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RAYLEIGH INSTABILITY IN LIQUID-CRYSTAL JETSL. G. Fel *, Y. ZimmelsDepartment of Civil and Environmental Engineering, Te
hnion32000, Haifa, IsraelSubmitted 14 November 2003Capillary instability of isothermal in
ompressible liquid-
rystal (LC) jets is 
onsidered in the framework of linearhydrodynami
s of uniaxial nemati
 LCs. The free boundary 
onditions with strong tangential an
horing of thedire
tor n at the surfa
e are formulated in terms of the mean surfa
e 
urvature H and the Gaussian surfa
e
urvature G. The stati
 version of the 
apillary instability is shown to depend on the elasti
ity modulus K,the surfa
e tension �0, and the radius r0 of the LC jet, expressed in terms of the 
hara
teristi
 parameter{ = K=�0r0. The problem of the 
apillary instability in LC jets is solved exa
tly and a dispersion relation,whi
h re�e
ts the e�e
t of elasti
ity, is derived. It is shown that the in
rease of the elasti
ity modulus resultsin the de
rease of both the 
ut-o� wavenumber k and the disturban
e growth rate s. This implies an enhan
edstability of LC jets, 
ompared to ordinary liquids. In the spe
i�
 
ase where the hydrodynami
 and orientationalLC modes 
an be de
oupled, the dispersion equation is given in a 
losed form.PACS: 61.30.Hn, 68.03.Kn, 68.03.Cd1. INTRODUCTIONThe breakup of liquid jets inje
ted through a 
ir
u-lar nozzle into stagnant �uids has been the subje
t ofwidespread resear
h over the years. Previous studiesthat followed the seminal works of Lord Rayleigh haveestablished that the 
omplex jet �ow is in�uen
ed bya large number of parameters. These in
lude nozzleinternal �ow e�e
ts, the jet velo
ity pro�le V(r), andthe physi
al state of both liquid and gas. Althoughthe hydrodynami
 equations are nonlinear, the linearstability theory 
an provide qualitative des
riptions ofthe breakup phenomena and predi
t the existen
e ofdi�erent breakup regimes.Using a linear theory, Rayleigh showed [1℄ that thejet breakup is a 
onsequen
e of the hydrodynami
 in-stability, or more exa
tly, the 
apillary instability. Ne-gle
ting the e�e
t of the ambient �uid, the vis
osityof the jet liquid, and gravity, he demonstrated that a
ylindri
al liquid jet is unstable with respe
t to distur-ban
es 
hara
terized by wavelengths larger than the jet
ir
umferen
e. Rayleigh also 
onsidered the 
ase of avis
ous jet in an invis
id gas and an invis
id gas jet inan invis
id liquid [2℄. Weber [3℄ generalized Rayleigh's*E-mail: lfel�te
hunix.te
hnion.a
.il

result to the 
ase of a Newtonian vis
ous liquid andshowed that the vis
osity tends to redu
e the breakagerate and in
rease the drop size. Chandrasekh
har [4℄
onsidered the e�e
t of a uniform magneti
 �eld on the
apillary instability of a liquid jet. A me
hanism ofbending disturban
es and of bu
kling, slowly moving,highly vis
ous jets was presented by Taylor [5℄. Fur-ther developments of the theory in Newtonian liquidswas 
on
erned with additional fa
tors su
h as the dy-nami
 a
tion of the ambient gas (leading to atomizationof the jet), the nonlinear intera
tion of growing modesthat lead to satellite drop formation, and the spatial
hara
ter of instability [6; 7℄.The 
apillary instability in jets 
omprised of non-Newtonian suspensions and emulsions presents a dif-ferent 
ategory of 
ases governed by power-law (pseu-doplasti
 and dilatant) liquids. The e�e
tive vis
osityof the pseudoplasti
 liquid de
reases with the growthof the strain rate, whereas in dilatant liquids, it in-
reases [7℄. The behavior of 
apillary jets of dilute and
on
entrated polymer solutions suggests a strong in-�uen
e of the ma
romole
ular 
oils on their �ow pat-terns [7℄. Free jets of polymeri
 liquids that exhibitos
illations are reported in [8℄.The idea of the Rayleigh instability was applied totubular membranes in dilute lyotropi
 phases [9℄. Their1100
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rystal jetsrelaxation, following opti
al ex
itation, is 
hara
terizedby a long time and 
an be des
ribed by means of thehydrodynami
 approa
h [10℄. Bending deformationsof su
h membranes are governed by the Helfri
h en-ergy [11℄, whi
h depends on the 
urvature of the tube.Thus, a 
ompetition between the surfa
e tension and
urvature energy of the membrane immersed into wa-ter renders the initial shape of the tube unstable. Thehydrodynami
 formalism used in [10℄ and the hydro-dynami
s of �uids with an inner order su
h as liquid
rystals (LCs) [12℄ have similar features. In [10℄, theorder parameter is a unit ve
tor normal to the mem-brane surfa
e. In 
ontrast, the order parameter Q ofan LC �uid is de�ned throughout the spa
e it o

upies.The 
ontinuum theory of LC phases has emerged asa rigorous part of the 
ondensed matter theory. The hy-drodynami
s of the nemati
 LC phases was developedduring the 60�70th in the pioneering works of Eri
k-sen [13; 14℄, Leslie [15; 16℄, Parodi [17℄, and the Harvardgroup [18℄1), and its predi
tions were su

essfully 
on-�rmed in many experimental observations. The 
ombi-nation of vis
ous and elasti
 properties is likely to pro-du
e new evolution patterns of hydrodynami
 instabili-ties, in the 
ontext of the Benard�Rayleigh, Marangoni,and ele
trohydrodynami
 e�e
ts [19℄, whi
h 
annot o
-
ur in ordinary liquids. In parti
ular, we refer to non-steady state (os
illatory) evolution of the instabilitythat appears via the Hopf bifur
ation [20℄. The insta-bility of an LC jet poses an additional 
hallenge withrespe
t to the e�e
ts listed above. This already appliesin the framework of the linear stability theory.The linear analysis of the 
apillary instability in athin nemati
 LC �ber was re
ently performed in [21℄under the assumption that the dire
tor �eld n(r) is�xed and does not 
hange even if the �ber shape evolvesthrough the linear instability pro
ess. In this anal-ysis, the only in�uen
e of the LC nemati
ity is dueto the anisotropy of the elasti
 surfa
e energy and theanisotropy of vis
ous LC moduli. The above assump-tion stipulates the predominan
e of elasti
 for
es overthe surfa
e tension, ` � r0, and over hydrodynami
for
es, Er � 1, where ` = K=� and Er = �V r0=Kdenote the an
horing extrapolation length [22℄ and theEri
ksen number [19℄, respe
tively, � and K are vis-
ous and elasti
 moduli, V is the LC velo
ity, and r0stands for the geometri
 length s
ale, i.e., the radiusof the LC jet. The �rst 
ondition (` � r0) is di�
ultto implement for most of the known nemati
 LCs withwell-studied physi
al parameters. Indeed, the 
lassi
al1) The name �Harvard group� was proposed by De Gennes[19℄ and denotes �ve authors (see [18℄).

