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Capillary instability of isothermal incompressible liquid-crystal (LC) jets is considered in the framework of linear
hydrodynamics of uniaxial nematic LCs. The free boundary conditions with strong tangential anchoring of the
director n at the surface are formulated in terms of the mean surface curvature H and the Gaussian surface
curvature G. The static version of the capillary instability is shown to depend on the elasticity modulus K,
the surface tension op, and the radius ro of the LC jet, expressed in terms of the characteristic parameter
» = K/oore. The problem of the capillary instability in LC jets is solved exactly and a dispersion relation,
which reflects the effect of elasticity, is derived. It is shown that the increase of the elasticity modulus results
in the decrease of both the cut-off wavenumber £ and the disturbance growth rate s. This implies an enhanced
stability of LC jets, compared to ordinary liquids. In the specific case where the hydrodynamic and orientational
LC modes can be decoupled, the dispersion equation is given in a closed form.

PACS: 61.30.Hn, 68.03.Kn, 68.03.Cd

1. INTRODUCTION

The breakup of liquid jets injected through a circu-
lar nozzle into stagnant fluids has been the subject of
widespread research over the years. Previous studies
that followed the seminal works of Lord Rayleigh have
established that the complex jet flow is influenced by
a large number of parameters. These include nozzle
internal flow effects, the jet velocity profile V(r), and
the physical state of both liquid and gas. Although
the hydrodynamic equations are nonlinear, the linear
stability theory can provide qualitative descriptions of
the breakup phenomena and predict the existence of
different breakup regimes.

Using a linear theory, Rayleigh showed [1] that the
jet breakup is a consequence of the hydrodynamic in-
stability, or more exactly, the capillary instability. Ne-
glecting the effect of the ambient fluid, the viscosity
of the jet liquid, and gravity, he demonstrated that a
cylindrical liquid jet is unstable with respect to distur-
bances characterized by wavelengths larger than the jet
circumference. Rayleigh also considered the case of a
viscous jet in an inviscid gas and an inviscid gas jet in
an inviscid liquid [2]. Weber [3] generalized Rayleigh’s
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result to the case of a Newtonian viscous liquid and
showed that the viscosity tends to reduce the breakage
rate and increase the drop size. Chandrasekhchar [4]
considered the effect of a uniform magnetic field on the
capillary instability of a liquid jet. A mechanism of
bending disturbances and of buckling, slowly moving,
highly viscous jets was presented by Taylor [5]. Fur-
ther developments of the theory in Newtonian liquids
was concerned with additional factors such as the dy-
namic action of the ambient gas (leading to atomization
of the jet), the nonlinear interaction of growing modes
that lead to satellite drop formation, and the spatial
character of instability [6, 7].

The capillary instability in jets comprised of non-
Newtonian suspensions and emulsions presents a dif-
ferent category of cases governed by power-law (pseu-
doplastic and dilatant) liquids. The effective viscosity
of the pseudoplastic liquid decreases with the growth
of the strain rate, whereas in dilatant liquids, it in-
creases [7]. The behavior of capillary jets of dilute and
concentrated polymer solutions suggests a strong in-
fluence of the macromolecular coils on their flow pat-
terns [7]. Free jets of polymeric liquids that exhibit
oscillations are reported in [8].

The idea of the Rayleigh instability was applied to
tubular membranes in dilute lyotropic phases [9]. Their
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relaxation, following optical excitation, is characterized
by a long time and can be described by means of the
hydrodynamic approach [10]. Bending deformations
of such membranes are governed by the Helfrich en-
ergy [11], which depends on the curvature of the tube.
Thus, a competition between the surface tension and
curvature energy of the membrane immersed into wa-
ter renders the initial shape of the tube unstable. The
hydrodynamic formalism used in [10] and the hydro-
dynamics of fluids with an inner order such as liquid
crystals (LCs) [12] have similar features. In [10], the
order parameter is a unit vector normal to the mem-
brane surface. In contrast, the order parameter ) of
an LC fluid is defined throughout the space it occupies.

The continuum theory of LC phases has emerged as
arigorous part of the condensed matter theory. The hy-
drodynamics of the nematic LC phases was developed
during the 60-70th in the pioneering works of Erick-
sen [13, 14], Leslie [15, 16], Parodi [17], and the Harvard
group [18]1), and its predictions were successfully con-
firmed in many experimental observations. The combi-
nation of viscous and elastic properties is likely to pro-
duce new evolution patterns of hydrodynamic instabili-
ties, in the context of the Benard—Rayleigh, Marangoni,
and electrohydrodynamic effects [19], which cannot oc-
cur in ordinary liquids. In particular, we refer to non-
steady state (oscillatory) evolution of the instability
that appears via the Hopf bifurcation [20]. The insta-
bility of an LC jet poses an additional challenge with
respect to the effects listed above. This already applies
in the framework of the linear stability theory.

The linear analysis of the capillary instability in a
thin nematic LC fiber was recently performed in [21]
under the assumption that the director field n(r) is
fixed and does not change even if the fiber shape evolves
through the linear instability process. In this anal-
ysis, the only influence of the LC nematicity is due
to the anisotropy of the elastic surface energy and the
anisotropy of viscous LC moduli. The above assump-
tion stipulates the predominance of elastic forces over
the surface tension, ¢ > rg, and over hydrodynamic
forces, Er < 1, where { = K/o and Er = nVro/K
denote the anchoring extrapolation length [22] and the
Ericksen number [19], respectively, n and K are vis-
cous and elastic moduli, V' is the LC velocity, and rq
stands for the geometric length scale, i.e., the radius
of the LC jet. The first condition (¢ > rq) is difficult
to implement for most of the known nematic LCs with
well-studied physical parameters. Indeed, the classical

D The name «Harvard group» was proposed by De Gennes
[19] and denotes five authors (see [18]).

nematic LCs, also known as MBBA and PAA, have
the anchoring extrapolation length ¢ ~ 3107 m (Ta-
bles 1 and 2). This value indicates strong anchoring
at the surface?). Otherwise, the radius of the jet must
be decreased to the molecular scale. In the case of
strong director anchoring at the surface, the second re-
quirement, Er < 1, does not allow a continuous tran-
sition to ordinary liquids (a classical Rayleigh—Weber
theory) which is an important benchmark in the theory.
We note that as the elasticity tends to zero, K — 0,
then Er — oo. Moreover, disregarding the bulk elas-
ticity effects in LCs leaves out the competition between
the bulk forces and surface tension that is crucial for
the physical picture of thin LC films (see Sec. 3). In
this context [21], the Leslie-Ericksen equation of angu-
lar motion of the director n(r, ) was skipped and the
elastically induced nondissipative contributions to the
Navier—Stokes equation were not included in the LC
hydrodynamics.

