БАЗИС ПОЛЯРИЗАЦИОННО-ОДЕТЫХ СОСТОЯНИЙ АТОМА В РЕЗОНАНСНОМ ПОЛЕ С ЭЛЛИПТИЧЕСКОЙ ПОЛЯРИЗАЦИЕЙ

О. Н. Прудников^{а,b*}, А. В. Тайченачев^{а,b}, А. М. Тумайкин^{а,b}, В. И. Юдин^{а,b}, Г. Ниенхаус^{c**}

^а Новосибирский государственный университет 630090, Новосибирск, Россия

^b Институт лазерной физики Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^сЛаборатория Гюйгенса, Лейденский университет 2300RA, Лейден, Нидерланды

> > Поступила в редакцию 21 июня 2004 г.

Предложен базис поляризационно-одетых состояний для энергетических уровней атома, вырожденных по проекциям полного углового момента, при взаимодействии с эллиптически поляризованным светом. Показано, что взамен правил отбора по магнитному квантовому числу взаимодействие в этом базисе может быть представлено в виде суммы прямых переходов между соответствующими парами поляризационно-одетых состояний верхнего и нижнего уровней. Найден явный вид базиса для десяти возможных комбинаций дипольных переходов между уровнями с угловыми моментами J = 0, 1/2, 1, 3/2, 2. В качестве приложения рассмотрена задача об осцилляциях Раби в такой системе.

PACS: 32.80.Qk, 32.80.Bx, 42.50.Gy, 42.50.Md

1. ВВЕДЕНИЕ

Задача о взаимодействии поляризованного резонансного монохроматического света с атомом, энергетические уровни которого вырождены по проекциям полного углового момента, является одной из центральных задач квантовой оптики и в тех или иных приближениях решалась во множестве работ [1-5]. Использование поляризации света (в общем случае эллиптической) позволяет контролировать как внутренние степени свободы атомов, например, состояние анизотропии атомов, так и управлять их поступательным движением. Хорошо известно, что учет вырождения атомных уровней сводит картину нелинейного взаимодействия поляризованного света к сложной многоуровневой схеме. Трудность нахождения аналитического решения этой задачи определяется большим числом уравнений для магнитных подуровней, связанных нелинейным взаимодействием с различными компонентами поляризации светового

поля. Некоторые упрощения в картине взаимодействия возникают в частных случаях чисто линейной и циркулярной поляризации, когда многоуровневая система сводится к набору независимых двухуровневых невырожденных систем, определяемых правилами отбора по магнитному квантовому числу. Как известно, такое упрощение связано с соответствующим выбором оси квантования (которая выбирается вдоль поля при линейной поляризации и перпендикулярно плоскости поляризации в случае циркулярной поляризации света). Выбором оси квантования вдоль оси цилиндра, сечением которого является эллипс поляризации, частично упрощается и анализ проблемы резонансного взаимодействия вырожденных атомов с эллиптически-поляризованным светом 6.

Отметим, что с точки зрения поляризационных задач переходы $1 \leftrightarrow 0, 1 \rightarrow 1$ и $1/2 \rightarrow 1/2$ являются выделенными, поскольку характеризуются только одним эффективным параметром взаимодействия [7]. В частности, в этих случаях удается доказать точную интегрируемость уравнений Максвелла-Блоха и получить одно- и двухсолитонные реше-

^{*}E-mail: llf@admin.nsu.ru, llf@laser.nsc.ru

^{**}Huygens Laboratorium, University of Leiden, 2300 RA Leiden, The Netherlands, G. Nienhuis.

ния в задачах о распространении световых импульсов в нелинейной среде [7].

В работе [8] предложена общая постановка задачи о взаимодействии резонансного эллиптически-поляризованного света с вырожденной по проекциям полного углового момента двухуровневой системой. Однако в ней были найдены только частные решения, связанные с существованием стационарных когерентных состояний, или, как теперь принято называть, эллиптических темных состояний, описывающих эффект когерентного пленения населенностей (КПН). В продолжение этой и серии наших последующих работ [9–14] в настоящей работе делается попытка нахождения всех остальных аналитических решений уравнения Шредингера из полного ортонормированного набора состояний вырожденного атома в эллиптически-поляризованном свете.

Основная идея нашего подхода к задаче состоит в нахождении такого базисного набора волновых функций невозмущенного гамильтониана, в котором светоиндуцированные дипольные переходы между вырожденными энергетическими уровнями можно представить в виде набора независимых невырожденных двухуровневых систем (подобно случаям чисто линейной и круговой поляризаций) и которые учитывали бы при этом все особенности взаимодействия с эллиптической поляризацией светового поля. Нахождение такого поляризационно-одетого базиса означает представление тензорной части оператора взаимодействия в блочно-диагональной форме.

Следует отметить, что общая постановка задачи о сведении вырожденной двухуровневой системы к набору независимых невырожденных двухуровневых систем была впервые сформулирована в работе [15], где в качестве примера рассмотрен переход $J_a = 2 \rightarrow J_b = 1$. В работе [9] базис поляризационно-одетых состояний, без нахождения его явного вида, использовался в задаче о нахождении стационарного состояния матрицы плотности атомов в поле с эллиптической поляризации. В настоящей работе для задач взаимодействия резонансного эллиптически-поляризованного света с вырожденными по проекциям углового момента энергетическими уровнями атомов и молекул предложен новый базис, заменяющий общепринятый зеемановский базис углового момента. Этот базис, который мы называем поляризационно-одетым, определен как собственный базис операторов оптических сдвигов и представлен в виде разложения по базису магнитных подуровней с коэффициентами, зависящими только от поляризации светового поля, т.е. базис изначально «настроен» на поляризацию поля. При включении светового поля в дипольном взаимодействии меняются правила отбора: вместо дипольных переходов между магнитными подуровнями $m_a - m_b = 0, \pm 1$ нижнего и верхнего уровней в новом базисе реализуются только прямые дипольные переходы между состояниями с одинаковыми собственными значениями $\lambda_i^b - \lambda_i^a = 0$. В разд. 3 обсуждаются общие свойства нового базиса, а в разд. 5 найден явный аналитический вид новых состояний и их собственных значений для десяти возможных комбинаций дипольных переходов между уровнями с угловыми моментами J = 0, 1/2, 1, 3/2, 2, показывающих представление задачи в форме суммы независимых двухуровневых систем. В качестве примера в разд. 4 приведено решение задачи об осцилляциях Раби в системе с вырожденными энергетическими уровнями.