nemati
 LCs, also known as MBBA and PAA, havethe an
horing extrapolation length ` � 3 �10�10 m (Ta-bles 1 and 2). This value indi
ates strong an
horingat the surfa
e2). Otherwise, the radius of the jet mustbe de
reased to the mole
ular s
ale. In the 
ase ofstrong dire
tor an
horing at the surfa
e, the se
ond re-quirement, Er � 1, does not allow a 
ontinuous tran-sition to ordinary liquids (a 
lassi
al Rayleigh�Webertheory) whi
h is an important ben
hmark in the theory.We note that as the elasti
ity tends to zero, K ! 0,then Er ! 1. Moreover, disregarding the bulk elas-ti
ity e�e
ts in LCs leaves out the 
ompetition betweenthe bulk for
es and surfa
e tension that is 
ru
ial forthe physi
al pi
ture of thin LC �lms (see Se
. 3). Inthis 
ontext [21℄, the Leslie�Eri
ksen equation of angu-lar motion of the dire
tor n(r; t) was skipped and theelasti
ally indu
ed nondissipative 
ontributions to theNavier�Stokes equation were not in
luded in the LChydrodynami
s.A more realisti
 setup of the problem 
onsists of arigid boundary 
ondition of strong dire
tor an
horingat the free surfa
e of LC jets. The simplest 
ase 
on-stitutes a tangential orientation of the dire
tor at thesurfa
e, n � e = 0, where e is a unit normal ve
tor tothe jet surfa
e. Su
h orientation, with strong an
hor-ing and temperature independen
e, is observed at thefree surfa
e of the 
lassi
al nemati
 PAA mentionedabove [24�26℄. Assuming that the s
ale of deformationof the initial surfa
e is mu
h larger than the mole
ularlength of LCs, we 
on
lude that if the orientation of thedire
tor n is set tangential to the undisturbed surfa
e,then it must also remain tangential when the surfa
e issmoothly disturbed.The elasti
 properties of LCs are expe
ted to 
hangethe evolution patterns of jets that are made from them.In this paper, we derive a rigorous mathemati
al modelof 
apillary instability for isothermal in
ompressible ne-mati
 LC jets in the single elasti
 approximation. Thismodel shows how the 
ombined vis
ous and elasti
properties of LC �uids determine the boundary 
on-2) On the basis of a heuristi
 argument, De Gennes [19℄ notedthat if the anisotropi
 intera
tion at a nemati
�substrate in-terfa
e is as large as that a
ting between nemati
 mole
ules,the an
horing energy � 
an be roughly estimated as � � K=a,where K is the Frank modulus and a is the mole
ular dimension;hen
e, taking K � 8 � 10�12 N and a � 5 � 10�10 m, we �nd� � 1:6 � 10�2 N/m, whi
h 
orresponds to the strong an
horingin virtually all pra
ti
al 
ases. An extensive review by Cognard[23℄ lists sixteen most studied nemati
 LCs with 
orresponding� measured at equilibrium with air (see Table 9 in [23℄). Allvalues are in the range between 2:45 � 10�2 N/m for MPPB and4 � 10�2 N/m for 5CB, whi
h gives a good support to the quali-tative 
onsideration of De Gennes.1101
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 physi
al parameters �i, �, K, and �0 and their derivatives �i, �i, 
i, Bi, �i, �, and �i for nemati
liquid 
rystal 4-metoxybenziliden-4-butilanilin (MBBA) at 25 ÆC taken from [23; 30℄�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s �5, mPa � s �6, mPa � s7 �78 �1 84 46 �33�1, mPa � s �3, mPa � s �5, mPa � s � �1 �242 50 104 1.026 1.013 0:013�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s 
1, mPa � s 
2, mPa � s42 25 79 59 77 �79B1, mPa � s B2, mPa � s B3, mPa � s B4, mPa � s B #, m2/s58 104 25 78 5:92 1:2 � 10�10�, kg/m3 K, N �0, N/m ` = K=�0, m �i, m2/s #=�i1:2 � 103 9 � 10�12 38 � 10�3 2:4 � 10�10 10�5�10�4 10�6�10�5Table 2. The basi
 physi
al parameters �i, �, K, and �0 and their derivatives �i, �i, 
i, Bi, �i, �, and �i for nemati
liquid 
rystal para-azoxyanisole (PAA) at 122 ÆC taken from [23; 30℄�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s �5, mPa � s �6, mPa � s4 �6:9 �0:2 6:8 5 �2:1�1, mPa � s �3, mPa � s �5, mPa � s � �1 �23:4 4:5 13:7 1.06 1.03 0:03�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s 
1, mPa � s 
2, mPa � s3:4 2:25 11:45 4:55 6:7 �7:1B1, mPa � s B2, mPa � s B3, mPa � s B4, mPa � s B #, m2/s4:34 9:36 2:26 11:24 7:11 1:8 � 10�9�, kg/m3 K, N �0, N/m ` = K=�0, m �i, m2/s #=�i1:4 � 103 11:9 � 10�12 40 � 10�3 3 � 10�10 10�6�10�5 10�4�10�3ditions at the free surfa
e with strong tangential an-
horing of the dire
tor and the range where instabilityprevails.2. HYDRODYNAMICS OF AN LC JETIn this se
tion, we �rst formulate the problem of
apillary instability and then derive the basi
 equationsthat govern the linear hydrodynami
s of an LC jet. Thein
ompressible �ow of a nemati
 LC is des
ribed by a
set of di�erential equations: the 
ontinuity equation,the Navier�Stokes equation for vis
oelasti
 LCs, andthe Leslie�Eri
ksen equation of angular motion of thedire
tor n(r; t). They are supplemented by boundary
onditions on the LC free surfa
e with strong tangentialan
horing of the dire
tor.The basi
 notation and linear hydrodynami
 equa-tions for uniaxial nemati
 LCs follow the theorygiven in [18℄ (the so-
alled Harvard group approa
h),whi
h has be
ome standard in many monographs,e.g., [12; 27℄. We note that the Harvard group and1102
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rystal jetsEri
ksen�Leslie�Parodi approa
hes are in full agree-ment (a detailed dis
ussion is given in [19℄).2.1. Basi
 notation and variablesThe following basi
 variables des
ribe the nemati
LC medium: velo
ity V(r; t), pressure P (r; t), and di-re
tor n(r; t), n2 = 1. The initial values of the fun
-tions are denoted by �0�, either as a subs
ript or su-pers
ript. The following notation, whi
h is 
ommonlya