A more realistic setup of the problem consists of a
rigid boundary condition of strong director anchoring
at the free surface of LC jets. The simplest case con-
stitutes a tangential orientation of the director at the
surface, n - e = 0, where e is a unit normal vector to
the jet surface. Such orientation, with strong anchor-
ing and temperature independence, is observed at the
free surface of the classical nematic PAA mentioned
above [24-26]. Assuming that the scale of deformation
of the initial surface is much larger than the molecular
length of LCs, we conclude that if the orientation of the
director n is set tangential to the undisturbed surface,
then it must also remain tangential when the surface is
smoothly disturbed.

The elastic properties of LCs are expected to change
the evolution patterns of jets that are made from them.
In this paper, we derive a rigorous mathematical model
of capillary instability for isothermal incompressible ne-
matic LC jets in the single elastic approximation. This
model shows how the combined viscous and elastic
properties of LC fluids determine the boundary con-

2) On the basis of a heuristic argument, De Gennes [19] noted
that if the anisotropic interaction at a nematic—substrate in-
terface is as large as that acting between nematic molecules,
the anchoring energy o can be roughly estimated as o ~ K/a,
where K is the Frank modulus and a is the molecular dimension;
hence, taking K ~ 8-107!'2 N and a ~ 510710 m, we find
o ~ 1.6 - 1072 N/m, which corresponds to the strong anchoring
in virtually all practical cases. An extensive review by Cognard
[23] lists sixteen most studied nematic LCs with corresponding
o measured at equilibrium with air (see Table 9 in [23]). All
values are in the range between 2.45 - 1072 N/m for MPPB and
4.1072 N/m for 5CB, which gives a good support to the quali-
tative consideration of De Gennes.
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Table 1. The basic physical parameters a;, p, K, and oo and their derivatives n;, 5;, vi, Bi, pi, A, and v; for nematic
liquid crystal 4-metoxybenziliden-4-butilanilin (MBBA) at 25 °C taken from [23, 30]
ap, mPa-s as, mPa - s asz, mPa-s a4, mPa-s as, mPa - s ag, mPa - s
7 —78 -1 84 46 -33
71, mPa - 13, mPa - s 15, mPa - s A 1 142
42 50 104 1.026 1.013 0.013
B1, mPa - Ba, mPa - s B3, mPa -s B4, mPa - s ~1, mPa-s 9, mPa - s
42 25 79 39 7 -79
By, mPa-s By, mPa s Bz, mPa s By, mPa s B Y, m?/s
58 104 25 78 5.92 1.2-10°10
p, kg/m? K, N 00, N/m (= K/og, m vi, m?/s Oz
1.2-10° 91012 381073 2.4-10710 107°-10~4 1076-107°
Table 2.  The basic physical parameters a;, p, K, and oo and their derivatives n;, 5:, vi, Bi, i, A, and v; for nematic
liquid crystal para-azoxyanisole (PAA) at 122 °C taken from [23, 30]
ap, mPa - as, mPa - s az, mPa-s a4, mPa - s as, mPa-s ag, mPa - s
4 —-6.9 -0.2 6.8 5 -2.1
11, mPa - n3, mPa - s 15, mPa - s A 1 42
3.4 4.5 13.7 1.06 1.03 0.03
B1, mPa - B2, mPa - s B3, mPa - s B4, mPa - s ~1, mPa - s 9, mPa - s
3.4 2.25 11.45 4.55 6.7 -7.1
By, mPa - Bs, mPa - s B3, mPa s By, mPa - s B Y, m?/s
4.34 9.36 2.26 11.24 7.11 1.8-107°
p, kg/m? K, N 00, N/m (= K/og, m vi, m?/s 9/ v;
1.4-10° 11.9-1012 40-1073 3-10710 1076-107° 10-4-10-3

ditions at the free surface with strong tangential an-
choring of the director and the range where instability
prevails.

2. HYDRODYNAMICS OF AN LC JET

In this section, we first formulate the problem of
capillary instability and then derive the basic equations
that govern the linear hydrodynamics of an LC jet. The
incompressible flow of a nematic LC is described by a

set of differential equations: the continuity equation,
the Navier—Stokes equation for viscoelastic LCs, and
the Leslie—Ericksen equation of angular motion of the
director n(r,t). They are supplemented by boundary
conditions on the LC free surface with strong tangential
anchoring of the director.

The basic notation and linear hydrodynamic equa-
tions for uniaxial nematic LCs follow the theory
given in [18] (the so-called Harvard group approach),
which has become standard in many monographs,
e.g., [12,27]. We note that the Harvard group and
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Ericksen—Leslie-Parodi approaches are in full agree-
ment (a detailed discussion is given in [19]).

2.1. Basic notation and variables

The following basic variables describe the nematic
LC medium: velocity V(r,t), pressure P(r,t), and di-
rector n(r,t), n> = 1. The initial values of the func-
tions are denoted by «0», either as a subscript or su-
perscript. The following notation, which is commonly
accepted in the theory of LCs, is used henceforth:

1. The free energy density E, of a deformed nonchi-
ral uniaxial nematic LC, given in the quadratic approx-
imation in terms of the derivatives On/Oz; and in the
single elastic approximation, has the form

E; = % (div*n + rot’n) (1)
where K > 0 is known as the Frank elasticity modulus.
In the vicinity of a phase transition, K « Q@ [19], and
in the isotropic phase, it vanishes.

2. The bulk molecular field F and the Ericksen
elastic stress tensor 73;, which set the equilibrium dis-
tribution of the n-field in an LC, are determined by the
variational derivatives®

3

F=M- Il<1’l,M>, or Fz = (51] — ninj)Mj., (2)

where
vo_ 0 OB OEs
R 9Eq 9, = i
ki = 6(8knl)’ k= 8l‘k7
ie.,
M= KA3sn, 74 = K (0g;divn+(n - rot n)n.,€mii+

+ [[n x rotn] x 0| €npi), (4)

where €,,x; is the completely antisymmetric unit tensor
of the third rank (the Levi-Civita tensor).