2. ПОСТАНОВКА ЗАДАЧИ

В дипольном приближении гамильтониан взаимодействия вырожденного по проекциям углового момента атома с монохроматическим эллиптически поляризованным резонансным полем запишем в виде

$$\hat{H}_{int} = -\mathbf{E}\hat{\mathbf{d}} = \Omega\hat{V}\exp(-i\omega t) + \text{h.c.}, \qquad (1)$$

выделив в виде сомножителей поляризационно-угловую часть

$$\hat{V} = q_{+}\hat{d}_{1,-1} + q_{-}\hat{d}_{1,+1} \tag{2}$$

и амплитуду поля E_0 , входящую в частоту Раби

$$\Omega = -E_0 \langle J_a || d || J_b \rangle /\hbar.$$

Круговые компоненты поля q_{\pm} в системе координат, где главные полуоси эллипса поляризации совпадают с осями x и y, а ось квантования z углового момента ортогональна плоскости эллипса, записываются следующим образом:

$$q_{+} = \sin(\varepsilon + \pi/4), \quad q_{-} = \cos(\varepsilon + \pi/4), \quad (3)$$

где ε — параметр эллиптичности света, определенный в интервале $-\pi/4 \leq \varepsilon \leq +\pi/4$, а $|\lg \varepsilon|$ есть отношение длин малой полуоси эллипса к большой. Матричные элементы угловой части оператора дипольного момента $\hat{d}_{1,\pm 1}$ в стандартном базисе магнитных подуровней нижнего $|J_a, m_a\rangle$ и верхнего $|J_b, m_b\rangle$ уровней выражаются через коэффициенты Клебша–Гордана:

$$\langle J_b, m_b | \hat{d}_{1,\pm 1} | J_a, m_a \rangle = C_{J_a, m_b; 1,\pm 1}^{J_b, m_b}.$$
 (4)

Решение нестационарного уравнения Шредингера

$$i\frac{\partial\Psi}{\partial t} = (\hat{H}_0 + \hat{H}_{int})\Psi \tag{5}$$

ищем в виде разложения по некоторому ортонормированному базису векторов состояний вырожденных нижнего $|(a)j\rangle$ и верхнего $|(b)k\rangle$ уровней:

$$\Psi = \exp\left(-i\frac{E_a}{\hbar}t\right)\sum_{j=1}^{2J_a+1} a_j(t)|(a)j\rangle + \exp\left(-i\frac{E_b}{\hbar}t\right)\sum_{k=1}^{2J_b+1} b_k(t)|(b)k\rangle.$$
 (6)

Индексы $k = 1, 2, \ldots, 2J_b + 1$ и $j = 1, 2, \ldots, 2J_a + 1$ нумеруют состояния этого базиса для верхнего и нижнего энергетических уровней, соответственно. Условие ортонормируемости означает, что

$$\langle (a)i|(a)j\rangle = \delta_{i,j}, \quad \langle (b)i|(b)j\rangle = \delta_{i,j}, \langle (a)i|(b)j\rangle = 0.$$
 (7)

Очевидно, что общепринятый зеемановский базис собственных состояний углового момента $|J_b, m_b\rangle$, $|J_a, m_a\rangle$ является частным случаем этого базиса.

Уравнения для амплитуд вероятности $a_j(t)$ и $b_k(t)$ следуют из (5), (6):

$$\dot{a_k} = -i\Omega \exp(-i\delta t) \sum_{i=1}^{2J_b+1} \langle (a)k | \hat{V}^+ | (b)i \rangle \rangle b_i, \qquad (8)$$

$$\dot{b_j} = -i\Omega^* \exp(i\delta t) \sum_{k=1}^{2J_a+1} \langle (b)j|\hat{V}|(a)k\rangle a_k.$$
(9)

Система уравнений (8), (9) в общем случае произвольного базиса так же сложна, как и в случае стандартного базиса магнитных подуровней, так как перепутаны состояния с разными $i \neq j$. Однако данная система может быть существенно упрощена в базисе, в котором операторы взаимодействия V и \hat{V}^+ связывают лишь пары состояний $|(a)j\rangle$ и $|(b)k\rangle$ верхнего и нижнего уровней. Как будет показано ниже, такая диагонализация тензорной части взаимодействия всегда возможна и получающиеся в результате собственные состояния определяют базис, который мы будем называть базисом поляризационно-одетых состояний (ПОС) |(a)i) для нижнего и $|(b)j\rangle$ для верхнего уровня, так как он учитывает особенности взаимодействия со световым полем только в части его поляризации и может быть разложен по

базису магнитных подуровней с коэффициентами, зависящими от поляризации поля:

$$|(a)i\rangle = \sum_{m_a = -J_a}^{m_a = +J_a} A_{i,m_a}(\varepsilon) |J_a, m_a\rangle,$$

$$|(b)i\rangle = \sum_{m_b = -J_b}^{m_b = +J_b} B_{i,m_b}(\varepsilon) |J_b, m_b\rangle.$$
(10)

Здесь матрицы \hat{A} и \hat{B} реализуют переход от базиса магнитных подуровней к новому базису ПОС. При решении уравнений (5), (8), (9) возникают операторы $\hat{V}^+\hat{V}$ и $\hat{V}\hat{V}^+$, которые, являясь билинейными комбинациями гамильтониана взаимодействия, описывают квадратичные штарковские сдвиги уровней, зависящие от эллиптичности. Как видно, они являются эрмитовыми матрицами и поэтому всегда могут быть приведены к диагональному виду подходящими унитарными преобразованиями. Как будет показано в следующем разделе, ПОС являются собственными состояниями операторов $\hat{V}^+\hat{V}$, $\hat{V}\hat{V}^+$, а матрицы \hat{A} и \hat{B} их диагонализуют:

$$\hat{A}\hat{V}^{+}\hat{V}\hat{A}^{+} = \operatorname{diag}\{\lambda_{i}^{a}\},\$$
$$\hat{B}\hat{V}\hat{V}^{+}\hat{B}^{+} = \operatorname{diag}\{\lambda_{i}^{b}\}.$$
(11)

Отметим, что в общем случае эллиптической поляризации матрицы \hat{A} и \hat{B} не являются операторами поворота, что осложняет рассмотрение. Проблема нахождения собственного базиса операторов оптического сдвига обсуждались ранее в работах [9, 15, 16]. Основываясь на этих работах, рассмотрим свойства базиса ПОС в общем виде без нахождения явного вида матриц \hat{A} и \hat{B} .

3. СВОЙСТВА БАЗИСА ПОС

Оператор $\hat{V}^+\hat{V}$ действует на нижний уровень и в новом ортонормированном базисе ПОС имеет собственные значения λ_i^a , определяемые из уравнения

$$\hat{V}^{+}\hat{V}|(a)i\rangle = \lambda_{i}^{a}|(a)i\rangle, \quad \langle (a)i|(a)j\rangle = \delta_{i,j}.$$
(12)

Аналогично оператор $\hat{V}\hat{V}^+$ действует на состояния $|(b)j\rangle$ верхнего уровня:

$$\hat{V}\hat{V}^{+}|(b)j\rangle = \lambda_{j}^{b}|(b)j\rangle, \quad \langle (b)j|(b)k\rangle = \delta_{k,j}.$$
(13)

Собственные значения операторов $\hat{V}^+\hat{V}$ и $\hat{V}\hat{V}^+$ являются действительными неотрицательными числами $\lambda_i^a \ge 0$ и $\lambda_j^b \ge 0$. Нулевые собственные значения $\lambda_i^a = 0$ и $\lambda_j^b = 0$ соответствуют не связанным полем КПН-состояниям на верхнем и нижнем уровнях.