epted in the theory of LCs, is used hen
eforth:1. The free energy density Ed of a deformed non
hi-ral uniaxial nemati
 LC, given in the quadrati
 approx-imation in terms of the derivatives �n=�xj and in thesingle elasti
 approximation, has the formEd = K2 �div2n+ rot2n� ; (1)where K � 0 is known as the Frank elasti
ity modulus.In the vi
inity of a phase transition, K / Q2 [19℄, andin the isotropi
 phase, it vanishes.2. The bulk mole
ular �eld F and the Eri
ksenelasti
 stress tensor �ki, whi
h set the equilibrium dis-tribution of the n-�eld in an LC, are determined by thevariational derivatives3),F =M� nhn;Mi; or Fi = (Æij � ninj)Mj ; (2)where Mi = ��xk �Ed�(�kni) � �Ed�ni ;�ki = �Ed�(�kni) ; �k = ��xk ; (3)i.e.,M = K�3n; �ki = K (Ækidivn+(n � rotn)nm�mki++ [[n� rotn℄� n℄m �mki) ; (4)where �mki is the 
ompletely antisymmetri
 unit tensorof the third rank (the Levi-Civita tensor).3. If the deviations of the dire
tor n = n0+n1 fromits initial orientation n0 along the z dire
tion are small,then n0x = n0y = 0; n0z = 1;1� n1x; n1y � n1z � �n1x�2 ; �n1y�2 ; (5)and simple algebra yields the linear approximationFx = K�3n1x; Fy = K�3n1y; Fz = 0; (6)3) Here and throughout the paper, unless noted otherwise, weapply the summation rule over indi
es that are repeated in atensor produ
t, e.g., aijbjk =Pj aijbjk .

where �3 is the three-dimensional Lapla
ian. Similar
onsiderations regarding the Eri
ksen stress tensor �kigive �xx = �yy = �zz = K div n1;�xy = ��yx = K �n1y�x � �n1x�y ! ;�yz = ��zy = K �n1z�y � �n1y�z ! ;�zx = ��xz = K ��n1x�z � �n1z�x � : (7)
The stresses given by Eqs. (7) do not 
ontribute to thenondissipative stress tensor T (r)ik used in the linear hy-drodynami
s of LCs (see Eq. (8) below).4. The rea
tive (nondissipative) T (r)ik and dissipa-tive T (d)ik stress tensors are de�ned asT (r)ik = �PÆik � �kj �nj�xi � �2 (niFk + nkFi) ++ 12(niFk � nkFi); (8)T (d)ik = 2�1�ik + (�3 � 2�1) (ni�kjnj + nk�ijnj) ++ (2�1 + �5 � 2�3)ninknjnm�jm; (9)where the antisymmetri
 
ik (vorti
ity) and symmetri
�ik parts of the derivative �kVi are given by
ik = 12 ��Vk�xi � �Vi�xk� ;�ik = 12 ��Vk�xi + �Vi�xk� : (10)Three independent vis
ous moduli �j , the kineti
 
oef-�
ient �, and the rotational vis
osity 
1 determine thedissipative stress tensor T (d)ik , the forth-rank vis
ositytensor �ikjm, and the dissipative fun
tion D in the ab-sen
e of heat �uxes,D = �ikjm�ik�jm + 1
1F2; T (d)ik = �ikjm�jm;�ikjm = �1(�ij�km + �kj�im)+ (11)+�32 (ninj�km+nknj�im+ninm�kj++ nknm�ij) + �5ninknjnm:The tensor �ikjm 
onsists of three independentuniaxial invariants [12℄ and is highly symmetri
,1103



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004�ikjm = �kimj = �jmik . The requirement that D ispositive be
omes�1 � 0; �3 � 0; �5 � 0; 
1 � 0: (12)The parameter � is 
lose to +1 or �1 for rod-like ordisk-like mole
ules, respe
tively. If the liquid is vis-
oisotropi
, then � = 0.5. The hydrodynami
 rea
tive (nondissipative)m(r) and dissipative m(d) �elds are de�ned asm(r)i = �(V � r3)ni + nk
ki + � �ij�jknk;m(d) = 1
1F; (13)where r3 is the three-dimensional gradient operator,(r3)2 = �3.6. The surfa
e tension � of a nemati
 LC is givenby [28℄ � = �0 + �1hn; ei2; (14)where �0 and �1 are isotropi
 and anisotropi
 surfa
etension moduli respe
tively, and e is a unit normal ve
-tor to the LC surfa
e.7. Another system of vis
ous moduli �i (
alledthe Leslie vis
osities) relate the dissipative and kineti
moduli as4) �1 = �4=2; � = �
2=
1;�5 = �1 + �4 + �5 + �6;
1 = �3 � �2; 
2 = �3 + �2;�3 � 2�1 = �5 + �2�;2�1 + �5 � 2�3 = �1 + 
22=
1; (15)with the support of the Onsager�Parodi relation [17℄�3+�2 = �6��5. In the vi
inity of a phase transition,the vis
ous moduli �i have di�erent dependen
es on theorder parameter Q: �1 / Q2, �2; �3; �5; �6 / Q, and�4 / Q0 [19℄.Tables 1 and 2 (see above) summarize vis
ositiesand other physi
al parameters that 
hara
terize themost frequently used and well studied nemati
 LCs,also known as MBBA and PAA.2.2. Basi
 equationsThe 
omplete system of hydrodynami
 equationsfor the isothermal in
ompressible nemati
 LC re�e
tsthe 
onservation laws of mass and of the linear andangular momenta.4) The 
orre
t expression for �5 is given in [18℄.

1. The 
ontinuity equationdivV = 0: (16)2. The Navier�Stokes equation for vis
oelasti
 LC,��Vi�t + �(V � r3)Vi = ��xk �T (r)ik + T (d)ik � : (17)3. The Leslie�Eri
ksen equation of angular motion ofthe dire
tor n(r; t),�n�t =m(r) +m(d): (18)The last equation is written for a negligible spe
i�
angular moment of inertia JLC of the LC, namely,JLC � �r20 , where r0 is a 
hara
teristi
 size of thesystem. This is true in our 
ase, where r0 is the radiusof the jet.We 
onsider an isothermal in
ompressible jet �ow-ing along the z axis, out of a nozzle at a velo
ity V.The initial orientation of the dire
tor n0 is assumed
ollinear with V. Deviations from the initial values ofthe dire
tor and pressure are de�ned as n1 = n � n0and P1 = P � P0, respe
tively, where P0 = �0=r0 isthe unperturbed pressure within the 
ylindri
al jet. Inthe linear approximation, jn1j � 1, Eqs. (16)�(18) aresimpli�ed asdivV = 0; ��Vi�t = ��P1�xi + �T (d)ik�xk ++ 1� �2 n0i divF� 1 + �2 (n0 � r3)Fi;�n1i�t = n0k
ki + ��0ij�jkn0k + 1
1Fi;�0ij = Æij � n0in0j ; i; j; k = x; y; z: (19)
Choosing n0z = 1 gives Fz = 0, and hen
e�Vx�x + �Vy�y + �Vz�z = 0; (20)��Vx�t = ��P1�x +��1�2 + �2 �2�z2�Vx ++ (�2 � �1) �2Vz�x�z � �+ 12 �Fx�z ;��Vy�t = ��P1�y +��1�2 + �2 �2�z2�Vy ++ (�2 � �1) �2Vz�y�z � �+ 12 �Fy�z ;��Vz�t = ��P1�z +��2�2 + �3 �2�z2�Vz �� �� 12 ��Fx�x + �Fy�y � ;