3. If the deviations of the director n = n’ +n? from
its initial orientation n® along the z direction are small,
then

n‘;:ngzo, nd =1, 5)
1> n,, n;; > nl~ (n;)2 , (n;)2,

and simple algebra yields the linear approximation

F,=KAsnl, F,=KAgm), F.=0, (6)

3) Here and throughout the paper, unless noted otherwise, we
apply the summation rule over indices that are repeated in a

tensor product, e.g., a;;b;j = Zj a;ijbjp.

where Aj is the three-dimensional Laplacian. Similar
considerations regarding the Ericksen stress tensor 7;
give

Tow = Tyy = Tz = K div n'

B onl 8ni
Toy = —Tya = K (3—; oy )

—Toy = K (an'lz _ 8_71;) , (7)

dy 0z
g onl B onl
Tew = TTwz = 0z ox )

The stresses given by Egs. (7) do not contribute to the
nondissipative stress tensor TZ.(,:) used in the linear hy-
drodynamics of LCs (see Eq. (8) below).
(r)

4. The reactive (nondissipative) T}’ and dissipa-

tive Ti(kd) stress tensors are defined as

an; A
— Tkja—xz — E(nsz + nkFi) +
1

+ E(ank —nkFi), (8)

T\ = —Psy

Ti(kd) =2 Yir + (N3 — 2m1) (niTkjnj + nkTijnj) +
+ (2m + 15 — 2m3)ningninm Y jm,  (9)

where the antisymmetric Q;;, (vorticity) and symmetric
Y, parts of the derivative 9;V; are given by

Qi = % <6Vk 6Vi> ;

Ox; B Oxy, (10)
Y. = 1 (9Vy N aV;
k=9 Ox; Ozp )’

Three independent viscous moduli 7;, the kinetic coef-
ficient A\, and the rotational viscosity y; determine the
dissipative stress tensor Tl.(kd), the forth-rank viscosity
tensor 7;1jm . and the dissipative function D in the ab-
sence of heat fluxes,

1
D = nijm Tir Ljm + IFQ? Ti(kd) = Nikjm L jm: (1)
Nikjm = M (&ij€rm + Erjim)+

13
Y (i1 e F1k 1 i A1 iy +

+ npnm&ij) + NsNinEN N

The tensor nirjm consists of three independent
uniaxial invariants [12] and is highly symmetric,
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Nikjm = Nkimj = Njmik. The requirement that D is

positive becomes

Uit Z 07 3 2 01 UH 2 01 7 Z 0. (12)

The parameter ) is close to +1 or —1 for rod-like or
disk-like molecules, respectively. If the liquid is vis-
coisotropic, then A = 0.

5. The hydrodynamic reactive (nondissipative)
m(") and dissipative m® fields are defined as

ml(.r) = —(V - Va)n; + ngQui + A &5 T e,
13
o Lp (13)
gi!

where V3 is the three-dimensional gradient operator,
(V3)? = As.

6. The surface tension o of a nematic LC is given
by [28§]

0 =00+ 01(n,e)?, (14)

where ¢ and o7 are isotropic and anisotropic surface
tension moduli respectively, and e is a unit normal vec-
tor to the LC surface.

7. Another system of viscous moduli a; (called
the Leslie viscosities) relate the dissipative and kinetic
moduli as?

m=as/2, A=-m/n,
N5 = a1 + ayg + as + ag,
Y1 =a3 —Q2, Y2 = a3+ Qa, (15)

N3 — 2m = as + as )\,
2m 4+ ns — 2n3 = a1 + 73 /1.

with the support of the Onsager-Parodi relation [17]
a3 +as = ag —as. In the vicinity of a phase transition,
the viscous moduli a; have different dependences on the
order parameter Q: a; < Q?, as, @z, a5, ag x @, and
ag o QY [19].

Tables 1 and 2 (see above) summarize viscosities
and other physical parameters that characterize the
most frequently used and well studied nematic LCs,
also known as MBBA and PAA.

2.2. Basic equations

The complete system of hydrodynamic equations
for the isothermal incompressible nematic LC reflects
the conservation laws of mass and of the linear and
angular momenta.

4) The correct expression for 75 is given in [18].

1. The continuity equation
divV = 0. (16)

2. The Navier—Stokes equation for viscoelastic LC,

A% _ 0 () @
P PV V)Vi= o (7 +1i"). an)

3. The Leslie-Ericksen equation of angular motion of
the director n(r,t),

on

i
The last equation is written for a negligible specific
angular moment of inertia Jrc of the LC, namely,
T < pr%, where ry is a characteristic size of the
system. This is true in our case, where rq is the radius
of the jet.

We consider an isothermal incompressible jet flow-
ing along the z axis, out of a nozzle at a velocity V.
The initial orientation of the director n® is assumed
collinear with V. Deviations from the initial values of
the director and pressure are defined as n! = n — n°
and P, = P — Py, respectively, where Py = 0¢/rg is
the unperturbed pressure within the cylindrical jet. In
the linear approximation, |n'| < 1, Eqs. (16)-(18) are
simplified as

m + m(®, (18)

, ovi  op,  oT\)
divv =0, p—"=- =
v ’ p 6t 895, 6$k
1-A 1+ A
+ A0 v - S e vy F,
2 (19)
on} 1
W = n%Qm + /\f?JT]kTLg + IFZ',
5?] :51]_,”‘(1]”?1 Za]ak:xayaz
Choosing n? = 1 gives F, = 0, and hence
aV, ov, 9V,
oy Wy OV (20)

ox +8—y+ 0z

ov,  op o
"o = " om + (51A2 +ﬂ2@> Ve +
9’V, A+10F,
+(’82_’81)—6x62 Ty oL
ov,  oP

82
pﬁ = _8—y + <61A2 +62ﬁ> Vy +

+ (B2 — 1)

(21)

9%V, _A+109F,

Oy0z 2 9z’

V. OP. 92
=——+ <52A2 + 53@) V.-

pﬁ 0z
A—1 <8Fx N 8Fy>

2 ox 6—y
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8n;_)\+1%+)\—1% Fy
a2 Oz 2 Or v

Ony _A+109V, A-109V. F (22)
ot 2 0z 2 dy

onl

o

where Ay = 02/02? + 8%/9y? is the two-dimensional
Laplacian, 81 = ni, B2 = 13/2, 3 =15 — n3/2, and F,
and F), are given in (6). Because isotropic viscosity im-
plies that 3; = 3, the liquid crystals MBBA and PAA
mentioned above are clearly far from being isotropic
(see Tables 1 and 2 above).

