КУЛОНОВСКОЕ УШИРЕНИЕ ПИКА ЭЛЕКТРОМАГНИТНО-ИНДУЦИРОВАННОЙ ПРОЗРАЧНОСТИ В ПЛАЗМЕ

С. А. Бабин, М. Г. Степанов, Д. В. Чуркин^{*}, Д. А. Шапиро

Институт автоматики и электрометрии Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 27 ноября 2003 г.

Измерена форма дублета Аутлера-Таунса и пика электромагнитно-индуцированной прозрачности (ЭИП) в плазменных условиях. Проведено сравнение результатов эксперимента с рассчитанным спектром пробного поля трехуровневой Λ-схемы Arll с учетом кулоновских столкновений. Показано, что кулоновское уширение пика ЭИП невелико (менее 40 %), тогда как резонанс насыщения уширяется в условиях эксперимента в 3 раза. В отличие от резонанса насыщения, обусловленного провалом Беннета в распределении населенности по скоростям, пик ЭИП представляет собой когерентный эффект и уширяется в основном за счет кулоновской дефазировки.

PACS: 42.50.Gy, 42.50.Hz, 42.62.Fi

1. ВВЕДЕНИЕ

Сильная резонансная монохроматическая волна может приводить к расщеплению уровней энергии и, соответственно, спектра излучения (поглощения) на переходах с участием этих состояний — эффект известен достаточно давно и был первоначально назван динамическим эффектом Штарка [1], позднее расщепление спектра на две компоненты получило название расщепление (дублет) Аутлера-Таунса. В нелинейной спектроскопии газов эффект полевого расщепления является одним из базовых в рамках классификации теории возмущений [2], причем учет теплового движения частиц существенно меняет его спектральные проявления. Например, в схеме комбинационного рассеяния (см. вставку на рис. 1) с большим доплеровским уширением полевое расщепление спектра пробного поля проявляется только для сонаправленных волн в стоксовом случае, т.е. при $k_{\mu} < k$. Если заселен только пробный уровень *l*, то другие нелинейные эффекты, индуцированные сильным полем, в частности, эффект насыщения и нелинейный интерференционный эффект (НИЭФ), не проявляются. В этом случае спектр поглощения

пробного поля описывает эффект полевого расщепления в чистом виде.

Полевое расщепление спектра поглощения, индуцированное сильной волной на смежном переходе, вследствие квантовой интерференции сопровождается значительным уменьшением, а в идеале — полным устранением поглощения пробной волны на частотах, соответствующих спектральной области между расщепленными компонентами. Этот эффект, названный эффектом электромагнитно-индуцированной прозрачности (ЭИП), активно изучается в последнее время (см., например, [3, 4] и цитируемую там литературу). Возможность устранения поглощения света в резонансных условиях за счет эффекта ЭИП активно применяется в различных задачах. В частности, значительно повышается эффективность резонансного преобразования частоты лазерного излучения нелинейно-оптическими методами [5], что позволяет применять не только импульсное, но и относительно маломощное непрерывное лазерное излучение (см., например, [6,7]). Во многих приложениях важно получить как можно более узкий пик ЭИП, однако на форму резонанса ЭИП влияют релаксация уровней, полевое и доплеровское уширения [8].

В данной работе дублет Аутлера-Таунса и пик

^{*}E-mail: dimkins@yandex.ru

ЭИП впервые наблюдались на переходах ионов в низкотемпературной плазме. Обнаружено, что в плазменных условиях на форму пика влияет также ион-ионное кулоновское рассеяние. Отметим, что влияние кулоновского рассеяния на форму резонансов, обусловленных эффектом насыщения и НИЭФ, в условиях плазмы ионных лазеров было подробно исследовано ранее [9-11]. Измеренная в данной работе величина кулоновского уширения пика ЭИП оказалась значительно меньше, чем величина кулоновского уширения резонансов насыщения. Проведенные экспериментальные и теоретические исследования позволили количественно описать влияние кулоновского взаимодействия ионов на эффект полевого расщепления и объяснить наблюдаемые особенности.

2. ЭКСПЕРИМЕНТ

Экспериментально нелинейные резонансы в Λ -схеме, обусловленные эффектом полевого расщепления, ранее исследовалась в основном в молекулярных спектрах (см., например, [12]) с использованием молекулярных комбинационных лазеров. Сравнение формы резонанса с расчетом в этом случае затруднено, так как кроме эффекта полевого расщепления в суммарный контур дают существенный вклад и другие нелинейные эффекты (насыщение и НИЭФ) из-за большой заселенности нижнего уровня *n*. Однако измеренная величина значению рабиевской частоты сильного поля

$$G = |E|d_{mn}/2\hbar$$

(|E| — амплитуда электрического поля, \hbar — постоянная Планка), позволила напрямую определить дипольный момент d_{mn} перехода m—n. Измерения проводились при значениях G много бо́льших констант релаксации Γ_{ij} (i, j = m, n, l).

