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MODULATIONAL INSTABILITIESIN NEUTRINO�ANTINEUTRINO INTERACTIONSM. Marklund a*, P. K. Shukla b;
, G. Bets
hart a;d,L. Sten�o 
, D. Anderson a, M. Lisak aaDepartment of Ele
tromagneti
s, Chalmers University of Te
hnologySE-412 96, Göteborg, SwedenbInstitut für Theoretis
he Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bo
humD-44780, Bo
hum, Germany
Department of Plasma Physi
s, Umeå UniversitySE-901 87, Umeå, SwedendDepartment of Mathemati
s and Applied Mathemati
s, University of Cape Town7701, Rondebos
h, Cape Town, South Afri
aSubmitted 13 January 2004Using a semi
lassi
al approa
h, we analyze the 
olle
tive behavior of neutrinos and antineutrinos in a denseba
kground. Applying the Wigner transform te
hnique, we show that the intera
tion 
an be modeled by a
oupled system of nonlinear Vlasov-like equations. From these equations, we derive a dispersion relation forneutrino�antineutrino intera
tions on a general ba
kground. The dispersion relation admits a novel modula-tional instability. Moreover, we investigate the modi�
ations of the instability due to thermal e�e
ts. Theresults are examined, together with a numeri
al example, and we dis
uss the indu
ed density inhomogeneitiesusing parameters relevant to the early Universe.PACS: 13.15.+g, 14.60.Lm, 97.10.Cv, 97.60.Bw1. INTRODUCTIONNeutrinos have fas
inated people ever sin
e theywere �rst introdu
ed by Pauli in 1931. Sin
e then,neutrinos have gone from hypotheti
al to an extremelypromising tool for analyzing astrophysi
al events, andneutrino 
osmology is one of the hottest topi
s in mod-ern time due to the dis
overy that neutrinos may bemassive [1℄. Be
ause of its weak intera
tion with otherparti
les, neutrinos 
an travel great distan
es withoutbeing a�e
ted appre
iably by material obsta
les. They
an therefore give us detailed information about eventstaking pla
e deep within, e.g., supernovæ. Further-more, be
ause the neutrinos de
oupled from matter ata redshift z of the order 1010, as 
ompared to z � 103for photons, it is possible that neutrinos 
ould give us*E-mail: marklund�elmagn.
halmers.se

a detailed understanding of the early Universe, if su
ha signal 
ould be dete
ted [2℄. Massive neutrinos havealso been a possible 
andidate for hot dark matter ne
-essary for explaining 
ertain 
osmologi
al observations,su
h as rotation 
urves of spiral galaxies [3℄. There-fore, massive neutrinos 
ould have a profound in�uen
eon the evolution of our Universe. Unfortunately, dueto the Tremaine�Gunn bound [4℄, the ne
essary massof the missing parti
les (if these are fermions) for ex-plaining the formation of dwarf galaxies seems to makeneutrinos of any spe
ies unlikely single 
andidates fordark matter. As a remedy to this problem, intera
tinghot dark matter has been suggested [5, 6℄, be
ause theintera
tion prevents free-streaming smoothing of small-s
ale neutrino inhomogeneities. Thus, dark matter inastrophysi
s not only is a mystery but also plays anessential role in determining the dynami
s of the Uni-verse, its large-s
ale stru
tures, the galaxies and super-
lusters. However, so far, the suggested �sti
ky� neu-14
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tionstrino models have not been su

essful in dealing withthe dwarf galaxy problem [5℄.A �rst su

essful indi
ation that neutrinos have anonzero mass 
ame in 1998 through laboratory ex-periments of atmospheri
 neutrinos and their os
illa-tions [7℄. Although the allowed neutrino masses en-
ompass a wide range1), it is 
urrently believed thatneutrinos have masses below 2 eV. This 
on
lusion isfurther supported by independent 
osmologi
al obser-vations (see, e.g., [9℄). Thus, the masses of neutri-nos are indeed very small, and the 
lassi
al analysisby Tremaine and Gunn would therefore indi
ate thatneutrinos 
an in no way be 
onsidered a sole 
andi-date for dark matter. This 
on
lusion is reanalyzed inthis paper within the ele
tro-weak framework, whereneutrino�neutrino intera
tions o