(21)
1104
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rystal jets�n1x�t = �+ 12 �Vx�z + �� 12 �Vz�x + Fx
1 ;�n1y�t = �+ 12 �Vy�z + �� 12 �Vz�y + Fy
1 ;�n1z�t = 0; (22)
where �2 = �2=�x2 + �2=�y2 is the two-dimensionalLapla
ian, �1 = �1, �2 = �3=2, �3 = �5 � �3=2, and Fxand Fy are given in (6). Be
ause isotropi
 vis
osity im-plies that �i = �, the liquid 
rystals MBBA and PAAmentioned above are 
learly far from being isotropi
(see Tables 1 and 2 above).To make the problem more spe
i�
 and easier tosolve, we 
onsider axisymmetri
 disturban
es in thesystem of a 
ylindri
al LC jet with radius r0. In this
ase, �Vz�z + �Vr�r + Vrr = 0; (23)��Vr�t = ��P1�r + ��1��2
 � 1r2�+ �2 �2�z2�Vr ++ (�2 � �1) �2Vz�r�z � �1 �Fr�z ; (24)��Vz�t = ��P1�z + ��2�2
 + �3 �2�z2�Vz �� �2��Fr�r + Frr � ; (25)
1 �n1r�t = 
1�1 �Vr�z + 
1�2 �Vz�r + Fr; n1z = 0; (26)where �2
 = �2�r2 + 1r ��r ;Fr = K ��2
 � 1r2 + �2�z2�n1r;�1 = �+ 12 ; �2 = �� 12 : (27)Equations (23)�(26) des
ribe ordinary linear hydro-dynami
 behavior of isotropi
 in
ompressible liquids ifthe LC properties vanish: K; 
1 ! 0 and �i = �. Theresult is the well-known 
ontinuity equation and thelinearized Navier�Stokes equation,divV = 0; ��V�t = �rP1 + ��3V: (28)

2.3. Boundary 
onditions at the free surfa
eBoundary 
onditions at the free surfa
e of an LCstate that the jump in normal stress 
onsists of twoparts: one depends on the surfa
e tension � and theother on the elasti
 disturban
e Welast of the uni-form dire
tor �eld n0(r). Assuming that no tangentialstresses exist at the free surfa
e, we 
an express theboundary 
onditions at r = r0 as�T (r)ik +T (d)ik � ek+(2�H+Welast) ei+ ���xi = 0; (29)where ei are the 
omponents of the normal unit ve
-tor e in the referen
e frame of the LC 
ylinder andH = (1=R1 + 1=R2) =2 denotes the mean surfa
e 
ur-vature with the prin
ipal radii R1 and R2.The nonhydrodynami
 part of the boundary 
ondi-tions with strong tangential an
horing of the dire
torat the free surfa
e holds if the s
ale of deformation ofthe initial surfa
e is mu
h larger than the mole
ularlength of LCs5). This determines tangential behaviorof a smoothly disturbed dire
tor n at the free surfa
e,ez � er � 1:e � n = 0 ! ez + n1r = 0 at r = r0: (30)The last 
onstraint 
an
els the gradient term inEq. (29). We �nally obtain the boundary 
onditionsin the linear approximation of the variables n1r, Vr, Vz ,and P1,T (r)rr +T (d)rr +2�H+Welast = 0; T (r)zr +T (d)zr = 0: (31)Substitution of the expressions for the rea
tive and dis-sipative stress tensors gives2�1�rr � P1 = 2�0 (H0 �H)�Welast;2�2�zr = �2Fr at r = r0; (32)where H0 = (2r0)�1 is the initial mean 
urvature ofthe LC 
ylinder. The equations for the jet surfa
e dis-turbed by a wave �(z; t) and its radial velo
ity ��=�tare given byr(z; t) = r0 + �(z; t); Vr = ���t at r = r0; (33)where � � r0 is the radial displa
ement of a surfa
epoint. The prin
ipal radii of the surfa
e 
urvature,5) Stri
tly speaking, this assumption is 
orre
t when the equi-librium distribution of the dire
tor �eld n(r) is free of singulari-ties. The problem of the minimal surfa
e of an LC drop presentsanother situation where an essential rearrangement of the �eldn(r) at the surfa
e 
an de
rease the total energy by destroyingthe dis
lination 
ore within the drop.10 ÆÝÒÔ, âûï. 5 1105



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004in the linear approximation with respe
t to �, and itsderivatives 
an be expressed as1R1 = 1r0 + � � 1r0 � �r20 ; 1R2 � ��2��z2 : (34)This transforms the boundary 
onditions given byEqs. (30) and (32) inton1r = ���z ; Vr = ���t ; (35)2�2�zr = �2Fr ; (36)P1 � 2�1�rr = ��0� �r20 + �2��z2�+Welast: (37)The term Welast deserves further dis
ussion. It re�e
tsthe existen
e of normal stresses at the surfa
e, whi
harise due to the resistan
e of the uniformly orientated
ontinuos LC media to the surfa
e disturban
e. Theterm Welast vanishes in undisturbed LC jets and de-pends linearly on the elasti
 modulus K, the radius r0,and the derivatives of �. Moreover, the invarian
e ofthe problem under inversion of the z axis requires de-penden
e on derivatives of only even orders. An expli
itexpression for Welast is derived in Se
. 3.1.3. PLATEAU INSTABILITY IN AN LCCYLINDERBefore 
onsidering the sophisti
ated mathemati
s ofEqs. (23)�(26) supplemented by boundary 
onditions(35)�(37), we dis
uss 
apillary instability of the LC
ylinder. This is done by applying the Plateau 
on-siderations [29℄ on shape of a liquid mass withdrawnfrom the a
tion of gravity.We 
onsider an LC 
ylinder with the surfa
e dis-turbed in a

ordan
e with (33), where � = �0 
os kz, �0is small 
ompared to r0, and k = 2�=�, with � beingthe disturban
e wavelength. The idea of Plateau, ap-plied here, is to �nd the 
ut-o� wavelength �s of thedisturban
e that determines breakage of the 
ylinderinto droplets with due de
rease of the total energy.The average volume v over one wavelength � in thez dire
tion is given byv = 1� �Z0 dz Zs ds = ��r20 + 12�20� !! r0 =r v� �1� 14 ��20v � ; (38)

