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COULOMB CORRECTIONS TO BREMSSTRAHLUNGIN ELECTRIC FIELD OF HEAVY ATOM AT HIGH ENERGIESR. N. Lee *, A. I. Milstein **, V. M. Strakhovenko ***Budker Institute of Nu
lear Physi
s630090, Novosibirsk, RussiaO. Ya. S
hwarzNovosibirsk State University630090, Novosibirsk, RussiaSubmitted 29 April 2004We 
onsider the di�erential and partially integrated 
ross se
tions for bremsstrahlung from high-energy ele
tronsin the atomi
 �eld, with this �eld taken into a

ount exa
tly. We use the semi
lassi
al ele
tron Green's fun
tionand wave fun
tions in an external ele
tri
 �eld. It is shown that the Coulomb 
orre
tions to the di�erential 
rossse
tion are very sus
eptible to s
reening. Nevertheless, the Coulomb 
orre
tions to the 
ross se
tion summedover the �nal-ele
tron states are independent of s
reening in the leading approximation in the small parameter1=mrs
r (rs
r is the s
reening radius and m is the ele
tron mass, ~ = 
 = 1). We also 
onsider bremsstrahlungfrom a �nite-size ele
tron beam on a heavy nu
leus. The Coulomb 
orre
tions to the di�erential probabilityare also very sus
eptible to the beam shape, while the 
orre
tions to the probability integrated over momentumtransfer are independent of it, apart from the trivial fa
tor, whi
h is the ele
tron-beam density at zero impa
tparameter. For the Coulomb 
orre
tions to the bremsstrahlung spe
trum, the next-to-leading terms with respe
tto the parameters m=" (" is the ele
tron energy) and 1=mrs
r are obtained.PACS: 12.20.Ds, 95.30.Cq1. INTRODUCTIONBremsstrahlung in the ele
tri
 �eld of atoms is afundamental QED pro
ess. Its investigation, started inthe 1930s, is important for various appli
ations. In theBorn approximation, both the di�erential 
ross se
tionand the bremsstrahlung spe
trum have been obtainedfor arbitrary ele
tron energies and atomi
 form fa
-tors [1℄ (see also Ref. [2℄). High-energy asymptoti
s ofthe bremsstrahlung 
ross se
tion in a Coulomb �eld hasbeen studied in detail in Ref. [3℄ exa
tly in the parame-ter Z� (where Z is the atomi
 number and � = 1=137 isthe �ne-stru
ture 
onstant). In these papers, the di�er-ential 
ross se
tions and the bremsstrahlung spe
trumhave been obtained. For a s
reened Coulomb �eld, thehigh-energy asymptoti
s of the di�erential 
ross se
tionwas derived in Ref. [4℄. The e�e
t of s
reening on the*E-mail: R.N.Lee�inp.nsk.su**E-mail: A.I.Milstein�inp.nsk.su***E-mail: V.M.Strakhovenko�inp.nsk.su

spe
trum was studied in Refs. [5, 6℄. For the spe
trum,it turned out that s
reening is essential only in the Bornapproximation. In other words, the Coulomb 
orre
-tions to the spe
trum are not signi�
antly modi�ed bys
reening. By de�nition, Coulomb 
orre
tions are thedi�eren
e between the result obtained exa
tly in theexternal �eld and that obtained in the Born approxi-mation. In the re
ent paper [7℄, it was 
laimed thatCoulomb 
orre
tions to the di�erential 
ross se
tion ofthe bremsstrahlung are also independent of s
reening.In the present paper, we investigate the bremsstrah-lung 
ross se
tion in the ele
tri
 �eld of a heavy atom.We assume that ", "0 � m, where " and "0 are the ini-tial and �nal ele
tron energies, respe
tively. In Se
. 2,we 
onsider the di�erential 
ross se
tion in detail inthe leading approximation, i.e., negle
ting 
orre
tionsin the parameters m=" and 1=mrs
r. In 
ontrast tothe statement in Ref. [7℄, s
reening may strongly mo-dify Coulomb 
orre
tions to the di�erential 
ross se
-tion. We demonstrate expli
itly that this fa
t does5
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ontradi
t the �nal-state integration theorem [5℄,whi
h implies that Coulomb 
orre
tions to the spe
-trum are independent of s
reening. We also study thein�uen
e of the ele
tron beam �nite size on Coulomb
orre
tions. Again, Coulomb 
orre
tions to the di�er-ential 
ross se
tion are very sensitive to the shape ofthe ele
tron beam, while the spe
trum is independentof it, ex
ept for a trivial fa
tor. In Se
. 3, we 
onsider
orre
tions to Coulomb 
orre
tions in the spe
trum. Itturns out that in the �rst nonvanishing order, they en-ter the spe
trum as a sum of two terms. The �rst termis proportional to m=" and is independent of s
reening.The se
ond term is small in the parameter 1=mrs
r andis independent of the energy.Our approa
h is based on the use of the semi
las-si
al Green's fun
tion and the semi
lassi
al wave fun
-tion of the ele
tron in an external �eld. Previously, thismethod was su

essfully applied to the investigation ofthe photoprodu
tion pro
ess at high energy [8, 9℄.2. DIFFERENTIAL CROSS SECTIONThe 
ross se
tion of the ele
tron bremsstrahlung inthe external �eld has the formd�
 = �(2�)4! dp0 dk Æ("� "0 � !)jM j2 ; (1)where k is the photon momentum, p and p0 are therespe
tive initial and �nal ele
tron momenta,! = jkj; " = "p =pp2 +m2; "0 = "p0 :The matrix element M is given byM = Z dr exp(�ik � r) � (out)P 0 (r)ê� (in)P (r); (2)where  (in)P and  (out)P are the respe
tive wave fun
tionsof the in- and out-state of the ele
tron in an external�eld, 
ontaining the diverging and 
onverging spheri
alwaves and the plain wave with 4-momentum P in theirasymptoti
s, ê� = e��
�, e� is the photon polarization4-ve
tor, and 
� are the Dira
 matri
es.In Ref. [10℄, the semi
lassi
al wave fun
tion of theele
tron in an arbitrary lo
alized potential was foundwith the �rst 
orre
tion in m=" taken into a

ount.In 
al
ulating bremsstrahlung and the e+e� photopro-du
tion 
ross se
tion in the leading approximation, thefollowing form of the wave fun
tion 
an be used [10℄:

