# ГЕНЕЗИЗ АНОМАЛЬНОГО ЭФФЕКТА ХОЛЛА В СОЕДИНЕНИИ CeAl<sub>2</sub>

Н. Е. Случанко<sup>а,b</sup>, А. В. Богач<sup>а,b</sup>, В. В. Глушков<sup>а,b</sup>, С. В. Демишев<sup>а,b</sup>,

М. И. Игнатов<sup>а,b</sup>, Н. А. Самарин<sup>а</sup>, Г. С. Бурханов<sup>с</sup>, О. Д. Чистяков<sup>с</sup>

<sup>а</sup> Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> <sup>b</sup> Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

<sup>с</sup> Институт металлургии и материаловедения им. А. А. Байкова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 6 октября 2003 г.

В широком диапазоне температур (1.8–300 К) исследованы коэффициент Холла  $R_H$ , удельное сопротивление  $\rho$  и коэффициент термоэдс S соединения CeAl<sub>2</sub> с быстрыми флуктуациями электронной плотности. Выполненные детальные измерения угловых зависимостей  $R_H(\varphi, T, H \leq 70 \text{ k})$  позволили выделить вклады в аномальный эффект Холла и исследовать поведение аномальных магнитной  $R_H^{am}$  и основной  $R_H^a$  составляющих в холловском сигнале в этом соединении с сильными электронными корреляциями. Особенности поведения аномальной магнитной компоненты  $R_H^{am}$  используются для анализа сложной магнитной фазовой диаграммы H-T, обусловленной установлением магнитного порядка в режиме сильных спиновых флуктуаций. Анализ изменения основного вклада  $R_H^a(H,T)$  в эффект Холла позволяет установить сложное активационное поведение этой аномальной составляющей в интерметаллиде CeAl<sub>2</sub>, а также приводит к выводу о необходимости учета спин-поляронных эффектов и о существенных ограничениях применимости моделей кондо-решетки и несимметричного рассеяния (skew-scattering) к описанию низкотемпературного транспорта носителей заряда в интерметаллидах на основе церия. Приведены оценки параметров многочастичных состояний в матрице CeAl<sub>2</sub>: эффективные массы (55–90) $m_0$ , радиус локализации 6–10 Å. Выполнен совместный анализ поведения параметров  $R_H, S$  и  $\rho$ , результаты которого позволяют получить согласованное описание транспортных коэффициентов в соединении CeAl<sub>2</sub>.

PACS: 72.15.Qm

#### 1. ВВЕДЕНИЕ

Одним из наиболее интересных и сложных для интерпретации свойств соединений с промежуточной валентностью и тяжелыми фермионами на основе редкоземельных (P3) элементов является коэффициент Холла  $R_H$  [1–4]. В частности, эффект Холла в интерметаллидах на основе церия в подавляющем большинстве случаев оказывается аномальным как по абсолютной величине, так и по знаку  $R_H$ . Действительно, для проводящих соединений церия величина  $R_H$  в десятки раз превосходит коэффициент Холла в их немагнитных аналогах (соединениях с La, Y, Lu и др.), причем при температурах, сравнимых с характерной температурой спиновых флуктуаций  $T_{sf}$ , наблюдается положительный знак эффекта [1, 2]. Исследования, выполненные различными авторами для различных интерметаллидов на основе Ce (CeAl<sub>3</sub> [5], CeCu<sub>2</sub>Si<sub>2</sub> [6], CeCu<sub>6</sub> [7], CePd<sub>3</sub> [8], CeNiSn [9], CeOs<sub>2</sub> [10], CePb<sub>3</sub> [11] и др.), показали, что на температурной зависимости  $R_H(T)$  наблюдается максимум большой амплитуды при  $T_{max}^{R_H}$  в окрестности температуры  $T_{sf}$ . При этом, с точки зрения авторов работ [1, 2], наиболее адекватное объяснение подобного поведения параметра  $R_H(T)$  может быть получено в рамках моделей асимметричного рассеяния (skew-scattering) носите-

<sup>\*</sup>E-mail: nes@lt.gpi.ru



Рис. 1. Блок-схема установки для измерений транспортных характеристик: 1— криостат; 2— сверхпроводящий магнит; 3— образец; 4— медная пластина; 5— датчик Холла; 6— термометр сопротивления; 7— шаговый двигатель; 8— двустенная ампула. На вставках приведены геометрия расположения контактов к образцу (*a*) и размещение образца на пластине (б)

