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Using a semiclassical approach, we analyze the collective behavior of neutrinos and antineutrinos in a dense
background. Applying the Wigner transform technique, we show that the interaction can be modeled by a
coupled system of nonlinear Vlasov-like equations. From these equations, we derive a dispersion relation for
neutrino—antineutrino interactions on a general background. The dispersion relation admits a novel modula-
tional instability. Moreover, we investigate the modifications of the instability due to thermal effects. The
results are examined, together with a numerical example, and we discuss the induced density inhomogeneities

using parameters relevant to the early Universe.
PACS: 13.15.+g, 14.60.Lm, 97.10.Cv, 97.60.Bw

1. INTRODUCTION

Neutrinos have fascinated people ever since they
were first introduced by Pauli in 1931. Since then,
neutrinos have gone from hypothetical to an extremely
promising tool for analyzing astrophysical events, and
neutrino cosmology is one of the hottest topics in mod-
ern time due to the discovery that neutrinos may be
massive [1]. Because of its weak interaction with other
particles, neutrinos can travel great distances without
being affected appreciably by material obstacles. They
can therefore give us detailed information about events
taking place deep within, e.g., supernove. Further-
more, because the neutrinos decoupled from matter at
a redshift z of the order 10'°, as compared to z ~ 103
for photons, it is possible that neutrinos could give us
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a detailed understanding of the early Universe, if such
a signal could be detected [2]. Massive neutrinos have
also been a possible candidate for hot dark matter nec-
essary for explaining certain cosmological observations,
such as rotation curves of spiral galaxies [3]. There-
fore, massive neutrinos could have a profound influence
on the evolution of our Universe. Unfortunately, due
to the Tremaine-Gunn bound [4], the necessary mass
of the missing particles (if these are fermions) for ex-
plaining the formation of dwarf galaxies seems to make
neutrinos of any species unlikely single candidates for
dark matter. As a remedy to this problem, interacting
hot dark matter has been suggested [5, 6], because the
interaction prevents free-streaming smoothing of small-
scale neutrino inhomogeneities. Thus, dark matter in
astrophysics not only is a mystery but also plays an
essential role in determining the dynamics of the Uni-
verse, its large-scale structures, the galaxies and super-
clusters. However, so far, the suggested «sticky» neu-
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trino models have not been successful in dealing with
the dwarf galaxy problem [5].

A first successful indication that neutrinos have a
nonzero mass came in 1998 through laboratory ex-
periments of atmospheric neutrinos and their oscilla-
tions [7]. Although the allowed neutrino masses en-
compass a wide range!), it is currently believed that
neutrinos have masses below 2 eV. This conclusion is
further supported by independent cosmological obser-
vations (see, e.g., [9]). Thus, the masses of neutri-
nos are indeed very small, and the classical analysis
by Tremaine and Gunn would therefore indicate that
neutrinos can in no way be considered a sole candi-
date for dark matter. This conclusion is reanalyzed in
this paper within the electro-weak framework, where
neutrino—neutrino interactions occur as a natural con-
sequence of the theory.

We thus consider the nonlinear interaction between
neutrinos and antineutrinos in the lepton plasma of the
early Universe, adopting a semiclassical model. Neu-
trinos and antineutrinos interact with dense plasmas
through the charged and neutral weak currents aris-
ing from the Fermi weak nuclear interaction forces.
Charged weak currents involve the exchange of the
charged vector bosons associated with the processes
involving interactions between leptons and neutrinos
of the same flavor, while neutrino weak currents in-
volve the exchange of the neutral vector bosons associ-
ated with processes involving neutrinos of all types in-
teracting with arbitrary charged and neutral particles.
Asymmetric flows of neutrinos and antineutrinos in the
early Universe plasma may be created by the pondero-
motive force of nonuniform intense photon beams or by
shock waves. Here, using an effective field theory ap-
proach, a system of coupled Wigner—-Moyal equations
for nonlinearly interacting neutrinos and antineutrinos
is derived, and it is shown that these equations admit a
modulational instability. We then discuss the relevance
of our results in the context of the dark matter prob-
lem, and it is moreover suggested that the nonlinearly
excited fluctuations could be used as a starting point
for obtaining a better understanding of the process of
galaxy formation. It turns out that the short-time evo-
lution of the primordial neutrino plasma medium in the
temperature range 1 MeV < T < 10MeV is governed
by collisionless collective effects involving relativistic
neutrinos and antineutrinos.