To make the problem more specific and easier to
solve, we consider axisymmetric disturbances in the
system of a cylindrical LC jet with radius 7o. In this
case,

av. v, V,
0z + or +7_0’ (23)
v,  op 1 o2
P = T {51 <A20_ r_2> +52@] Ve +
9%V, OF,
+ (B2 — B1) o — 1 ER (24)
ov. 0P o
P = . T [/32A2c +ﬂ3@} V-
OF., F,
_m(@r +7>7 (25)
on! oV, ov. 1_
N = Mg k2 +F, n,=0, (26)
where
9? 10
B2 =53 ¥ 50
’ L, 2\ 27
F, =K AQC__2+@ N, (27)
A+1 A—1
H1 = 77 M2 = T

Equations (23)—(26) describe ordinary linear hydro-
dynamic behavior of isotropic incompressible liquids if
the LC properties vanish: K,v; — 0 and 3; = . The
result is the well-known continuity equation and the
linearized Navier—Stokes equation,

oV

divV = 0, pa

= —Vpl + ﬂAgV (28)

10 ZKBT®, Brim. 5

2.3. Boundary conditions at the free surface

Boundary conditions at the free surface of an LC
state that the jump in normal stress consists of two
parts: one depends on the surface tension ¢ and the
other on the elastic disturbance Wy, of the uni-
form director field ng(r). Assuming that no tangential
stresses exist at the free surface, we can express the
boundary conditions at r = rq as

(T4 +T5") ex+ oM+ Weta) ei-l-g% =0, (29)
K3
where e; are the components of the normal unit vec-
tor e in the reference frame of the LC cylinder and
H = (1/Ri1 + 1/R>) /2 denotes the mean surface cur-
vature with the principal radii R; and R».

The nonhydrodynamic part of the boundary condi-
tions with strong tangential anchoring of the director
at the free surface holds if the scale of deformation of
the initial surface is much larger than the molecular
length of LCs®. This determines tangential behavior
of a smoothly disturbed director n at the free surface,
e. L ep~1:

en=0—= e, +n.=0 at r=r. (30)

The last constraint cancels the gradient term in
Eq. (29). We finally obtain the boundary conditions
in the linear approximation of the variables nl, V,., V.,
and Py,

T 4T +20H+ Wi =0, TE+TD = 0. (31)
Substitution of the expressions for the reactive and dis-
sipative stress tensors gives

Q/BITT’I" - Pl - 2CTO (HO - H) - Welasta

(32)
282 .p = po by at

r=To,

where Ho = (2r)~! is the initial mean curvature of
the LC cylinder. The equations for the jet surface dis-
turbed by a wave ((z,t) and its radial velocity 9¢/0t
are given by

9¢

V., == at

T‘(Z,t) ZT‘O-I-C(Z.,t), = ot

r=rg, (33)

where ( < rg is the radial displacement of a surface
point. The principal radii of the surface curvature,

5) Strictly speaking, this assumption is correct when the equi-
librium distribution of the director field n(r) is free of singulari-
ties. The problem of the minimal surface of an LC drop presents
another situation where an essential rearrangement of the field
n(r) at the surface can decrease the total energy by destroying
the disclination core within the drop.
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in the linear approximation with respect to (, and its
derivatives can be expressed as
1 1 1 ¢ 1 0%

— = AR— -2, — -, 34
Ri ro+¢ ro 12’ Ry 022 (34)

This transforms the boundary conditions given by

Eqgs. (30) and (32) into
aC ¢
1_ 96 _ 9%
n, = az-, Vr 875’ (35)
2621, = poFy, (36)
62
Pl - Qﬂl’rw’ - - < C + a—§> + Welast- (37)

The term W, deserves further discussion. It reflects
the existence of normal stresses at the surface, which
arise due to the resistance of the uniformly orientated
continuos LC media to the surface disturbance. The
term Wejes¢ vanishes in undisturbed LC jets and de-
pends linearly on the elastic modulus K, the radius rg,
and the derivatives of (. Moreover, the invariance of
the problem under inversion of the z axis requires de-
pendence on derivatives of only even orders. An explicit
expression for Wejqs is derived in Sec. 3.1.

3. PLATEAU INSTABILITY IN AN LC
CYLINDER

Before considering the sophisticated mathematics of
Eqs. (23)—(26) supplemented by boundary conditions
(35)-(37), we discuss capillary instability of the LC
cylinder. This is done by applying the Plateau con-
siderations [29] on shape of a liquid mass withdrawn
from the action of gravity.

We consider an LC cylinder with the surface dis-
turbed in accordance with (33), where ¢ = (y coskz, (o
is small compared to rg, and k = 27/A, with A being
the disturbance wavelength. The idea of Plateau, ap-
plied here, is to find the cut-off wavelength A of the
disturbance that determines breakage of the cylinder
into droplets with due decrease of the total energy.

The average volume v over one wavelength A in the
z direction is given by

A
1 1
U=K/dz/ds=7r<r(2)—l—§gg> —
0 s

where rg in the right-hand side is given as a second-or-
der expansion in (y. The total energy &£ of the LC
cylinder per unit wavelength with a disturbed director
field n(r) is given by

A
K
E= ao/ds-l— %/dz/ (div2n+rot2n) ds. (39)
s 0 s

The static director field n(r) can be found from Eq. (27)
and the associated boundary condition (35),

1 92
=1 F=0 - <A2c——2+
r

1

n, —2> n, =0,

0z (40)
nh = % at r=r
"0z o
Equation (40) has the solution
ko .

y(rz)=———=I(k k 41
mh2) =~ oDl sinks, (41)

which is finite at » = 0, where I,,,(x) is the modified
Bessel function of order m. The contribution of elastic
forces is determined by

2
LHIS
Il (]{27'0)

x [Af(kr)sin® kz + A3 (kr) cos® k2], (42)

divin + rot?n = k? [

Ai(q) = i +ah(q), As(q) = I (q).