ur as a natural 
on-sequen
e of the theory.We thus 
onsider the nonlinear intera
tion betweenneutrinos and antineutrinos in the lepton plasma of theearly Universe, adopting a semi
lassi
al model. Neu-trinos and antineutrinos intera
t with dense plasmasthrough the 
harged and neutral weak 
urrents aris-ing from the Fermi weak nu
lear intera
tion for
es.Charged weak 
urrents involve the ex
hange of the
harged ve
tor bosons asso
iated with the pro
essesinvolving intera
tions between leptons and neutrinosof the same �avor, while neutrino weak 
urrents in-volve the ex
hange of the neutral ve
tor bosons asso
i-ated with pro
esses involving neutrinos of all types in-tera
ting with arbitrary 
harged and neutral parti
les.Asymmetri
 �ows of neutrinos and antineutrinos in theearly Universe plasma may be 
reated by the pondero-motive for
e of nonuniform intense photon beams or bysho
k waves. Here, using an e�e
tive �eld theory ap-proa
h, a system of 
oupled Wigner�Moyal equationsfor nonlinearly intera
ting neutrinos and antineutrinosis derived, and it is shown that these equations admit amodulational instability. We then dis
uss the relevan
eof our results in the 
ontext of the dark matter prob-lem, and it is moreover suggested that the nonlinearlyex
ited �u
tuations 
ould be used as a starting pointfor obtaining a better understanding of the pro
ess ofgalaxy formation. It turns out that the short-time evo-lution of the primordial neutrino plasma medium in thetemperature range 1MeV < T < 10MeV is governedby 
ollisionless 
olle
tive e�e
ts involving relativisti
neutrinos and antineutrinos.1) Some estimates even support the notion that neutrinos may
ontribute up to 20% of the matter density of the Universe [8℄.