Как обсуждалось выше, чтобы зарегистрировать контур дублета Аутлера–Таунса в Λ -схеме (см. рис. 1), свободного от влияния других нелинейных эффектов, пробная волна должна распространяться сонаправленно с сильной, ее частота должна быть меньше частоты сильного поля (стоксов случай), при этом должен быть заселен только пробный уровень l, а уровни m и n в идеале пустые. В отличие от заселяемых термически колебательно-вращательных уровней молекул, уровни иона в плазме позволяют реализовать требуемые условия. В частности, близкий вариант реализуется, когда сильное поле резонансно лазерному переходу ArII, а пробное — переходу в метастабильное состояние с большой населенностью. Была выбрана схема со следующими уровнями:

$$|n\rangle = 4s^2 P_{1/2}, \quad |m\rangle = 4p^2 S_{1/2}, \quad |l\rangle = 3d^2 P_{3/2}.$$

Соответствующие константы релаксации и коэффициенты Эйнштейна (в единицах 10⁷ с⁻¹) равны

$$\Gamma_n = 300, \quad \Gamma_m = 15, \quad \Gamma_l = 8, \quad A_{mn} = 9, \quad A_{ml} = 1.$$

Характерные населенности уровней в плазме аргонового лазера составляют $N_n \sim 1$, $N_m \sim 5$, $N_l \sim 100$ (в единицах 10^9 см^{-3}) [9,11]. Таким образом, для выбранной схемы уровней выполняются соотношения: для констант релаксации

$$\Gamma_l \lesssim \Gamma_m \ll \Gamma_n \ll k v_T$$

и населенностей уровней

$$N_l \gg N_m \gtrsim N_n$$
.

Отметим, что в условиях плазмы аргонового лазера некоторые проявления эффекта полевого расщепления наблюдались ранее при исследовании генерации на связанных лазерных переходах в V-схеме: при перестройке частоты стоксова излучения для больших отстроек высокочастотного лазерного поля наблюдался отщепленный резонанс, а при его настройке в центр линии наблюдались резонансные структуры сложной формы вблизи точного резонанса для стоксова излучения [13,14]. При этом форма дублета Аутлера–Таунса и влияние на нее кулоновской диффузии не исследовались.

В наших экспериментах исследовался спектр стоксова пробного поля в присутствии сильного поля на смежном переходе (А-схема, рис. 1). Измерялась разница коэффициентов поглощения для пробного поля в отсутствие и в присутствии сильного поля, соответствующая нелинейной поправке к работе пробного поля $\Delta \mathcal{P}_{\mu}$. Для того чтобы получить сигнал достаточной амплитуды, величина сильного поля должна быть большой ($G\gtrsim 100\,{
m M\Gamma u}$). Для достижения таких значений использовалось внутрирезонаторное поле одночастотного ионного лазера на линии 457.9 н
м $(4p^2S_{1/2}-4s^2P_{1/2})$ с минимальным значением углового момента $(j_m = j_n = 1/2)$. В результате в условиях плазмы аргонового лазера была зарегистрирована форма дублета Аутлера-Таунса без доплеровской подкладки с точностью, позволяющей провести сравнение с теорией.

Рис.1. Схема эксперимента по исследованию эффекта полевого расщепления: 1 — разрядная трубка, 2 и 3 — зеркала, 4 — брюстеровская пластинка, 5 — эталон, 6 — диафрагма, 7 — обтюратор, 8 — дифракционная решетка, 9 — сканирующий интерферометр, 10 — фотодетектор, 11 — синхронный детектор, 12 — перестраиваемый лазер на красителе, 13 — измеритель длин волн, 14 — осциллограф, 15 — линза, 16 — компьютер