лей заряда на локализованных магнитных моментах редкоземельных ионов. Однако предварительные исследования коэффициента Холла, выполненные нами сравнительно недавно [12] для типичного представителя этого класса соединений — так называемой магнитной кондо-решетки CeAl<sub>2</sub>, — обнаружили сложное активационное поведение параметра  $R_H(T)$ , не укладывающееся в рамки развитых в [1,2] представлений об определяющей роли эффектов рассеяния в формировании аномалий коэффициента  $R_H$  в этом интерметаллиде.

С целью экспериментальной проверки применимости существующих теоретических подходов к описанию аномального эффекта Холла в РЗ-соединениях с дальним магнитным порядком и тяжелыми фермионами в настоящей работе выполнено детальное исследование эффекта Холла в CeAl<sub>2</sub> в широком диапазоне температур 1.8–300 К, в магнитных полях до 70 кЭ. Для выяснения специфики низкотемпературного транспорта носителей заряда в CeAl<sub>2</sub> в работе измерялись также коэффициент термоэдс S(T) и удельное сопротивление в зависимости от температуры при фиксированных значениях магнитного поля,  $\rho(H_0, T)$ .

#### 2. МЕТОДИКА ЭКСПЕРИМЕНТА

Представленные в настоящей работе результаты измерений транспортных характеристик получены на поликристаллических образцах соединения CeAl<sub>2</sub> с кубической структурой фазы Лавеса, синтезированных на основе стехиометрических количеств высокочистых компонентов в дуговой электропечи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поду в атмосфере очищенного гелия. Равномерность состава в объеме образца обеспечивалась многократным переплавом и последующим гомогенизирующим отжигом интерметаллида в откаченных кварцевых ампулах. Контроль однофазного состояния соединений осуществлялся с помощью рентгеноструктурного (ДРОН-3) и микроструктурного (оптическая микроскопия) аналитических методов.

Измерения коэффициента термоэдс проводились четырехзондовым методом на установке оригинальной конструкции, подобной описанной в [13]. Варьирование температурных градиентов  $\Delta T$  на образце выполнялось в области линейного отклика напряжений термоэдс  $U_{1,2} \propto \Delta T$  с различных пар контактов к образцу [13]. Относительная величина максимального перегрева  $\Delta T/T$  между «холодным» и «теплым» концами образца составляла не более 5 %.

Для измерений коэффициента Холла в работе применялась экспериментальная установка оригинальной конструкции, блок-схема которой представлена на рис. 1. Измерения проводились в криостате 1 со сверхпроводящим магнитом 2 в схеме с пошаговым вращением образца в магнитном поле. Образец 3, приготовленный для измерений на постоянном токе в четырехконтактной конфигурации (см. вставку а на рис. 1), размещался на медной пластине 4 (см. вставку б на рис. 1) поворотного устройства вместе с датчиком Холла 5 и эталонным термометром сопротивления 6 фирмы Lake Shore Cryotronics (США) модели CERNOX 1050. С помощью датчика Холла 5 измерялась нормальная компонента вектора напряженности магнитного поля к поверхности образца. Вращение сборки на медной пластине 4 в магнитном поле сверхпроводящего магнита осуществлялось в пошаговом режиме с дискретностью  $\Delta \varphi = 1.8^{\circ}$  с управлением приводом от шагового двигателя 7. После каждого поворота на 2-5 шагов положение сборки фиксировалось (см. вставки на рис. 1), и далее проводились измерения сигналов с холловских контактов образца, с датчика Холла и термометра сопротивления. Непосредственно для обеспечения прецизионных измерений холловского напряжения с образца использовался нановольтметр фирмы Keithley (США) модели 2182. Для стабилизации и регулирования температуры измерительной ячейки с образцом, размещенной в двустенной ампуле 8, применялся температурный контроллер оригинальной конструкции, обеспечивающий точность стабилизации температуры около 0.01 К. Система регистрации и управления низкотемпературным экспериментом через микропроцессорное устройство была связана с персональным компьютером (РС на

рис. 1), используемым непосредственно для сбора и обработки экспериментальной информации, а также для задания требуемых параметров и режимов работы электронных устройств, входящих в состав установки.