2. DISPERSION RELATION AND THEMOTION OF NEUTRINO BUNCHESAs a primer, we study the impli
ation of theknown dispersion of neutrinos on a thermal neu-trino/antineutrino ba
kground, using the eikonal rep-resentation and the WKBJ approximation.We suppose that a single neutrino (or antineu-trino) moves in a fermioni
 sea 
omposed of neutrino�antineutrino mixture. The energy E of the neutrino(antineutrino) is then given by (see, e.g., [10, 11℄)E =pp2
2 +m2
4 + V�(r; t); (1)where p is the neutrino (antineutrino) momentum, 
the speed of light in va
uum, and m is the neutrinomass. The e�e
tive potential for a neutrino moving ona ba
kground of its own �avor and in thermal equilib-rium is given by [10℄ (see also [12�15℄)2)V�(r; t) = �2p2GF (n� �n); (2a)while the potential for a neutrino moving on a ba
k-ground of a di�erent �avor isV�(r; t) = �p2GF (n� �n); (2b)where GF(~
)3 � 1:2 � 10�5GeV�2;GF is the Fermi 
onstant, n (�n) is the density of theba
kground neutrinos (antineutrinos), and + (�) rep-resents the propagating neutrino (antineutrino). Ex-pressions (2) are valid in the rest frame of the ba
k-ground. As seen from (1) and (2), while neutrinosmoving in a ba
kground of neutrinos and antineutrinos
hange their energy by an amount � GF (n��n), the an-tineutrinos 
hange their energy by � �GF (n� �n) [16℄.The extra fa
tor of 2 in (2a) 
ompared to (2b) 
omesfrom ex
hange e�e
ts between identi
al parti
les [13℄.Relation (1) 
an be interpreted as a dispersion rela-tion for relativisti
 and nonrelativisti
 neutrinos, withthe identi�
ations E = ~! and p = ~k, i.e.,! = 
rk2 + m2
2~2 + V�~ ; (3)where ~ is the Plan
k 
onstant divided by 2�. FromEq. (3), using the eikonal representationE ! ~!0 � i~��t ; p! ~k0 + i~r2) For a more detailed des
ription of the potential, see the nextse
tion.15
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hart et al. ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004and the WKBJ approximation [17, 18℄�����	�t ����� !0j	j; jr	j � jk0jj	j;we obtain a S
hrödinger equation for slowly varyingneutrino (antineutrino) wave pa
kets 	(r; t) modu-lated by long-s
ale density �u
tuations (i.e., neutrinobun
hes)3)i� ��t + vg � r�	++ ~
22E0 �r2��1�m2
4E20 � (n0 � r)2�	�V�~ 	 = 0; (4)where vg = 
k0(k20 +m2
2=~2)�1=2is the group velo
ity4) of relativisti
 neutrinos andantineutrinos, whi
h have similar energy spe
tra, E0is the neutrino energy in the absen
e of intera
tions,n0 = k0=jk0j, and k0 is the va
uum waveve
tor. Wenow suppose that the neutrino bun
hes themselves arenearly in thermal equilibrium (to be quanti�ed in thenext se
tion). Then, we have the 
ase of self-intera
tingneutrinos and antineutrinos, and the densities in thepotential V� are given in terms of the sumsn = MXi=1 ni = MXi=1hj	i+j2i;�n = NXi=1 �ni = NXi=1hj	i�j2i; (5)where 	i+ and 	i� are the neutrino and antineutrinowave pa
kets respe
tively (with i numbering the wavepa
kets) and the angular bra
ket denotes the ensem-ble average. In this 
ase, the relativisti
 neutrino andantineutrino wave pa
kets are 
omoving with the ba
k-ground, and Eq. (4) thus yieldsi�	i��t + ~
22E0 �r2? + m2
4E20 r2jj�	i� �� V�~ 	i� = 0; (6)3) See also Ref. [16℄ for a similar treatment of neutrino�ele
tronintera
tions.4) We note that when the s
alelength of the density inho-mogeneity is 
omparable to the wavelength of the modulatedneutrino wave pa
kets, we must modify the 
oupled S
hrödingerequations to a

ount for di�ering group velo
ities of neutrinosand antineutrinos in a fermioni
 sea. We expe
t a shift in themomentum of Eq. (13) and a slower growth rate of the modula-tional instability of neutrino quasiparti
les involving short-s
aledensity inhomogeneities.

wherer2? = r2 � (n0 � r)2 and r2jj = (n0 � r)2:Expressions (2a) and (5) reveal that self-intera
tionsbetween relativisti
 neutrinos and antineutrinos pro-du
e a nonlinear asymmetri
 potential in Eq. (6). Byfurther res
aling the 
oordinate along n0, Eq. (4) 
an�nally be written as the 
oupled systemi�	i��t + �2r2	i� � �(n� �n)	i� = 0; (7)where � = ~
2E0 ; � = 2p2GF~for neutrinos moving on the same �avor ba
kground.Equation (7) shows that this approa
h 
an leadto some interesting e�e
ts. The 
ase of a single self-intera
ting neutrino bun
h shows that the formationof dark solitary stru
tures is possible. Furthermore,the slightly more 
ompli
ated 
ase of two intera
tingbun
hes, of either the neutrino�neutrino or neutrino�antineutrino type, 
an result in splitting and fo
usingthe wave pa
kets [19℄.3. KINETIC DESCRIPTIONIn the pre
eding se
tion, we investigated the 
aseof a neutrino bun
h 
lose to thermal equilibrium. Ingeneral, this may of 
ourse not be the 
ase, and Eq. (2)must be modi�ed. The more pre
ise form of the po-tential V� for equal spe
ies due to neutrino forwards
attering is given by [20℄V�(t; r;p; fi�) = �2p2GF Z dq (1� p̂ � q̂)�� " MXi=1 fi+(t; r;q) � NXi=1 fi�(t; r;q)# ; (8)where hatted quantities denote the 
orresponding unitve
tors and fi+(t; r;q) (fi�(t; r;q)) is the neutrino(antineutrino) distribution fun
tion 
orresponding tobun
h i. The distribution fun
tions are taken to benormalized su
h thatni(t; r) = Z dq fi+(t; r;q);�ni(t; r) = Z dq fi�(t; r;q); (9)16
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tionswhere ni (�ni) is the number density of the ith neutrino(antineutrino) bun
h.We �rst note that when the distribution is thermal,potential (8) redu
es exa
tly to (2a). Se
ond, when theneutrinos have an almost thermal distribution, i.e., the
orresponding distribution fun
tion 
an be expressedas (dropping the indi
es for notational simpli
ity)f(t; r;p) = f0(p) + Æf(t; r;p); jÆf j � jf0j;we obtain the following form of the potential:V�(t; r;p; fi�) = �2p2GF"(n� �n)�� Z dq (p̂ � q̂) MXi=1 Æfi+ � NXi=1 Æfi�!#: (10)The last term is small and may therefore be negle
ted,and we obtainV�(t; r) � �2p2GF (n� �n);in a