Схема эксперимента приведена на рис. 1. Разрядная трубка аргонового лазера 1 (длина $l = 50 \,\mathrm{cm}$, диаметр канала d = 7 мм, рабочий ток $I \sim 100$ A) помещалась в резонатор с входным 2 и выходным 3 зеркалами, плотными для генерируемого излучения, но прозрачными для пробного излучения. Таким образом, в резонаторе присутствовали две волны: стоячая генерируемая волна линейной поляризации и бегущая пробная волна также линейной поляризации. Эталон 5 обеспечивал селекцию одной продольной моды и плавную перестройку частоты генерации, а с помощью диафрагмы 6 выделялась ТЕМ₀₀-мода. Зеркалами резонатора селектировалась линия с длиной волны $\lambda \approx 458\,\mathrm{mm}$, на этой линии потери на пропускание в резонаторе составляли $\approx 0.3\%$, что обеспечивало высокую интенсивность поля внутри резонатора. Выходное излучение аргонового лазера направлялось зеркалом на дифракционную решетку 8, от которой один порядок заводился в сканирующий интерферометр Фабри-Перо 9, использовавшийся для контроля за модовым составом излучения и определения отстройки сильного поля от резонанса, а другой порядок отводился на фотодетектор 10, сигнал с которого был опорным для синхронного детектора 11.

В качестве источника пробного поля использовался перестраиваемый лазер 12 на красителе ДСМ, длина волны излучения которого ($\lambda_{\mu} \approx 648$ нм) ре-

гистрировалась измерителем длин волн 13. Система автоподстройки частоты (АПЧ) [15] позволяла привязать моду резонатора к пику селектора и плавно изменять частоту пробного поля в диапазоне до 4.5 ГГц. Перестройка частоты осуществлялась с помощью компьютера 16 с дискретностью менее 20 МГц — величина шага приближается к ширине линии излучения (около 10 МГц). Спектр лазера на красителе регистрировался с помощью сканирующего интерферометра 9 с областью свободной дисперсии 5 ГГц, подключенного к осциллографу, по которому производился контроль модового состава излучения. Пробное поле заводилось в разрядную трубку предварительно сфокусированным линзой 15 для обеспечения максимальной однородности поля в резонаторе. После прохождения разрядной трубки пучок пробного поля отражался от дополнительной пластинки 4 и отводился с помощью зеркал на фотодетектор 10, подключенный к синхронному детектору 11. Угол между пучками пробного поля и генерируемого излучения составлял величину порядка 10⁻³ радиан, что позволяло избежать обратной связи. Сильное поле было промодулировано на частоте порядка 1 кГц с помощью обтюратора 7, синхронное детектирование на частоте модуляции позволяло автоматически вычесть доплеровскую подкладку и выделить нелинейные добавки, индуцированные сильным полем. Управление ходом эксперимента, син-

Рис.2. Экспериментальный контур для нелинейной добавки в спектре пробного поля при параметрах сильного поля: $G \approx 100$ МГц, $\Omega \approx 1.6$ ГГц

хронный сбор и запись данных осуществлялись персональным компьютером 16, к которому через АЦП были подключены все измерительные приборы.

Для того чтобы разнести по частоте резонансы от встречных компонент стоячей волны и наблюдать в чистом виде эффект полевого расщепления, индуцированный бегущей (сонаправленной) волной, необходимо отстроить сильное поле от резонанса на величину, бо́льшую ширины населенностных резонансов. Экспериментальная зависимость нелинейной добавки в коэффициент поглощения пробного поля от частоты, полученная при отстройке сильного поля $\Omega = \omega - \omega_{mn} \approx 1.6 \, \Gamma \Gamma$ ц, приведена на рис. 2. Отметим, что отрицательные значения на графике соответствуют индуцированному сильным полем увеличению поглощения пробного поля, а положительные — уменьшению поглощения, что эквивалентно электромагнитно-индуцированной прозрачности. Для сонаправленной компоненты наблюдается резкая структура, обусловленная эффектом полевого расщепления: расщепленный контур поглощения относительно малой амплитуды с величиной расщепления около 0.5 ГГц, а между расщепленными компонентами — пик ЭИП большой амплитуды, центрированный на частоте $\Omega_{\mu} = \Omega k / k_{\mu} \approx 1.1 \, \Gamma \Gamma \mu$. Симметрично относительно центра линии на частоте $\Omega_{\mu} = -\Omega k/k_{\mu} \approx -1.1 \, \Gamma \Gamma$ ц наблюдается широкий (его полная ширина на полувысоте примерно равна 1.3ГГц) населенностный резонанс, имеющий небольшую амплитуду в соответствии с соотношением на-

Рис.3. Нелинейная добавка в спектре пробного поля $\Delta \mathcal{P}(\Omega_{\mu})$, соответствующая эффекту полевого расщепления, при параметрах сильного поля: G = 100 MFц, $\Omega = 1.59 \text{ FF}$ ц, $kv_T = 4.9 \text{ FF}$ ц; мелкие штрихи — расчет по теории возмущений без учета диффузии (4), крупные штрихи — расчет по теории возмущений с учетом диффузии ($\nu = 2 \cdot 10^7 \text{ c}^{-1}$), сплошная линия — численный расчет, точки — эксперимент

селенностей уровней. Небольшой пик при $\Omega_{\mu} = 0$ соответствует эффекту высших пространственных гармоник, который максимально проявляется в точном резонансе по сильному полю ($\Omega = 0$) [16], здесь его рассматривать не будем.