В наших работах [8, 10, 11] были найдены аналитические выражения для КПН-состояний для различных типов дипольных переходов. Отметим еще раз, что КПН-состояния являются частью полного ортонормированного набора базиса ПОС с соответствующими нулевыми собственными значениями.

Можно показать, что если из матриц $\hat{V}^+\hat{V}$ и $\hat{V}\hat{V}^+$ исключить нулевые подпространства и на каждом уровне перенумеровать собственные значения, то наборы собственных значений матриц $\hat{V}^+\hat{V}$ и $\hat{V}\hat{V}^+$ в усеченном пространстве совпадают. Действительно,

$$(\hat{V}\hat{V}^{+})\hat{V}|(a)i\rangle = \lambda_{i}^{a}\hat{V}|(a)i\rangle, \qquad (14)$$

$$(\hat{V}^+\hat{V})\hat{V}^+|\langle b\rangle j\rangle = \lambda_j^b \hat{V}^+|\langle b\rangle j\rangle.$$
(15)

Следовательно, $\hat{V}|(a)i\rangle$ является собственным вектором

$$\hat{V}^+\hat{V} \to \hat{V}|(a)i\rangle \sim |(b)i\rangle,$$

а $\hat{V}^+|(b)j\rangle$ — собственным вектором

$$\hat{V}\hat{V}^+ \to \hat{V}^+ |(b)j\rangle \sim |(a)j\rangle$$

Таким образом, ненулевые собственные значения $\hat{V}^+\hat{V}$ дают набор собственных векторов $|(a)i\rangle$, такой что

$$|(b)i\rangle = \frac{\hat{V}|(a)i\rangle}{\sqrt{\langle (a)i|\hat{V}^{+}\hat{V}|(a)i\rangle}} = \frac{\hat{V}|(a)i\rangle}{\sqrt{\lambda_{i}^{a}}},$$
(16)

$$|(a)i\rangle = \frac{\hat{V}^+|(b)i\rangle}{\sqrt{\langle (b)i|\hat{V}\hat{V}^+|(b)i\rangle}} = \frac{\hat{V}^+|(b)i\rangle}{\sqrt{\lambda_i^b}}.$$
 (17)

Отсюда видно, что набор собственных значений операторов $\hat{V}^+\hat{V}$ и $\hat{V}\hat{V}^+$ одинаков:

$$\lambda_i^b = \lambda_i^a = \lambda_i. \tag{18}$$

Светоиндуцированные переходы связывают между собой только *i* пары базисных векторов разных уровней, относящихся к одному и тому же собственному значению (если оно не равно нулю!). При этом индекс i = 1, 2, ..., r нумерует состояния в усеченном (с исключенным нулевым подпространством) пространстве. Число *r* этих переходов в новом базисе равно $r = 2J_a$ для переходов $J_a = J \rightarrow J_b = J$ (J — целое), $r = 2J_a - 1$ для переходов $J_a = J \rightarrow J_b = J - 1$, $r = 2J_a + 1$ для переходов $J_a = J \rightarrow J_b = J + 1$ и $J_a = J \rightarrow J_b = J$ (J — полуцелое). Подставляя далее (16), (17) в (8), (9) находим, что матрицы взаимодействия в правых частях уравнений (8), (9) становятся диагональными с собственными значениями, равными $\sqrt{\lambda_j}$, и гамильтониан взаимодействия приводится к диагональному виду:

$$\hat{V} = \sum_{i} \sqrt{\lambda_{i}} |(a)i\rangle \langle (b)i|.$$
(19)

Представленный в таком виде гамильтониан взаимодействия \hat{V} по существу определяет новые правила отбора

$$\lambda_i^b - \lambda_i^a = 0$$

между состояниями верхнего и нижнего уровней, а сами значения $\sqrt{\lambda_j}$ можно считать новыми квантовыми числами, заменяющими угловой момент и его проекции.

Таким образом, при заданных эллиптичности света и угловых моментах уровней возможно вначале построить поляризационно-одетый базис, который зависит только от поляризации и не зависит от интенсивности света, а затем уже решать задачу о взаимодействия, во многом аналогичную задаче взаимодействия с невырожденным двухуровневым атомом. В качестве примера использования ПОС рассмотрим, как меняются решения известной задачи об осцилляциях Раби в случае учета вырождения уровней.

4. ЗАДАЧА ОБ ОСЦИЛЛЯЦИЯХ РАБИ ДЛЯ ВЫРОЖДЕННЫХ УРОВНЕЙ

Подставляя (19) в (8), (9), получаем, что уравнения для амплитуд вероятности каждой отдельно взятой пары состояний с одинаковым собственным значением, связанных полем в светоиндуцированном переходе $|(a)j\rangle \rightarrow |(b)j\rangle$, преобразуются к виду, известному из теории двухуровневого атома [17, 18]:

$$\dot{b_j} = i\Omega_j^* \exp(-i\delta t)a_j, \tag{20}$$

$$\dot{a}_j = i\Omega_j \exp(i\delta t)b_j,\tag{21}$$

с перенормированной частотой Раби Ω_{j}

$$\Omega_j = \Omega \sqrt{\lambda_j}.$$
(22)

Отсюда видно, что зависимость от интенсивности внешнего поля содержится в Ω , а вся возможная зависимость от эллиптичности для конкретного перехода будет содержаться в множителе $\sqrt{\lambda_j}$. Решение динамических уравнений (20), (21) хорошо известно, и его явный вид зависит от начальных условий и режима включения взаимодействия. Так, например, при внезапном включении взаимодействия будем считать, что атом в момент времени t = 0 находится на нижнем уровне с изотропным распределением по магнитным подуровням, которое является изотропным и по состояниям нового базиса

$$a_j(t=0) = \frac{1}{\sqrt{2J_a+1}}, \quad b_j(t=0) = 0$$

Из условия нормировки для волновой функции атома в целом

$$\sum_{i=1}^{2J_a+1} |a_i(t)|^2 + \sum_{i=1}^{2J_b+1} |b_i(t)|^2 = 1$$

в выбранных начальных условиях можно выделить нормировку для каждого перехода между верхними и нижними ПОС в отдельности

$$|a_i(t)|^2 + |b_i(t)|^2 = \frac{1}{2J_a + 1}$$
(23)