1 Some estimates even support the notion that neutrinos may
contribute up to 20 % of the matter density of the Universe [8].
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2. DISPERSION RELATION AND THE
MOTION OF NEUTRINO BUNCHES

As a primer, we study the implication of the
known dispersion of neutrinos on a thermal neu-
trino/antineutrino background, using the eikonal rep-
resentation and the WKBJ approximation.

We suppose that a single neutrino (or antineu-
trino) moves in a fermionic sea composed of neutrino—
antineutrino mixture. The energy F of the neutrino
(antineutrino) is then given by (see, e.g., [10, 11])

p202 +m2ct + V:t(l'., t)a (1)
where p is the neutrino (antineutrino) momentum, c
the speed of light in vacuum, and m is the neutrino
mass. The effective potential for a neutrino moving on
a background of its own flavor and in thermal equilib-
rium is given by [10] (see also [12-15])%)
Vi(r,t) = £2V2Gr(n — 7)), (2a)
while the potential for a neutrino moving on a back-
ground of a different flavor is

Vi(r,t) = i\/iG’F(n — ), (2b)
where o
F -5 —2
~12-1
() 07°GeV 7,

Gr is the Fermi constant, n (i) is the density of the
background neutrinos (antineutrinos), and + (—) rep-
resents the propagating neutrino (antineutrino). Ex-
pressions (2) are valid in the rest frame of the back-
ground. As seen from (1) and (2), while neutrinos
moving in a background of neutrinos and antineutrinos
change their energy by an amount ~ Gz (n—), the an-
tineutrinos change their energy by ~ —Gpr(n —7) [16].
The extra factor of 2 in (2a) compared to (2b) comes
from exchange effects between identical particles [13].

Relation (1) can be interpreted as a dispersion rela-
tion for relativistic and nonrelativistic neutrinos, with
the identifications E = hiw and p = ik, i.e.,

/ m2c?
w=c\/k%+ 2 +

where £ is the Planck constant divided by 27. From
Eq. (3), using the eikonal representation

Va
h 3

(3)

E—)th—%.,

For a more detailed description of the potential, see the next
section.

p — hko +ihV

2)
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and the WKBJ approximation [17, 18]

<<w0|‘Il|'/ ‘V‘I’|<<|k0”‘lj‘v

ot
we obtain a Schrédinger equation for slowly varying
neutrino (antineutrino) wave packets ¥(r,¢) modu-

lated by long-scale density fluctuations (i.e., neutrino
bunches)?)
0
<8t +vg - V) U+

he? [, m?ct ) Vi

— 1- : UV——0 = 4
+2E0 {V < o2 (ng - V) 7 0, (4)
where

vy = cko (k2 +m?2c® /h?)71/?

is the group velocity?) of relativistic neutrinos and
antineutrinos, which have similar energy spectra, Ej
is the neutrino energy in the absence of interactions,
no = ko/|ko|, and kg is the vacuum wavevector. We
now suppose that the neutrino bunches themselves are
nearly in thermal equilibrium (to be quantified in the
next section). Then, we have the case of self-interacting
neutrinos and antineutrinos, and the densities in the
potential Vi are given in terms of the sums

'Mz IIME

o
Il
-
o
Il

M
Z |‘I’z+|

(@),

(5)

Il
Mz )

: |

n;
1

where ¥;, and ¥,_ are the neutrino and antineutrino
wave packets respectively (with ¢ numbering the wave
packets) and the angular bracket denotes the ensem-
ble average. In this case, the relativistic neutrino and
antineutrino wave packets are comoving with the back-
ground, and Eq. (4) thus yields

OW;r  he? ,  mZet_,
It 2E0 <V E2 VH Uy
v
;‘I’zi - 0 (6)

3) See also Ref. [16] for a similar treatment of neutrino—electron
interactions.