Поскольку вклад эффекта насыщения, формирующего населенностный резонанс, одинаков для противоположно направленных и сонаправленных компонент, для выделения эффекта полевого расщепления в чистом виде левая часть графика ($\Omega_{\mu} < 0$) вычиталась из правой ($\Omega_{\mu} > 0$). Скорректированный таким образом контур дублета Аутлера–Таунса приведен на рис. З вместе с теоретическими кривыми, рассчитанными без учета и с учетом кулоновского взаимодействия ионов. Отметим, что амплитуда компонент дублета при наших параметрах мала по сравнению с амплитудой пика, поэтому точнее будет употреблять термин «контур пика ЭИП». Далее остановимся более подробно на сравнении результатов эксперимента и теории.

3. ТЕОРИЯ

Нелинейная поправка к работе пробного поля для Λ -схемы (рис. 1) с $N_m = N_n \ll N_l$, рассчитанная в модели релаксационных констант по теории возмущений ($G \ll \Gamma_{ij}$), имеет вид [2]

$$\begin{split} \Delta \mathcal{P}_{\mu}^{(1)} &= \mathcal{P}_{\mu}^{(1)}(0) - \mathcal{P}_{\mu}^{(1)}(G) = \\ &= 4\hbar\omega_{\mu}|G_{\mu}|^{2}|G|^{2}\frac{\sqrt{\pi}N_{l}\exp(-\Omega_{\mu}^{2}/k_{\mu}^{2}v_{T}^{2})(k-k_{\mu})}{k^{2}v_{T}} \times \\ &\times \operatorname{Re}\frac{1}{(\Gamma_{p} - i(\Omega_{\mu} - k_{\mu}\Omega/k))^{2}}, \end{split}$$
(1)

где |G| и $|G_{\mu}|$ — рабиевские частоты сильного и пробного полей, k и k_{μ} — их волновые векторы, $\Omega = \omega - \omega_{mn}$ и $\Omega_{\mu} = \omega_{\mu} - \omega_{ml}$ — отстройки частот полей относительно соответствующего резонанса, $v_T = \sqrt{2T/M}$ — тепловая скорость, N_l — населенность уровня l.

Формула описывает дублет Аутлера–Таунса в поглощении с пиком электромагнитно-индуцированной прозрачности, центрированным на частоте пробного поля $\Omega_{\mu} = k_{\mu}\Omega/k$ с шириной

$$\Gamma_p = (k_\mu \Gamma_{nl} + (k - k_\mu) \Gamma_{ml})/k.$$
(2)

В этом приближении величина расщепления $\Delta_{AT} \approx 2\Gamma_p$ не зависит от интенсивности сильной волны и при близких значениях волновых векторов определяется константой релаксации запрещенного перехода Γ_{nl} . С другой стороны, известно, что в сильном поле $|G| \gg \Gamma_{ij}$ (когда вкладом констант релаксации можно пренебречь) для неподвижных атомов величина расщепления определяется его рабиевской частотой |G|, а учет теплового движения приводит к тому, что добавляется масштабный множитель, зависящий от соотношения волновых векторов пробной и сильной волн (см., например, [12, 17]):

$$\Delta_{AT} = 4|G|\sqrt{(1 - k_{\mu}/k)k_{\mu}/k}.$$
 (3)

В случае произвольного соотношения между |G|и Γ_{ij} выражение для нелинейной поправки, рассчитанной в доплеровском пределе $(|G|, \Gamma_{ij} \ll kv_T)$, имеет вид [17]

$${}_{\mu} = 2\hbar\omega_{\mu}|G_{\mu}|^{2} \frac{\sqrt{\pi}N_{l}\exp(-\Omega_{\mu}^{2}/k_{\mu}^{2}v_{T}^{2})}{k_{\mu}v_{T}} \left(1 - \operatorname{Re}\frac{\Gamma_{p} - i(\Omega_{\mu} - k_{\mu}\Omega/k)}{\sqrt{(\Gamma_{p} - i(\Omega_{\mu} - k_{\mu}\Omega/k))^{2} + \frac{4k_{\mu}(k - k_{\mu})|G|^{2}}{k^{2}}}}\right).$$
(4)

В предельном случае $|G| \ll \Gamma_{ij}$ это выражение сводится к результату теории возмущений (1). С увеличением амплитуды поля величина расщепления растет и в предельном случае $|G| \gg \Gamma_{ij}$ описывается выражением (3).