 (in; out)P (r) = � Z dqi� �� exp24ip � r� iq2 � i� 1Z0 dx V (rx)35��8<:1� 12p 1Z0 dx� � rV (rx)9=;uP ;rx = r� xn+ qp2jr � nj=p ;� = signP 0 ; n = p=p :
(3)

In this formula, q is a two-dimensional ve
tor ly-ing in the plane perpendi
ular to p, the upper sign
orresponds to  (in)P , and uP is the 
onventionalDira
 spinor. We re
all that the wave fun
tion (in)(�"p;�p) 
orresponds to the positron in the �nal statewith the 4-momentum ("p;p). For a Coulomb �eld,wave fun
tion (3) 
oin
ides with the standard Furry �Sommerfeld �Maue wave fun
tion. When the anglesbetween p and r in  (in)P (r), and between p and �r in (out)P (r) are not small, it is possible to repla
e rx inEq. (3) by Rx = r� xn. Then the integral over q 
anbe taken, and we obtain the 
onventional eikonal wavefun
tion (in; out)P; eik (r) = exp24ip � r� i� 1Z0 dx V (Rx)35��8<:1� 12p 1Z0 dx� � rV (Rx)9=;uP : (4)We dire
t the z axis along the ve
tor � = k=!,then r = z� + �. In this frame, the polar angles ofp and p0 are small. We split the integration region inEq. (2) into two: z > 0 and z < 0. The 
orresponding
ontributions to M are denoted as M+ and M�, withM =M+ +M�. For z > 0, the fun
tion  (out)p0 (r) hasthe eikonal form and we obtainM+ = Zz>0 dr Z dqi� exp(iq2 � i� � r ��i 1Z0 dx hV �r�nx+qp2z=p�+ V (r+n0x)i9=;���up0 24ê�� 12p 1Z0 dxê�� � rV �r�nx+qp2z=p� �� 12p0 1Z0 dx� � rV (r+ n0x)ê�35up ; (5)6
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tri
 �eld : : :where � = p0 + k� p is the momentum transfer.In Eq. (5), we have repla
edp2jr � nj=p in the de�-nition of rx in Eq. (3) by p2z=p. It is easy to see thatwithin our a

ura
y, we 
an also repla
e the quantityV (r+n0x) in Eq. (5) by V (r+n0x+qp2z=p) and 
on-sider the ve
tor q to be perpendi
ular to z axis. Afterthat, we shift � ! � � qp2z=p and take the integralover q. We obtainM+ = Zz>0 dr exp(� i z2p�2? � i� � r�� i 1Z0 dx[V (r� nx) + V (r+ n0x)℄9=;�� �up0 24ê� � 12p 1Z0 dx ê�� � rV (r� nx)�� 12p0 1Z0 dx� � rV (r+ n0x)ê�35 up: (6)In the same way, we obtainM� = Zz<0 dr exp(i z2p0�2? � i� � r�� i 1Z0 dx[V (r� nx) + V (r+ n0x)℄9=;�� �up0 24ê� � 12p 1Z0 dxê�� � rV (r� nx) �� 12p0 1Z0 dx� � rV (r+ n0x)ê�35 up: (7)There are two overlapping regions of the momentumtransfer �, I: �� m!" ;II: �� �min = m2!2""0 : (8)In the �rst region, we 
an negle
t the terms pro-portional to �2? in the exponents in Eqs. (6) and (7).Then the sum M =M+ +M�

be
omesM = Z dr exp8<:� i� � r��i 1Z0 dx[V (r� nx) + V (r+ n0x)℄9=;�� �up0 24ê� � 12p 1Z0 dx ê�� � rV (r� nx)�� 12p0 1Z0 dx� � rV (r+ n0x)ê�35up: (9)We 
an make the repla
ement n;n0 ! � in the pre-fa
tor in Eq. (9). In the exponent, we must take thelinear term of the expansion of the integral in n � �and n0 � � into a

ount. As a result, we haveM = Z dr exp [�i� � r� i�(�)℄�� 1Z0 dy �up0�ê�[iy(n��)��=2p℄ � rV (r��y)++ [�i y(n0 � �)��=2p0℄ � rV (r+ �y)ê��up ;�(�) = 1Z�1 dzV (r) : (10)
In the arguments of V (r � �y), we make the sub-stitutions z ! z � y. After that, we take the integralover y and obtainM = A(�) � ��up0 � (n� n0)ê��2z �� ê��2p�z+ �ê�2p0�z �up� ;A(�) = �i Z dr exp[�i� � r� i�(�)℄r�V (r) : (11)We now pass to the 
al
ulation of M in the se
-ond region, where � � �min. In Eq. (6) for M+, we
an repla
e n0 ! n and z�2?=2p ! ~z�2?=2p, where~z = r �n. Be
ause the polar angle of n is small, we 
anintegrate in Eq. (6) over the half-spa
e ~z > 0. Afterthe integration over ~z, we obtainM+ = �i Z d� exp [�i� � �� i�(�)℄�� �up0 ê� [2p+� ��? ℄up2p� � n+�2? : (12)7
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al
ulation of M� is performed quite similarly.As a result, we haveM = �i Z d� exp [�i� � �� i�(�)℄���up0 � ê� (2p+� ��? )2p� � n+�2? � (2p0+� ��? ) ê�2p0� � n0��2? �up: (13)Now we 
an write the representation for M that isvalid in both regions,M = ""0! A(�) ���up0 ��2ê�p? + p0?ÆÆ0 ++ ê��"Æ0 � �ê�"0Æ �up� ;Æ = m2 + p2? ; Æ0 = m2 + p02? : (14)Within our a