Измерения сопротивления образцов  $CeAl_2$  проводились четырехзондовым методом на постоянном токе, причем при измерениях в магнитом поле исследовалось поведение поперечного ( $\mathbf{I} \perp \mathbf{H}$ , вставка *а* на рис. 1) магнитосопротивления.

#### 3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Результаты измерений удельного сопротивления  $\rho(T, H_0)$  в фиксированном магнитном поле  $H_0 \leq 70$  кЭ и коэффициента термоэдс S(T) образцов CeAl<sub>2</sub> представлены на рис. 2 (соответственно кривые 1–5 и 6). Температурная зависимость  $\rho(T)$ в отсутствие внешнего магнитного поля (кривая 1 на рис. 2) характеризуется близким к линейному поведением в диапазоне 100-300 К (см. вставку а на рис. 2). С понижением температуры при T < 100 K уменьшение сопротивления становится более резким, в окрестности 13 К кривая  $\rho(T)$ проходит через минимум (рис. 2, вставка а) и далее наблюдается близкое к логарифмическому возрастание величины р. С дальнейшим понижением температуры зависимость  $\rho(T)$  проходит через максимум вблиз<br/>и $T^{\rho}_{max} \approx 5.5$  К, ниже которого на кривой  $\rho(T)$  наблюдается излом при  $T = T_N \approx 3.8 \text{ K}$ (отмечен штриховой линией на рис. 2), отвечающий температуре установления дальнего магнитного порядка (антиферромагнитная модулированная (АФМ) структура [14]) в системе локализованных магнитных моментов на центрах церия в матрице  $CeAl_2$ .

Внешнее магнитное поле до 70 кЭ заметно меняет форму кривой  $\rho(T)$ . Появление значительного (до 50%) отрицательного магнитосопротивления в указанном диапазоне полей при температурах  $T < 20 {
m K}$ (см. рис. 2, кривые 1–5) сопровождается уширением низкотемпературного максимума на кривой  $\rho(T)$  и сдвигом в магнитном поле данной особенности вверх по шкале температур. В то же время подавление низкотемпературного магнитного вклада в  $\rho(T)$  в магнитном поле  $H_0 > 30$  кЭ происходит существенно более эффективно в интервале гелиевых температур T < 5 K, что, в свою очередь, приводит к трансформации низкотемпературного максимума зависимости  $\rho(T, H_0)$  в особенность типа «ступеньки» (см. рис. 2, кривые 1-5). Следует отметить, что экспериментальные данные рис. 2 (кривые 1-5) находятся



Рис.2. Температурные зависимости удельного сопротивления CeAl<sub>2</sub> для различных значений магнитного поля  $H_0$  (кривые 1–5): 1 - 0; 2 - 32 кЭ; 3 - 50.5 кЭ; 4 - 60 кЭ; 5 - 70.7 кЭ. Кривая 6 соответствует температурной зависимости коэффициента термоэдс. На вставке a кривые 1 и 6 представлены в линейном масштабе температур. На вставке 6 приведена схема расщепления основного состояния  ${}^2F_{5/2}$  церия кристаллическим полем в CeAl<sub>2</sub>

в хорошем согласии с результатами измерений [15], выполненных ранее на поликристаллических образцах CeAl<sub>2</sub> при низких и сверхнизких температурах в магнитных полях до 200 кЭ.

Измеренная в работе температурная зависимость коэффициента термоэдс S(T) для CeAl<sub>2</sub> представлена на рис. 2 (кривая 6). В интервале 100–300 К термоэдс является медленно меняющейся функцией температуры и принимает положительные значения. С понижением температуры (T < 100 K) происходит резкое уменьшение S(T)со сменой знака при  $T = T_{inv} \approx 45 \text{ K}$  (рис. 2, см. также вставку *a*). Выполненные нами прецизионные измерения термоэдс CeAl<sub>2</sub> в дополнение к отрицательному минимуму S(T) значительной амплитуды при  $T_{min} \approx 10 \text{ K}$  позволили также установить наличие особенности в окрестности температуры Нееля  $T_N \approx 3.85 {\rm K}$  (отмечена штриховой линией на рис. 2). Очевидно, эта особенность отвечает переходу в магнитоупорядоченное состояние на локализованных магнитных моментах церия. Отметим, что, насколько нам известно, данный результат представляет собой первое экспериментальное наблюдение особенности на кривой S(T) для CeAl<sub>2</sub> при переходе в магнитоупорядоченную фазу. При этом малая амплитуда изменения величины S(T) при  $T \approx T_N$  ( $\Delta S \leq 1 {\rm ~ MKB/K}$  при  $|S| > 20 {\rm ~ MKB/K}$ ) позволяет исключить из числа факторов, обусловливающих возникновение глубокого отрицательного минимума термоэдс CeAl<sub>2</sub>, формирование при низких температурах магнитоупорядоченного состояния в этом соединении.