и рассматривать этот переход как независимую двухуровневую систему. Тогда решение системы (20), (21) для каждой *j*-ой пары состояний верхнего и нижнего уровней формально совпадает с решением задачи об осцилляциях Раби для двухуровневого атома [17]:

$$a_j = \frac{\exp(-i\delta t/2)}{\sqrt{2J_a + 1}} \left[\cos(\Delta_j t) + i\frac{\delta}{2\Delta_j}\sin(\Delta_j t) \right], \quad (24)$$

$$b_j = -i \frac{1}{\sqrt{2J_a + 1}} \frac{\Omega_j}{\Delta_j} \exp\left(\frac{i\delta t}{2}\right) \sin(\Delta_j t).$$
(25)

Здесь $\Delta_j = \sqrt{\delta^2/4 + \lambda_j \Omega^2}$ — эффективная частота Раби для *j*-перехода, а $\delta = \omega_{ba} - \omega$ — отстройка лазерного поля от атомного резонанса. Волновая функция атома в поле является суммой таких двухуровневых систем и не взаимодействующих со светом КПН-состояний. Поэтому, как и в обычной двухуровневой системе, под действием поля новые состояния верхнего и нижнего уровней (за исключением КПН- состояний) будут расщеплены и сдвинуты по отношению к невозмущенным состояниям с энергиями E_a и E_b [17]. Подставляя решения (24), (25) в (6), получаем, что волновая функция атома $\Psi(t)$ состоит из суперпозиции 4*r* стационарных состояний (по 4 на каждом двухуровневом переходе), квазиэнергии которых с учетом найденных собственных значений λ_j , равны

$$E_a^{+}(j) = E_a + \delta/2 + \Delta_j,$$

$$E_a^{-}(j) = E_a + \delta/2 - \Delta_j,$$
(26)

$$E_b^+(j) = E_b - \delta/2 + \Delta_j,$$

$$E_b^-(j) = E_b - \delta/2 - \Delta_j.$$
(27)

Таким образом, переход к базису ПОС означает сведение сложной многоуровневой системы к набору *г* независимых двухуровневых систем. Расщепление уровней внутри двухуровневой системы обусловлено ненулевой амплитудой поля (частота Раби). Кроме того, в решение необходимо добавить соответствующие стационарные КПН-состояния с невозмущенными энергиями E_a и E_b , что полностью определяет решение динамической задачи для двухуровневого вырожденного атома в произвольно поляризованном резонансном поле. Отметим также, что поскольку базис ПОС построен из базиса нерасщепленных магнитных подуровней с учетом только тензорной части взаимодействия, такой собственный поляризационно-одетый базис может использоваться как для стационарных задач с релаксацией [9], так и для нестационарных задач в пределе $\gamma t \ll 1$. Главным свойством найденного базиса является отсутствие когерентности в матрице плотности $\hat{\rho}$ между ПОС на каждом уровне

тогда как в базисе магнитных подуровней зеемановская когерентность на уровнях отлична от нуля.

5. ПРИМЕРЫ ПОЛЯРИЗАЦИОННО-ОДЕТЫХ СОСТОЯНИЙ

В общем случае для нахождения нового базиса с явной зависимостью от эллиптичности собственных состояний и собственных значений можно воспользоваться известными из линейной алгебры процедурами приведения матриц к диагональной форме [15]. К сожалению, аналитические выражения для собственных векторов и собственных значений ПОС в случае больших значений угловых моментов получить крайне трудно. Однако для переходов с небольшими значениями углового момента уровней J = 0, 1/2, 1, 3/2, 2 легко сконструировать базис ПОС как линейную суперпозицию волновых функций магнитных подуровней, исходя из явного вида эллиптически темных состояний, которые, являясь частью базиса ПОС, должны быть им ортогональны [12]. Эти состояния $|\Psi_i^{(NC)}(a)\rangle$ для нижнего уров-

Рис.1. Схема взаимодействия эллиптически-поляризованного поля в базисе магнитных подуровней (*a*) и в базисе ПОС (δ) для оптического перехода $J_a = 1 \rightarrow J_b = 0$

ня
и $|\Psi_i^{(NC)}(b)\rangle$ для верхнего уровня находятся из уравнений

$$\hat{V}|\Psi_i^{(NC)}(a)\rangle = 0, \quad \hat{V}^+|\Psi_i^{(NC)}(b)\rangle = 0.$$
 (29)

Соответствующие собственные значения

 $\lambda_i^a = \lambda_i^b = 0.$

Дополнительно отметим следующую симметрию в базисных состояниях для обращенных пар оптических переходов, т. е. для оптических переходов, переходящих в друг друга при замене верхнего уровня на нижний $a \leftrightarrow b$. Базисные векторы ПОС обращенных оптических переходов получаются заменой индексов $a \leftrightarrow b$ и заменой знака проекции m_i зеемановских волновых функций. Таким образом, процедура преобразования коэффициентов для матриц A и B (10) базисных векторов для обращенных оптических переходов имеет вид

$$A_{i,m}(J_b \to J_a) = B_{i,-m}(J_a \to J_b),$$

$$B_{i,m}(J_b \to J_a) = A_{i,-m}(J_a \to J_b).$$
(30)

Подразумевая данную симметрию, в дальнейшем для краткости записи мы будем приводить выражения для базисных векторов ПОС и их собственных значений лишь для одного из обращенных переходов.

5.1. Переход $J_a = 1 \rightarrow J_b = 0$ $(J_a = 0 \rightarrow J_b = 1)$

В оптическом переходе $J_a = 1 \rightarrow J_b = 0$ на возбужденном уровне содержится только одно невырожденное состояние (рис. 1*a*), которое не меняется и в новом базисе

$$|(b)3\rangle \equiv |0,0\rangle. \tag{31}$$

На нижнем уровне находятся два эллиптических темных состояния, которые, согласно (29), являются линейной комбинацией волновых функций магнитных подуровней с коэффициентами, зависящими только от поляризации света и не зависящими от интенсивности:

$$(a)1\rangle \equiv |\Psi_1^{(NC)}(a)\rangle = |1,0\rangle, \qquad (32)$$

$$|(a)2\rangle \equiv |\Psi_2^{(NC)}(a)\rangle = q_+|1,-1\rangle - q_-|1,+1\rangle.$$
 (33)

Тогда ортогональное им третье, связанное со светом, состояние имеет вид

$$|(a)3\rangle = q_{-}|1, -1\rangle + q_{+}|1, +1\rangle.$$
(34)

Световое поле связывает только два состояния на переходе

$$|(a)3\rangle \rightarrow |(b)3\rangle.$$

Соответствующие собственные значения равны

$$\lambda_3 = 1/3, \quad \lambda_1 = \lambda_2 = 0.$$

На рис. 16 представлена новая схема перехода. На этом и всех последующих рисунках, обозначенных буквой *a*, представлены схемы соответствующих переходов в базисе магнитных подуровней, а буквой *б* обозначены схемы переходов в базисе ПОС. Базис ПОС и собственные значения для оптического перехода $J = 0 \rightarrow J = 1$ легко найти, используя выражения для базисных векторов ПОС и их собственных значений оптического перехода $J = 1 \rightarrow J = 0$ и процедуру (30).

