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RESONANT TRANSMITTANCE THROUGH PERIODICALLYMODULATED FILMSZ. D. Genhev *, D. G. Dosev **Institute of Eletronis, Bulgarian Aademy of Sienes1784, So�a, BulgariaSubmitted 31 May 2004We analyze the optial transmittane at normal inidene for an eletron gas without losses. The eletrongas is supposed to have a plane parallel slab geometry and its dieletri permittivity is assumed periodiallymodulated in one diretion parallel to the interfaes. Due to the surfae plasmon polariton mode exitation,there exist resonane frequenies where the transmittane equals to unity. The number and positions of peaksare investigated analytially and a omparison with the analyti theory by Dykhne et al. [6℄ is made.PACS: 42.25.Bs, 72.15.Gd, 05.70.Jk1. INTRODUCTIONIn the past, it has been thought that subwavelengthapertures have a very low transmission e�ieny oflight [1℄. Reently, however, high transmission e�ien-ies from arrays of subwavelength strutures in metal�lms have been reported. Sine the publiation of [2℄,many experimental and theoretial studies were arriedout in order to determine the physial origin of the ex-traordinarily enhaned transmission. They foused onthe desription of ompliated eletromagneti modesof the metal, originating from the interation betweenphotons and surfae eletrons, onsidering disorderedarrays of holes in a metal �lm [3℄, organized nanopar-tiles [4℄ or periodi rough surfaes [5℄.In this paper, we restrit ourselves to the ase wherethe metal �lm oupyng the spaejzj < d2 ; �1 < x <1; ��y = 0is in a vauum enviroinment (jzj > d=2, �1 < x <1)and the dieletri permittivity has the simple form"(x) = ~"0 + ~"1 os(qx);with some presribed periodiity a = 2�=q in the x̂diretion. Only transverse magneti waves (TM-mode)(Hy(x; z); Ex(x; z); Ez(x; z)) exp(�i!t)*E-mail: zgenhev�ie.bas.bg**E-mail: dian�dosev2002�yahoo.om

are onsidered in the two-wave approximationF (x; z) = F0(z) + F1(z) os(qx);where a full analyti treatment of the ompliatedboundary value problem an be easily done. We followthe notation and the method of solution outlined in [6℄in order to obtain a lear physial understanding of thephenomenon of enhaned transmission. We also deriveonrete results for the dissipationless free-eletron gaswith ~"0 = 1� !2p!2(!p is the eletron plasma frequeny). In the futurework, these results will be extended to more realistioptial harateristis of metal �lms, inluding the ex-perimentally available data for optial onstants [7℄.2. GENERAL ANALYTIC FORMULATION OFTHE PROBLEMWe onsider the two-dimensional eletromagnetiproblem shown shematially in Fig. 1. The magnetipermeability in the whole spae is denoted by �0 andthe dieletri permittivity of the free spae is denotedby "0. The physial system onsidered in this work on-sists of a vauum (the relative dieletri permittivity is"(!) = 1) in two regions jzj > d=2 and a metal slab1296
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Fig. 1. A plane wave is inident normally on a modu-lated �lm jzj < d=2. The two arrows show the dire-tion of propagation of the beam inident from z = �1and the zero-order transmitted beam (T0 exp(ikz)) atz =1. The transmittane is de�ned as T = jT0j2(in the region jzj < d=2) haraterized by the relativedieletri funtion"(!; x) = �n2 (1� g os(qx))�1 : (1)If the modulation fator g = 0, the dieletri funtionof the slab (Eq. (1)) is assumed to be real and to sat-isfy the ondition n2 > 1 in some frequeny range. It iswithin this frequeny range that surfae-plasmon po-laritons exist. The partiular periodi x-dependenein (1) failitates the omparison with the analyti re-sults given in [6℄. The Maxwell equations in the linearharmoni approximation (exp(�i!t)),rotE(!; r) = i!�0H(!; r); (2)rotH(!; r) = �i!"0"(!; x; z)E(!; r); (3)are treated for transverse magneti waves (p-polariza-tion) E(Ex; 0; Ez), H(0; Hy; 0) under the assumption��y = 0:In the region jzj < d=2, we have�2Hy�z2 + "(x) ��x � 1"(x) �Hy�x �++ k2"(x)Hy(x; z) = 0; (4)Ex = � i!"0"(x) �Hy�z ; Ez = i!"0"(x) �Hy�x ; (5)