Simple integration of Eq. (39) gives

1 T 2
=2 14 —k2¢2 - K
£ TOTo < + 4k C0> + =K Il(kro)] X

{ kGo
2

]M‘o

x / [42(g) + A2(@)] qdg. (43)

0

Inserting ro from Eq. (38) in the first term above, we
obtain

2
E— 200\/_v—00ﬁ(w2—1)+zl({ Gow ] X

To 2 T()Il(w)
>< /
0

The positive root wys = ksrg of the expression in the
right-hand side of Eq. (44) determines the cut-off wave-
length A of capillary disturbances that renders the LC
cylinder unstable.

)+ A3(q)] gdg, @ =kro. (44)
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Fig. 1. Universal plots of ksro versus 3¢ for the Plateau
instabilities in an LC cylinder (solid line), and in ordi-
nary liquid, ksrq = 1 (dashed line)

The quadratic approximation with respect to the
derivatives dn/dz; in Eq. (1), which provides the ba-
sis for the Frank theory, makes expression (44) correct
only in terms of the w? approximation. Indeed, the
power of @ in Eq. (44) must not exceed 2, otherwise
the calculation becomes inconsistent. We thus obtain

— 2009V = aoﬁ (w2 —
To
1 K
Wy = ———— n=—
VT F 2 ooro’
where the subscript «s» denotes the static nature of the

Plateau instability. The asymptotic behavior of ()
shows two important limits:

1) + Kk,
(45)

ws=1—2 if x2<K1,

1 1y . (46)

Figure 1 shows a plot of ksrg versus s for the Plateau
instabilities in the LC and in ordinary liquid.

The corresponding asymptotic cut-off wavelength
A, is obtained as

Ws =

Ag=2mrg (14 2) if <1,

S_Qw\/i\/_< +i> if x> 1. (47)

This result shows that k£ > k, increases the total energy
£ of the disturbed system, whereas k < k; decreases it.

According to (46), there are two marginal regimes of
instability.

1) The capillary regime ro > K/og. Here, Ay is
close to the circumference of the cylinder and the elas-
tic deformation contribution f Eadv to the total en-
ergy £ is negligible. This regime must apply to a wide
range of nematic LCs, because the common values of
K ~ 107" J/m [19] and o ~ 1072 J/m? [23] lead to
K/og ~ 107? m. This value is evidently smaller than
the presently attainable radii of the jet.

2) The elastic regime ro < K/og. This case reflects
the dominance of elastic deformation and predicts an
unusual behavior for Ay oc \/rg. This regime cannot
be reached by a simple increase of the elastic moduli
because their magnitude is determined by K ~ kgT/a,
where kT =~ 4-1072! J is the Boltzmann thermal en-
ergy at room temperature, and a ~ 5-107'% m is the
molecular length of the LC. In contrast, the effect of
surface tension can be diminished by surfactants or by
charging the surface of the liquid. In the latter case,
the charge can virtually eliminate the effect of surface
tension and provide the conditions where the elastic
forces predominate.

3.1. Wgest and the Gaussian surface curvature

A straightforward way to derive an expression for
Welast 18 to solve the elastic problem for the stresses
existing on a deformed axisymmetric surface of an LC
cylinder. This is related to the Plateau instability,
which obviates the need to repeat the entire procedure.

When we turn from Plateau considerations regard-
ing the static instability of LC cylinders to the cap-
illary instability of LC jets, the question is whether
the cut-off wavelengths of the static (Ag) and hydro-
dynamic (Ag4) problems coincide. This question was
skipped by Rayleigh in his studies of isotropic viscous
liquids, because the cut-off wavelengths always coincide
for ordinary liquids, A; = Ay. This identity reflects a
deep equivalence principle of the bifurcation point for
a nontrivial steady state of a dynamic system and the
threshold of static instability related to a minimum of
its free energy & [4].

Using that Ay = Ag4, we construct the term Weyqg
that enters boundary condition (37). For this, we ex-
amine and represent the total energy (45) as

E — 200V =

- ”Cg”’ {_00 (f—o - 0k2> +2K -2 02 ] . (48)
0

Next, we compare the expression in the brackets with
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the right-hand side of Eq. (37). This gives W that
generates the elastic contribution in (48),

1 19%

=—— = 49
R1R2 To 82’27 ( )

where G is the Gaussian surface curvature in accor-
dance with (34). Thus, the final expression for bound-
ary conditions (29) is based on two fundamental invari-
ants of the surface curvature, the mean surface curva-
ture H and the Gaussian surface curvature G.

Welast = 21{97 g =

4. DISPERSION RELATION

Rayleigh was the first to observe [1] that the insta-
bility problem is not so definite, contrary to the Plateau
theory. The mode whereby a system deviates from un-
stable equilibrium must depend on the nature and char-
acteristics of small displacements to which this system
is subjected. In the absence of such displacement, any
system, however unstable, cannot depart from equilib-
rium. These characteristics, being hydrodynamic, re-
flect the effect of viscosity, which predominates over
inertia. For ordinary liquids, the mode of the maxi-
mum instability, which corresponds to the wavelength
Ar = 4.508 - 2rg, exceeds the circumference of the lig-
uid cylinder. We anticipate that the instability of LC
jets has similar features.