Рис. 2. То же для оптического перехода $J_a = 3/2 \rightarrow J_b = 1/2$

И

5.2. Переход
$$J_a = 3/2 \rightarrow J_b = 1/2$$

 $(J_a = 1/2 \rightarrow J_b = 3/2)$

Как показано на рис. 2*a*, в нижнем состоянии оптического перехода

$$J_a = 3/2 \rightarrow J_b = 1/2$$

имеются два независимых простых Л-звена, соответствующих двум эллиптическим темным состояниям [8,14]:

$$|(a)1\rangle \equiv |\Psi_1^{(NC)}(a)\rangle = \frac{\sqrt{3}q_-|3/2, +1/2\rangle - q_+|3/2, -3/2\rangle}{\sqrt{(q_+^2 + 3q_-^2)}}, \quad (35)$$

$$|(a)2\rangle \equiv |\Psi_2^{(NC)}(a)\rangle = = \frac{\sqrt{3}q_+ |3/2, -1/2\rangle - q_- |3/2, +3/2\rangle}{\sqrt{(q_-^2 + 3q_+^2)}}.$$
 (36)

Тогда оставшаяся часть базиса ПОС, ортогональная этим темным состояниям, строится очевидным образом:

$$|(a)3\rangle = \frac{q_+|3/2, +1/2\rangle + \sqrt{3}q_-|3/2, -3/2\rangle}{\sqrt{(q_+^2 + 3q_-^2)}}, \quad (37)$$

$$|(a)4\rangle = \frac{q_{-}|3/2, -1/2\rangle + \sqrt{3}q_{+}|3/2, +3/2\rangle}{\sqrt{(q_{-}^{2} + 3q_{+}^{2})}}.$$
 (38)

Добавляя к ним два перенумерованных верхних состояния зеемановского базиса

$$|(b)3\rangle \equiv |1/2, -1/2\rangle, \tag{39}$$

$$|(b)4\rangle \equiv |1/2, +1/2\rangle, \tag{40}$$

получаем полный набор состояний ортонормированного базиса ПОС: светоиндуцированные переходы происходят только между состояниями

 $|(a)3\rangle \rightarrow |(b)3\rangle$

$$|(a)4\rangle \rightarrow |(b)4\rangle.$$

Соответствующие собственные значения равны

$$\lambda_3 = \frac{1}{4} q_-^2 + \frac{1}{12} q_+^2, \quad \lambda_4 = \frac{1}{4} q_+^2 + \frac{1}{12} q_-^2, \qquad (41)$$
$$\lambda_1^a = \lambda_2^a = 0.$$

Модифицированная схема переходов в базисе ПОС представлена на рис. 26. Аналогичная схема для обращенного перехода

$$J_a = 1/2 \rightarrow J_b = 3/2$$

представлена на рис. 3.

5.3. Переход
$$J_a = 1 \rightarrow J_b = 2$$

 $(J_a = 2 \rightarrow J_b = 1)$

На верхнем уровне оптического перехода

$$J_a = 1 \rightarrow J_b = 2$$

расположены два КПН-состояния:

$$|(b)1\rangle \equiv |\Psi_1^{(NC)}(b)\rangle = q_-|2,-1\rangle - q_+|2,+1\rangle,$$
 (42)

$$|(b)2\rangle \equiv |\Psi_2^{(NC)}(b)\rangle =$$

= $\frac{q_-^2|2, -2\rangle - \sqrt{6}q_-q_+|2, 0\rangle + q_+^2|2, +2\rangle}{\sqrt{q_+^4 + 6q_-^2q_+^2 + q_-^4}}.$ (43)

1309

Рис. 3. То же для оптического перехода $J_a = 1/2 \rightarrow J_b = 3/2$

Соответствующие собственные значения для КПН-состояний равны

$$\lambda_1 = \lambda_2 = 0$$

Связанные полем ортогональные ПОС записываются как

$$|(a)3\rangle = |1,0\rangle, \tag{44}$$

$$|(b)3\rangle = q_{+}|2, -1\rangle + q_{-}|2, +1\rangle \tag{45}$$

с собственным значением

$$\lambda_3 = \frac{1}{10}.$$

Далее имеем пару

$$|(a)4\rangle = -\frac{\sqrt{2}}{2} \frac{\left(5\sin 2\varepsilon + \sqrt{25 - 24\cos^2 2\varepsilon}\right)}{\sqrt{N_4^a}} |1, -1\rangle + \frac{\sqrt{2}}{2} \frac{\cos 2\varepsilon}{\sqrt{N_4^a}} |1, +1\rangle, \quad (46)$$

$$\begin{aligned} |(b)4\rangle &= \\ &= \frac{(1+\sin 2\varepsilon) \left(1-6\sin 2\varepsilon - \sqrt{25-24\cos^2 2\varepsilon}\right)}{\sqrt{N_4^b}} |2,-2\rangle + \\ &+ \sqrt{6} \frac{\sin 4\varepsilon}{\sqrt{N_4^b}} |2,0\rangle + \\ &+ \frac{(1-\sin 2\varepsilon) \left(1+6\sin 2\varepsilon - \sqrt{25-24\cos^2 2\varepsilon}\right)}{\sqrt{N_4^b}} \times \\ &\times |2,+2\rangle \quad (47) \end{aligned}$$

с собственным значением

$$\lambda_4 = \frac{7 + \sqrt{25 - 24\cos^2 2\varepsilon}}{60}$$

И последняя пара описывается как

$$|(a)5\rangle = -\frac{\sqrt{2}}{2} \frac{(5\sin 2\varepsilon - \sqrt{25 - 24\cos^2 2\varepsilon})}{\sqrt{N_5^a}} |1, -1\rangle + \frac{\sqrt{2}}{2} \frac{\cos 2\varepsilon}{\sqrt{N_5^a}} |1, +1\rangle, \quad (48)$$

$$\begin{aligned} |(b)5\rangle &= \\ &= \frac{(1+\sin 2\varepsilon)\left(1-6\sin 2\varepsilon+\sqrt{25-24\cos^2 2\varepsilon}\right)}{\sqrt{N_5^b}} \times \\ &\times |2,-2\rangle + \sqrt{6}\frac{\sin 4\varepsilon}{\sqrt{N_5^b}}|2,0\rangle + \\ &+ \frac{(1-\sin 2\varepsilon)\left(1+6\sin 2\varepsilon+\sqrt{25-24\cos^2 2\varepsilon}\right)}{\sqrt{N_5^b}} \times \\ &\times |2,+2\rangle, \quad (49) \end{aligned}$$

$$\lambda_5 = \frac{7 - \sqrt{25 - 24\cos^2 2\varepsilon}}{60}.$$

Нормировочные множители имеют вид

$$N_{4}^{a} = 25 - 24 \cos^{2} 2\varepsilon + + 5 \sin 2\varepsilon \sqrt{25 - 24 \cos^{2} 2\varepsilon}, N_{4}^{b} = \frac{8}{3} \left[50 - 73 \cos^{2} 2\varepsilon + 24 \cos^{4} 2\varepsilon + + (10 - 11 \cos^{2} 2\varepsilon) \sqrt{25 - 24 \cos^{2} 2\varepsilon} \right], N_{5}^{a} = 25 - 24 \cos^{2} 2\varepsilon - - 5 \sin 2\varepsilon \sqrt{25 - 24 \cos^{2} 2\varepsilon}, N_{5}^{b} = \frac{8}{3} \left[50 - 73 \cos^{2} 2\varepsilon + 24 \cos^{4} 2\varepsilon - - (10 - 11 \cos^{2} 2\varepsilon) \sqrt{25 - 24 \cos^{2} 2\varepsilon} \right].$$
(50)