where k = !("0�0)1=2 = ! :Equations (1) and (4) an be written as[1�g os(qx)℄ �2Hy�z2 + ��x �(1�g os(qx)) �Hy�x ��� k2n2Hy(x; z) = 0: (6)Negleting the generation of the os(lqx) harmoniswith l higher than one and realling the Floquet theo-rem, we �ndHy �x; jzj < d2� = [A1 + 2A2 os(qx)℄ [X ℄ ++ [B1 + 2B2 os(qx)℄ [Y ℄; (7)where[X ℄ = seh�dk n2 �1��� [X1 h(knz�1)�X2 sh(knz�1)℄ ; (8)[Y ℄ = seh�dk n2 �2��� [Y1 h(knz�2)� Y2 sh(knz�2)℄ : (9)In formulas (8) and (9), X1, X2, Y1, and Y2 are arbi-trary onstants and �21;2 are dimensionless eigenvaluesgiven by [6℄�21 = 2�Q+ q212� g2 ; �22 = 2 +Q+ q212� g2 ; (10)where Q2 = q41 + 2g2(1� q21); q1 = qkn ; (11)A1, A2 and B1, B2 are eigenvetors that satisfy thefour relations A1(�21 � 1)� gA2�21 = 0; (12)�g�21A1 + 2(�21 � 1� q21)A2 = 0; (13)B1(�22 � 1)� gB2�22 = 0; (14)�g�22B1 + 2(�22 � 1� q21)B2 = 0: (15)If the modulation amplitude is small (q � 1), it isstraightforward to obtain the following expansions upto the order O(g4):A1 = 1 + g24q21 + g44q21 (2F + q�21 ); (16)2 ÆÝÒÔ, âûï. 6 (12) 1297



Z. D. Genhev, D. G. Dosev ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004A2 = � g2q21 �1� g22q21 � g24 (2F + q�21 )� ; (17)B1 = g2q21 �1 + q21 � g22 (q1 + q�11 )2++ g44 (2F + q21 + q�21 )� ; (18)B2 = 12 �1 + g22q21 (q1 + q�11 )2++ g44 (2F + 2 + q21 + q�21 )� ; (19)�21 = 1� g22q21 � g44 (2F + q�21 ); (20)�22 = 1 + q21 + g22 (2 + q21 + q�21 ) ++ g44 (2F + 2 + q21 + q�21 ); (21)where F = � (1 + q�21 )22q21 : (22)Beause of a misprint or error (reversed signs in AD2 ,BD1 ), the oe�ients in [6℄ (formula (12)), denoted withthe supersript D here, must be orreted aording tothe relationsA1 = AD1 = Q+ q21 � g2(1 + q21)q21(2� g2) ;AD2 = 2A2 = �g[2 + q21 �Q℄q21 [2� g2℄ ; (23)B1 = BD1 = �g[2 + q21 +Q℄2q21 [2� g2℄ ;BD2 = 2B2 = q21 +Q+ g2q21(2� g2) : (24)Obviously, Eqs. (5), (7), (8), and (9) imply that thetangential eletri �eld in the slab is given by!"0k Ex = ex�x; jzj < d2� = in �� f[X 0℄ (A1 � gA2 + os(qx)(2A2 � gA1)) ++ [Y 0℄ (B1 � gB2 + os(qx)(2B2 � gB1))g ; (25)where analagously to (8) and (9), we have de�ned thez-dependent funtions[X 0℄ = �1 seh�dk n�12 ��� [X1 sh(knz�1)�X2 h(knz�1)℄ ; (26)