Как уже отмечалось ранее, измерения холловской компоненты сопротивления  $\rho_H(H,T)$  в насто-



Рис.3. Угловые зависимости холловского сопротивления CeAl<sub>2</sub> в магнитных полях до 70 кЭ при температурах  $T_0 = 4.17$  K (*a*) и  $T_0 = 3.4$  K (*б*)

ящей работе проводились методом вращения с последующей фиксацией положения образца в магнитном поле. Типичные семейства угловых зависимостей  $\rho_H(\varphi, H_0, T_0)$ , полученных при измерениях образцов CeAl<sub>2</sub> на установке, приведенной на рис. 1, при температурах как выше температуры Нееля (например, при  $T_0 = 4.17 \text{ K} > T_N \approx 3.8 \text{ K}$ ), так и в магнитоупорядоченном состоянии ( $T_0 = 3.4 \text{ K} < T_N$ ) в различных магнитных полях  $H \leq 70$  кЭ, представлены соответственно на рис. За. б. В схеме с вращением образца в магнитном поле при изменении амплитуды нормальной компоненты вектора напряженности внешнего магнитного поля  $\mathbf{H}_{\perp} \parallel \mathbf{n}$ по гармоническому закону  $H_{\perp} = H_0 \cos \varphi$  обычно следует ожидать синусоидальной зависимости холловского напряжения вида  $U_H \propto R_H(T, H_0) H_0 \cos \varphi$ (см. вставку а на рис. 1). Однако в случае измерений эффекта Холла в CeAl<sub>2</sub> такая форма кривых  $\rho_H(\varphi, H_0, T_0)$  наблюдается лишь в ограниченных диапазонах температуры и магнитного поля. В частности, для гелиевой температуры близкая к синусоидальной угловая зависимость холловского сигнала наблюдается лишь в интервале полей до 35 к'Э (рис. 3*a*). Для температур ниже  $T_N$  форма кривых  $\rho_H(\varphi)$  становится существенно более сложной, причем во всем диапазоне магнитных полей, используемом в настоящей работе, к основной составляющей сигнала  $\rho_H(\varphi) \propto \cos \varphi$  добавляется вклад четных гармоник (рис. 3*b*). Наиболее наглядно трансформация кривых  $\rho_H(\varphi)$  при переходе от  $T > T_N$  к  $T < T_N$  представлена на рис. 4*a*, *b*, где показаны угловые зависимости холловского сопротивления, измеренные при различных температурах в магнитных полях соответственно  $H_0 \approx 3.4$  к'Э и  $H_0 \approx 32$  к'Э.

Другой особенностью поведения зависимости  $\rho_H(\varphi)$  в исследуемых образцах CeAl<sub>2</sub> является возникновение в сильных магнитных полях  $H \ge 40$  кЭ вклада от четных гармоник в эффект Холла, наблюдающегося как в области температур 4 К  $\le T \le 7.5$  К выше  $T_N$ , так и при  $T < T_N$ для значений T, H, лежащих за пределами низкотемпературной АФМ-фазы на магнитной фазовой



Рис. 4. Угловые зависимости холловского сопротивления CeAl<sub>2</sub> при различных температурах в магнитных полях  $H_0 = 3.4 \text{ k} \Im$  (*a*) и  $H_0 = 32 \text{ k} \Im$  (*b*)

диаграмме Н-Т этого соединения. Указанное аномальное поведение холловского сопротивления наиболее отчетливо проявляется на примере результатов измерений в поле  $H_0 \approx 60$  кЭ (рис. 5a, все экспериментальные кривые отвечают температурам  $T > T_N(H)$ ). Другим наглядным примером возникновения указанного дополнительного вклада от четных гармоник может служить семейство кривых  $\rho_H(T)$ , измеренных при температуре  $T_0 \approx 5.5 \text{ K} > T_N$  (рис. 6*a*, кривые в интервале полей 40–80 кЭ). В то же время уже при  $T_0 \ge 8$  К угловые зависимости холловского сопротивления вновь оказываются синусоидальными (см., например, семейство кривых на рис.  $6\delta$ ) во всем диапазоне магнитных полей  $H \leq 70$  кЭ, используемом в настоящей работе.