 $\Delta \mathcal{P}$

В условиях эксперимента ($|G| \approx 100 \,\mathrm{MFu}$, $\Gamma_{mn} \approx \approx \Gamma_{nl} \approx 280 \,\mathrm{MFu}$, $\Gamma_{ml} \approx 25 \,\mathrm{MFu}$) приближение теории возмущений ($|G| \ll \Gamma_{mn}, \Gamma_{nl}$) выполняется достаточно хорошо. Контур, рассчитанный по формуле (4) с учетом полевого уширения (определяемого рабиевской частотой |G|), практически не отличается от результатов теории возмущений (1) — последняя кривая построена мелкими штрихами на рис. 3. Полная ширина пика ЭИП (и, соответственно, величина расщепления) в этом приближении определяется константой релаксации запрещенного перехода

$$\Delta_{AT} \sim 2\Gamma_p \approx 2\Gamma_{nl}k_\mu/k \approx 400 \,\mathrm{M}$$
Гц

Отметим, что расчетная кривая качественно согласуется с экспериментом, но ширина пика ЭИП в эксперименте существенно больше (примерно на 40 %), причем учет полевого уширения не дает такой величины уширения.

Известно, что основной причиной уширения нелинейных резонансов в плазме ионных лазеров является кулоновское рассеяние ионов [9], которое достаточно хорошо описывается моделью диффузии в пространстве скоростей с не зависящим от скорости коэффициентом [18, 19]:

$$D = \nu v_T^2 / 2, \quad \nu = \frac{16\sqrt{\pi N Z^2 e^4 \Lambda}}{3M^2 v_T^3}, \tag{5}$$

где ν — эффективная частота ион-ионных столкновений, $v_T = \sqrt{2T_i/M}$ — тепловая скорость, Ze, M заряд и масса активных ионов, N — эффективная концентрация возмущающих ионов, Λ — кулоновский логарифм.

Кулоновское уширение резонансов, обусловленных эффектом насыщения, детально изучено в эксперименте, в частности, показано, что для долгоживущих метастабильных уровней величина кулоновского уширения может достигать 100 раз по отношению к радиационной ширине [11]. Характер диффузионного уширения населенностных резонансов понять достаточно просто: сильная монохроматическая волна образует на фоне максвеллова распределения по скоростям населенности уровня j = m, n с шириной v_T беннетовские структуры с шириной $\Gamma_{mn}/k \ll v_T$. Диффузия в пространстве скоростей стремится нивелировать неравновесность, вследствие чего резонансная структура уширяется. Характерное изменение скорости растет со временем t по диффузионному закону

$$\Delta v_i \sim \sqrt{Dt},$$

и за время жизни уровня Γ_j^{-1} диффузия по скоростям приводит к уширению резонанса насыщения в спектре на величину

$$\Delta_j = k \Delta v_j \approx \frac{k v_T}{2} \sqrt{\nu / \Gamma_j}, \quad j = m, n, \tag{6}$$

т.е. чем больше время жизни уровня, тем сильнее уширяется резонанс насыщения, в отличие от модели релаксационных констант. Для лазерных переходов преимущественно уширяется провал Беннета на относительно долгоживущем верхнем уровне. Для нашей схемы уровней характерное уширение резонанса насыщения составляет $\Delta_j/\Gamma_{mn} \sim 3$ – соответственно ширина населенностного резонанса, наблюдаемого для встречных сильной и пробной волн, центрированного при $\Omega_{\mu} \approx -1.1 \Gamma \Gamma \mu$ (см. рис. 2), примерно в 3 раза больше ширины пика ЭИП.