На рис. 4 представлен оптический переход

$$J_a = 1 \rightarrow J_b = 2$$

Рис. 4. То же для оптического перехода $J_a = 1 \rightarrow J_b = 2$

в старом и новом базисе, а на рис. 5 — соответствующий ему обращенный переход

$$J_a = 2 \to J_b = 1$$

5.4. Переход $J_a = 1 ightarrow J_b = 1$

Для этого перехода на каждом уровне имеется по одному КПН-состоянию [12] (см. рис. 6):

$$|(a)1\rangle \equiv |\Psi_1^{(NC)}(a)\rangle = q_+|1,-1\rangle + q_-|1,+1\rangle,$$
 (51)

$$|(b)1\rangle \equiv |\Psi_1^{(NC)}(b)\rangle = -q_-|1, -1\rangle - q_+|1, +1\rangle.$$
 (52)

Ортогональные им состояния, взаимодействующие со светом на нижнем уровне, выражаются через состояния магнитных подуровней как

$$|(a)2\rangle \equiv |1,0\rangle, \tag{53}$$

$$|(a)3\rangle = q_{-}|1, -1\rangle - q_{+}|1, +1\rangle,$$
 (54)

а на верхнем уровне — как

$$|(b)2\rangle = -q_{+}|1, -1\rangle + q_{-}|1, +1\rangle,$$
 (55)

$$|(b)3\rangle \equiv |1,0\rangle. \tag{56}$$

Система разбивается на два независимых перехода между ПОС (см. рис. 6*б*):

$$|(a)2\rangle \rightarrow |(b)2\rangle, |(a)3\rangle \rightarrow |(b)3\rangle,$$

а также включает по одному не связанному полем КПН-состоянию на каждом уровне. Соответствующие собственные значения равны

$$\lambda_1^a = \lambda_1^b = 0, \quad \lambda_2 = \lambda_3 = \frac{1}{6}.$$

Отметим, что для данного перехода в новом базисе сохраняется двукратное вырождение по энергии (равные частоты Раби) для взаимодействующих с полем двух ПОС с не зависящим от эллиптичности полевым расщеплением.

5.5. Переход $J_a=2 ightarrow J_b=2$

По одному эллиптическому темному состоянию расположено на нижнем и верхнем уровне:

$$|(a)1\rangle = \sqrt{3} \frac{(1+\sin 2\varepsilon)}{\sqrt{N_1}} |2,-2\rangle + \sqrt{2} \frac{\cos 2\varepsilon}{\sqrt{N_1}} |2,0\rangle + \sqrt{3} \frac{(1-\sin 2\varepsilon)}{\sqrt{N_1}} |2,+2\rangle, \quad (57)$$

$$|(b)1\rangle = \sqrt{3} \frac{(1-\sin 2\varepsilon)}{\sqrt{N_1}} |2,-2\rangle + \sqrt{2} \frac{\cos 2\varepsilon}{\sqrt{N_1}} |2,0\rangle + \sqrt{3} \frac{(1+\sin 2\varepsilon)}{\sqrt{N_1}} |2,+2\rangle.$$
(58)

Им соответствуют нулевые собственные значения. Взаимодействующие со светом состояния верхнего и нижнего уровней определяются как

$$|(a)2\rangle = \frac{\sin 2\varepsilon - \sqrt{1 + 8\cos^2 2\varepsilon}}{\sqrt{N_2}} |2, -1\rangle + \frac{3\cos 2\varepsilon}{\sqrt{N_2}} |2, +1\rangle, \quad (59)$$

$$|(b)2\rangle = \frac{3\cos 2\varepsilon}{\sqrt{N_2}}|2, -1\rangle + \frac{\sin 2\varepsilon - \sqrt{1+8\cos^2 2\varepsilon}}{\sqrt{N_2}}|2, +1\rangle.$$
(60)

(*b***)**

(a)

Рис. 5. То же для оптического перехода $J_a=2 \rightarrow J_b=1$

Рис. 6. То же для оптического перехода $J_a=1 \rightarrow J_b=1$

Следующая пара векторов имеет вид

$$|(a)3\rangle = -\frac{(1-\sin 2\varepsilon) \left(3+2\sin 2\varepsilon -\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_3}}|2,-2\rangle + 2\frac{\sin 4\varepsilon}{\sqrt{N_3}}|2,0\rangle + \frac{(1+\sin 2\varepsilon) \left(3-2\sin 2\varepsilon -\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_3}} \times |2,+2\rangle, \quad (61)$$

$$|(b)3\rangle = \frac{(1+\sin 2\varepsilon) \left(3-2\sin 2\varepsilon -\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_3}} \times \\ \times |2,-2\rangle + 2\frac{\sin 4\varepsilon}{\sqrt{N_3}}|2,0\rangle - \\ -\frac{(1-\sin 2\varepsilon) \left(3+2\sin 2\varepsilon -\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_3}} \times \\ \times |2,+2\rangle. \quad (62)$$

Далее имеем пару

$$|(a)4\rangle = \frac{\sin 2\varepsilon + \sqrt{1 + 8\cos^2 2\varepsilon}}{\sqrt{N_4}}|2, -1\rangle + \frac{3\cos 2\varepsilon}{\sqrt{N_4}}|2, +1\rangle, \quad (63)$$

$$|(b)4\rangle = \frac{3\cos 2\varepsilon}{\sqrt{N_4}}|2, -1\rangle + \frac{\sin 2\varepsilon + \sqrt{1+8\cos^2 2\varepsilon}}{\sqrt{N_4}}|2, +1\rangle. \quad (64)$$

И последняя пара имеет вид

$$|(a)5\rangle = -\frac{(1-\sin 2\varepsilon)\left(3+2\sin 2\varepsilon+\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_5}} \times |2,-2\rangle + 2\frac{\sin 4\varepsilon}{\sqrt{N_5}}|2,0\rangle + \frac{(1+\sin 2\varepsilon)\left(3-2\sin 2\varepsilon+\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_5}}|2,+2\rangle, \quad (65)$$