where r0 in the right-hand side is given as a se
ond-or-der expansion in �0. The total energy E of the LC
ylinder per unit wavelength with a disturbed dire
tor�eld n(r) is given byE = �0 Zs ds+ K2 �Z0 dz Zs �div2n+ rot2n� ds: (39)The stati
 dire
tor �eld n(r) 
an be found from Eq. (27)and the asso
iated boundary 
ondition (35),n0z = 1; Fr = 0 ! ��2
� 1r2+ �2�z2�n1r = 0;n1r = ���z at r = r0: (40)Equation (40) has the solutionn1r(r; z) = � k�0I1(kr0)I1(kr) sin kz; (41)whi
h is �nite at r = 0, where Im(x) is the modi�edBessel fun
tion of order m. The 
ontribution of elasti
for
es is determined bydiv2n+ rot2n = k2 � k�0I1(kr0)�2 �� �A21(kr) sin2 kz +A22(kr) 
os2 kz� ; (42)whereA1(q) = dI1(q)dq + 1q I1(q); A2(q) = I1(q):Simple integration of Eq. (39) givesE = 2��0r0�1 + 14k2�20�+ �2K � k�0I1(kr0)�2 �� kr0Z0 �A21(q) + A22(q)� q dq: (43)Inserting r0 from Eq. (38) in the �rst term above, weobtainE � 2�0p�v = �0 ��202r0 �$2 � 1�+ �2K � �0$r0I1($)�2�� $Z0 �A21(q) +A22(q)� qdq; $ = kr0: (44)The positive root $s = ksr0 of the expression in theright-hand side of Eq. (44) determines the 
ut-o� wave-length �s of 
apillary disturban
es that renders the LC
ylinder unstable.1106
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ksr0

0 2 4 6 108 {Fig. 1. Universal plots of ksr0 versus { for the Plateauinstabilities in an LC 
ylinder (solid line), and in ordi-nary liquid, ksr0 = 1 (dashed line)The quadrati
 approximation with respe
t to thederivatives �n=�xj in Eq. (1), whi
h provides the ba-sis for the Frank theory, makes expression (44) 
orre
tonly in terms of the $2 approximation. Indeed, thepower of $ in Eq. (44) must not ex
eed 2, otherwisethe 
al
ulation be
omes in
onsistent. We thus obtainE � 2�0p�v = �0 ��202r0 �$2 � 1�+ �Kk2�20 ;$s = 1p1 + 2{ ; { = K�0r0 ; (45)where the subs
ript �s� denotes the stati
 nature of thePlateau instability. The asymptoti
 behavior of $s({)shows two important limits:$s = 1� { if { � 1;$s = 1p2{ �1� 14{� if { � 1: (46)Figure 1 shows a plot of ksr0 versus { for the Plateauinstabilities in the LC and in ordinary liquid.The 
orresponding asymptoti
 
ut-o� wavelength�s is obtained as�s = 2�r0 (1 + {) if { � 1;�s = 2�r2K�0 pr0�1 + 14{� if { � 1: (47)This result shows that k � ks in
reases the total energyE of the disturbed system, whereas k < ks de
reases it.

A

ording to (46), there are two marginal regimes ofinstability.1) The 
apillary regime r0 � K=�0. Here, �s is
lose to the 
ir
umferen
e of the 
ylinder and the elas-ti
 deformation 
ontribution R Eddv to the total en-ergy E is negligible. This regime must apply to a widerange of nemati
 LCs, be
ause the 
ommon values ofK � 10�11 J/m [19℄ and �0 � 10�2 J/m2 [23℄ lead toK=�0 � 10�9 m. This value is evidently smaller thanthe presently attainable radii of the jet.2) The elasti
 regime r0 � K=�0. This 
ase re�e
tsthe dominan
e of elasti
 deformation and predi
ts anunusual behavior for �s / pr0. This regime 
annotbe rea
hed by a simple in
rease of the elasti
 modulibe
ause their magnitude is determined by K � �BT=a,where �BT � 4 � 10�21 J is the Boltzmann thermal en-ergy at room temperature, and a � 5 � 10�10 m is themole
ular length of the LC. In 
ontrast, the e�e
t ofsurfa
e tension 
an be diminished by surfa
tants or by
harging the surfa
e of the liquid. In the latter 
ase,the 
harge 
an virtually eliminate the e�e
t of surfa
etension and provide the 
onditions where the elasti
for
es predominate.3.1. Welast and the Gaussian surfa
e 
urvatureA straightforward way to derive an expression forWelast is to solve the elasti
 problem for the stressesexisting on a deformed axisymmetri
 surfa
e of an LC
ylinder. This is related to the Plateau instability,whi
h obviates the need to repeat the entire pro
edure.When we turn from Plateau 
onsiderations regard-ing the stati
 instability of LC 
ylinders to the 
ap-illary instability of LC jets, the question is whetherthe 
ut-o� wavelengths of the stati
 (�s) and hydro-dynami
 (�d) problems 
oin
ide. This question wasskipped by Rayleigh in his studies of isotropi
 vis
ousliquids, be
ause the 
ut-o� wavelengths always 
oin
idefor ordinary liquids, �s � �d. This identity re�e
ts adeep equivalen
e prin
iple of the bifur
ation point fora nontrivial steady state of a dynami
 system and thethreshold of stati
 instability related to a minimum ofits free energy E [4℄.Using that �s � �d, we 
onstru
t the term Welastthat enters boundary 
ondition (37). For this, we ex-amine and represent the total energy (45) asE � 2�0p�v == ��0r02 ���0� �0r20 � �0k2�+ 2K�0r0 k2� : (48)Next, we 
ompare the expression in the bra
kets with1107 10*
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ontribution in (48),Welast = 2KG; G = 1R1R2 = � 1r0 �2��z2 ; (49)where G is the Gaussian surfa
e 
urvature in a

or-dan
e with (34). Thus, the �nal expression for bound-ary 
onditions (29) is based on two fundamental invari-ants of the surfa
e 
urvature, the mean surfa
e 
urva-ture H and the Gaussian surfa
e 
urvature G.4. DISPERSION RELATIONRayleigh was the �rst to observe [1℄ that the insta-bility problem is not so de�nite, 
ontrary to the Plateautheory. The mode whereby a system deviates from un-stable equilibrium must depend on the nature and 
har-a
teristi
s of small displa
ements to whi
h this systemis subje
ted. In the absen
e of su
h displa
ement, anysystem, however unstable, 
annot depart from equilib-rium. These 
hara
teristi
s, being hydrodynami
, re-�e
t the e�e
t of vis
osity, whi
h predominates overinertia. For ordinary liquids, the mode of the maxi-mum instability, whi
h 
orresponds to the wavelength�R = 4:508 � 2r0, ex
eeds the 
ir
umferen
e of the liq-uid 
ylinder. We anti
ipate that the instability of LCjets has similar features.The fa
t that the velo
ity potential does not ex-ist in an anisotropi
 vis
oelasti
 liquid di
tates a stan-dard approa
h to this problem that was �rst elaboratedby Rayleigh [2℄. We de�ne the Stokes stream fun
tion	(r; t) and the dire
tor potential �(r; t) asVr = �1r �	�z ; Vz = 1r �	�r ; n1r = ���r ; (50)su
h that 
ontinuity equation (23) holds. From theother three equations, (24)�(26), we have�P1�r = (�2 � �1) �2�r�z �1r �	�r �� 1r �� ��z ��1r ��r�1r �	�r �+�2 �2	�z2 ���	�t +�1rFr� ; (51)�P1�z = 1r �� ��r ��2r ��r �1r �	�r �+�3 �2	�z2 ���	�t ��2rFr� ; (52)�2��r�t = 1r ��2r ��r �1r �	�r �� �1 �2	�z2 �+ 1
1Fr;Fr = K ��2
 + �2�z2 � 1r2� ���r : (53)