Поскольку пик ЭИП формируется за счет когерентных эффектов, механизм кулоновского уширения в этом случае принципиально отличается от механизма уширения населенностных резонансов. Помимо изменения распределения населенности диффузия в пространстве скоростей приводит также к дефазировке (диффузии фазы) недиагонального элемента матрицы плотности (когерентности) из-за хаотического изменения координаты иона:

$$\langle \Delta r^2 \rangle \sim \Delta v^2 t^2 \sim D t^3,$$

что соответствует изменению фазы

$$\langle \Delta \varphi^2 \rangle = k^2 \langle \Delta r^2 \rangle \sim D k^2 t^3.$$

Дефазировка существенна, когда $\Delta \varphi \sim 1$. Отсюда можно сделать оценку характерного времени дефазировки τ_D и связанной с ним добавки к однородной ширине перехода:

$$\tau_D^{-1} \sim (Dk^2)^{-1/3} \approx (\nu (kv_T)^2)^{-1/3}.$$
 (7)

Соответственно добавка к ширине пика ЭИП (2) в условиях эксперимента оценивается как $k_{\mu}\tau_D^{-1}/k \approx 300 \,\mathrm{MFu}$, что значительно превышает величину $\Gamma_p \approx 200 \,\mathrm{MFu}$. Это противоречит эксперименту, в котором наблюдаемая величина уширения значительно меньше Γ_p .

Поскольку для описания эксперимента применима теория возмущений, можно провести более детальный анализ эффекта. Для случая сонаправленных сильной и пробной волн в стоксовом случае $(k_{\mu} < k)$ можно воспользоваться результатами расчета нелинейной добавки в спектре пробного поля по теории возмущений до второго порядка по |G| с учетом диффузии по скоростям [20]. Приводя выражение к более привычному для нелинейной спектроскопии виду, получим контур спектральной линии, соответствующий эффекту полевого расщепления:

$$\Delta \mathcal{P}(\Omega_{\mu}) = \frac{4\sqrt{\pi}\hbar\omega_{\mu}|G_{\mu}|^{2}|G|^{2}N_{l}(k-k_{\mu})}{k^{2}v_{T}} \times \\ \times \operatorname{Re}\left\{\int_{0}^{\infty} dt \exp(i\Omega_{\mu}t)\Phi(t)\right\}^{2}, \qquad (8)$$
$$\Phi(t) = \exp\left\{-\left(\Gamma_{p} + i\Omega k_{\mu}/k\right)t - - D(k-k_{\mu})^{2}(k_{\mu}/k)^{2}t^{3}/3\right\}.$$

Здесь пренебрегается силой трения, поскольку резонансная скорость меньше $0.4v_T$. Отметим, что диффузия фазы определяется не фактором Dk^2 , как предполагалось из оценки (7), а в $(k - k_\mu)^2 k_\mu^2/k^4$ раз меньшей величиной. Соответственно, диффузионная ширина резонанса полевого расщепления выражается как

$$\Gamma_D \approx \left[D(k - k_\mu)^2 k_\mu^2 / k^2 \right]^{-1/3}.$$
 (9)

В эксперименте

$$k_{\mu}/k \approx 0.7, \quad (k - k_{\mu})^2 k_{\mu}^2/k^4 \approx 0.04.$$

Таким образом, диффузионная ширина резонанса полевого расщепления $\Gamma_D \approx 100 \, \mathrm{M}\Gamma$ ц примерно в 3 раза меньше, чем $(Dk^2)^{1/3}$, и диффузионное уширение невелико, $\Gamma_D < \Gamma_p$. В пределе $D \to 0$ выражение для формы контура сводится к формуле (1). Результат расчета по формуле теории возмущений (8), учитывающей кулоновскую диффузию, для условий эксперимента приведен на рис. З крупноштриховой кривой. Кривая достаточно хорошо описывает эксперимент, небольшие отклонения связаны в основном с асимметрией экспериментального контура. На рисунке также приведена кривая (сплошная линия), рассчитанная численно из системы уравнений для матрицы плотности с учетом как диффузионного, так и полевого уширения, а также силы кулоновского трения. Эта кривая согласуется с экспериментом еще лучше, в том числе описывает асимметрию. Отметим, что на правом склоне пика ЭИП результаты численного расчета и расчета по теории возмущений с учетом диффузии совпадают, отклонения заметны только на левом склоне.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенное сравнение экспериментальных кривых с расчетными показало, что диффузия населенности по скоростям не приводит к значительному уширению резонанса, обусловленного эффектом полевого расщепления, в отличие от резонансов насыщения. Для описания эксперимента хорошим приближением является теория возмущений с учетом диффузии, полевое уширение при этом несущественно. В работе [21] анализировался обратный предельный случай: расчет диффузионной формы компонент дублета Аутлера-Таунса проводился при величине полевого расщепления |G|, значительно превышающем ширины резонансов. Диффузионная ширина расщепленных компонент в этом случае оказалась порядка $\sqrt{Dk^2/|G|}$, т.е. уменьшается с ростом |G|, и в эксперименте с сильными полями в V-схеме [13, 14] не наблюдалось заметного уширения резонансов.