[Y 0℄ = �2 seh�dk n�22 ��� [Y1 sh(knz�2)� Y2 h(knz�2)℄ : (27)In the vauum regions, we have the following �elds: inthe left half-spae in Fig. 1,Hy �x; z + d2 < 0� = exp(ik�+) ++ Xp=0;�1Rp exp [ik(px� �p�+)℄ ; (28)�+ = z + d2 ; p = p qk ; R1 = R�1;�p = [1� 2p ℄1=2 = iVp; Im�p = ReVp � 0; (29)and in the right half-spae in Fig. 1,Hy �x; z � d2 > 0� == Xp=0;�1Tp exp [ik(px+ �p��)℄ ; (30)where �� � z � d2 > 0; T1 = T�1:The ontinuity ondition for the tangential eletromag-neti �eld on the interfaes z = �d=2 leads to the fol-lowing four equations ontaining eight unknown quan-tities X1, X2, Y1, Y2, R0, R1, T0, T1:A1[X1 +X2t1℄ +B1[Y1 + Y2t2℄ + 2 os(qx)�� [A2[X1 +X2t1℄ +B2[Y1 + Y2t2℄℄ == 1 +R0 + 2 os(qx)R1; (31)A1[X1 �X2t1℄ +B1[Y1 � Y2t2℄ + 2 os(qx)�� [A2[X1 �X2t1℄ +B2[Y1 � Y2t2℄℄ == T0 + 2 os(qx)T1; (32)�1(A1�gA2)[X1t1�X2℄+�2(B1�gB2)[Y1t1�Y2℄++ os(qx) [�1(2A2 � gA1) [X1t1 �X2℄ ++ �2(2B2 � gB1) [Y1t2 � Y2℄℄ == �inT0 + 2nvT1 os(qx); (33)�1(A1�gA2)[X1t1+X2℄+�2(B1�gB2)[Y1t2+Y2℄++ os(qx) [�1(2A2 � gA1) [X1t1 +X2℄ ++ �2(2B2 � gB1) [Y1t2 + Y2℄℄ == in(1�R0) + 2nvR1 os(qx): (34)Here, we use the notation1298



ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004 Resonant transmittane through periodially modulated �lmst1;2 � th�knd2�1;2� ;v =r� qk�2 � 1; Re v � 0: (35)The introdution of the seh((dk n=2)�1;2) oe�ientsin (8), (9) and in (26), (27) is not obligatory, but it sim-pli�es the alulations beause only tanh-terms de�nedin (35) then simultaneously appear in all four equations(31)�(34).3. CALCULATION OF THE RESONANTTRANSMITANCE THROUGHA MODULATED SLABIt is onvenient to �rst equate the terms propor-tional to os(qx) in (31)�(34) and to eliminate the un-

knowns R1 and T1 that are not interesting in this study.Thus we derive the following two relations between theonstants (X1, X2) orresponding to the fundamentalbeam and the onstants (Y1, Y2) desribing the os(qx)mode:Y1 = k1X1 = �1(2A2 � gA1)t1 � 2nvA22nB2v � �2(2B2 � gB1)t2 X1; (36)Y2 = k2X2 = �1(2A2 � gA1)� 2nvA2t12nB2t2v � �2(2B2 � gB1) X2: (37)We note that these expressions are exat in the a-epted two-mode (F0(z) + 2F1(z) os(qx)) approxima-tion. We now equate the zero-order terms in boundaryonditions (31)�(34) (the fundamental x-independentmode); eliminating R0 and T0 from these four equa-tions, we then haveX1 = ininA1 + inB1k1 + �1(A1 � gA2)t1 + �2t2k1(B1 � gB2) ; (38)X2 = ininA1t1 + inB1k1t2 + �1(A1 � gA2) + �2k2(B1 � gB2) : (39)The transmission oe�ient is given byT0 = X1(A1 + k1B1)�X2(t1A1 + k2t2B1); (40)whih an also be written asT0 = �(q1)� �(q1)(1 + �(q1)) (1 + �(q1)) ; (41)where �(q1) and �(q1) an be written as simple fun-tions of q1, n, t1, t2, k1, k2 using formulas (16)�(21) forA1, B1, A2, B2, �1, �2 with O(g4) terms negleted,�(q1) == t1 �1+g24 (q�21 +2q�41 )�+t2k1gp1+q212 q�21in�1 + g22 q�41 + k1g2 (1 + q�21 )� ; (42)�(q1) == 1 + g24 (q�21 + q�41 ) + k2g g�212 q1 + q21in�t1�1 + g22 q�41 �+ t2k2g 1 + q�212 � : (43)We �rst onsider two trivial onsequenes of formu-las (42) and (43). If the �lm thikness vanishes(t1 = t2 = 0), we have� = 0; � =1;

