dry dry exp(—ik - r) x

X ZSp{ 2e - py — ék)D(ry,11]e)] X
A"I

do”
oo _ 2 R
dw 25p ¢

x [(2e - py + ék)D(ry,ro]e")]}. (40)
Here and below, we assume the subtraction from the
integrand of its value at Za = 0. For calculations in the
leading approximation in m/e, the function D(ra,r;|¢)

can be used in the form [12]

o (pi1+p2)

D(I‘Q,I‘1|E) = |:1+ 2%

} DO (ry, rye), (41)
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where D) (ry, 1 |¢) is the semiclassical Green’s func-
tion of the Klein — Gordon equation in the external field.
The function D is obtained from Eq. (41) by the re-
placement D(® — D(©)*  Representation (41) can be
directly used for the calculation of the screening cor-
rection to the spectrum. It is shown below that it can
be used for the calculation of the correction in m/e as
well.

Substituting Eq. (41) in Eq. (40
trace, we obtain

o2
o’ _ = % Re/ dry dry exp(—ik - r) x

) and taking the

dw

XZ{ e p2Dy” e p1 D] + (42)

w
+ e o1+ p2Df e (b1 + o) D] |

D = DO (ry. r1]e), DY = DO%(x;, ro)e")

In deriving Eq. (42) we integrated the terms containing
second derivatives of D(©) by parts. We are interested
in the Coulomb corrections that can be obtained from
Eq. (42) by the additional subtraction of the Born term
(x (Za)?) from the integrand.

3.1. Next-to-leading term in m/e for Coulomb
corrections to the spectrum

We start with Eq. (40) and introduce the variables

ooy, p= EXEL L TRy
We note that the variable p in this section has quite
different meaning than the variable p in the represen-
tation for A(A) in the previous section, see Eq. (11).
The analysis performed shows that the leading contri-
bution to the term under discussion originates from the
region p ~ 1/m and 6,1 ~ m/e < 1, where 6 is the
angle between the vectors ro and —ry, and ¢ is the an-
gle between the vectors r and k. Screening can then
be neglected and we can use the semiclassical Green’s
function D in a Coulomb field obtained in Ref. [9],

d
87r2r17'2/ qexp{ } %

B (1)
< (1rigesy) - "
v (q—p)} ’

m(Za)?, e Y- (a-p)
(YA =~-/r) a— ol

4kK2
a=17%,

D(ra,ryle) =

A =signe, k=+e2—-m?2,

where q is a two-dimensional vector in the plane per-
pendicular to r. We note that because the angle 6 is
small, we can assume that the variable z belongs to the
interval (0,1) and ry = rz, ro = r(1 —z). The function
D entering Eq. (40) is obtained from Eq. (44) by the
replacement kK — —k and A — —\. The contribution of
the last term in braces in Eq. (44) vanishes after taking
the trace in Eq. (40). Therefore, this term can be omit-
ted in the problem under consideration. The remaining
terms in Eq. (44) can be represented in form (41) with

ZHT’
/dqexp{ } X
871' riro 1’1“2

x (WW)MM <1+”<Z7“>p> . ()

q—p| 2k|q —

D(O) (1‘2, r ‘E)

Then, using the relation

ZK262I€T

. DO (p,. s
(e pi12) (r2,r1le) = 87211

2 2iZal
/dqexp{ } ( VARKE: ) X
2riry 'q—p|
A . .
x <1+iii—fi—) <¢E—£*-e q>7 (46)
2/~c|q - P| r 1,2

and passing from the variables r; 5 to the variables r
p, and z, we obtain from (42) that

1
do”. !
oc _ _ awe Re/@/ dz "
dw 327l o ) 22(1—2)?
0
X ///dqldqupx

2 2 12
wr (5 m eqi —€'qs

X — — | X

exp{ 2 <¢ +65'>+227‘2(1—2):|

2iZ .
x { <%> — 1+ 2(Za)? In? %Jr@ x

(@) () )

xZ{éLss' <—e-r+(1e‘_q;> (e.r+e-2q2)+

Ay

_}_m(E'ql)(e‘(D)} ’ (47)

where Q12 = |q1,2 — p|. The integral over p can be
taken using the relations (see Appendix B in [9])
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0= wzare
2i7 o

X /dp [(%) —1+42(Za)’In’ %1 =

= Re[y(1 +iZa) + O], (48)

QQ 217
"I ) G (E) _1]=

T(1—iZa)T(1/2+iZa)
T(1+iZa)[(1/2 - iZa)’

7 d
9(Za) p

=Za

where

W(t) = dInT(t)/dt,

C = 0.577... is the Euler constant, and ¢ = |q1 — q2].
We next perform summation over the photon polariza-
tion, pass to the variables

a=q1 +9q2, q9=dq —qz,

and take all integrals in the following order: df2,, dq,
dq, dr, dz. The final result for Coulomb corrections to
the bremsstrahlung spectrum is given by

v = o (12 + 50-1) 20) -

71'3 — m
IR (24 S0 ) Reg(za)| . (49
y=w/e, 0o=a(Za)*/m*.