ura
y, this expression 
oin
ides withEq. (11) in region I and with Eq. (13) in region II. Us-ing the expli
it form of the Dira
 spinors, we �nallyobtainM = 12ÆÆ0A(�) ��'0y�(p? + p0?) �� �"+"0! e� � (p?+p0?)�i[� � e�℄ � (p?+p0?) ++ 2im[� � e�℄z�� (Æ + Æ0)�� �"+ "0! e� � i[� � e�℄?��'� : (15)This expression is in agreement with that obtainedin [4℄ by another method. We emphasize that the po-tential enters amplitude (15) only via A(�).2.1. Coulomb 
orre
tions to the di�erential
ross se
tion in a s
reened Coulomb potentialWe dis
uss Coulomb 
orre
tions to the di�erential
ross se
tion of bremsstrahlung. We re
all that these
orre
tions are the di�eren
e between the exa
t (in theexternal �eld strength) 
ross se
tion and that obtainedin the Born approximation, whi
h is proportional to[jA(�)j2 � jAB(�)j2℄ with A(�) from Eq. (11) andAB(�) = �i Z dr exp[�i� � r℄r�V (r) ==�? Z dr exp[�i� � r℄V (r) : (16)The s
reening modi�es the Coulomb potential of thenu
leus at distan
esrs
r � �C = 1=m:

In the region �� max(�min; r�1s
r);the quantities A(�) and AB(�) are of the formA(�) = AB(�)�(1� iZ�)�(1 + iZ�) � 4�2?��iZ� == ��? �Z��(1� iZ�)�(1 + iZ�) � 4�2?�1�iZ� : (17)Therefore,jA(�)j2 = jAB(�)j2 for �� max(�min; r�1s
r)and Coulomb 
orre
tions to the di�erential 
ross se
-tion vanish in this region in the leading approximation.Hen
e, Coulomb 
orre
tions are important only in theregion � . max(�min; r�1s
r)� m:In this region, we 
an use Eq. (11) for the matrixelement. For the Coulomb 
orre
tions, substitutingEq. (11) in Eq. (1), using the relationd
p0d
k = d� d�?d�z!""0 ;and integrating over the azimuthal angle � and sum-mating over polarizations, we obtaind�
C = �d! d�?d�z16�3"3"0�2z �"2+"02+2m2!�z +m4!2""0�2z ��� �jA(�)j2 � jAB(�)j2� : (18)We note that in this formula, we 
an assume that the zaxis is dire
ted along the ve
tor p. Then �z is negativeand j�zj > �min = m2!2""0 :The potential V (r) and the transverse momentumtransfer �? enter Eq. (18) only as the fa
tor dR,dR = d�? �jA(�)j2 � jAB(�)j2� : (19)It follows from the de�nition of A(�) that forrs
r � j�zj�1, s
reening 
an be negle
ted. However,it is obvious from Eq. (19) that s
reening drasti
allymodi�es the �?-dependen
e of the di�erential 
rossse
tion for rs
r . j�z j�1. We illustrate this statementwith the example of the Yukawa potentialV (r) = �Z� exp[��r℄=r:8
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 �eld : : :
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−60Fig. 1. The quantity �? dR=d�? as a fun
tion of �for Z = 80 and 
 = 1 (solid 
urve), 
 = 0:5 (dashed
urve), and 
 = 0:01 (dotted 
urve). The variable � isde�ned in Eq. (20)After the straightforward 
al
ulation, we have�? dRd�? = 32�3(Z�)2 �� 264�2 ������ 1Z0 dx xJ1(x�)K1(x) �� exp[2iZ�K0(
x)℄������2� �4(1 + �2)2375 ;� = �?p�2z + �2 ; 
 = �p�2z + �2 :
(20)

We emphasize that �? enters the right-hand side ofEq. (20) only via the variable �, and hen
e p�2z + �2is the 
hara
teristi
 s
ale of the distribution (20). For� � j�zj, this s
ale is entirely determined by thes
reening radius rs
r = ��1. In this 
ase, the �?-distribution is mu
h wider than that in the absen
e ofs
reening. We therefore 
on
lude that in 
ontrast tothe statement in Ref. [7℄, Coulomb 
orre
tions to thedi�erential 
ross se
tion strongly depend on s
reening.We note that s
reening also a�e
ts the shape of the�?-distribution (20) via the parameter 
, whi
h variesfrom 0 to 1. In Fig. 1, we show the dependen
e of�? dR=d�? on the s
aling variable � for Z = 80 anddi�erent values of the parameter 
.We note that in 
ontrast to bremsstrahlung,Coulomb 
orre
tions to the di�erential 
ross se
tionof e+e� photoprodu
tion in the atomi
 �eld areimportant only in the region �? � m, where s
reeningmay be negle
ted [4℄.