ordan
e with expressions (2a), thus justifyingequation of motion (7).Now, we de�ne a distribution fun
tion for the 
ol-le
tive neutrino states by Fourier transforming the two-point 
orrelation fun
tion for 	�, a

ording to [21℄fi�(t; r;p) = 1(2�~)3 Z dy exp(ip � y=~)�� h	�i�(t; r+ y=2)	i�(t; r� y=2)i; (11)where p represents the momentum of the neutrino (an-tineutrino) quasiparti
les (we note that the ensembleaverage was not present in the original de�nition [21℄,but has important 
onsequen
es when the wave pa
kethas a random phase). With de�nition (11), it followsthat hj	i�(t; r)j2i = Z dp fi�(t; r;p): (12)Thus, using (11) and (6) together with potential (8),we obtain the generalized Wigner�Moyal equation forfi�,�fi��t + 
2pE0 � �fi��r �� 2V�~ sin"~2   ���r � �!��p � ���p � �!��r!# fi� = 0; (13)

where the sin operator is de�ned in terms of its Taylorexpansion, and the arrows denote the dire
tion of op-eration. In the 
ase of potential (2a), the last term inthe sin operator drops out, and Eq. (13) redu
es to thestandard Wigner�Moyal equation [21℄. Equation (13)was obtained in Ref. [20℄ using the density matrix ap-proa
h.Retaining only the lowest-order terms in ~ (i.e., ta-king the long-wavelength limit), we obtain the 
oupledVlasov equations� ��t +�
2pE0 + �V��p � � ��r� fi� �� �V��r � �fi��p = 0: (14)The term �V�=�p represents the group velo
ity.While higher-order group velo
ity dispersion is presentin (13), this is not the 
ase in (14). Thus, informa-tion is partially lost by using Eq. (14). Furthermore,while Eq. (14) preserves the number of quasiparti
les,Eq. (13) shows that this 
on
lusion is in general nottrue, i.e., the parti
le number in a phase-spa
e volumeis not 
onstant, and the higher-order terms �nV�=�rnmay moreover 
ontain vital short-wavelength informa-tion. Equations similar to (14) have been used to studyneutrino�ele
tron intera
tions in astrophysi
al 
ontexts[11℄.We now suppose that we have small amplitude per-turbations on a ba
kground of 
onstant neutrino andantineutrino densities ni = ni0 and �ni = �ni0, respe
-tively,fi�(t; r;p) = fi0�(p) ++ Æfi�(p) exp[i(K � r�
t)℄; (15)and jÆfi�j � jfi0�j, where K and 
 are the pertur-bation waveve
tor and frequen
y, respe
tively. Thus,Eqs. (13) givei"
�
2p �KE0 �2i~ V0� sin � i~2  ���p �K!# Æfi�++ 2~ÆV� sin i~2 K � �!��p! fi0� = 0; (16)where ÆV� = V�(t; r;p; Æfi�) and V0� == V�(t; r;p; fi0�) from Eq. (8). Eliminating Æfi�from (16), using ÆV� = �ÆV+, we have2 ÆÝÒÔ, âûï. 1 (7) 17
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hart et al. ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004ÆV+(p) = 4p2 iGF~ Z dq (1� p̂ � q̂) ÆV+(q)�� 266664 MXi=1 sin i~2 K � �!��q! fi0+(q)
�
2q �KE0 �2i~ V0+(q) sin i~2  ���q �K! + NXi=1 sin i~2 K � �!��q! fi0�(q)
�
2q �KE0 �2i~ V0�(q) sin i~2  ���q �K!377775 : (17)Assuming that Æfi�(p) is a symmetri