In this formula, the term proportional to f(Za) corre-
sponds to the leading approximation [3] and the term
proportional to Re g(Za) is an O(m/e)-correction. In
our recent paper [9], this result was obtained by means
of the substitution rules from the spectrum of pair pro-
duction by photon in a Coulomb field. Formula (49)
describes bremsstrahlung from electrons. For the spec-
trum of photons emitted by positrons, it is necessary to
change the sign of Za in (49). The O(m/e)-correction
becomes especially important in the hard part of the
spectrum, as can be seen in Fig. 3, where aglydag/dy
with the correction (solid line) and without it (dashed
line) are shown for Z = 82 and ¢ = 50 MeV. We note
that in the whole range of y, the relative magnitude
of the correction is appreciably larger than m /e due to
the presence of a large numerical coefficient.

3.2. Screening corrections

In this subsection, we calculate the screening cor-
rection to the high-energy asymptotics of do/, /dw, con-
sidering A¢/7s., as a small parameter.

oy tydal/dy
0 T T T T

-0.5

-1.0

-1.5

—2.0 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0

Fig.3. The dependence of o 'ydol,/dy on y, see (49),

for Z = 82, ¢ = 50 MeV. Dashed curve: leading ap-

proximation; solid curve: first correction is taken into
account

We start from Eq. (42) and use the semiclassical
Green’s function D) (ry,r|e) for an arbitrary local-
ized potential V(r). This Green’s function was ob-
tained in [10] with the first correction in m /e taken into
account. The leading term has the form (see also [12])

Z‘ReZNT
D(O) (1'2.,1'1‘5) = W
1

KrqS
X /dqexp i —Mr/di(r1+xr—q) . (50)
2T1T2

Similarly to Eq. (47), we obtain
do”. ! !
oc _ _ awe Re/@/ dz o
dw 327l o ) 22(1—2)?
0

x///dqldqupx

iwr m? e? —&'q3
o T (2 T L EG mE
xexp[z + 5 <¢ +56’>+121“Z(1—2)
€-q € Q2
4 : N . ( ‘ )
xE{sa(er+1_Z>er+z +
>\'Y
w2
_ (e . 51
+ 22(1_2)2(9 ai)(e Cl2)}, (51)

where
1
d = r/dx[V(rl—Hcr—qg)—V(rl—}—xr—ql)]. (52)
0

As we see in what follows, it is meaningful to re-
tain the screening correction only in the case where
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Tser K Ar_ni»n., which is considered below. Then the
main contribution to integral (51) comes from the re-
gion
1/mSﬂSTscr<<r
and
q2~1/m.

Under these conditions, the narrow region

dr=p/r<1
around the point
ry'r
To = — =
0 2

is important in the integration over z in Eq. (52).
Therefore, we can perform this integration from —oo
to 0o. The phase ® then becomes

® =2Zaln(Qy/Q;) + ®L") =

o0

=2Zaln(Q2/Q1) +r / dz[oV (r; + or — q2) —

— 00

—o0V(ry +ar —a1)], (53)
where dV (r) is the difference between the atomic po-
tential and the Coulomb potential of a nucleus. The
notation in Eq. (51) and in Eq. (53) is the same as in
Eq. (47). It is seen that

ZadV(p)

<1 forxp~m

and

q1,2

~N —  ~ —

p - mp

1
(bscr <1 for P~ Tser > —.
m

Therefore,
@(scr) )

expression (51) can be expanded in
In our calculation of the screening correction
do1*") Jdw, we retain the linear term of the expansion
in ®©¢"). The function §V(R) can be expressed via
the atomic electron form factor F(Q) as

A Za

SV(R) :/ S

Substituting this formula in Eq. (53) and taking the
integral over x from —oc to oo, we obtain
dQ.