Рис. 7. То же для оптического перехода $J_a=2 \rightarrow J_b=2$

$$|(b)5\rangle = \frac{(1+\sin 2\varepsilon) \left(3-2\sin 2\varepsilon+\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_5}} \times |2,-2\rangle + 2\frac{\sin 4\varepsilon}{\sqrt{N_5}}|2,0\rangle - \frac{(1-\sin 2\varepsilon) \left(3+2\sin 2\varepsilon+\sqrt{1+8\cos^2 2\varepsilon}\right)}{\sqrt{N_5}}|2,+2\rangle. \quad (66)$$

Здесь нормировочные коэффициенты равны

$$N_{1} = 12 - 4\cos^{2} 2\varepsilon,$$

$$N_{2} = 2 + 16\cos^{2} 2\varepsilon - 2\sin 2\varepsilon \sqrt{1 + 8\cos^{2} 2\varepsilon},$$

$$N_{3} = \frac{8}{3} \left[2 + 15\cos^{2} 2\varepsilon - 8\cos^{4} 2\varepsilon - (2 + \cos^{2} 2\varepsilon)\sqrt{1 + 8\cos^{2} 2\varepsilon} \right],$$

$$N_{4} = 2 + 16\cos^{2} 2\varepsilon + 2\sin 2\varepsilon \sqrt{1 + 8\cos^{2} 2\varepsilon},$$

$$N_{5} = \frac{8}{3} \left[2 + 15\cos^{2} 2\varepsilon - 8\cos^{4} 2\varepsilon + (2 + \cos^{2} 2\varepsilon)\sqrt{1 + 8\cos^{2} 2\varepsilon} \right],$$
(67)

Соответствующие собственные значения равны

$$\lambda_1^a = \lambda_1^b = 0,$$

$$\lambda_2 = \lambda_3 = \frac{1}{12} + \frac{1}{60}\sqrt{1 + 8\cos^2 2\varepsilon},$$

$$\lambda_4 = \lambda_5 = \frac{1}{12} - \frac{1}{60}\sqrt{1 + 8\cos^2 2\varepsilon}.$$

Как видно, для этого перехода, как и для перехода $J_a = 1 \rightarrow J_b = 1$, ненулевые собственные значения λ_i двукратно вырождены, что является общим свойством всех переходов $J \rightarrow J$ (J — целое). На рис. 7 представлены схемы этих переходов в старом и новом базисах.

3 ЖЭТФ, вып. 6 (12)

Рис.8. То же для оптического перехода $J_a = 1/2 o J_b = 1/2$

Переходы

$$J_a = J \rightarrow J_b = J$$

(*J* — полуцелое) следует рассматривать отдельно, так как для них отсутствуют КПН-состояния и используемый метод построения нового базиса оказывается неприменимым. Однако для переходов

$$J_a = 1/2 \to J_b = 1/2$$

И

$$J_a = 3/2 \rightarrow J_b = 3/2$$

в виду небольшого ранга системы линейных уравнений базис ПОС легко находится стандартными алгебраическими методами.

5.6. Переход $J_a = 1/2 \to J_b = 1/2$

Как следует из правил отбора и схемы уровней (рис. 8), для этого простейшего вырожденного перехода взаимодействие с точностью до обозначений

Рис.9. То же для оптического перехода $J_a = 3/2 \rightarrow J_b = 3/2$

уже представлено в диагональной форме, т.е. собственные состояния есть

$$|(b)1\rangle = |1/2, -1/2\rangle, \quad |(b)2\rangle = |1/2, +1/2\rangle, \quad (68)$$

$$|(a)1\rangle = |1/2, +1/2\rangle, \quad |(a)2\rangle = |1/2, -1/2\rangle, \quad (69)$$

а соответствующие собственные значения равны

$$\lambda_1 = \frac{q_-^2}{3}, \quad \lambda_2 = \frac{q_+^2}{3}.$$

Схемы переходов в старом и новом базисах представлены на рис. 8.

5.7. Переход $J_a=3/2 ightarrow J_b=3/2$

На уровнях этого перехода отсутствуют темные состояния и базис ПОС находится непосредственным решением системы линейных уравнений четвертого порядка. Все состояния нижнего и верхнего уровней с их явной зависимостью от эллиптичности имеют вид

$$|(a)1\rangle = -\frac{\sqrt{2}}{4} \times \frac{(1 - \sin 2\varepsilon + \sqrt{2 + 2\cos^2 2\varepsilon - 2\sin 2\varepsilon})}{\sqrt{N_1} q_-} |3/2, -1/2\rangle + \sqrt{\frac{6}{2}} \frac{q_+}{\sqrt{N_1}} |3/2, +3/2\rangle, \quad (70)$$

$$|(a)2\rangle = -\frac{\sqrt{2}}{4} \times \frac{(1 - \sin 2\varepsilon - \sqrt{2 + 2\cos^2 2\varepsilon - 2\sin 2\varepsilon})}{\sqrt{N_2} q_-} |3/2, -1/2\rangle + \sqrt{\frac{6}{2}} \frac{q_+}{\sqrt{N_2}} |3/2, +3/2\rangle, \quad (71)$$

_

$$|(a)3\rangle = \sqrt{\frac{3}{2}} \frac{q_-}{\sqrt{N_3}} |3/2, -3/2\rangle - \frac{\sqrt{2}}{4} \times \frac{\left(1 + \sin 2\varepsilon + \sqrt{2 + 2\sin 2\varepsilon + 2\cos^2 2\varepsilon}\right)}{\sqrt{N_3} q_+} \times |3/2, +1/2\rangle, \quad (72)$$

$$|(a)4\rangle = \sqrt{\frac{3}{2}} \frac{q_-}{\sqrt{N_4}} |3/2, -3/2\rangle - \frac{\sqrt{2}}{4} \times \frac{\left(1 + \sin 2\varepsilon - \sqrt{2 + 2\sin 2\varepsilon + 2\cos^2 2\varepsilon}\right)}{\sqrt{N_4} q_+} \times |3/2, +1/2\rangle.$$
(73)