1) We note that when the scalelength of the density inho-
mogeneity is comparable to the wavelength of the modulated
neutrino wave packets, we must modify the coupled Schrédinger
equations to account for differing group velocities of neutrinos
and antineutrinos in a fermionic sea. We expect a shift in the
momentum of Eq. (13) and a slower growth rate of the modula-
tional instability of neutrino quasiparticles involving short-scale
density inhomogeneities.
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where

V2 =V?—(ng-V)? and Vﬁ = (ng - V)%

Expressions (2a) and (5) reveal that self-interactions
between relativistic neutrinos and antineutrinos pro-
duce a nonlinear asymmetric potential in Eq. (6). By
further rescaling the coordinate along ng, Eq. (4) can

finally be written as the coupled system

U,
ia = -I-gV?\I’ii:Fﬂ(n—ﬁ)‘I’ii:O-, (7)
ot 2
where
_ h_c2 3= LEGF
T Ey’ - h

for neutrinos moving on the same flavor background.

Equation (7) shows that this approach can lead
to some interesting effects. The case of a single self-
interacting neutrino bunch shows that the formation
of dark solitary structures is possible. Furthermore,
the slightly more complicated case of two interacting
bunches, of either the neutrino—neutrino or neutrino—
antineutrino type, can result in splitting and focusing
the wave packets [19].

3. KINETIC DESCRIPTION

In the preceding section, we investigated the case
of a neutrino bunch close to thermal equilibrium. In
general, this may of course not be the case, and Eq. (2)
must be modified. The more precise form of the po-
tential V4 for equal species due to neutrino forward
scattering is given by [20]

Vi (e, ps fis) ZiQﬁGF/dQ(l—f)-d) x

M N
X [Z fi+(t7r7q) - Zfl(t7r7q)] ) (8)

where hatted quantities denote the corresponding unit
vectors and fii(t,r,q) (fi—(t,r,q)) is the neutrino
(antineutrino) distribution function corresponding to
bunch i. The distribution functions are taken to be
normalized such that

n;(t.r)

/dqu(t,r,q).,

= /dqfi_(t-,l‘-,Q)a
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where n; (7i;) is the number density of the ith neutrino
(antineutrino) bunch.

We first note that when the distribution is thermal,
potential (8) reduces exactly to (2a). Second, when the
neutrinos have an almost thermal distribution, i.e., the
corresponding distribution function can be expressed
as (dropping the indices for notational simplicity)

f(t,np)=f0(p)+5f(t,r,p), ‘5f|<<|f0‘7

we obtain the following form of the potential:

Vj:(t-, r,p; flj:) = iQ\/EGF

M N
- / da (p-d) <Z<5f¢+ —Zafi_ﬂ. (10)

The last term is small and may therefore be neglected,
and we obtain

(n—mn)—

Vi(t,r) ~ £2V2GF(n — i),

in accordance with expressions (2a),
equation of motion (7).

Now, we define a distribution function for the col-
lective neutrino states by Fourier transforming the two-
point correlation function for ¥, according to [21]

thus justifying

fix(t,r,p) = W/dy exp(ip - y/h) x

X (Uip(t,r +y/2)¥s(t,r —y/2)),

where p represents the momentum of the neutrino (an-
tineutrino) quasiparticles (we note that the ensemble
average was not present in the original definition [21],
but has important consequences when the wave packet
has a random phase). With definition (11), it follows
that

(11)

<|‘I'zi

/dp fix(t, T, p). (12)

Thus, using (11) and (6) together with potential (8),
we obtain the generalized Wigner—Moyal equation for

.fi:l:7

dfix  p Ofix
ot E(] or
_ s h ?E_EE fir =0, (13)
h 2\0r Op Op Or =

2 ZKSOT®, Bem. 1 (7)
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where the sin operator is defined in terms of its Taylor
expansion, and the arrows denote the direction of op-
eration. In the case of potential (2a), the last term in
the sin operator drops out, and Eq. (13) reduces to the
standard Wigner—Moyal equation [21]. Equation (13)
was obtained in Ref. [20] using the density matrix ap-
proach.