 fun
tion of p, whi
h is a reasonable physi
al restri
tion, implies that ÆV�is independent of p, and Eq. (17) simpli�es to the dispersion relation1 = 4p2 iGF~ Z dq 2664 MXi=1 sin� i~2 K � ��q� fi0+(q)
� 
2q �KE0 � 2i~ sin� i~2 K � ��q�V0+(q)++ NXi=1 sin� i~2 K � ��q� fi0�(q)
� 
2q �KE0 � 2i~ sin� i~2 K � ��q�V0�(q)3775 ; (18)where we have dropped the arrows indi
ating the dire
tion of operation. We note that if the ba
kground distri-bution is thermal, V0� is independent of p, and the last term in the denominators of Eq. (18) vanishes.3.1. The one-dimensional 
aseThe simplest way to analyze dispersion relation (18) is to redu
e the dimensionality of the problem. Wetherefore �rst 
onsider the one-dimensional 
ase, where we may use the identity2 sin� i~K2 ��p�h(p) = i �h�p+ ~K2 �� h�p� ~K2 ��in order to rewrite dispersion relation (18) as1 = �2p2GF~ Z dq( MXi=1 fi0+(q + ~K=2)� fi0+(q � ~K=2)
� 
2qK=E0 +�+(q) + NXi=1 fi0�(q + ~K=2)� fi0�(q � ~K=2)
� 
2qK=E0 +��(q) ) ; (19)where we have introdu
ed ��(q) � 1~ �V0� �q + ~K2 �� V0� �q � ~K2 �� :In the 
ase of monoenergeti
 beams, i.e.,fi0+(p) = ni0Æ(p� pi0); fi0�(p) = �ni0Æ(p� �pi0);18
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tionsEq. (19) redu
es to1 = �2p2GF~ ( MXi=1 ni0 ��~
2K2E0 +�+�pi0 + ~K2 ���+�pi0 � ~K2 ���� ��
� 
2pi0KE0 �2 ��~
2K22E0 �2 +�
� 
2pi0KE0 ���+�pi0 + ~K2 �+�+�pi0 � ~K2 ��++ ~
2K22E0 ��+�pi0 + ~K2 ���+�pi0 � ~K2 ��+�+�pi0 + ~K2 ��+�pi0 � ~K2 ���1 ++ NXi=1 �ni0 ��~
2K2E0 +����pi0 + ~K2 ������pi0 � ~K2 ���� ��
� 
2�pi0KE0 �2 ��~
2K22E0 �2 +�
� 
2�pi0KE0 ������pi0 + ~K2 �+����pi0 � ~K2 ��+~
2K22E0 �����pi0 + ~K2 ������pi0 � ~K2 ��+����pi0 + ~K2 �����pi0 � ~K2 ���1); (20)where V0�(p) = �2p2GF "(n0 � �n0)� sgnp MXi=1 ni0 sgnpi0 � NXi=1 �ni0 sgn�pi0!# (21)by Eq. (8).We 
onsider the simplest 
ase of intera
ting neutrinos and antineutrinos with M = N = 1. We assume thatthey have equal densities n0 = �n0 and are 
ounter-propagating, i.e., p0 = ��p0 > 0. From (21), we then obtain thepotential V0�(p) = �4p2GF sgnpn0; (22)while Eq. (20) yields��~
2K2E0 � 2�"�8<:"�
� 
2p0KE0 �2 ��~
2K22E0 �2 � 2�"��
� 
2p0KE0 �� ~
2K22E0 �#�1 ++ "�
 + 
2p0KE0 �2 ��~
2K22E0 �2 + 2�"��
 + 
2p0KE0 �+ ~
2K22E0 �#�19=; = 1; (23)where � = 2p2GFn0~ ;" = 1� sgn(p0 � ~K) =8><>: 0; p0 > ~K;1; p0 = ~K;2; p0 < ~K:Thus, for " = 0, the growth rate is given by (see Figs. 1 and 2)�2K2 =s4v2�~
2K2E0 �2 + 4v2v2F + v4F � v2 � v2F ��~
2K2E0 �2 ; (24)
19 2*
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hart et al. ÆÝÒÔ, òîì 126, âûï. 1 (7), 2004where � = �i
 is the instability growth rate andv2F � 2p2GFn0
2=E0:We also note that as expe
ted, the instability disap-pears in the limit v ! 0, just stating the well-knownfa
t that there must be a nonzero relative velo
ity be-tween the beams in order for the instability to o