В заключение настоящего раздела подчеркнем, что обнаруженная в работе аномальная компонента, обусловленная появлением четных гармоник в холловском сигнале, не может быть отнесена за счет асимметрии в расположении холловских контактов к образцу интерметаллида и вследствие этого не может быть связана с добавлением четного по магнитному полю вклада в  $U_H(T, H, \varphi)$  от магнитосопротивления в CeAl<sub>2</sub>. Результаты выполненных одновременно с холловскими измерениями исследований угловых зависимостей магнитосопротивления  $\rho(\varphi, H, T)$  позволяют исключить подобные эффекты влияния обычной резистивной составляющей, возникающей вследствие «неэквипотенциальности» в расположении холловских контактов к образцу, на форму и характер изменения величины  $U_H(T, H, \varphi)$  для всех образцов CeAl<sub>2</sub>, исследованных в настоящей работе.

### 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

### 4.1. Разделение вкладов в эффект Холла

Для анализа результатов измерений угловых зависимостей холловского сопротивления (рис. 3–6) образцов интерметаллида CeAl<sub>2</sub> в работе использовалось представление



Рис.5. Угловые зависимости холловского сопротивления CeAl<sub>2</sub> при различных температурах в магнитном поле  $H_0 = 60 \,$  к $\exists \, (a)$  и разделение вкладов ( $\delta$ ) в рамках соотношения (1) (см. текст), представленное для различных значений H при температуре  $T_0 = 3.8 \,$  К:  $\rho_H^{exp}$  — экспериментальные данные,  $\rho_{H1}$  — вклад основной составляющей,  $\rho_{H2}$  — вклад второй гармоники,  $\rho_H - \rho_{H1} - \rho_{H2}$  — разностный сигнал (треугольники)

$$\rho_H(\varphi, T_0, H_0) = \\ = \rho_{H0} + \rho_{H1} \sin(\varphi - \varphi_{01}) + \rho_{H2} \sin[2(\varphi - \varphi_{02})], \quad (1)$$

учитывающее наряду с основной, нечетной по магнитному полю, составляющей  $\rho_{H1}$  и постоянным смещением  $\rho_{H0}$  также присутствие вклада второй гармоники. Процедура разделения вкладов в рамках соотношения (1) наиболее наглядно представлена на рис. 5*б*, где для различных значений магнитного поля  $H \leq 70$  кЭ показаны как полученные в работе экспериментальные кривые  $\rho_{H}^{exp}$ , так и вклады с амплитудами  $\rho_{H1}$  и  $\rho_{H2}$ , найденные для семейства кривых, измеренных при температуре  $T \approx 3.8$  К. На рис. 5*б* для оценки точности аппроксимации экспериментальных данных по формуле (1) представлен также разностный вклад

$$\rho_{H}^{exp}(\varphi, T_{0}, H_{0}) - \rho_{H0} - \rho_{H1} \sin(\varphi - \varphi_{01}) - \rho_{H2} \sin[2(\varphi - \varphi_{02})].$$

Отметим, что соотношение (1) является достаточно хорошим приближением везде, за исключением области сильных магнитных полей H > 50 кЭ, в которой на кривых  $\rho_H^{exp}(\varphi)$  появляется заметная дополнительная составляющая от четных гармоник следующих порядков (см. панель D на рис. 56).