and therefore T0 = 1:If there is no modulation, theng = 0; � = t1in ; � = 1int1 ;and we have the well-known resultT0(g = 0) = 2n2n h(knd) + im2 sh(knd) ;m2 = n2 � 1: (44)We next onsider the most interesting ase of a thikmetal �lm with thikness d greater than the skin depth,that is, t1 = 1� 2�1; t2 = 1� 2�2; (45)where�1 = exp(�knd); �2 = exp��kndq1 + q21 � ; (46)and �1 � 1, �2 � 1. In writting Eqs. (46), we approx-imate �1;2 from (20) and (21) as�1 = 1; �2 =q1 + q21 :Moreover, for an SPP resonane,kq = mn ; m =pn2 � 1 ;1299 2*



Z. D. Genhev, D. G. Dosev ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004as we see in what follows, and thereforeq�11 = mand�2 = exp �kndr1 + 1m2 ! = exp��kdn2m � : (47)In this regime, we derive from the de�nitions of k1;2 in(36) and (37) thatk1 = 2gm(n�m)2m(1 + n2)n2 (q�11 �m)� 4�2 � n2g22 ; (48)k2 = 2gm(n�m)2m(1 + n2)n2 (q�11 �m) + 4�2 � n2g22 : (49)It is important to note that the general formula(41) onsidered in the omplex wave-number plane(Re q1, Im q1) has two poles at the points where�(Q+1 ) = �(Q�1 ) = 1:With the aid of (48) and (49), we an show that theseomplex wave numbers are given by(Q+1 )�1 = m+ 2n2�2m(1 + n2) + g2n34m(1 + n2)2 �� �n(1+n2)�2m(n�m)(n+m3)��� ig2n5(n�m)22(1 + n2)2 ; (50)Q�1 (�2) = Q+1 (��2): (51)Two remarks are appropriate to formulas (50) and(51). The �rst remark onerns the absene of termsproportional to �1, that is, the limit t1 = 1 is appropri-ate, but the �nite penetratation depth for the os(qx)mode is ruial beause there is no resonant enhane-ment of the transmission at �2 = 0. The seond re-mark is that we neglet terms of the order O(g4) in (50)and (51). It is now lear that if we set� = (q�11 �m)2m(1 + n2)n2 == �kq � mn � 2m(1 + n2)n ; (52)then for small values of � suh that terms of the order��2, �g2 an be negleted, we have� = � � 4�2 + g2M1in[� � 4�2 + g2M2℄ ;� = � + 4�2 + g2M1in[� + 4�2 + g2M2℄ ; (53)

where M1 = m2n(n�m)� n22 ;M2 = mn2(n�m)� n22 : (54)From (41), (53), and (54), we derive the transmittaneof a dissipationless �lm in the formT = jT0j2 = 4~g4�� ~��1�2+~g4� �� ~�2+1�2+~g4� ; (55)where we have introdued the renormalized modulation~g2 = g2n2m(n�m)24�2(n2 + 1) (56)and the detuning from the surfae-plasmon polaritonfrequeny~� = �m(1 + n2)2n�2 �kq � mn �++ g2n8�2(1 + n2) �n3 + n� 2m(n�m)(n3 +m)� : (57)Due to the equality(n�m)2(n+n3+2m) � n3+n�2m(n�m)(n3+m);our formulas (56) and (57) are analogous to formulas(33) and (34) in [6℄, but �2 is given by (47) and not by� = �1 as de�ned in [6℄. Only in the limit n!1 bothformulations oinide,limn!1�n� n2m� = 0:The physial e�ets assoiated with the two smallparameters �1 and �2 were not disussed in [6℄. Al-though this was not written expliitly, these authorsassumed that n � 1 in order to onsider the in�ueneof a single small parameter � = �1 � �2. Our treat-ment of the strong skin e�et in the modulated slab(summarized in formulas (55)�(57)) is free of the re-strition n � 1, that is, the formulas are valid for all1 < n < 1 provided of ourse that the less restritiveonditions written after formula (46) are ful�lled. Ournew and (as we believe) more orret analyti formu-lation (55)�(57) leads to appreiable di�erenies fromthe previously proposed analyti formulation [6℄ for aonrete plasma parameterization given in Se. 4.1300