Поскольку в нашем случае амплитуда компонент дублета Аутлера–Таунса мала по сравнению с амплитудой пика ЭИП, интерес представляет обсуждение механизма влияния кулоновской диффузии на форму пика ЭИП — его относительное уширение в условиях эксперимента не превышает 40 %. Качественно такое слабое влияние можно понять, используя картину частотных ветвей: зависимости резонансных частот расщепленных компонент от скорости (см., например, [13]). Резонансные частоты в пренебрежении однородной шириной в нашем случае описываются выражением

$$\Omega_{\mu}(v) = k_{\mu}v + (\Omega - kv)/2 \pm \sqrt{(\Omega - kv)^2/4 + |G|^2}.$$
 (10)

Результаты расчета по формуле (10) при параметрах эксперимента приведены на рис. 4. При усреднении по скоростям интеграл набирается в окрестности экстремумов зависимости $\Omega_{\mu}(v)$, называемых «частотами поворота» [13]. Размер окрестности, дающей значительный вклад, определяется крутизной зависимости $d\Omega_{\mu}/dv$ — асимптотика на больших скоростях определяется коэффициентами k_{μ} и $(k_{\mu} - k)$, которые в нашем случае сильно различаются. Поэтому для резонанса $\Omega^1_\mu < 1\,\Gamma\Gamma$ ц, который ближе к центру линии, интеграл набирается на скоростях $v > 0.4 v_T$, а для второго резонанса $\Omega^2_{\mu} > 1$ ГГц интеграл набирается на скоростях $v < 0.4 v_T$. С учетом максвелловской функции распределения это приводит к тому, что резонанс, отстоящий дальше от центра линии, имеет бо́льшую амплитуду, что подтверждается в эксперименте (см. рис. 2). Формулы (1), (4), (8), полученные в доплеровском пределе, асимметрию не описывают. Роль кулоновской диффузии

Рис. 4. Частотные ветви, рассчитанные по формуле (10) для условий эксперимента: $G \approx 100~{\rm MF}{
m L}$, $\Omega = 1.59~{\rm FF}{
m L}$

населенности в этих условиях сводится к тому, что частицы «гуляют» по частотной ветви вдоль оси скоростей в окрестности порядка

$$\Delta v_j \sim v_T \sqrt{\nu_{ii}/2\Gamma_j}, \quad j=m,n,$$

размер которой не превышает размера области, дающей вклад в интеграл — поэтому этот эффект слабый, причем диффузия сильнее влияет на форму крыльев, чем на ширину пика ЭИП. Асимметрия компонент дублета является следствием усреднения по скоростям с учетом конечной доплеровской ширины и от диффузии практически не зависит. Таким образом, основным механизмом уширения в данном случае является кулоновская дефазировка (диффузия фазы), влияние которой в свою очередь ослаблено в $[(k - k_{\mu})^2 k_{\mu}^2/k^4]^{-1/3} \sim 3$ раза в условиях эксперимента. В результате кулоновское уширение пика ЭИП не превышает 40 %.

Эксперимент позволяет также определить ширину населенностного резонанса (обусловленного провалом Беннета на верхнем уровне m), который наблюдается для встречных пробной и сильной волн отрицательная область отстроек на рис. 2. Интерес представляет сравнение полученного значения с данными предыдущих экспериментов по исследованию провала Лэмба и спектра спонтанного испускания (см., например, [9]). Ширина резонанса насыщения (полная ширина на полувысоте) в нашем случае равна $\Delta \approx 1.3 \Gamma \Gamma$ ц, что соответствует относительному уширению провала Беннета в $\gamma = (\Delta/2\Gamma_{mn})(k/k_{\mu}) \approx 3.7$ раза. Это несколько больше, чем давали измерения по спектру спонтанного испускания в тех же условиях (см. [9]). В отличие от предыдущих измерений, в условиях данного эксперимента полевое уширение населенностного резонанса было достаточно большим и им нельзя пренебрегать. Оценка характерных величин дает следующие значения кулоновской, однородной и полевой ширин резонанса насыщения в условиях эксперимента:

$$\Delta_m = k_\mu v_T \sqrt{\nu_{ii}/2\Gamma_m} \approx 0.7\,\Gamma\Gamma$$
ц

 $(\Delta_D = 2 \ln 2\Delta_m \approx 1 \ \Gamma \Gamma \mathfrak{l}$ — полная ширина на полувысоте),

$$2\Gamma_{mn}k_{\mu}/k \approx 0.35 \,\Gamma\Gamma$$
ц,

$$\Delta_G \approx 2|G|\sqrt{2\Gamma_{mn}/\Gamma_m} \approx 0.8\,\Gamma\Gamma$$
ц.