ur.Be
ause �2 is positive, we have� vvF �2 � 2 < � ~
2K2E0vF �2 < � vvF �2 ; (25)i.e., `0 < ` < `0(1� 2v2F =v2)�1=2; (26)where we have introdu
ed the length s
ales` = 2�K ; `0 = ~
22E0v :Thus, a higher neutrino momentum 
an retain a smallerinstability length s
ale. It is 
lear from (24) that (i) theinstability remains for arbitrary velo
ities (see Figs. 1and 2), and (ii) the higher the neutrino velo
ity, thesmaller the 
orresponding instability length s
ale `.3.2. Partial in
oheren
e and thermal e�e
tsPartial in
oheren
e 
an in general lead to a lowergrowth rate, similar to the inverse Landau damping.We 
onsider the following example of the results ofsto
hasti
 e�e
ts (e.g., thermal �u
tuations). Let theindetermina
y of the neutrino 
olle
tive state manifestitself in a random phase '(x) of the ba
kground wavepa
ket, with the width �p de�ned a

ording tohexp(�i'(x+y=2)) exp(i'(x�y=2))i = exp(��pjyj=~):Due to this random spread, the modulational instabil-ity is damped, as we show below. The Wigner fun
tion
orresponding to the random phase assumption is givenby the Lorentz distributionf0(p) = n0� �p(p� p0)2 +�p2 : (27)With this, we obtain Eq. (24) with�! �D +�
2pK=E0;where �D is the redu
ed growth rate. Thus, we see thatthe broadening tends to suppress the growth. More-over, a positive growth rate �D requires that2v�p~� < `̀0 ; (28)

where � is given by Eq. (24). Hen
e, the general prop-erty of a spread in momentum spa
e, here exempli�edby a random phase, is to put bounds on the modula-tional instability length s
ale `.In
oherent e�e
ts among the neutrinos and antineu-trinos 
an also be approa
hed for a ba
kground obeyingthe Fermi�Dira
 statisti
s, i.e.,f0�(p) = 
n0ln 4kBT� �1 + exp� 
jpjkBT����1 ; (29)where we set M = N = 1 and assume n0 = �n0. Here,we have negle
ted the mass of the neutrinos (whi
hleads to the 
orre
t result to the lowest order). Forsimpli
ity, we assume that T� = T , and therefore dis-persion relation (19) takes the form1 = �4p2 
GFn0ln 4~kBT 1Z�1 dp �
� 
2pKE0 ��1 �� "�1 + exp�
jp+ ~K=2jkBT ���1++�1 + exp�
jp� ~K=2jkBT ���1# : (30)Dispersion relation (30) 
annot be solved analyti
ally,but it 
an be expressed as1 = �Q [P(I(
n;Kn)) + i�g(
n;Kn)℄ ; (31)where P(I(
n;Kn)) is the prin
ipal value of the inte-gralI = 1Z0 dx (1 + ex)�1 ��� 
n+K2n(
n+K2n)2�K2nx2+ 
n�K2n(
n�K2n)2�K2nx2 � ; (32)and g = g+ + g�, whereg�(
n;Kn) = 
n �K2n1 + exp(j
n �K2nj=p2Kn) ; (33)Q � 4ln 4 2p2GFn0kBT E0kBT ;and we have introdu
ed the dimensionless variables
n � ~E0(kBT )2
; Kn � ~
p2 kBT K:The 
onstant Q gives the ratio of the potential energy
ontribution of the ba
kground and the individual neu-trino energy to the thermal energy of the ba
kground.20
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h the instability o