2.2. Integrated 
ross se
tionIt was shown in Ref. [5℄ that Coulomb 
orre
tionsto the 
ross se
tion of bremsstrahlung integrated over�? are independent of s
reening in the leading approx-imation. The statement was based on the possibility toobtain this 
ross se
tion from that for the e+e� photo-produ
tion. In this subse
tion, we perform the expli
itintegration of d�
C , Eq. (18), over �?. We show thatthe strong in�uen
e of s
reening on the shape of d�
Cdoes not 
ontradi
t the statement in Ref. [5℄. Our 
on-sideration is quite similar to that used in Ref. [11℄ inthe 
al
ulation of Coulomb 
orre
tions to the e+e� pairprodu
tion in ultrarelativisti
 heavy-ion 
ollisions.We 
onsider the quantityR = Z dR = Z d�? �jA(�)j2 � jAB(�)j2� : (21)This integral 
onverges due to the 
ompensation in theintegrand, and the main 
ontribution 
omes from theregion �? . max(j�z j; r�1s
r);see Eq. (17). Substituting the integral representationfor A(�), Eq. (11), and for AB(�), Eq. (16), inEq. (21), we haveR = Z d�? ZZ dr1 dr2 �� exp[i� � (r1 � r2)℄ fexp[i�(�1)� i�(�2)℄� 1g �� [r1?V (r1)℄ � [r2?V (r2)℄ : (22)It is ne
essary to treat this repeated integral with
are. If one naively 
hanges the order of integrationover �? and r1;2, the integration over �? in in�nitelimits leads to Æ(�1 � �2). Then the quantity R van-ishes after the integration over �1, whi
h is not 
orre
t.Su
h an erroneous 
hange of the order of integrationswas made in Ref. [4℄ in expli
itly verifying that the in-tegrated 
ross se
tion is independent of s
reening. Al-though this independen
e itself takes pla
e, the proof ofthis fa
t given in Ref. [4℄ and widely 
ited in textbooksis not 
onsistent. The 
orre
t integration in Eq. (22)
an be performed as follows. We restri
t the region ofintegration over �? by the 
ondition�? < Q;where Q� max(j�zj; r�1s
r):In this region, integral (21) is saturated and hen
e theresult of integration must be independent of Q. We 
an9
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hange the order of integrations over r1;2 and�?in Eq. (22) and take the integral over �?:R = 2�Q Z Z dr1 dr2 J1(Qj�1��2j)j�1��2j �� exp[i�z(z1�z2)℄ fexp[i�(�1)�i�(�2)℄�1g�� [r1?V (r1)℄ � [r2?V (r2)℄ : (23)It is seen from this formula that the main 
ontributionto the integral is given by the region j�1 � �2j � 1=Q.If �1;2 � 1=Q and j�1 � �2j � 1=Q, thenj exp[i�(�1)� i�(�2)℄� 1j � 1and the integrand is suppressed. Therefore, inte-gral (23) is determined by the region where both�1 � 1=Q and �2 � 1=Q. Due to the fa
torr1?V (r1)r2?V (r2) in the integrand, z1;2 � 1=Q also.If r � rs
r, then V (r) � �Z�=rand �(�) � 2Z�(ln �+ 
onst):In addition, for r1;2 � j�z j�1, we 
an omit the fa
torexp[i�z(z1 � z2)℄ in (23). We then perform the substi-tution r1;2 ! r1;2=Q and obtainR = 8�(Z�)2 ZZ d�1 d�2 (�1 � �2)J1(j�1 � �2j)�21�22j�1 � �2j ��(��2�1�2iZ� � 1) : (24)We emphasize that this formula does not 
ontain Q.Using the identity(�1 � �2)J1(j�1 � �2j)j�1 � �2j == �1�2�21 � �22 ��1 ���2 � �2 ���1� J0(j�1 � �2j); (25)and the relation2�Z0 d� J0�q�21 + �22 � 2�1�2 
os�� == 2�J0(�1)J0(�2) ; (26)