The fact that the velocity potential does not ex-
ist in an anisotropic viscoelastic liquid dictates a stan-
dard approach to this problem that was first elaborated
by Rayleigh [2]. We define the Stokes stream function
U(r,t) and the director potential ©(r,t) as

107 _10v 1 _ 00
Ve = r 0z’ Vz_rar’ "= g (50)
such that continuity equation (23) holds. From the
other three equations, (24)—(26), we have
oP; 0? 109 1
87’ = =855, ordz <; E) o
100 o’V 0V
[51 <r ) +Br5~ 5.2 P +,U1TFr] , (51)
0P _1,
0z T
0 9 (107 82111 oy
XE [527‘5 < ) ﬂs PE—MWFT} , (52)
20 1[0 (1ov)_  2v) 1.
arot _ r " or \7 or Mgz o
(53)
Foo k(a2 1) 29
" *T o2 r2) or’

Applying the commutation rules gives

1
<A2¢: - T_2

Agce - F.=

.0 02
—AE <A20+ﬁ> 67

which facilitates simplification of the above equations.
Assuming that an axisymmetric disturbance character-
ized by the wavelength 27 /k increases exponentially in
time with the growth rate s gives

00 _ 0
or ~ or

{\Ila 61 Ca P17 Fr}:
= {ip(r), ib(r), <(r), p(r), if(r)}e ™™= (54)

Inserting (54) in (51)—(53) leads to the amplitude equa-
tions

10p 1oy Y

T3y = M5, (r ar> (Bok? + 5p)— + u f, (55)
Ba =2B1 — Pa,

kp:lx
T

Xa_{ {ﬁzaﬁ(%%ﬁ) (63k2+sp>——uzf]} (56)
06 _ 09 (10 2 1
or M287'< 87'> * 1k + 1f’ (57)

The new variables in (54) require reformulating
boundary conditions (35)—(37) as

_ 00 )
k§—5, s';—k?,
P2 o 0 (LOVY ¥
B2 or <r or >+k r (58)
r

o (
e )

1
F—00< - +2K
0

The real forms of amplitude equations (55)-(57) and
boundary conditions (58) imply that expression (54)
divides the five variables into two groups: P;,( and
¥, 0, F,.. These groups are shifted with respect to each
other by the phase angle /2.
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4.1. Reduction of the amplitude equations

In this section, we perform the standard procedure
for the simplification of amplitude equations (55)—(57).
Substituting f from (57) in the other amplitude equa-
tions, we obtain

19p _p 9 (109
Eor  ‘or \r or

00
— (Byk® + sp)% + 571#157 (59)

19 9 (10 ) (0
kp = B {r |:B35 <; E) —(Bsk +sp)?] } -

10 0o
— Vb2 oo <7”E> ,  (60)

where

By = f2 + 11443,
By = 3 — y1 01 2,

B, = ﬂ4 — V1M1 M2,
B3 = By + 71443,

and By > 0, B3 > 0 by virtue of conditions (12). Let
a new stream function y be defined as ¢ = r dx/0r.
The orientational (¢) and kinematic (v;) viscosities, as
well as the other auxiliary functions, are defined by the
relations

(62)

K B;
V=—, vi=—, uf=k2+i,
gl p Vi
! L (63)
w2=k2+5, — <1 = u?<w?
Vi

where the first inequality in (63) applies to the known
nematic LC fluids (see Tables 1 and 2). Using the new
notation, we find the first integrals of the amplitude
equations,

% = (BIAZC — BQU%) X + 871,”191 (64)

]{:p = (BgAQC — B4UZ) AQCX — 8’}/1/12A260, (65)

0= (ualoc + p1k?) x +9 (Ase — w?) 6. (66)

Next, we eliminate the pressure amplitude p from
Eqs. (64) and (65). This gives

[B?,Agc — (Blk2 + B4u3) Ao, + BQU%kZ] X —
— 571 (paloe + 1 k*) 60 =0, (67)

(M2A20+M1k2)x+’0(A26 —w2)9 =0. (68)

Diagonalizing the matrix of operators in (67) and (68),
we obtain homogeneous equations for the functions
x(r) and 6(r),

0
[D3A3,—DsA3 +D1As.—Dy] (;) = <0> . (69)

where

Do = k? (19Bgu§w2 - 871[1%]62) ,

D =9 (Bik*w? + Bok*u3 + Byw*uj) +

+ 2y pappk®,  (70)

Dy =19 (Bllc2 + Byw® + B4ui) - SAyl,ug,

D3 = 9B;3.
It is easy to verify that all the coefficients D; are pos-
itive if the conditions B; > 0 and p» < 1, 9/v; < 1
are satisfied (for all ). The latter conditions are in a
good agreement with numerous observations in nematic
LCs [19].

Factoring the polynomial differential operator fur-
ther (recalling that D3 > 0) gives

D3A3, — DyA3, + D1 Ay, — Dy =
= D3 (AQC — m%) (AQC - m%) (AQC - mg) . (71)

Equation (71) facilitates finding the finite solutions of
Eq. (69),

5.0
NOEDY —Io(myr),
(72)
ey
0 — =r .

(1) = 3 L Iolmr),
where the second fundamental solutions that diverge at
r = 0 were excluded, C; and G are indeterminate co-

efficients, and m? are three generic® roots of the cubic
equation

Dsm® — Dom*+ Dim®>—Dyg=0 —

3 3 3

m= 22 S mm2 = 2L T2 = 20
— ) Dy’ 4 ik T pyr LT T py
= J#k j=1

(73)

%

j=1

6) The freedom to choose the physical parameters of the LC
seems to admit a degeneration of cubic equation (73), when some
of the roots m]? can coincide in different ways. This coincidence
is not important because it can occur only at specific wave vec-
tors k* on which the coefficients Dy, D1, and Dy depend. On
the other hand, this kind of degeneration might be interesting if
k* is accidentally close to the cut-off wave vector kg at which the
breakage of the LC jet develops.
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The coefficients G; can be expressed through C; after
inserting solutions (72) in Eq. (68):

1
Gj= 590,
,u1k2 —l—,ugm? ) (74)
9i=———> J=123.
ws —m;

J

The amplitude of the pressure p(r), the stream func-
tion ¢ (r), and the displacement ¢(r¢) of a point on
the surface are easily found from Eqs. (57), (64), (68),
and (74) as

3
l,
p(r) =k ﬁCjIO(mﬂ)a

j=1

S
lj = Blm? — BQU% + 5 'yl,ulgj,
3
U(r)=rY_ CiLi(myr),
j=1

3
1 .
<(ro) = 5 > 9iCili(myre), j=1,2,3.
j=1

Before proceeding, we discuss the distribution of the
roots m} of cubic equation (73) in the complex plane.