urs. The fun
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onstant along the 
ontours and is plotted in terms of the variables (vF =v)2 and (~K=4�m
v)2. Outside the 
ontours,�2 < 0Furthermore, E0 � kBT , thus simplifying the expres-sion for Q. The 
ontributions from real and imaginaryparts to the dispersion relation are plotted in Figs. 3and 4, respe
tively. We note that for very short lengths
ales, i.e., large K, the quantity 
n � K2n be
omesnegative, and the imaginary part in Eq. (31) 
hangessign, whi
h 
annot be seen from the long-wavelengthlimit equation (14). This behavior 
an in prin
iplelead to growth instead of damping of the perturba-tions (see Ref. [22℄ for a general dis
ussion of this be-havior). We 
an obtain a quantitative measure of thegrowth/damping rate as follows. For any �xed Kn0,the dimensionless growth/damping rate�n = �i Im
n


an be expressed as (with the value at 
n0 denotedby 0)�n == � �Q�1+P(I0)� (�g=�
n0)�g0(�P(I)=�
n0)�2 (�g=�
n0)2+(�P(I)=�
n0)2 (34)to the �rst order around (
n0;Kn0). Therefore, �n > 0if �Q�1 +P(I0)� �� ln g�
n0� > �P(I)�
n0 :Moreover, using values given in Se
. 4, one 
an showthat Q�1 � 3 �109. Thus, Q�1 dominates the 
ontribu-tion to the growth/damping rate over a wide range of21
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Fig. 2. The same plot as in Fig. 1, but for " = 2(
n;Kn), and a positive growth rate is implied as longas �g=�
n0 > 0.4. APPLICATIONSAs a model for hot dark matter, massive neutrinoshave for some time been one of the prime 
andidates,but as su
h they have fa
ed the problem of the s
aleof the inhomogeneities that they 
an support. Due tothe 
onservation of phase-spa
e density, the Tremaine�Gunn limit 
onstrains the neutrino mass for isother-mal spheres of a given size. For dwarf galaxies, forwhi
h there is ample eviden
e of dark matter [23℄, thene
essary mass of the neutrino is un
omfortably large[4, 24℄. On the other hand, as pointed out in [5℄, in-tera
ting dark matter 
an in prin
iple 
hange this pi
-ture. Here we see from Eq. (26) that as the neutrinomomentum in
reases, the typi
al length s
ale ` of theinhomogeneity that 
an be supported by the modula-tional instability de
rease. From the de�nition of `0,we note that as v tends to 
, `0 ! 0, and due toEq. (26), the allowed s
ale of inhomogeneity be
omes