Полученные в рамках используемого подхода амплитудные значения основного вклада в эффект Холла  $\rho_{H1}$  [мОм]d [см] =  $\rho_H^a$  [мОм · см] (где d — толщина образца,  $\rho_H^a$  — аномальная компонента холловского сопротивления), являющегося по классификации работ [1–4] аномальным вкладом от несимметричного рассеяния, и аномальной магнитной составляющей  $\rho_{H2}d = \rho_H^{am}$  в зависимости от температуры и магнитного поля представлены соответственно на рис. 7 и 8. Как видно из рис. 7, полевые зависимости удельного холловского сопротивления  $\rho_H^a(H, T_0)$  являются существенно нелинейными не только в АФМ-фазе CeAl<sub>2</sub>, но и в непосредственной



Рис.6. Угловые зависимости холловского сопротивления CeAl<sub>2</sub> при магнитных полях до 70 кЭ и температурах T=5.5 K (a) и T=10 K (b)

окрестности температуры Нееля (рис. 7*a*). Указанная нелинейность в магнитном поле  $H \leq 70$  кЭ сохраняется вплоть до температур выше 10 К, и лишь при  $T \geq 30$  К полевые зависимости  $\rho_H^a(H)$  становятся линейными (рис. 7*б*).

#### 4.2. Аномальная магнитная составляющая эффекта Холла

Температурные зависимости аномального магнитного вклада в удельное холловское сопротивление,  $\rho_H^{am}(T, H_0)$ , исследовавшиеся при различных фиксированных значениях внешнего магнитного поля, представлены на рис. 8. При относительно малых значениях поля  $H \leq 30$  кЭ появление аномального магнитного вклада может быть однозначно связано с переходом в АФМ-фазу при температурах ниже  $T_N \approx 3.85$  К (рис. 8). С ростом величины H возникновение аномального магнитного вклада  $\rho_H^{am}$  регистрируется также и при температурах  $T > T_N$ , причем в поле  $H_0 \approx 60$  кЭ при-

суется с выводами авторов работ [16-18], сделанными на основании экспериментов по квазиупругому рассеянию нейтронов в CeAl<sub>2</sub>, а также с результатами исследований магнитной фазовой диаграммы Н-Т этого соединения [19] (см. также вставку на рис. 8). В частности, находит подтверждение вывод авторов работы [16] о существовании в CeAl<sub>2</sub> области сильных ферромагнитных флуктуаций с длиной когерентности  $\xi \ge 20\,\text{\AA}$  при температурах вплоть до 12 К. При этом следует подчеркнуть, что за исключением CeAl<sub>2</sub> в ряду фаз Лавеса  $LnAl_2$  (Ln = Ce, Nd, Tb, Dy и др.) все прочие трехвалентные редкоземельные диалюминиды являются ферромагнетиками. В связи с этим, по-видимому, основным фактором, приводящим к установлению сложного дальнего АФМ-порядка в магнитной кондо-решетке CeAl<sub>2</sub>, является именно конкуренция магнитного РККИ-взаимодействия с механизмом

сутствие небольшой составляющей  $\rho_{H}^{am}$  наблюдает-

ся вплоть до температур  $T \approx 8-10$  K (рис. 8). Та-

кое поведение величины  $\rho_{H}^{am}(T,H)$  в целом согла-



**Рис.7.** Полевые зависимости основной аномальной составляющей  $ho_{H}^{a}$  удельного холловского сопротивления CeAl<sub>2</sub> для различных температур

рассеяния с переворотом спина, приводящим к компенсации (например, как принято считать, вследствие эффекта Кондо) локализованного магнитного момента РЗ-элемента. В результате редуцирование магнитных моментов РЗ-ионов определяет тенденцию к формированию немагнитного основного состояния и приводит к существенной нестабильности ферромагнитной структуры. В такой ситуации присутствие сильных ферромагнитных флуктуаций в матрице CeAl<sub>2</sub> как при гелиевых, так и при промежуточных (5-10 К) температурах в области сильных магнитных полей H > 60 кЭ, по-видимому, может быть обусловлено подавлением внешним магнитным полем  $H \sim H_K \approx k_B T_K/\mu_B \approx 70~{\rm k}\Im$  $(T_{K}^{\text{CeAl}_{2}} \approx 5 \text{ K [16]})$  кондовских флуктуаций магнитного момента на центрах церия. Другим следствием формирования магнитного порядка в CeAl<sub>2</sub> при низких температурах в условиях отмеченной выше конкуренции различных механизмов, по-видимому, является появление новых фаз на магнитной диаграмме *H*-*T* для CeAl<sub>2</sub> и, в частности, обнаруженного в [19] фазового перехода от АФМ-структуры к неколлинеарной магнитной структуре (см. вставку на рис. 8).