Следовательно, диффузионная и полевая ширины сравнимы по величине и значительно больше однородной: $\Delta_D \gtrsim \Delta_G > 2\Gamma_{mn}k_{\mu}/k$. Как показано в [9,22], в этих условиях складываются квадраты полевой и диффузионной ширин, т. е. суммарная ширина выражается как

$$\Delta = \sqrt{\Delta_D^2 + \Delta_G^2} \approx 1.3 \ \Gamma \Gamma \mathfrak{u},\tag{11}$$

что хорошо согласуется с результатами измерений.

5. ЗАКЛЮЧЕНИЕ

Таким образом, в работе впервые измерена форма нелинейного резонанса, обусловленного эффектом полевого расщепления, в плазменных условиях. В результате проведенного экспериментального и теоретического исследования эффекта при относительно небольшой интенсивности поля $(|G| < \Gamma_{nl})$ показано, что кулоновское ион-ионное рассеяние, которое приводит к диффузии ионов в пространстве скоростей, влияет на контур дублета Аутлера-Таунса и ширину пика ЭИП незначительно. Это влияние сводится к небольшому (около 40 %) уширению пика и изменению формы крыльев расщепленных компонент. Основным механизмом уширения является эффект кулоновской дефазировки (диффузии фазы), который приводит к эффективному увеличению однородной ширины на величину Γ_D , описываемую формулой (9). Показано, что в этих же условиях резонанс насыщения уширяется за счет кулоновской диффузии населенности почти на порядок сильнее, полевое уширение в этом случае также дает значительный вклад.

Авторы выражают благодарность С. И. Каблукову, Е. В. Подивилову и С. Г. Раутиану за полезные обсуждения, О. В. Белаю за помощь в проведении численного расчета и отметить вклад В. В. Потапова в создание установки. Работа поддержана российско-китайским грантом РФФИ-ГФЕН № 02-02-39025 и грантом НШ-439.2003.2 программы государственной поддержки ведущих научных школ.

ЛИТЕРАТУРА

- S. H. Autler and C. H. Townes, Phys. Rev. 100, 1020 (1955).
- 2. С. Г. Раутиан, Г. И. Смирнов, А. М. Шалагин, *Нели*нейные резонансы в спектрах атомов и молекул, Наука, Новосибирск (1979).
- 3. S. E. Harris, Phys. Today 50, 36 (1997).
- 4. J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
- S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64, 1107 (1990).
- 6. S. Babin et al., Opt. Lett. 21, 1186 (1996).
- A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
- C. Y. Ye and A. S. Zibrov, Phys. Rev. A 65, 023806 (2002).
- S. A. Babin and D. A. Shapiro, Phys. Rep. 241, 119 (1994).
- С. А. Бабин, С. И. Каблуков, М. А. Кондратенко, Д. А. Шапиро, Письма в ЖЭТФ 64, 241 (1996).
- 11. A. A. Apolonsky et al., Phys. Rev. A 55, 661 (1997).
- B. Wellegehausen, IEEE J. Quant. Electr. 15, 1108 (1979).
- 13. О. Г. Быкова и др., Опт. и спектр. 53, 171 (1982).
- 14. О. Г. Быкова, Л. Е. Гринь, В. В. Лебедева, А. Э. Седельникова, Опт. и спектр. **64**, 1216 (1988).
- 15. Б. В. Бондарев и др., Опт. атм. 2, 1319 (1989).
- 16. С. А. Бабин, Е. В. Подивилов, В. В. Потапов, Д. В. Чуркин, Д. А. Шапиро, ЖЭТФ 121, 807 (2002).
- 17. B. J. Feldman and M. S. Feld, Phys. Rev. A 5, 899 (1972).
- 18. С. Г. Раутиан, ЖЭТФ 51, 1176 (1966).
- **19**. Г. И. Смирнов, Д. А. Шапиро, ЖЭТФ **76**, 2084 (1979).
- 20. С. Г. Раутиан, Д. А. Шапиро, ЖЭТФ 94, 110 (1988).
- М. Г. Степанов, Д. А. Шапиро, Письма в ЖЭТФ 68, 27 (1998).
- 22. М. Г. Степанов, Д. А. Шапиро, ЖЭТФ 113, 1632 (1998).