squeezed between two small values. On the other hand,if v � vF (a 
ondition stating that the neutrino numberdensity must rea
h extreme values), the upper inhomo-geneity s
ale limit diverges. A minimum requirementfor the e�e
t to be of importan
e is that the instabil-ity growth rate is larger than the Hubble parameterH . An estimate of the growth rate 
an be obtainedas follows. At the onset of �free streaming� of neutri-nos (i.e., their de
oupling from matter and radiation)at z � 1010, the neutrino number density 
an be es-timated as n0 � 2:1 � 1038m�3 (see, e.g., [25℄). Fur-thermore, we assume that the neutrino mass is in therange m � 1 eV, and �nd vF � 9 �10�4E�1=20 m=s. Thetemperature of the neutrinos, given byT� = (4=11)1=3T0(1 + z)at neutrino de
oupling (with T0 being the present dayCMB temperature) [25℄ is T� � 2 � 1010K. Thus,the thermal energy is roughly �ve orders of magnitudegreater than the assumed rest mass of the neutrino,and in this sense the neutrinos 
an be well approxi-mated as ultra-relativisti
. In this 
ase, using values of22
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Fig. 3. A 
ontour plot of the Cau
hy prin
ipal value P(I(
n; Kn)) as a fun
tion of the dimensionless variables 
n andKn. We note that P(I(
n; Kn)) � 0, being largest for small 
n and Kn, and approa
hing zero at in�nity. The uppermost
ontour has P(I(
n; Kn)) = 0(~
2K=2E0vF )2 in the middle range of inequality (25),we obtain from Eq. (24) that� � 2p2GFn0~ � 16 � 1010 s�1for the values spe
i�ed above. With the 
riti
al densityassumed for the Universe, the Hubble time be
omesH�1 � H�10 (1 + z)�3=2 � 5 � 102 sat the redshift 1010, and therefore �=H � 1.Although the two-stream instability may seem 
on-trived as a 
osmologi
al appli
ation, the important is-sue displayed by this example is the nongravitationalgrowth of inhomogeneities, given a small perturbationof a homogeneous, although anisotropi
, ba
kground.The 
riti
ism of neutrinos as dark matter 
andidatesis in parti
ular based on the fa
t that they are ultra-relativisti
 for long times, with free-streaming smooth-ing as a result [4℄. A

ording to this, we would have toa

ept a top-down s
enario for stru
ture formation, ifneutrinos would indeed be the missing dark matter [15℄.These arguments are presented with the prerequisitethat only gravitational instabilities are of importan
e

after neutrino de
oupling. Other instabilities, su
h asthe one presented in this work, 
ould in prin
iple alterthis pi
ture, loosening the bounds set by the Tremaine�Gunn limit. The fa
t that the growth rate ex
eeds theinverse of the Hubble time by many orders of magni-tude makes it 
lear that the me
hanism may be of someimportan
e. Moreover, the analogous estimate for theFermi�Dira
 ba
kground, although done in a simplis-ti
 manner, indi
ates that the growth of the large-Kperturbations may be of importan
e. Furthermore, al-though we here have used parameters relevant to a 
os-mologi
al setting, it 
ould also be of interest to usethe 
urrent formalism as a tool to investigate neutrinointera
tions within supernovæ, where the two-streaminstability s
enario may o

ur as a more natural ingre-dient than perhaps within 
osmology.5. CONCLUSIONWe have 
onsidered the nonlinear 
oupling betweenneutrinos and antineutrinos in a dense plasma. Wehave found that their intera
tions are governed by asystem of Wigner�Moyal equations, whi
h admit a23
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0Fig. 4. A 
ontour plot of the 
ontribution g(
n; Kn) of the poles to integral (30) as a fun
tion of the dimensionless variables
n and Kn. The darker areas represent negative values, the lighter positive values, and g is zero on the 
ontour emanatingfrom (
n; Kn) = (0; 1:8)modulational instability of the neutrino/antineutrinobeams against large-s
ale (in 
omparison with theneutrino wavelength) density �u
tuations. Physi
ally,the instability arises be
ause interpenetrating neutrinoand antineutrino beams are like quasiparti
les, 
arry-ing free energy that 
an be 
oupled to inhomogeneitiesdue to a resonant quasiparti
le�wave intera
tion thatis similar to the Cherenkov intera
tion. Nonlinearlyex
ited density �u
tuations 
an be asso
iated with theba
kground inhomogeneity of the early Universe, andpossibly 
ountera
t the free-streaming smoothing ofthe small-s
ale primordial �u
tuations, thus makingmassive neutrinos plausible as a 
andidate for hot darkmatter.This resear
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