First, m? is always positive because D; > 0, as men-
tioned above and as follows from the Descartes rule of
sign interchange in the sequence of coefficients for real
algebraic equations. The other two roots m§’3 are ei-
ther positive or complex conjugate with positive real
parts. The last case leads to Bessel functions of com-
plex arguments in (72). This fact can indicate that
the separation of the two groups of functions P, ¢ and
U, 0, F, by the phase angle 7/2 is more elaborate than
assumed in (54). Another consequence of the existence
of complex conjugate roots m?., which is more impor-
tant from the physical standpoint, is the appearance
of imaginary contributions to the dispersion equation.
This can lead to a complex value of the growth rate
$ = 3§+ iw as its solution and to the nonsteady (oscil-
latory) evolution of the jet, e.g.,

C(Zat) x ((’I‘O)egt . ei(wt+kz)7

where w is the frequency of oscillations.

4.2. Dispersion equation

In what follows, we derive the dispersion equa-
tion s = s(krg) that determines the evolution of the
Rayleigh instability in LC jets. The revised version of

boundary conditions (58) at r = rg, which utilizes the
new stream function y(r), is given by

a0 ,0x
Sar = Mo
06 0 0
SMp2 g = B3 EAQCX + B5k26—§, (76)
s 9%y dx
PTG TG

where Bs = [ 4+ 411 2. Substituting (72) and (75)
in (76) and eliminating the coefficients Cy, Cs, and Cj
from the linear equations leads to a (3 x 3)-determinant
equation

det S;; = 0, (77)
where
Syj = k* — % 95>
Soj = Bsm? + Bsk* — % Y1k29;s (78)
S3; =T —3s %%—Qﬂlmj%

and I (y) = dI1(y)/dy. Equation (77) is an implicit
form of the exact dispersion relation, which is highly
complex and cannot be solved analytically in the gen-
eral case. Nevertheless, here we can verify that the
cut-off wavelength Ay coincides with Ay obtained from
the Plateau theory. Indeed, the cut-off regime corre-
sponds to boundary conditions (76) when s = 0 and is
satisfied for T' = 0, i.e., Ay = A;. The implications of
Eq. (77) can be extended further, for the study of dif-
ferent modes of the LC flow, including oscillations, and
in order to describe asymptotic behavior of LC jets.
This is outside the scope of this paper. In the next sec-
tion, we consider the case that facilitates decoupling
of hydrodynamic and orientational modes, and conse-
quently the solution of the Rayleigh instability problem
in a closed form.

5. DECOUPLING OF HYDRODYNAMIC AND
ORIENTATIONAL MODES

In this section, we discuss the case where dispersion
equation (77) becomes solvable. Here, we encounter an-
other problem: the elasticity of the LC and anisotropy
of its viscous properties have the same origin and can-
not therefore be considered separately. Nevertheless,
we investigate the case where dispersion equation (77)
can be simplified. The large number of physical param-
eters involved (three viscous moduli, two kinetic coef-
ficients, A and ~y;, orientational (¢) and kinematic (v;)
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viscosities, and the dimensionless parameter ) call for
such a treatment.

We consider the LC with rod-like molecules (A &~ 1)
and low orientational viscosity ¢,

K< 2 (79)

19<<Ui7 9

:u1%11 /J/?NOa

where the first three relations apply to the known ne-
matic LC fluids (see Tables 1 and 2). The last inequal-
ity in (79) applies to the low-viscosity limit, which was
considered for the kinematic viscosity in ordinary lig-
uids by Rayleigh [1].

In this case, characteristic equation (73) reduces to

6_5 4.5 2, 5\, 2 _
m 19m +19<Bk +V_2>m

~ g2 <k2 + é) =0, (80)
’19 120
; B3 + Ba
PR ey
p B2

The three roots m3 of Eq. (73) become

2mf2:l3k2+éi
: 7

i\/(B2—4)k4+2(B 2) k

<:>

=5 (81)
A simple analysis of the last expression shows that the
dimensionless parameter B has the critical value 2 that
separates two different evolution scenarios of the LC
jet. If B > 2, both roots, m? and m3, are positive and
the capillary instability always appears via trivial bifur-
cation (steady-state instability). This scenario applies
to MBBA and PAA liquid crystals with By;gga = 5.92
and Bpaa = 7.11 (see Tables 1 and 2). In the oppo-
site case, B < 2, we can find the regime where the
above roots are complex conjugate. This leads to the
oscillatory evolution of the jet, which appears via Hopf
bifurcation (see Sec. 4.1).

Significant simplification can be obtained if we as-
sume degeneration of the three viscosities at, the critical
value B, = 2. Indeed, if the viscous moduli f5; satisfy
the relation

the three roots m? of Eq. (73) are

2 2 s 2 S
=k — = —. 83
ma, + 7’ mz =5 (83)

2 1.2
ml*_k7

We note that relation (82) cancels the last term in (9).
Expressions (83) indicate that the problem is decom-
posed into two parts, or, in other words, the cross-terms
in Egs. (67) and (68) are dropped. Thus, the first part
of the problem is associated with the Rayleigh instabil-
ity, described by

(AQC ml*) (AQC mZ*) X = 01 (84)
with boundary conditions that account for elasticity,
0 0
Aoy + 22X =0,
or or
5 (85)
2 p=2sf3 8_X+F8_ at r=r
kP ! or o

The second part is associated with an orientational in-
stability of the director field n(r,t),

(AQC — mg) 0= 0,

with the boundary condition

89 28X —
S5, =k o at r=rq. (86)

The solutions of Eqs. (84) and (86) are

C
x(r) = mi* Io(masr) + mz* Io(mayr),

" (87)
9(’!‘) = m—g[g(mg’l“).