whi
h follows from the summation theorem for theBessel fun
tions, we haveR = 32�3(Z�)2 �� 1Z0 1Z0 d�1 d�2�21 � �22 [�2J0(�2)J1(�1)� �1J0(�1)J1(�2)℄��(��2�1�2iZ� � 1) : (27)Making the 
hange of variables �1;2 = r exp(�t=4) andintegrating over r, we �nally obtainR = 32�3(Z�)2 1Z0 dt
os(Z�t)� 1exp(t)� 1 == �32�3(Z�)2[Re (1 + iZ�) + C℄ == �32�3(Z�)2f(Z�) ; (28)where C is the Euler 
onstant and (x) = d ln �(x)=dx:Using this formula and taking the integral over�z from�1 to ��min in Eq. (18), we reprodu
e the well-known result obtained in Ref. [3℄. We note that thevalue of R following from the numeri
al integration ofEq. (20) over �? agrees with the universal result (28).Thus, we 
ome to a remarkable 
on
lusion:Coulomb 
orre
tions to the 
ross se
tion integratedover �? are independent of s
reening, although themain 
ontribution to the integral 
omes from theregion �? . max(�min; r�1s
r);where, for �min � r�1s
r, the di�erential 
ross se
tion isessentially modi�ed by s
reening. We emphasize thatthis result is valid in the leading approximation withrespe
t to the parameters m=" � 1 and �C=rs
r � 1.In the next se
tion, we show that in the limit m="! 0,the s
reening 
ontributes to d�
C=d! only as a 
orre
-tion in the parameter �C=rs
r.2.3. Beam-size e�e
t on Coulomb 
orre
tionsIt is interesting to 
onsider the e�e
t of a �nitetransverse size b of the ele
tron beam on Coulomb
orre
tions to bremsstrahlung in a Coulomb �eld ofa heavy nu
leus. This 
onsideration should be per-formed in terms of the probability dW rather than the
ross se
tion. Similarly to the e�e
t of s
reening, the�nite beam size 
an lead to a substantial modi�
ationof Coulomb 
orre
tions to the di�erential probability10
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orre
tions to bremsstrahlung in ele
tri
 �eld : : :dWC , while Coulomb 
orre
tions to the probability in-tegrated over � is a universal fun
tion. To illustratethis statement, we 
onsider bremsstrahlung from theele
tron des
ribed in the initial state by the wave fun
-tion of the form (r) = Z d
p h(p) (in)P (r); (29)where the fun
tion h(p) is peaked at p = p0. If thewidth Æp of the peak satis�es the 
onditionÆp�p�min" . m;then (r) � Z d
p h(p) exp[i(p� p0) � �℄ (in)P0 (r) == �(�) (in)P0 (r) ; (30)where the fun
tion �(�) is normalized asZ d�j�(�)j2 = 1and has the widthb� 1=p�min" & �C :The quantity dWC is given by the right-hand side offormula (18), where the fun
tions A(�) and AB(�)are given by Eq. (11) and Eq. (16) with the additionalfa
tor �(�) in the integrands. SubstitutingV (r) = �Z�=r;we haveA(�) = �2iZ��z Z d��(�) �� exp[�i�? � �℄K1(�z�)�=�1+2iZ� ;AB(�) = �2iZ��z Z d��(�) �� exp[�i�? � �℄K1(�z�)�=�: (31)If b� j�z j�1 � ��1min;then we 
an simply repla
e �(�) ! �(0) in Eq. (31),su
h the di�erential distribution does not 
hange 
om-pared with the 
ase of a plain wave. Therefore, we
onsider the 
ase b � ��1min, where the �niteness ofthe beam size is very important. In this 
ase we 
anrepla
e K1(�z�)! (�z�)�1 in Eq. (31).Substituting the fun
tions A(�?) and AB(�?)from Eq. (31) in dR de�ned by Eq. (19) and repeat-ing all the steps of the derivation ofR = Z dR
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Fig. 2. The quantity�? dR=d�? in the units (��20)�1as a fun
tion of � = �0�? for Z = 80 and�(�) = �0(�) (solid 
urve), �(�) = �1(�) (dashed
urve). The fun
tions �0;1 are de�ned in Eq. (33)in the previous subse
tion, we obtainR = �32�3(Z�)2f(Z�)j�(0)j2 : (32)We see that Coulomb 
orre
tions to the integratedprobability depend on the shape of the wave pa
ketonly through the fa
tor j�(0)j2 
orresponding to theele
tron density at zero impa
t parameter. Therefore,their dependen
e on Z� 
oin
ides with that in the 
aseof a plain wave (24). However, the shape of �(�) 
anessentially modify the �?-dependen
e of dWC . Asan illustration, in Fig. 2, we show the dependen
e of�?dR=d�? on � for Z = 80 and �(�) = �0(�) (solid
urve) and �(�) = �1(�) (dashed 
urve), where�0(�) = exp[��2=2�20℄p��20 ;�1(�) = (�=�0)2 exp[��2=2�20℄p2��20 ; � = �0�? : (33)It is seen that the behavior of �?dR=d�? di�ers dras-ti
ally for the two 
ases 
onsidered. In a

ordan
e withEq. (32), R = �32�3(Z�)2f(Z�)=��20for �(�) = �0(�) and R = 0for �(�) = �1(�). We note that in the latter 
ase, thefun
tion �?dR=d�? itself is di�erent from zero.11
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hwarz ÆÝÒÔ, òîì 127, âûï. 1, 20053. NEXT-TO-LEADING TERMS IN THEBREMSSTRAHLUNG SPECTRUMAs is known [5℄, the modi�
ation of the high-energyasymptoti
s of Coulomb 
orre
tions to the spe
trumdue to the s
reening e�e
t is small. Below, we showthat the same is also true for the next term in m=". Inthis se
tion, we expli
itly 
al
ulate the s
reening 
or-re
tion in the leading term of the high-energy asymp-toti
s and negle
t s
reening in 
al
ulating the next-to-leading term in m=". In other words, we 
al
ulatethe �rst 
orre
tions in the small parameters m=" and1=mrs
r to the bremsstrahlung spe
trumd�
d! = �!p0"02(2�)4 Z d
p0 d
k X�e;�0e;�
 jM j2 ; (34)with the amplitudeM given by Eq. (2) and summationperformed over the polarizations of all parti
les. It is
onvenient to 
al
ulate d�
=d! using the Green's fun
-tion G(r2; r1j") of the Dira
 equation in an external�eld. This Green's fun
tion 
an be represented asG(r2; r1j ") = X�e;n  n(r2) � n(r1)"� "n + i0 ++X�e Z dp(2�)3 � P (r2) � P (r1)"� "p + i0 ++  �P (r2) � �P (r1)"+ "p � i0 � ; (35)where  n is the dis
rete-spe
trum wave fun
tion, "nis the 
orresponding binding energy, and P = ("p;p).The set of either in- or out-wave fun
tions 
an beused in Eq. (35). The regularization of denominatorsin Eq. (35) 
orresponds to the Feynman rule. FromEq. (35),X�e Z d
p  (in)P (r1) � (in)P (r2) ==X�e Z d
p  (out)P (r1) � (out)P (r2) == i (2�)2"pp ÆG(r1; r2j"p) ; (36)where 
p is the solid angle of p and ÆG = G� ~G. Thefun
tion ~G is obtained from (35) by the repla
ementi � 0 $ �i � 0. Be
ause the bremsstrahlung spe
trumis independent of the dire
tion of the ve
tor p, we 
anaverage the right-hand side of Eq. (34) over the anglesof this ve
tor. Using Eq. (36), we then obtain