Retaining only the lowest-order terms in 7% (i.e., ta-
king the long-wavelength limit), we obtain the coupled
Vlasov equations

0 Ap OV 0
Gt (B o) aw) e
oVy Ofix
o op =0. (14)

The term OVy/Op represents the group velocity.
While higher-order group velocity dispersion is present
n (13), this is not the case in (14). Thus, informa-
tion is partially lost by using Eq. (14). Furthermore,
while Eq. (14) preserves the number of quasiparticles,
Eq. (13) shows that this conclusion is in general not
true, i.e., the particle number in a phase-space volume
is not constant, and the higher-order terms 9"Vy /Or"
may moreover contain vital short-wavelength informa-
tion. Equations similar to (14) have been used to study
neutrino—electron interactions in astrophysical contexts
[11].

We now suppose that we have small amplitude per-
turbations on a background of constant neutrino and
antineutrino densities n; = n;o and n; = n,g, respec-
tively,

fiox(p) +
+0fix(p)expli(K - r — Qt)],

fiﬂ: (ta r, p) =
(15)

and [0fir| < |fiox|, where K and  are the pertur-
bation wavevector and frequency, respectively. Thus,
Eqs. (13) give

p K 2 ?
- — Wy sin | -2 — ;
i hVOism< 5 6p Ofiv+
‘h
+ thi sin ( ) fiox =0, (16)
where o6Vye = Vi(t,r,p;0fix) and Vor =

Vi(t,r,p; fiox) from Eq. (8). Eliminating 0 f;+
from (16), using 6V_ = —0V,, we have
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4/2iG L
6Vy(p) = TF/dq(l —p-a)dVi(aq) x
: = ) —>
. ih 0 . [ ih 0
M sin <3K : 8_q> fio+(a) N sin <§K ' %> fio—(q)
X + — (17)
S caK 2 T NS ek o i
Q- E hVO+( )sm( > 9q K Q E hVO_(q) sin | 5 94 K

Assuming that § f;+(p) is a symmetric function of p, which is a reasonable physical restriction, implies that 6V,
is independent of p, and Eq. (17) simplifies to the dispersion relation

. [ih 0
L 4\/§lGF/d sin <3Ka—q> fior(a) .
le c2q~K_%~ EKE Vou(q)
B, noM 27 aq) ot
. ih 0
N sin <%K ~ 8_(1> fio— (a)
+;Q_C2q'K_%sm e Vol (18)
Fo ) 2 9q) 0\

where we have dropped the arrows indicating the direction of operation. We note that if the background distri-
bution is thermal, V54 is independent of p, and the last term in the denominators of Eq. (18) vanishes.

3.1. The one-dimensional case

The simplest way to analyze dispersion relation (18) is to reduce the dimensionality of the problem. We
therefore first consider the one-dimensional case, where we may use the identity

2in (2 2) sy =i o (o4 2) 1 (5 - 25Y]

in order to rewrite dispersion relation (18) as

B 2\[ 2V2Gr Ffios (¢ + RK/2) = fios(q — hA /2) fio—(q+ hK/2) — fio_(q — hK/2)
1=- / {Z —CquX/Eo+A+ Z _Czq]\/Eo-l—A_(q) }7 (19)

where we have introduced

hK hK
Vot <Q+ T) — Vot (q— 7)} .