Еще одной интересной особенностью поведения амплитуды аномальной магнитной компоненты удельного холловского сопротивления является немонотонная зависимость амплитуды  $\rho_{H}^{am}(H)$  от магнитного поля для температур  $T < T_N$  (см. рис. 8). Для большей наглядности при обсуждении результатов в этой части исследования наиболее удобным представляется использование коэффициентов Холла ${\cal R}^a_H$  и  ${\cal R}^{am}_H,$ которые могут быть получены непосредственно из  $\rho_{H}^{a}$  и  $\rho_{H}^{am}$  при учете величины напряженности магнитного поля. Полевые зависимости параметров  $R_{H}^{a}$  и  $R_{H}^{am}$ , полученные из данных рис. 3-6, показаны на рис. 9. Как видно из рис. 9а, в области гелиевых температур коэффициенты Холла  $R_{H}^{a}$  и  $R_{H}^{am}$  сравнимы по порядку величины, причем аномальный магнитный вклад  $R_{H}^{am}(H, T_{0})$  действительно оказывается существенно немонотонным. Наблюдаемая на



Рис.8. Температурные зависимости аномальной магнитной составляющей  $\rho_H^{am}$  (см. текст) удельного холловского сопротивления в магнитных полях  $H_0 = 3.4, 32, 60$  кЭ. На вставке представлена фазовая диаграмма H-T для CeAl<sub>2</sub>: AFM — антиферромагнитная модулированная фаза; Р — парамагнетик;  $H_c^{AF}$  — фазовая граница AФM-фазы; нижняя заштрихованная область отвечает режиму переориентации антиферромагнитных доменов внешним полем (см. текст), верхняя — неколлинеарной магнитной структуре (по данным работы [19])

кривых  $R_H^{am}(H)$  особенность в виде максимума в окрестности  $H_{max} \approx 15$  кЭ (рис. 9*a*) растет по амплитуде с понижением температуры от гелиевой и при температурах  $T \leq 3.4$  K сравнивается с величиной  $R^a_H$ . Поскольку анализ в рамках соотношения (1) позволяет определить также фазовый сдвиг  $\Delta \varphi = \varphi_{01} - \varphi_{02}$  между основной и четной гармониками холловского сигнала, появляется дополнительная возможность количественной характеризации перестройки аномального магнитного вклада и связанного с ним рассеяния носителей заряда на особенностях магнитной структуры в CeAl<sub>2</sub> при изменениях температуры и магнитного поля. Как видно из вставки на рис. 9a, сдвиг фаз  $\Delta \varphi$ в пределах точности эксперимента принимает фиксированные значения при  $H \leq 30$  к<br/>Э $(\Delta \varphi \approx 25^{\circ})$  и  $H \geq 40$  кЭ ( $\Delta \varphi \approx -35^{\circ}$ ). Резкое изменение величины и знака параметра  $\Delta \varphi$  происходит в достаточно

узкой окрестности значения  $H^* \approx 35$  кЭ, причем указанное значение  $H^*$  сохраняется практически неизменным как при  $T < T_N \approx 3.85$  K, что соответствует АФМ-фазе в матрице CeAl<sub>2</sub>, так и в области температур 4-8 K, характеризующейся присутствием сильных магнитных флуктуаций в матрице CeAl<sub>2</sub> (рис. 9*a*). Для наглядности и удобства представления результатов изменение на 60° фазового сдвига  $\Delta \varphi = \varphi_{01} - \varphi_{02}$  второй гармоники относительно основного сигнала в окрестности  $H^*\approx 35$ к Э<br/> на рис. 9a показано с помощью инверсии знака компоненты  $R_{H}^{am}$ . По нашему мнению, наблюдаемая особенность параметра  $\Delta \varphi$  может служить дополнительным аргументом в пользу перестройки магнитной структуры CeAl<sub>2</sub> и сделанного в [19] вывода о наблюдении «горизонтальной»  $(H_c = \text{const})$  фазовой границы на магнитной фазовой диаграмме Н-Т этого соединения (см. вставку



Рис.9. Полевые зависимости аномальной  $R_H^a$  и аномальной магнитной  $R_H^{am}$  составляющих коэффициента Холла для различных температур в CeAl<sub>2</sub>. На вставке показаны полевые зависимости фазового сдвига между гармониками (см. текст)

на рис. 8).