d�
d! = � �!2"p Z d
k4� ZZ dr1 dr2 exp(�ik � r)��X�
 Sp fÆG(r2; r1j") ê ÆG(r1; r2j"0) êg ; (37)where r = r2 � r1 and "0 = "� ! is the energy of the�nal ele
tron. Here and below, we use the linear po-larization basis (e� = e). We note that the integrationover d
k is trivial be
ause the integrand is independentof the angles of k, and we therefore omit the integralR d
k=4� below. It is 
onvenient to represent d�
=d!in another form using the Green's fun
tion D(r2; r1j")of the squared Dira
 equation,G(r2; r1j") = �
0("� V (r2))� 
 � p2 +m���D(r2; r1j") ; p2 = �ir2: (38)Performing transformations as in Refs. [12, 9℄, we
an rewrite Eq. (37) asd�
d! = � �!4"p ZZ dr1 dr2 exp(�ik � r) ��X�
 Spf[(2e � p2 � êk̂)ÆD(r2; r1j")℄�� [(2e � p1 + êk̂)ÆD(r1; r2j"0)℄g: (39)For the �rst two terms of the high-energy asymp-toti
 expansion of the spe
trum, the leading 
ontribu-tion to the integral in Eqs. (37) and (39) is given bythe regionr = jr2 � r1j � 1�min = 2""0!m2 � 1m:This estimate is in a

ordan
e with the un
ertainty re-lation. Substituting ÆD = D� ~D in Eq. (39), we obtainfour terms. Within our a

ura
y, the terms 
ontainingD(")D("0) and ~D(") ~D("0) 
an be omitted and we haved�
d! = �!2"p Re ZZ dr1 dr2 exp(�ik � r)��X�
 Spf[(2e � p2 � êk̂)D(r2; r1j")℄�� [(2e � p1 + êk̂) ~D(r1; r2j"0)℄g: (40)Here and below, we assume the subtra
tion from theintegrand of its value at Z� = 0. For 
al
ulations in theleading approximation in m=", the fun
tion D(r2; r1j")
an be used in the form [12℄D(r2; r1j") = �1+� � (p1+p2)2" �D(0)(r2; r1j"); (41)12
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orre
tions to bremsstrahlung in ele
tri
 �eld : : :where D(0)(r2; r1j") is the semi
lassi
al Green's fun
-tion of the Klein �Gordon equation in the external �eld.The fun
tion ~D is obtained from Eq. (41) by the re-pla
ement D(0) ! D(0)�. Representation (41) 
an bedire
tly used for the 
al
ulation of the s
reening 
or-re
tion to the spe
trum. It is shown below that it 
anbe used for the 
al
ulation of the 
orre
tion in m=" aswell.Substituting Eq. (41) in Eq. (40) and taking thetra
e, we obtaind�
d! = 2�!"2 Re ZZ dr1 dr2 exp(�ik � r)��X�
 �4[e � p2D(0)2 ℄[e � p1D(0)1 ℄ ++ !2""0 [e � (p1 + p2)D(0)2 ℄[e � (p1 + p2)D(0)1 ℄� ;D(0)2 = D(0)(r2; r1j") ; D(0)1 = D(0)�(r1; r2j"0) : (42)
In deriving Eq. (42) we integrated the terms 
ontainingse
ond derivatives of D(0) by parts. We are interestedin the Coulomb 
orre
tions that 
an be obtained fromEq. (42) by the additional subtra
tion of the Born term(/ (Z�)2) from the integrand.3.1. Next-to-leading term in m=" for Coulomb
orre
tions to the spe
trumWe start with Eq. (40) and introdu
e the variablesr = r2 � r1; � = r� [r1 � r2℄r2 ; z = �r � r1r2 : (43)We note that the variable � in this se
tion has quitedi�erent meaning than the variable � in the represen-tation for A(�) in the previous se
tion, see Eq. (11).The analysis performed shows that the leading 
ontri-bution to the term under dis
ussion originates from theregion � � 1=m and �;  � m=" � 1, where � is theangle between the ve
tors r2 and �r1, and  is the an-gle between the ve
tors r and k. S
reening 
an thenbe negle
ted and we 
an use the semi
lassi
al Green'sfun
tion D in a Coulomb �eld obtained in Ref. [9℄,D(r2; r1j") = i�ei�r8�2r1r2 Z dq exp �i �rq22r1r2 ����2pr1r2jq� �j �2iZ�� ��1 + �r2r1r2� � q� �� �1 + i �(Z�)22�jq� �j� ���(Z�)24�2 (
0�� 
 � r=r)
 � (q� �)jq� �j3 � ;� = sign " ; � =p"2 �m2 ; � = 
0
; (44)