St o=

Ai(q) =

In the case of monoenergetic beams, i.e.,

fior (p) = ni0d(p — pio),  fio—(p) = 7iod(p — Pio),

18
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Eq. (19) reduces to

2V/2Gr { U [ he K2 hK hK
l=—-——— Z”z’o - + A4 (pio+ — | — Ay (pio—— || X
h P Ey 2 2
Apiok\?  (hrK2\? EpinK hK hK
<[(o-55) - (%) + (0S50 [2 (s T) + s (- 7))+
he? K2 hIK hK hIK K\ 17!
2, Ay <pi0 + 7) —Ay <pi0 - 7)} + AL <pi0 + 7) Ay <pi0 - T) } +
N
he? K2 hIK hIK
+ Zﬁio [— o +A- <l7i0 + T) —-A_ <l7i0 - 7)} X
i=1
2p0K\° (K2’ 250 K hK hK
(o755 - (o) (a5 [ (e i) v (- 55+
he?K? _ hK _ hK _ hK _ A\ 1!
2, [A <pi0 + T) —A_ <pi0 - 7)} +A_ <pz‘0 + T) A_ <pi0 - T) } , (20)
where
M N
Vot (p) = £2V2Gp |(ng — ng) — sgnp <Z nio SgNPio — »_ Mio Sgnpw)] (21)
i=1 i=1
by Eq. (8).
We consider the simplest case of interacting neutrinos and antineutrinos with A/ = N = 1. We assume that
they have equal densities ny = fip and are counter-propagating, i.e., pgp = —jp > 0. From (21), we then obtain the
potential

Vox(p) = FAV2Gp sgnpng, (22)

while Eq. (20) yields

he? K2 oo
o =% o

0

0_ poK ? _ he2 K2\ e (- po K _ he? K?
Eqy 2E, Ey 2F,

Apo K ? he2K2\ > poK he2K?
Q - 2 Q0 =1 23
+<+E0> <2E0>+06<<+E0>+2E0> 2
where
2\/§GFTL[)
o= ——"
n ;
0, po>hK,
e=1-sgn(pp—hK)=< 1, py=hK,
2, po < hK.
Thus, for £ = 0, the growth rate is given by (see Figs. 1 and 2)
I’ , (hKEN? ., (hEKN
T = 4v >, + 4vvy + v — 0T —vp — S, , (24)

19 2%
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where [I' = —i() is the instability growth rate and
2\/5 GF’ILOC2/E0.

vE =
We also note that as expected, the instability disap-
pears in the limit v — 0, just stating the well-known
fact that there must be a nonzero relative velocity be-
tween the beams in order for the instability to occur.

Because I'? is positive, we have

2 - 2 2
v he’K v
— ] -2 — . 2
<UF> = <2EOUF> = <UF> 3
ie.,
lo < 0 < lp(1 = 20% Jv?)~1/2, (26)

where we have introduced the length scales

_ he?
N QE[)U ’

2w
g_fa 60

Thus, a higher neutrino momentum can retain a smaller
instability length scale. It is clear from (24) that (i) the
instability remains for arbitrary velocities (see Figs. 1
and 2), and (ii) the higher the neutrino velocity, the
smaller the corresponding instability length scale /.

3.2. Partial incoherence and thermal effects

Partial incoherence can in general lead to a lower
growth rate, similar to the inverse Landau damping.
We consider the following example of the results of
stochastic effects (e.g., thermal fluctuations). Let the
indeterminacy of the neutrino collective state manifest
itself in a random phase ¢(z) of the background wave
packet, with the width Ap defined according to

(exp(—ip(z+y/2)) exp(ip(r—y/2))) = exp(—Aply|/h).

Due to this random spread, the modulational instabil-
ity is damped, as we show below. The Wigner function
corresponding to the random phase assumption is given

by the Lorentz distribution
Mo Ap
T (p—po)® +Ap*

With this, we obtain Eq. (24) with

folp) = (27)

I = Tp + Ac’pK/Ey,

where I'p is the reduced growth rate. Thus, we see that
the broadening tends to suppress the growth. More-
over, a positive growth rate I'p requires that

20Ap £
T ly’

(28)

20

where T is given by Eq. (24). Hence, the general prop-
erty of a spread in momentum space, here exemplified
by a random phase, is to put bounds on the modula-
tional instability length scale £.