Для верхнего уровня ПОС имеют вид

$$(b)1\rangle = -\frac{\sqrt{2}}{4} \frac{\left(1 - \sin 2\varepsilon + \sqrt{2 + 2\cos^2 2\varepsilon - 2\sin 2\varepsilon}\right)}{\sqrt{N_1} q_-} \times |3/2, +1/2\rangle + \sqrt{\frac{6}{2} \frac{q_+}{\sqrt{N_1}}} |3/2, -3/2\rangle, \quad (74)$$

$$|(b)2\rangle = -\frac{\sqrt{2}}{4} \frac{\left(1 - \sin 2\varepsilon - \sqrt{2 + 2\cos^2 2\varepsilon - 2\sin 2\varepsilon}\right)}{\sqrt{N_2} q_-} \times |3/2, +1/2\rangle + \sqrt{\frac{6}{2}} \frac{q_+}{\sqrt{N_2}} |3/2, -3/2\rangle, \quad (75)$$

$$|(b)3\rangle = \sqrt{\frac{3}{2}} \frac{q_{-}}{\sqrt{N_{3}}} |3/2, +3/2\rangle - \frac{\sqrt{2}}{4} \frac{\left(1 + \sin 2\varepsilon + \sqrt{2 + 2\sin 2\varepsilon + 2\cos^{2} 2\varepsilon}\right)}{\sqrt{N_{3}} q_{+}} \times |3/2, -1/2\rangle, \quad (76)$$

$$|(b)4\rangle = \sqrt{\frac{3}{2}} \frac{q_{-}}{\sqrt{N_{4}}} |3/2, 3/2\rangle - \frac{\sqrt{2}}{4} \frac{\left(1 + \sin 2\varepsilon - \sqrt{2 + 2\sin 2\varepsilon + 2\cos^{2} 2\varepsilon}\right)}{\sqrt{N_{4}} q_{+}} \times |3/2, -1/2\rangle.$$
(77)

Все собственные значения различны и равны

$$\begin{split} \lambda_1 &= \frac{1}{12} + \frac{1}{60} \sin 2\varepsilon + \frac{1}{30} \sqrt{2 + 2\cos^2 2\varepsilon - 2\sin 2\varepsilon},\\ \lambda_2 &= \frac{1}{12} + \frac{1}{60} \sin 2\varepsilon - \frac{1}{30} \sqrt{2 + 2\cos^2 2\varepsilon - 2\sin 2\varepsilon},\\ \lambda_3 &= \frac{1}{12} - \frac{1}{60} \sin 2\varepsilon + \frac{1}{30} \sqrt{2 + 2\cos^2 2\varepsilon + 2\sin 2\varepsilon},\\ \lambda_4 &= \frac{1}{12} - \frac{1}{60} \sin 2\varepsilon - \frac{1}{30} \sqrt{2 + 2\cos^2 2\varepsilon + 2\sin 2\varepsilon}. \end{split}$$

Нормировочные коэффициенты имеют вид

$$N_{1} = 2 + \sin 2\varepsilon + 1/2\sqrt{2} + 2\cos^{2} 2\varepsilon - 2\sin 2\varepsilon,$$

$$N_{2} = 2 + \sin 2\varepsilon - 1/2\sqrt{2 + 2\cos^{2} 2\varepsilon - 2\sin 2\varepsilon},$$

$$N_{3} = 2 - \sin 2\varepsilon + 1/2\sqrt{2 + 2\sin 2\varepsilon + 2\cos^{2} 2\varepsilon},$$

$$N_{4} = 2 - \sin 2\varepsilon - 1/2\sqrt{2 + 2\sin 2\varepsilon + 2\cos^{2} 2\varepsilon}.$$
(78)

На рис. 9 показаны схемы этого перехода в старом и новом базисах. Подставляя найденные в этом разделе собственные значения λ_j в (24), (25), получаем, что плотность вероятности нахождения атома на энергетических уровнях осциллирует во времени на r независимых частотах Раби (исключая случаи вырождения собственных значений). Их явная зависимость от эллиптичности определена соответствующими формулами для каждого конкретного перехода.

6. ЗАКЛЮЧЕНИЕ

Таким образом, из приведенных выше примеров наглядно видно, что в новом базисе ПОС меняются правила отбора для светоиндуцированных дипольных переходов между состояниями нижнего и верхнего уровней и, в отличие от базиса магнитных подуровней, устраняется светоиндуцированная когерентность между ПОС каждого из уровней, что упрощает анализ взаимодействия эллиптически-поляризованного света с вырожденными по проекциям углового момента атомными уровнями и позволяет использовать результаты простой невырожденной двухуровневой модели атома. При этом новый базис «настроен» только на поляризацию света, не зависит от интенсивности и может использоваться вместо базиса магнитных подуровней для нахождения точных решений, например, при распространении сверхкоротких поляризованных импульсов [19], для изучения эффектов электромагнитно-индуцированной прозрачности в вырожденных системах [20], в процессах рассеяния резонансного поляризованного излучения [21] и других задачах, учитывающих взаимодействие с дополнительными магнитными и электромагнитными полями как возмущение.

Нахождение явного вида базиса ПОС для произвольных значений угловых моментов продолжает оставаться актуальной задачей.

Работа выполнена при финансовой поддержке РФФИ (проект № 04-02-16488).

ЛИТЕРАТУРА

- 1. A. Kastler, J. Phys. Radium 11, 255 (1950).
- 2. D. Lenstra, Phys. Rep. 59, 3 (1980).
- G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, and C. Salomon, Phys. Rev. Lett. 70, 2249 (1993).
- S. G. Schirmer, A. I. Solom, and J. V. Leahy, J. Phys. A: Math. Gen. 35, 4125 (2002).
- V. Milner, B. Chernobrod, and Y. Prior, Phys. Rev. A 60, 1293 (1999).
- 6. А. М. Тумайкин, В. И. Юдин, ЖЭТФ 98, 43 (1990).
- 7. А. М. Башаров, А. И. Маймистов, ЖЭТФ 87, 1594 (1984); А. М. Башаров, А. И. Маймистов, Ю. М. Скляров, Опт. и спектр. 63, 707 (1987); А. М. Башаров, А. И. Маймистов, ЖЭТФ 94, 61 (1987); А. М. Башаров, А. И. Маймистов, Опт. и спектр. 68, 1112 (1990).
- В. С. Смирнов, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 96, 1613 (1989).
- A. B. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, Phys. Rev. A 69, 033410 (2004).
- А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 110, 1727 (1996).
- А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 118, 77 (2000).
- 12. А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, М. А. Ольшаный, Письма в ЖЭТФ 53, 336 (1991); ЖЭТФ 101, 1787 (1992).
- А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, Г. Ниенхаус, ЖЭТФ 114, 125 (1998).

- 14. А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, Г. Ниенхаус, ЖЭТФ 108, 415 (1995).
- 15. J. R. Morris and B. W. Shore, Phys. Rev. A 27, 903 (1983).
- 16. G. Nienhuis, Opt. Commun. 59, 353 (1986).
- 17. Н. Б. Делоне, В. П. Крайнов, Атом в сильном световом поле, Атомиздат, Москва (1978).
- A. Allen and J. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975).
- 19. А. А. Заболотский, ЖЭТФ 121, 1012 (2002).
- **20**. И. В. Зеленский, Е. А. Миронов, ЖЭТФ **121**, 1068 (2002).
- **21**. Л. П. Рапопорт, Б. А. Зон, Н. Л. Манаков, *Теория многофотонных процессов в атомах*, Атомиздат, Москва (1978).