where q is a two-dimensional ve
tor in the plane per-pendi
ular to r. We note that be
ause the angle � issmall, we 
an assume that the variable z belongs to theinterval (0; 1) and r1 = rz, r2 = r(1� z). The fun
tion~D entering Eq. (40) is obtained from Eq. (44) by therepla
ement �! �� and �! ��. The 
ontribution ofthe last term in bra
es in Eq. (44) vanishes after takingthe tra
e in Eq. (40). Therefore, this term 
an be omit-ted in the problem under 
onsideration. The remainingterms in Eq. (44) 
an be represented in form (41) withD(0)(r2; r1j") = i�ei�r8�2r1r2 Z dq exp �i �rq22r1r2 ����2pr1r2jq� �j �2iZ�� �1 + i �(Z�)22�jq� �j� : (45)Then, using the relation(e � p1;2)D(0)(r2; r1j") = i�2ei�r8�2r1r2 �� Z dq exp �i �rq22r1r2 ��2pr1r2jq� �j �2iZ�� ���1 + i �(Z�)22�jq� �j���e � rr + e � qr1;2 � ; (46)and passing from the variables r1;2 to the variables r,�, and z, we obtain from (42) thatd�
Cd! = � �!"032�4" Re Z drr5 1Z0 dzz2(1� z)2 �� ZZZ dq1 dq2 d��� exp � i!r2 � 2 + m2""0�+ i "q21 � "0q222rz(1� z)���(�Q2Q1�2iZ�� 1 + 2(Z�)2 ln2 Q2Q1+ i�(Z�)22 �� "�Q2Q1�2iZ�� 1#� 1"Q1 � 1"0Q2�)��X�
 �4""0��e � r+ e � q11� z��e � r+ e � q2z �++ !2z2(1� z)2 (e � q1)(e � q2)� ; (47)where Q1;2 = jq1;2 � �j. The integral over � 
an betaken using the relations (see Appendix B in [9℄)13
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where  (t) = d ln �(t)=dt;C = 0:577 : : : is the Euler 
onstant, and q = jq1 � q2j.We next perform summation over the photon polariza-tion, pass to the variables~q = q1 + q2; q = q1 � q2;and take all integrals in the following order: d
r, d~q,dq, dr, dz. The �nal result for Coulomb 
orre
tions tothe bremsstrahlung spe
trum is given byy d�
Cdy = �4�0��y2 + 43(1� y)� f(Z�)�� �3(2� y)m8(1� y)" �y2 + 32(1� y)�Re g(Z�)� ;y = !=" ; �0 = �(Z�)2=m2 : (49)In this formula, the term proportional to f(Z�) 
orre-sponds to the leading approximation [3℄ and the termproportional to Re g(Z�) is an O(m=")-
orre
tion. Inour re
ent paper [9℄, this result was obtained by meansof the substitution rules from the spe
trum of pair pro-du
tion by photon in a Coulomb �eld. Formula (49)des
ribes bremsstrahlung from ele
trons. For the spe
-trum of photons emitted by positrons, it is ne
essary to
hange the sign of Z� in (49). The O(m=")-
orre
tionbe
omes espe
ially important in the hard part of thespe
trum, as 
an be seen in Fig. 3, where ��10 yd�
C=dywith the 
orre
tion (solid line) and without it (dashedline) are shown for Z = 82 and " = 50 MeV. We notethat in the whole range of y, the relative magnitudeof the 
orre
tion is appre
iably larger than m=" due tothe presen
e of a large numeri
al 
oe�
ient.3.2. S
reening 
orre
tionsIn this subse
tion, we 
al
ulate the s
reening 
or-re
tion to the high-energy asymptoti
s of d�
C=d!, 
on-sidering �C=rs
r as a small parameter.
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Fig. 3. The dependen
e of ��10 yd�
C=dy on y, see (49),for Z = 82, " = 50 MeV. Dashed 
urve: leading ap-proximation; solid 
urve: �rst 
orre
tion is taken intoa

ountWe start from Eq. (42) and use the semi
lassi
alGreen's fun
tion D(0)(r2; r1j") for an arbitrary lo
al-ized potential V (r). This Green's fun
tion was ob-tained in [10℄ with the �rst 
orre
tion inm=" taken intoa

ount. The leading term has the form (see also [12℄)D(0)(r2; r1j ") = i�ei�r8�2r1r2 �� Z dq exp24i �r q22r1r2�i�r 1Z0 dx V (r1+xr�q)35 : (50)Similarly to Eq. (47), we obtaind�
Cd! = � �!"032�4" Re Z drr5 1Z0 dzz2(1� z)2�� ZZZ dq1 dq2 d��� exp �i�+ i!r2 � 2 + m2""0�+ i "q21 � "0q222rz(1� z)���X�
 �4""0��e � r+ e � q11� z��e � r+ e � q2z �++ !2z2(1� z)2 (e � q1)(e � q2)� ; (51)where� = r 1Z0 dx[V (r1+xr�q2)�V (r1+xr�q1)℄: (52)As we see in what follows, it is meaningful to re-tain the s
reening 
orre
tion only in the 
ase where14



ÆÝÒÔ, òîì 127, âûï. 1, 2005 Coulomb 
orre
tions to bremsstrahlung in ele
tri
 �eld : : :rs
r � ��1min, whi
h is 
onsidered below. Then themain 
ontribution to integral (51) 
omes from the re-gion 1=m . � . rs
r � rand q1;2 � 1=m:Under these 
onditions, the narrow regionÆx = �=r � 1around the point x0 = �r1 � rr2 = zis important in the integration over x in Eq. (52).Therefore, we 
an perform this integration from �1to 1. The phase � then be
omes� = 2Z� ln(Q2=Q1) + �(s
r) == 2Z� ln(Q2=Q1) + r 1Z�1 dx[ÆV (r1 + xr� q2)�� ÆV (r1 + xr� q1)℄ ; (53)where ÆV (r) is the di�eren
e between the atomi
 po-tential and the Coulomb potential of a nu
leus. Thenotation in Eq. (51) and in Eq. (53) is the same as inEq. (47). It is seen that�s
r � � ÆV (�) � Z� ÆV (�)V (�) � 1 for � � � mand �s
r � q1;2� � 1m� � 1 for � � rs
r � 1m:Therefore, expression (51) 
an be expanded in�(s
r). In our 
al
ulation of the s
reening 
orre
tiond�
(s
r)C =d!, we retain the linear term of the expansionin �(s
r). The fun
tion ÆV (R) 
an be expressed viathe atomi
 ele
tron form fa
tor F (Q) asÆV (R) = Z dQ(2�)3 exp(iQ �R)F (Q)4�Z�Q2 : (54)Substituting this formula in Eq. (53) and taking theintegral over x from �1 to 1, we obtain�(s
r) = Z dQ?(2�)2 [exp (iQ? � (�� q2))�� exp (iQ? � (�� q1))℄F (Q?)4�Z�Q2? ; (55)