Incoherent effects among the neutrinos and antineu-
trinos can also be approached for a background obeying
the Fermi—Dirac statistics, i.e.,

where we set M = N = 1 and assume ng = ng. Here,
we have neglected the mass of the neutrinos (which
leads to the correct result to the lowest order). For
simplicity, we assume that T4 = T, and therefore dis-
persion relation (19) takes the form
—1
)

/Oodp (g_
)

)]

<1 + exp <
— hK /2
+ (1 + exp <7c|p /2
Dispersion relation (30) cannot be solved analytically,
but it can be expressed as

-1

c|p| o (29)

kpTy

o Ccno
T lndkpTy

fox(p)

1+exp<

pK
Eq

4v/2 G png
In4hkgT

clp+ hK /2|

X
kT

kT

1=-0Q [P(I(Qm K,))+ iﬂ'g(Qm A’n)] s (31)

where P(I(Q,, K,)) is the principal value of the inte-
gral

I:/dac(l-l—e””)’1 X
0

Q.+ K2 Q,—K?2
X = = ~ - 9 (32)
(Qp+K2)2-K222  (Q,—K2)>—K2a?
and g = g+ + g, where
i O, + K2
g:I:(Qnakn) - - N (33)
1+ exp(|92, + K2|/v2K,)
0= % 2V2Grm E
“ In4 kBT ]{:BT7
and we have introduced the dimensionless variables
hEo he
O, = Q, K,=—K.
"7 (kBT)? " V2kpT

The constant @) gives the ratio of the potential energy
contribution of the background and the individual neu-
trino energy to the thermal energy of the background.
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(LK /4Amm~yv)?
1.0 T I I

O

0.3—

0.2

0.1—

0 0.5 1.0 1.5 2.0 2.5 3.0
(vp/v)?

~

Fig.1. A contour plot of the values of (I'/Kwv)?, when ¢ = 0, for which the instability occurs. The function (I'/Kv)? is
constant along the contours and is plotted in terms of the variables (vr/v)? and (hK/4mm~yv)?. Outside the contours,
I*<o

Furthermore, Eg ~ kpT, thus simplifying the expres- can be expressed as (with the value at Q,¢ denoted

sion for ). The contributions from real and imaginary by 0)

parts to the dispersion relation are plotted in Figs. 3

and 4, respectively. We note that for very short length T, =
. . . -9

scales., ie., large I‘&., the quantlty. 1, — K. becomes (Q_l—}—P(IO)) (99/00)—go(IP () /00)

negative, and the imaginary part in Eq. (31) changes =7 5 -

sign, which cannot be seen from the long-wavelength 72 (09/0no)” + (0P (1) /08no)

limit equation (14). This behavior can in principle

lead to growth instead of damping of the perturba-

—

34)

to the first order around (Q,,0, K,,0). Therefore, I';, > 0

tions (see Ref. [22] for a general discussion of this be- it
. . L _ dlng OP(I)
havior). We can obtain a quantitative measure of the (@~ +P(Iy)) 50 > 50
growth /damping rate as follows. For any fixed K po, no no
the dimensionless growth/damping rate Moreover, using values given in Sec. 4, one can show
that Q= ~ 3-10°. Thus, Q~! dominates the contribu-
r,=—iImQ, tion to the growth/damping rate over a wide range of

21
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(hK/4m nry v)?

3.0

2.8

2.6

24+

2.2

2.0

1.8F

1.6

1.4

1.2+

1.0 .

1.0

1.5 2.0

(Ve v)?

Fig.2. The same plot as in Fig. 1, but for ¢ =2

(Q,, K,), and a positive growth rate is implied as long
as 0g/00no > 0.

4. APPLICATIONS

As a model for hot dark matter, massive neutrinos
have for some time been one of the prime candidates,
but as such they have faced the problem of the scale
of the inhomogeneities that they can support. Due to
the conservation of phase-space density, the Tremaine—
Gunn limit constrains the neutrino mass for isother-
mal spheres of a given size. For dwarf galaxies, for
which there is ample evidence of dark matter [23], the
necessary mass of the neutrino is uncomfortably large
[4, 24]. On the other hand, as pointed out in [5], in-
teracting dark matter can in principle change this pic-
ture. Here we see from Eq. (26) that as the neutrino
momentum increases, the typical length scale ¢ of the
inhomogeneity that can be supported by the modula-
tional instability decrease. From the definition of {,
we note that as v tends to ¢, g — 0, and due to
Eq. (26), the allowed scale of inhomogeneity becomes