ÆÝÒÔ, òîì 126, âûï. 6 (12), 2004 Resonant transmittane through periodially modulated �lms4. TRANSMISSION OF ELECTROMAGNETICWAVES THROUGH A SLAB OFCOLLISIONLESS PLASMAAs a spei� example, we onsider the ase wheren2 = !2p!2 � 1 = 2� x2x2 ;! = !pp2 x; 0 < x < 1: (58)If we introdue the dimensionless parametersD = !pd ; p = !pq ; (59)the zero-order resonane frequeny that follows fromthe ondition kq = mnis equal to the following value of x:x0 =s1 + 2p2 �r1 + 4p4 ; 0 < x0 < 1: (60)The value x0(p) is de�ned for all 0 < p < 1. Inthe speial ase where p � 1, x0(p) is very small, i.e.,x0 � p2 =p. On the other hand, if p � 1, x0 is verylose to one, x0 � 1� p28 :It is instrutive to note that�2(x) = exp��D1� x2=2p1� x2 � (61)tends to the onstant value exp(�D) for small x, butif x is lose to one, then�2 � exp��Dp � ; (62)whereas �1(x = 1) = exp�� Dp2 � ;and therefore using the result in [6℄ for p � 1 givessubstantial deviations from the present theory. We on-sider the number and exat positions of points wherethe transmittane T is equal to one. We �rst note thatformula (55) an be represented in the form2pT�1 � 1 =  ~�~g !2�~g�2+~g2 = A(n; p;D; g): (63)In writting Eq. (63), we have �xed! = !p=p1 + n2 ;

also having de�nitions (59) in mind. The transenden-tal equation A(n; p;D; g) = 0 (64)an be solved numerially or approximately by analytitreatment using the fat that g � 1 and D is of theorder of one, and hene�2(n) = exp�� Dn2pn4 � 1 �� 1 (65)for every n > 1. An analysis of Eq. (64) for the modelin [6℄ must be based on�1(n) = exp�� Dnpn2 + 1 �� 1 (66)instead of Eq. (65). Using formulas (56) and (57), werewrite Eq. (64) asa2(n) = exp �� 2Dn2pn4 � 1 �+ 2g2a(n)b(n)�� g4 �b2(n) + 2(n)� = B(n); (67)where a(n) = 1 + n22n m � p(1 + n2)1=2 � mn � ;m2 � n2 � 1; (68)b(n) = n(n�m)2(n3 + n+ 2m)8(1 + n2) ; (69)(n) = n2m(n�m)24(1 + n2) : (70)If we neglet the right-hand side of Eq. (67), we de-rive the zero-order solution n0, given by formula (60),that is, n0 =sp2 +pp4 + 42 : (71)If B(n0) > 0, we �nd two formal maxima of thetransmittane (Tmax = 1) at points n�, wheren� = n0 � 2n301 + n40 pB(n0) ; (72)within the �rst-order perturbation theory. The minussign in Eq. (72) an lead to a nonphysial solutionn� < 1 if the orretion term in (72) is su�ientlylarge. In the limiting ase where B(n) < 0 for everyn, the transmittane never attains a maximum valueof one. Nevertheless, the transmittane an have max-imum values that are smaller than one (Fig. 2). Thisquantitative analysis was on�rmed by numerial al-ulations shown in Fig. 2. Here, D = 1, g = 0:2, and1301
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