whereQ? is a two-dimensional ve
tor lying in the planeperpendi
ular to r. We next use the identity (see Eqs.(22) and (23) in [13℄)Z d�� j�� q2jj�� q1j�2iZ� exp [iQ? � (�� q1;2)℄ == q24Q2? Z df �f2f1�2iZ� exp [iq � f1;2=2℄ ; (56)where q = q1 � q2; f1;2 = f �Q?:Expanding the exponential in Eq. (51) with respe
t to�(s
r) and using relation (56), we take the integralsover q1;2, r, and z and obtainy d�
(s
r)Cdy = 4�(Z�)� Im Z dQ?Q4? F (Q?)�� Z df2� "�f2f1�2iZ� � 2iZ� ln f2f1#�� �S(�1)f21 � S(�2)f22 � ;S(�) = (�� 1)�2 ��( 12p� �y2(3� �) + (y � 1)(�2 + 2�� 3)� �� ln �p�+ 1p�� 1��� 3y2 � (y � 1)(�� 3)) ;y = !" ; �1;2 = 1 + 16m2f21;2 :
(57)

Using the tri
k introdu
ed in [13℄, we 
an rewritethis formula in another form. We multiply the inte-grand in (57) by1 � 1Z�1 dx Æ�x� 2f �Q?f2 +Q2?� = (f2 +Q2?)�� 1Z�1 dxjxjÆ((f �Q?=x)2 �Q2?(1=x2 � 1)); (58)
hange the order of integrations over f and x, and makethe shift f ! f +Q?=x:After that, the integration over f 
an be easily per-15
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Fig. 4. The dependen
e of A1=f(Z�) (solid 
urve) andA2=f(Z�) (dashed 
urve) on Zformed. Then we make the substitution x = th � andobtainy d�(s
r)Cdy = 16�0m2 1Z0 dQ?2� F (Q?)Q4? �� 1Z0 d�sh � � sin(2Z��)2Z� � ���� 2�Z0 d'2� �e�S(�2)� e��S(�1)� ;�1;2 = 1 + 8m2e�� sh2 �Q2?(
h � + 
os') :
(59)

A

ording to Eq. (57), the 
orre
tion yd�
(s
r)C =dy hasthe form y d�
(s
r)Cdy = �0 �A1(1� y) +A2y2� : (60)Shown in Fig. 4 is the Z dependen
e of the ratioA1;2=f(Z�) 
al
ulated numeri
ally with the use of formfa
tors from [14℄. For the less realisti
 Yukawa poten-tial, we 
an perform analyti
 
al
ulations of the fun
-tions Ai. It turns out that their dependen
e on theparameter � = �
=rs
r has the formAi = (Z�)2�2 �ai ln2 � + bi ln� + 
i� ; (61)where bi and 
i are some fun
tions of Z�, while ai doesnot depend on Z�. Re
alling that � is proportional toZ1=3 in the Thomas �Fermi model, we see that Ai de-pend on Z mainly via the fa
tor(Z�)2�2 / (Z�)2Z2=3:

Therefore, it is quite natural that yd�
(s
r)C =dy 
al
u-lated with the use of the exa
t form fa
tors is well �ttedby the expressiony d�
(s
r)Cdy � 8:6 � 10�3�0(Z�)2 �� Z2=3[1:2(1� y) + y2℄: (62)In fa
t, the a

ura
y of this �t for all Z is better thana few per
ent.It follows from Eq. (61) that for rs
r & ��1min, thefa
tor �2 in the s
reening 
orre
tion is extremely small,�2 . (m=")2. The terms of su
h an order were system-ati
ally negle
ted in our 
onsideration. Hen
e, withinour a

ura
y, the a

ount of the s
reening 
orre
tion ismeaningful only for rs
r � ��1min.4. CONCLUSIONWe have performed a detailed analysis of Coulomb
orre
tions both to the di�erential and the integrated
ross se
tions of bremsstrahlung in an atomi
 �eld. Wehave 
al
ulated the next-to-leading term in the high-energy asymptoti
s of the bremsstrahlung spe
trum.Similar to the leading term of the high-energy asymp-toti
s of Coulomb 
orre
tions to the spe
trum, thisterm is independent of s
reening in the leading order inthe parameter �
=rs
r. We have also 
al
ulated the �rst
orre
tion to the spe
trum in the parameter �
=rs
r.We have shown that in 
ontrast with Coulomb 
or-re
tions to the spe
trum, Coulomb 
orre
tions to thedi�erential 
ross se
tion strongly depend on s
reeningeven in the leading approximation. This dependen
e isvery important in the region that gives the main 
on-tribution to the integral over �?. We have performedthe expli
it integration over �? of d�
C for arbitrarys
reening and have veri�ed the independen
e of the �-nal result from s
reening.We also examined the e�e
t of the �nite beamsize on Coulomb 
orre
tions to bremsstrahlung ina Coulomb �eld of a heavy nu
leus. Similar to thee�e
t of s
reening, the �niteness of the beam sizeleads to a strong modi�
ation of Coulomb 
orre
tionsto the di�erential probability, while the probabilityintegrated over �? depends only on the density of theele
tron beam at zero impa
t parameter.This work was supported in part by the RFBR(grant � 03-02-16510) and Russian S
ien
e SupportFoundation.16
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