22

squeezed between two small values. On the other hand,
if v ~ vp (a condition stating that the neutrino number
density must reach extreme values), the upper inhomo-
geneity scale limit diverges. A minimum requirement
for the effect to be of importance is that the instabil-
ity growth rate is larger than the Hubble parameter
H. An estimate of the growth rate can be obtained
as follows. At the onset of «free streamingy of neutri-
nos (i.e., their decoupling from matter and radiation)
at z ~ 10'°, the neutrino number density can be es-
timated as ng &~ 2.1-10*¥m=3 (see, e.g., [25]). Fur-
thermore, we assume that the neutrino mass is in the
range m ~ 1eV, and find vp = 9- 10’4E0_1/2 m/s. The
temperature of the neutrinos, given by

T, = (4/11)3Ty(1 + 2)

at neutrino decoupling (with Ty being the present day
CMB temperature) [25] is T, ~ 2 - 101°K. Thus,
the thermal energy is roughly five orders of magnitude
greater than the assumed rest mass of the neutrino,
and in this sense the neutrinos can be well approxi-
mated as ultra-relativistic. In this case, using values of
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Fig.3. A contour plot of the Cauchy principal value P(I(Q,, K,)) as a function of the dimensionless variables Q, and
K. We note that P(I(Q,, K,)) > 0, being largest for small ©,, and K, and approaching zero at infinity. The uppermost
contour has P(I(Q,, K,)) =0

(he? K /2Egur)? in the middle range of inequality (25)
we obtain from Eq. (24) that

- 2\/§GF’YL0

~16-10'0s71
ﬁ S

r
for the values specified above. With the critical density
assumed for the Universe, the Hubble time becomes

H '~ Hy'(142)7%2 ~5-10%s

at the redshift 101°, and therefore T/H > 1.
Although the two-stream instability may seem con-
trived as a cosmological application, the important is-
sue displayed by this example is the nongravitational
growth of inhomogeneities, given a small perturbation
of a homogeneous, although anisotropic, background.
The criticism of neutrinos as dark matter candidates
is in particular based on the fact that they are ultra-
relativistic for long times, with free-streaming smooth-
ing as a result [4]. According to this, we would have to
accept a top-down scenario for structure formation, if
neutrinos would indeed be the missing dark matter [15].
These arguments are presented with the prerequisite
that only gravitational instabilities are of importance
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after neutrino decoupling. Other instabilities, such as
the one presented in this work, could in principle alter
this picture, loosening the bounds set by the Tremaine—
Gunn limit. The fact that the growth rate exceeds the
inverse of the Hubble time by many orders of magni-
tude makes it clear that the mechanism may be of some
importance. Moreover, the analogous estimate for the
Fermi-Dirac background, although done in a simplis-
tic manner, indicates that the growth of the large-K
perturbations may be of importance. Furthermore, al-
though we here have used parameters relevant to a cos-
mological setting, it could also be of interest to use
the current formalism as a tool to investigate neutrino
interactions within supernovae, where the two-stream
instability scenario may occur as a more natural ingre-
dient than perhaps within cosmology.

5. CONCLUSION

We have considered the nonlinear coupling between
neutrinos and antineutrinos in a dense plasma. We
have found that their interactions are governed by a
system of Wigner—-Moyal equations, which admit a
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Fig. 4. A contour plot of the contribution g(£,,, K,,) of the poles to integral (30) as a function of the dimensionless variables
Q, and K. The darker areas represent negative values, the lighter positive values, and g is zero on the contour emanating
from (2,, K,) = (0,1.8)

modulational instability of the neutrino/antineutrino
beams against large-scale (in comparison with the
neutrino wavelength) density fluctuations. Physically,
the instability arises because interpenetrating neutrino
and antineutrino beams are like quasiparticles, carry-
ing free energy that can be coupled to inhomogeneities
due to a resonant quasiparticle-wave interaction that
is similar to the Cherenkov interaction. Nonlinearly
excited density fluctuations can be associated with the
background inhomogeneity of the early Universe, and
possibly counteract the free-streaming smoothing of
the small-scale primordial fluctuations, thus making
massive neutrinos plausible as a candidate for hot dark
matter.
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