Applying the 
ommutation rules gives��2
 � 1r2� ���r = ��r�2
� ! Fr == K ��r ��2
 + �2�z2��;whi
h fa
ilitates simpli�
ation of the above equations.Assuming that an axisymmetri
 disturban
e 
hara
ter-ized by the wavelength 2�=k in
reases exponentially intime with the growth rate s givesf	; �; �; P1; Frg == fi (r); i�(r); &(r); p(r); if(r)g est+ikz : (54)Inserting (54) in (51)�(53) leads to the amplitude equa-tions1k �p�r = �4 ��r �1r � �r �� (�2k2 + s�) r + �1f;�4 = 2�1 � �2; (55)kp = 1r �� ��r �r��2 ��r �1r � �r ��(�3k2+s�) r ��2f�� ; (56)s���r = �2 ��r �1r � �r �+ �1k2 r + 1
1 f;f = K ��r ��2
 � k2� �: (57)The new variables in (54) require reformulatingboundary 
onditions (35)�(37) ask& = ���r ; s& = k r ;�2�2 f = ��r �1r � �r �+ k2 r ;p = 2�1k ��r � r �+ &�; (58)where � = �0�k2 � 1r20�+ 2K 1r0 k2:The real forms of amplitude equations (55)�(57) andboundary 
onditions (58) imply that expression (54)divides the �ve variables into two groups: P1; � and	;�; Fr. These groups are shifted with respe
t to ea
hother by the phase angle �=2.1108
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rystal jets4.1. Redu
tion of the amplitude equationsIn this se
tion, we perform the standard pro
edurefor the simpli�
ation of amplitude equations (55)�(57).Substituting f from (57) in the other amplitude equa-tions, we obtain1k �p�r = B1 ��r �1r � �r ��� (B2k2 + s�) r + s
1�1 ���r ; (59)kp = 1r ��r �r �B3 ��r �1r � �r ��(B4k2+s�) r ���� s
1�2 1r ��r �r���r� ; (60)0 = �2 ��r �1r � �r �+ �1k2 r + K
1 ��r �� �1r ��r �r���r�� �k2 + s
1K � �� ; (61)where B1 = �4 � 
1�1�2; B2 = �2 + 
1�21;B3 = �2 + 
1�22; B4 = �3 � 
1�1�2; (62)and B2 > 0; B3 > 0 by virtue of 
onditions (12). Leta new stream fun
tion � be de�ned as  = r ��=�r.The orientational (#) and kinemati
 (�i) vis
osities, aswell as the other auxiliary fun
tions, are de�ned by therelations# = K
1 ; �i = Bi� ; u2i = k2 + s�i ;w2 = k2 + s#; #�i � 1 ! u2i � w2; (63)where the �rst inequality in (63) applies to the knownnemati
 LC �uids (see Tables 1 and 2). Using the newnotation, we �nd the �rst integrals of the amplitudeequations, pk = �B1�2
 �B2u22��+ s
1�1�; (64)kp = �B3�2
 �B4u24��2
�� s
1�2�2
�; (65)0 = ��2�2
 + �1k2��+ # ��2
 � w2� �: (66)Next, we eliminate the pressure amplitude p fromEqs. (64) and (65). This gives�B3�22
 � �B1k2 +B4u24��2
 +B2u22k2���� s
1 ��2�2
 + �1k2� � = 0; (67)

��2�2
 + �1k2��+ # ��2
 � w2� � = 0: (68)Diagonalizing the matrix of operators in (67) and (68),we obtain homogeneous equations for the fun
tions�(r) and �(r),�D3�32
�D2�22
+D1�2
�D0� �� ! =  00! ; (69)whereD0 = k2 �#B2u22w2 � s
1�21k2� ;D1 = # �B1k2w2 +B2k2u22 +B4w2u24�++ 2s
1�1�2k2;D2 = # �B1k2 +B3w2 +B4u24�� s
1�22;D3 = #B3: (70)It is easy to verify that all the 
oe�
ients Dj are pos-itive if the 
onditions Bi > 0 and �2 � 1, #=�i � 1are satis�ed (for all i). The latter 
onditions are in agood agreement with numerous observations in nemati
LCs [19℄.Fa
toring the polynomial di�erential operator fur-ther (re
alling that D3 > 0) givesD3�32
 �D2�22
 +D1�2
 �D0 == D3 ��2
 �m21� ��2
 �m22� ��2
 �m23� : (71)Equation (71) fa
ilitates �nding the �nite solutions ofEq. (69), �(r) = 3Xj=1 Cjmj I0(mjr);�(r) = 3Xj=1 Gjmj I0(mjr); (72)where the se
ond fundamental solutions that diverge atr = 0 were ex
luded, Cj and Gj are indeterminate 
o-e�
ients, and m2j are three generi
6) roots of the 
ubi
equationD3m6 �D2m4 +D1m2 �D0 = 0 !! 3Xj=1m2j = D2D3 ; 3Xj 6=km2jm2k = D1D3 ; 3Yj=1m2j = D0D3 :(73)6) The freedom to 
hoose the physi
al parameters of the LCseems to admit a degeneration of 
ubi
 equation (73), when someof the roots m2j 
an 
oin
ide in di�erent ways. This 
oin
iden
eis not important be
ause it 
an o

ur only at spe
i�
 wave ve
-tors k� on whi
h the 
oe�
ients D2, D1, and D0 depend. Onthe other hand, this kind of degeneration might be interesting ifk� is a

identally 
lose to the 
ut-o� wave ve
tor kd at whi
h thebreakage of the LC jet develops.1109
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oe�
ients Gj 
an be expressed through Cj afterinserting solutions (72) in Eq. (68):Gj = 1# gjCj ;gj = �1k2 + �2m2jw2 �m2j ; j = 1; 2; 3: (74)The amplitude of the pressure p(r), the stream fun
-tion  (r), and the displa
ement &(r0) of a point onthe surfa
e are easily found from Eqs. (57), (64), (68),and (74) asp(r) = k 3Xj=1 ljmj CjI0(mjr);lj = B1m2j �B2u22 + s# 
1�1gj ; (r) = r 3Xj=1CjI1(mjr);&(r0) = 1#k 3Xj=1 gjCjI1(mjr0); j = 1; 2; 3: (75)
Before pro
eeding, we dis
uss the distribution of theroots m2j of 
ubi
 equation (73) in the 
omplex plane.First,m21 is always positive be
auseDj > 0, as men-tioned above and as follows from the Des
artes rule ofsign inter
hange in the sequen
e of 
oe�
ients for realalgebrai
 equations. The other two roots m22;3 are ei-ther positive or 
omplex 
onjugate with positive realparts. The last 
ase leads to Bessel fun
tions of 
om-plex arguments in (72). This fa
t 
an indi
ate thatthe separation of the two groups of fun
tions P1; � and	;�; Fr by the phase angle �=2 is more elaborate thanassumed in (54). Another 
onsequen
e of the existen
eof 
omplex 
onjugate roots m2j , whi
h is more impor-tant from the physi
al standpoint, is the appearan
eof imaginary 
ontributions to the dispersion equation.This 
an lead to a 
omplex value of the growth rates = s + i! as its solution and to the nonsteady (os
il-latory) evolution of the jet, e.g.,�(z; t) / &(r0)est � ei(!t+kz);where ! is the frequen
y of os
illations.4.2. Dispersion equationIn what follows, we derive the dispersion equa-tion s = s(kr0) that determines the evolution of theRayleigh instability in LC jets. The revised version of