With these solutions, the hydrodynamic pressure p(r),
stream function (r), and surface displacement ¢(rg)
are obtained as

p(r) = —cisplo(mi.r),
U(r) = rerli(miar) + eIy (mayr)],

c
S(rg) = ?3]1(77137’0),

where the only indeterminates are ¢; and co, while ¢3
can be expressed as their linear combination,
S L (ml*TO) L (m2*7‘0)

— = 88
C3 12 C1 Ty (maro) + 2 Ty (maro) (88)

provided that s = s(kr) satisfies the dispersion rela-
tion that follows from (85) and (87),

2o7k?
2 1
+ X
Io(kro)
kaz* Il(k’l“o)
I, - I} (ma. =
1(ko) k2 +m3, I (ma.ro) i(maaro) | s
T 2
_ ook 1= k221 + 250)] 1 (ko) m2* R (89)

pra Io(kro) m3, + k2
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1.0
kT‘o

Fig.2. A plot of the rescaled growth rate S versus

kro for low viscosity \/pr3 /oo s—(kro) (solid lines) and

high viscosity (28321r0/00)s+(kro) (dashed lines) for dif-

ferent values of s in descending order from top down

» =0, 0.25, 1, 5. If /v = 43¢, then the scaling for
both viscous regimes is the same

If 2 = 0 and 77 = 73, Eq. (89) is known as the We-
ber equation for a viscous isotropic liquid [6]. For low
viscosity”), B ~ fa < V/Pooro, a Rayleigh-type ex-
pression is obtained (see Fig. 2),

O'Uk 2 9 Il(k"l“())
— |1 = Ek*rg(1 4+ 23 ,
pri [ o )] Io(kro)
where the subscript «—» denotes low viscosity.
The maximum s™%* in Eq. (90), which corresponds
to the wave number £™?", leads to evolution of the

5% (krg) = (90)

largest capillary instability. Numerical calculation
shows that s™%* and k™% are both proportional to
(142507172,

maz 1 00
T 3VIF 2\ prd’ (o1)
gmae o 4 a = 0.697.

T oo+ 2
When high viscosity prevails, 81 ~ 82 > /poorg, the
dispersion equation is given by (see Fig. 2)
N 2627‘3[6
[1— k2r2(1+ 25)] IZ(kro)
X

I(](k‘T[))Il (k"l“()) + k?"o [Ii (k"l“())]

ao

max max

s =~ k =0,
+ 6629 T

s+ (kro)

7. (92)

") In the theory of viscoisotropic liquid jets, this case is
known [7] as pertaining to the range of low Ohnesorge num-
bers Oh = 1/,/pooro that determine a competition between the
hydrodynamic and surface tension forces. Expression (92) corre-
sponds to the case of high Ohnesorge numbers.

where the subscript «+» denotes high viscosity. In this
limit, similar to ordinary liquids [4], there is no finite
mode of the maximum instability for any s. In this
case, we have

S(ro) =
_ maz _
= gmaz [61[1 (ICJr ’I"[)) + 62.[1 (m2*r0)] =0. (93)
Nevertheless, there exists a continuous range

[0, (1 4 23)"Y2r5'] of wave numbers k with a fi-
nite disturbance growth rate sy (krg), which affects
the cylindrical jet.

We note that the dispersion curves shown in Fig. 2
and those in Fig. 5 in [21] appear to be similar, but
are characterized by different physical parameters. The
reason for this observation is the similarity between We-
ber equation (89) and dispersion equation (36) in [21],
which are obtained from different models. Our ap-
proach was to develop a general axisymmetric solution
in the framework of the three-dimensional model. This
model dates back to the Rayleigh—Weber theory [2, 3]
and accounts for the radial inhomogeneity of the dis-
turbed director field. The implicit solutions of Eq. (77)
reflect the radial dependence of both the hydrodynamic
V(r,z,t) and orientational n(r, z,t) modes, and they
include all types of the LC jet evolution. A specific case
where the hydrodynamic and orientaional modes are
decoupled exhibits this radial dependence and yields
dispersion equation (89) in explicit form.

In contrast, the one-dimensional analysis of the LC
jet evolution, used in [21], is hardly compatible with the
distortion of the director field n(r, z,t), and therefore
must be supported by assuming a fixed axial direction
of n® (see detailed comments in Sec. 1). This endows
their model with an inherent «decoupling» that results
from the a priori elimination of the elastic forces. Ob-
viously, similarity between the dispersion curves men-
tioned above disappears if we consider the general so-
lution given by (77).

5.1. Hydrodynamic influence on the
orientational instability of LCs

We conclude this section with a brief discussion
regarding the hydrodynamic influence on the orienta-
tional instability of the director field n(r,t). As the
effect of hydrodynamics changes the wave number k;
of the Plateau instability to k., the flow drives the
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orientational instability (41) of the director field n(r, t).
Indeed, in accordance with (87),

smaz
ne(r,z) = ezly (mP**r), mp* = . (94)

9

It is convenient to consider the following two marginal

viscous regimes.

1. The low-viscosity limit,

1 1 K

N—————, = %, (95)

3V1+ 25 /€ Vi
where £ ~ 107%-107* is a small dimensionless parame-
ter.

2. The high-viscosity limit,

(miaerg)?

(w5 "ro)” ~ 655 (96)
In both limits, the distribution of the director field

n(r,t) in the jet is always nontrivial and definitely far
from static distribution (41).

6. CONCLUSIONS

1. The capillary instability of an LC jet with a
strong tangential anchoring of the director at the sur-
face is considered in the framework of linear hydro-
dynamics of the uniaxial nematic LC. Its static ver-
sion, which is called the Plateau instability and cor-
responds to the variational problem of minimal free
energy, predicts an essential dependence of the distur-
bance cut-off wavelength on the dimensionless param-
eter s = K/ogro.

2. The hydrodynamic problem of the capillary in-
stability in LC jets is solved exactly and the dispersion
relation is derived. This relation, which is represented
as a determinant equation, implicitly expresses the dis-
persion s = s(k) of the growth rate s as a function of
the wave number & of axisymmetric disturbances of the
jet.

3. The case where the dispersion equation becomes
explicitly solvable is considered in detail. It corre-
sponds to the regime where the hydrodynamic and ori-
entational modes become decoupled. Hydrodynamics
changes the wave number kg of the Plateau instability
into ke, which produces evolution of the largest cap-
illary instability. Similarly, a hydrodynamic flow influ-
ences the static orientational instability of the director
field n(r, ).

4. The present theory can easily be extended to
nonuniaxial nematic LCs that possess finite point sym-
metry groups G C O(3) as distinguished from the uni-
axial group Dsp. The corresponding expressions for

the free energy density E;(G) and the dissipative func-
tion D(G) were derived in [31].

5. In this work, the effect of external fields was
not considered. However, the theory developed here
facilitates the treatment of the Rayleigh instability in
nematic LCs in the presence of static electromagnetic
fields.

The research was supported by the Gileadi Fellow-
ship program of the Ministry of Absorption of the State
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