(b(scr) — / (271-)2
—exp (iQL - (p—a1))] F(QL)

A p(iQ R)F(Q) (54)

(27)

[exp (iQL - (p— a2)) —
dnZo

e (55
-

15

where Q is a two-dimensional vector lying in the plane
perpendicular to r. We next use the identity (see Egs.
(22) and (23) in [13])

/dp <u> 22'Za expiQL - (p—aip2)] =

lp — a1
2 2iZ
q fo .
= df | = - f 2
i [ (£) ewliana. 6o
where
q=q —qz, f=fFQ..

Expanding the exponential in Eq. (51) with respect to
(e and using relation (56), we take the integrals
over (i 2, r, and z and obtain

dO’g«(SCT)

dy

O
&

_ da(Za)

Q.

Im
QY

F(Qy) x

— 2iZaln %] X
5(52)}
B

(57)
(3 =)+ (y — (e +2p — 3)] x

xln[%jﬂ -

—3y2—(y—1)(u—3)}7

16m>

fio

w
y=—-, 51,2:1+
3

Using the trick introduced in [13], we can rewrite
this formula in another form. We multiply the inte-
grand in (57) by

1
1E/dx6<x—
Z1
1
/dac
X
T

Wf5((f —Qu/2)’ —Qi(1/2* - 1)), (58)

2f- Q1

m) =(f+Q7) x

change the order of integrations over f and z, and make
the shift

f—-f+Qy/z.

After that, the integration over f can be easily per-
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f()1A12
025: T

0.20F ]
0.15F - .
0.10F -~ .

0.05F /- ]

Fig.4. The dependence of A1/ f(Za) (solid curve) and
As/f(Za) (dashed curve) on Z

formed. Then we make the substitution £ = th7 and
obtain

do s , [dQ. F(Q))
=1 T=L
Y dy 6a9m / o ot X
0
o0
/ dr [sin(2Zar)
x [ — — 7| %
sht 27«
0 (59)
27
></2—99@5/12 TS(m)]
0
8m2e¥7 sh? 1
2 =1+

Q% (ch1 +cosyp)

According to Eq. (57), the correction ydag(scr)/dy has
the form
do_g(scr)

dy =0y [Al(l — y) + Agyz] .

(60)
Shown in Fig. 4 is the Z dependence of the ratio
Ay 2/ f(Za) calculated numerically with the use of form
factors from [14]. For the less realistic Yukawa poten-
tial, we can perform analytic calculations of the func-
tions A;. It turns out that their dependence on the
parameter = \./7s.. has the form

Ai=(Za)*B* (a;In® B+ b;InB+c;),  (61)
where b; and ¢; are some functions of Za, while a; does
not depend on Za. Recalling that g is proportional to
Z'/3 in the Thomas— Fermi model, we see that A; de-
pend on Z mainly via the factor

(Za)?*B?  (Za)? 22/,

16

SCT

Therefore, it is quite natural that ydac /dy calcu-
lated with the use of the exact form factors is well fitted
by the expression

y—C— ~86-10730¢(Za)?

x 723121 —y) + 4% (62)
In fact, the accuracy of this fit for all Z is better than
a few percent.

It follows from Eq. (61) that for rg, 2> Amin,
factor A2 in the screening correction is extremely small.,
% < (m/e)?. The terms of such an order were system-
atically neglected in our consideration. Hence, within
our accuracy, the account of the screening correction is

meaningful only for rg., < Amlm

4. CONCLUSION

We have performed a detailed analysis of Coulomb
corrections both to the differential and the integrated
cross sections of bremsstrahlung in an atomic field. We
have calculated the next-to-leading term in the high-
energy asymptotics of the bremsstrahlung spectrum.
Similar to the leading term of the high-energy asymp-
totics of Coulomb corrections to the spectrum, this
term is independent of screening in the leading order in
the parameter \./rs... We have also calculated the first
correction to the spectrum in the parameter A./rsqp.

We have shown that in contrast with Coulomb cor-
rections to the spectrum, Coulomb corrections to the
differential cross section strongly depend on screening
even in the leading approximation. This dependence is
very important in the region that gives the main con-
tribution to the integral over A . We have performed
the explicit integration over A of do/, for arbitrary
screening and have verified the independence of the fi-
nal result from screening.

We also examined the effect of the finite beam
size on Coulomb corrections to bremsstrahlung in
a Coulomb field of a heavy nucleus. Similar to the
effect of screening, the finiteness of the beam size
leads to a strong modification of Coulomb corrections
to the differential probability, while the probability
integrated over A depends only on the density of the
electron beam at zero impact parameter.

This work was supported in part by the RFBR
(grant Nv(03-02-16510) and Russian Science Support
Foundation.
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