boundary 
onditions (58) at r = r0, whi
h utilizes thenew stream fun
tion �(r), is given bys���r = k2 ���r ;s
1�2 ���r = B3 ��r�2
�+B5k2 ���r ;sk p = 2s�1�2��r2 + ����r ; (76)where B5 = �2 + 
1�1�2. Substituting (72) and (75)in (76) and eliminating the 
oe�
ients C1, C2, and C3from the linear equations leads to a (3�3)-determinantequation detSij = 0; (77)whereS1j = k2 � s# gj ;S2j = B3m2j +B5k2 � s# 
1�2gj ;S3j = �� s � ljmj I0(mjr0)I1(mjr0) � 2�1mj I 01(mjr0)I1(mjr0)� ; (78)and I 01(y) = dI1(y)=dy. Equation (77) is an impli
itform of the exa
t dispersion relation, whi
h is highly
omplex and 
annot be solved analyti
ally in the gen-eral 
ase. Nevertheless, here we 
an verify that the
ut-o� wavelength �d 
oin
ides with �s obtained fromthe Plateau theory. Indeed, the 
ut-o� regime 
orre-sponds to boundary 
onditions (76) when s = 0 and issatis�ed for � = 0, i.e., �d = �s. The impli
ations ofEq. (77) 
an be extended further, for the study of dif-ferent modes of the LC �ow, in
luding os
illations, andin order to des
ribe asymptoti
 behavior of LC jets.This is outside the s
ope of this paper. In the next se
-tion, we 
onsider the 
ase that fa
ilitates de
ouplingof hydrodynami
 and orientational modes, and 
onse-quently the solution of the Rayleigh instability problemin a 
losed form.5. DECOUPLING OF HYDRODYNAMIC ANDORIENTATIONAL MODESIn this se
tion, we dis
uss the 
ase where dispersionequation (77) be
omes solvable. Here, we en
ounter an-other problem: the elasti
ity of the LC and anisotropyof its vis
ous properties have the same origin and 
an-not therefore be 
onsidered separately. Nevertheless,we investigate the 
ase where dispersion equation (77)
an be simpli�ed. The large number of physi
al param-eters involved (three vis
ous moduli, two kineti
 
oef-�
ients, � and 
1, orientational (#) and kinemati
 (�i)1110
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rystal jetsvis
osities, and the dimensionless parameter {) 
all forsu
h a treatment.We 
onsider the LC with rod-like mole
ules (� � 1)and low orientational vis
osity #,�1 � 1; �2 � 0; #� �i; k2 � s#; (79)where the �rst three relations apply to the known ne-mati
 LC �uids (see Tables 1 and 2). The last inequal-ity in (79) applies to the low-vis
osity limit, whi
h was
onsidered for the kinemati
 vis
osity in ordinary liq-uids by Rayleigh [1℄.In this 
ase, 
hara
teristi
 equation (73) redu
es tom6 � s#m4 + s# �Bk2 + s�2�m2 �� s#k2�k2 + s�2� = 0;�i = �i� ; B = �3 + �4�2 : (80)The three roots m2j of Eq. (73) be
ome2m21;2 = Bk2 + s�2 ��s(B2 � 4) k4 + 2 (B � 2) k2 s�2 +� s�2�2;m23 = s#: (81)A simple analysis of the last expression shows that thedimensionless parameter B has the 
riti
al value 2 thatseparates two di�erent evolution s
enarios of the LCjet. If B > 2, both roots, m21 and m22, are positive andthe 
apillary instability always appears via trivial bifur-
ation (steady-state instability). This s
enario appliesto MBBA and PAA liquid 
rystals with BMBBA = 5:92and BPAA = 7:11 (see Tables 1 and 2). In the oppo-site 
ase, B < 2, we 
an �nd the regime where theabove roots are 
omplex 
onjugate. This leads to theos
illatory evolution of the jet, whi
h appears via Hopfbifur
ation (see Se
. 4.1).Signi�
ant simpli�
ation 
an be obtained if we as-sume degeneration of the three vis
osities at the 
riti
alvalue B� = 2. Indeed, if the vis
ous moduli �j satisfythe relationB�(�j) = 2 ! 2�1 + �3 = 3�2; (82)the three roots m2j of Eq. (73) arem21� = k2; m22� = k2 + s�2 ; m23 = s#: (83)

We note that relation (82) 
an
els the last term in (9).Expressions (83) indi
ate that the problem is de
om-posed into two parts, or, in other words, the 
ross-termsin Eqs. (67) and (68) are dropped. Thus, the �rst partof the problem is asso
iated with the Rayleigh instabil-ity, des
ribed by��2
 �m21�� ��2
 �m22��� = 0; (84)with boundary 
onditions that a

ount for elasti
ity,��r�2
�+ k2 ���r = 0;sk p = 2s�1 �2��r2 + ����r at r = r0: (85)The se
ond part is asso
iated with an orientational in-stability of the dire
tor �eld n(r; t),��2
 �m23� � = 0;with the boundary 
onditions���r = k2 ���r at r = r0: (86)The solutions of Eqs. (84) and (86) are�(r) = 
1m1� I0(m1�r) + 
2m2� I0(m2�r);�(r) = 
3m3 I0(m3r): (87)With these solutions, the hydrodynami
 pressure p(r),stream fun
tion  (r), and surfa
e displa
ement &(r0)are obtained asp(r) = �
1s�I0(m1�r); (r) = r [
1I1(m1�r) + 
2I1(m2�r)℄ ;&(r0) = 
3k I1(m3r0);where the only indeterminates are 
1 and 
2, while 
3
an be expressed as their linear 
ombination,
3 sk2 = 
1 I1(m1�r0)I1(m3r0) + 
2 I1(m2�r0)I1(m3r0) ; (88)provided that s = s(kr0) satis�es the dispersion rela-tion that follows from (85) and (87),s2 + 2�1k2I0(kr0) �� �I 01(kr0)� 2km2�k2 +m22� I1(kr0)I1(m2�r0)I 01(m2�r0)� s == �0k�r20 �1� k2r20(1 + 2{)� I1(kr0)I0(kr0) m22� � k2m22� + k2 : (89)1111
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S

kr0Fig. 2. A plot of the res
aled growth rate S versuskr0 for low vis
osityp�r30=�0 s�(kr0) (solid lines) andhigh vis
osity (2�2r0=�0)s+(kr0) (dashed lines) for dif-ferent values of { in des
ending order from top down{ = 0; 0:25; 1; 5. If #=� = 4{, then the s
aling forboth vis
ous regimes is the sameIf { = 0 and �1 = �2, Eq. (89) is known as the We-ber equation for a vis
ous isotropi
 liquid [6℄. For lowvis
osity7), �1 � �2 � p��0r0, a Rayleigh-type ex-pression is obtained (see Fig. 2),s2�(kr0) = �0k�r20 �1� k2r20(1 + 2{)� I1(kr0)I0(kr0) ; (90)where the subs
ript ��� denotes low vis
osity.The maximum smax� in Eq. (90), whi
h 
orrespondsto the wave number kmax� , leads to evolution of thelargest 
apillary instability. Numeri
al 
al
ulationshows that smax� and kmax� are both proportional to(1 + 2{)�1=2,smax� � 13p1 + 2{r �0�r30 ;kmax� � ar0p1 + 2{ ; a = 0:697: (91)When high vis
osity prevails, �1 � �2 � p��0r0, thedispersion equation is given by (see Fig. 2)s+(kr0) = �02�2r20k �� �1� k2r20(1 + 2{)� I21 (kr0)I0(kr0)I1(kr0) + kr0 �I 01(kr0)�2 ;smax+ � �06�2r0 ; kmax+ = 0; (92)7) In the theory of vis
oisotropi
 liquid jets, this 
ase isknown [7℄ as pertaining to the range of low Ohnesorge num-bers Oh = �=p��0r0 that determine a 
ompetition between thehydrodynami
 and surfa
e tension for
es. Expression (92) 
orre-sponds to the 
ase of high Ohnesorge numbers.

where the subs
ript �+� denotes high vis
osity. In thislimit, similar to ordinary liquids [4℄, there is no �nitemode of the maximum instability for any {. In this
ase, we have&(r0) == kmax+smax+ �
1I1(kmax+ r0) + 
2I1(m2�r0)� = 0: (93)Nevertheless, there exists a 
ontinuous range[0; (1 + 2{)�1=2r�10 ℄ of wave numbers k with a �-nite disturban
e growth rate s+(kr0), whi
h a�e
tsthe 
ylindri
al jet.We note that the dispersion 
urves shown in Fig. 2and those in Fig. 5 in [21℄ appear to be similar, butare 
hara
terized by di�erent physi
al parameters. Thereason for this observation is the similarity betweenWe-ber equation (89) and dispersion equation (36) in [21℄,whi
h are obtained from di�erent models. Our ap-proa
h was to develop a general axisymmetri
 solutionin the framework of the three-dimensional model. Thismodel dates ba
k to the Rayleigh�Weber theory [2; 3℄and a

ounts for the radial inhomogeneity of the dis-turbed dire
tor �eld. The impli
it solutions of Eq. (77)re�e
t the radial dependen
e of both the hydrodynami
V(r; z; t) and orientational n(r; z; t) modes, and theyin
lude all types of the LC jet evolution. A spe
i�
 
asewhere the hydrodynami
 and orientaional modes arede
oupled exhibits this radial dependen
e and yieldsdispersion equation (89) in expli
it form.In 
ontrast, the one-dimensional analysis of the LCjet evolution, used in [21℄, is hardly 
ompatible with thedistortion of the dire
tor �eld n(r; z; t), and thereforemust be supported by assuming a �xed axial dire
tionof n0 (see detailed 
omments in Se
. 1). This endowstheir model with an inherent �de
oupling� that resultsfrom the a priori elimination of the elasti
 for
es. Ob-viously, similarity between the dispersion 
urves men-tioned above disappears if we 
onsider the general so-lution given by (77).5.1. Hydrodynami
 in�uen
e on theorientational instability of LCsWe 
on
lude this se
tion with a brief dis
ussionregarding the hydrodynami
 in�uen
e on the orienta-tional instability of the dire
tor �eld n(r; t). As thee�e
t of hydrodynami
s 
hanges the wave number ksof the Plateau instability to kmax, the �ow drives the1112
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rystal jetsorientational instability (41) of the dire
tor �eld n(r; t).Indeed, in a

ordan
e with (87),n1r(r; z) = 
3I1 (mmax3 r) ; mmax3 =rsmax# : (94)It is 
onvenient to 
onsider the following two marginalvis
ous regimes.1. The low-vis
osity limit,�mmax3� r0�2 � 13p1 + 2{ 1p{" ; " = �K
21 ; (95)where " � 10�6�10�4 is a small dimensionless parame-ter.2. The high-vis
osity limit,�wmax3+ r0�2 � 16{ 
1�2 : (96)In both limits, the distribution of the dire
tor �eldn(r; t) in the jet is always nontrivial and de�nitely farfrom stati
 distribution (41).6. CONCLUSIONS1. The 
apillary instability of an LC jet with astrong tangential an
horing of the dire
tor at the sur-fa
e is 
onsidered in the framework of linear hydro-dynami
s of the uniaxial nemati
 LC. Its stati
 ver-sion, whi
h is 
alled the Plateau instability and 
or-responds to the variational problem of minimal freeenergy, predi
ts an essential dependen
e of the distur-ban
e 
ut-o� wavelength on the dimensionless param-eter { = K=�0r0.2. The hydrodynami
 problem of the 
apillary in-stability in LC jets is solved exa
tly and the dispersionrelation is derived. This relation, whi
h is representedas a determinant equation, impli
itly expresses the dis-persion s = s(k) of the growth rate s as a fun
tion ofthe wave number k of axisymmetri
 disturban
es of thejet.3. The 
ase where the dispersion equation be
omesexpli
itly solvable is 
onsidered in detail. It 
orre-sponds to the regime where the hydrodynami
 and ori-entational modes be
ome de
oupled. Hydrodynami
s
hanges the wave number ks of the Plateau instabilityinto kmax, whi
h produ
es evolution of the largest 
ap-illary instability. Similarly, a hydrodynami
 �ow in�u-en
es the stati
 orientational instability of the dire
tor�eld n(r; t).4. The present theory 
an easily be extended tononuniaxial nemati
 LCs that possess �nite point sym-metry groups G � O(3) as distinguished from the uni-axial group D1h. The 
orresponding expressions for

the free energy density Ed(G) and the dissipative fun
-tion D(G) were derived in [31℄.5. In this work, the e�e
t of external �elds wasnot 
onsidered. However, the theory developed herefa
ilitates the treatment of the Rayleigh instability innemati
 LCs in the presen
e of stati
 ele
tromagneti
�elds.The resear
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