При обсуждении природы максимума в окрестности  $H_{max}$   $\approx$  15 кЭ на кривых  $R_{H}^{am}(H,T_{0})$ (рис. 9а) следует отметить также результаты исследований [20-22] теплового расширения и магнитострикции в соединении CeAl<sub>2</sub>. В работах [20, 21] было показано, что с ростом напряженности магнитного поля до 15 кЭ в АФМ-фазе этого соединения происходит переориентация антиферромагнитных (АФ) доменов от хаотического (однородного) к поперечному по отношению к внешнему магнитному полю расположению направления АФ-поляризации. Поскольку температура  $T_N$  магнитного перехода в этом соединении практически не меняется при перемагничивании образцов  $CeAl_2$  при  $H < 20 \ \kappa \Im$  (на вставке к рис. 8 нижняя заштрихованная область на фазовой диаграмме), авторы работ [20, 21] пришли к заключению о переориентации АФМ-доменов внешним магнитным полем без заметного изменения их размеров и АФ-поляризации. С учетом изложенного выше возникновение аномального магнитного рассеяния носителей заряда и, соответственно, существенно немонотонное поведение аномальной магнитной составляющей коэффициента Холла  $R_H^{am}$  при H < 30 кЭ, по-видимому, следует связать с процессами перемагничивания магнитных доменов в магнитоупорядоченном состоянии соединения CeAl<sub>2</sub>.

## 4.3. Основная составляющая в эффекте Холла в CeAl<sub>2</sub>

Измеренные в настоящей работе в широком диапазоне температур (1.8–300 К) зависимости основной (нечетной по магнитному полю) аномальной компоненты коэффициента Холла  $R_H^a(T, H_0)$ в CeAl<sub>2</sub> для нескольких фиксированных значений магнитного поля представлены на рис. 10. В соответствии с результатами исследований [5–10], выполненных для других известных интерметаллидов на основе церия с зарядовыми и спиновыми флуктуациями, на зависимости  $R_H^a(T)$  наблюдается положительный максимум большой амплитуды в



Рис. 10. Температурные зависимости основной аномальной составляющей коэффициента Холла в CeAl<sub>2</sub> в магнитных полях  $H_0 = 3.4, 32, 60 ext{ k}$ 

окрестности характерной температуры спиновых флуктуаций T<sub>sf</sub>, которая в исследуемом соединении составляет  $T_{sf} = T_K \approx 5$  К [16]. Поскольку, как отмечалось выше, в используемых в работе магнитных полях  $H \leq 70$  кЭ выполняется условие  $\mu_B H \approx k_B T_{sf}$ , амплитуда максимума кривой  $R^a_H(T)$ оказывается существенным образом зависящей от напряженности внешнего магнитного поля. При этом подавление в магнитном поле спиновых флуктуаций, обусловленных рассеянием с переворотом спина носителей заряда, приводит к появлению нелинейности полевых зависимостей удельного холловского сопротивления  $\rho_{H}^{a}(T)$  (см. рис. 7) и, как следствие, к резкому уменьшению амплитуды максимума зависимости  $R^a_H(T)$  (рис. 10). Следует подчеркнуть, что аномальная положительная составляющая  $R^a_H(T)$  не может быть связана с формированием магнитоупорядоченного (АФМ) состояния в матрице CeAl<sub>2</sub> при температурах  $T < T_N \approx 3.85$  К. Действительно, ширина максимума коэффициента Холла  $R^a_H(T)$  оказывается достаточно большой по сравнению с  $T_N$  ( $\Delta T \sim 10$  K, рис. 10), причем подавление амплитуды коэффициента  $R_{H}^{a}$  в магнитном поле происходит практически с равной эффективностью как для температур

 $T_0 \geq T_N$  (см., например, рис. 9*a*, кривые для  $T_0 \approx 4.14$  К и  $T_0 \approx 3.8$  К), так и для значений  $T_0 < T_N$  (например,  $T_0 \approx 3.4$  К на рис. 9*a*). Таким образом, природа возникновения аномального положительного эффекта Холла в окрестности температуры  $T_{sf}$  представляется общей как для соединения CeAl<sub>2</sub>, являющегося по классификации авторов работы [23] магнитной кондо-решеткой  $(T_{sf} = T_K)$ , так и для других интерметаллидов на основе церия с сильными спиновыми (немагнитные кондо-решетки [23]) и зарядовыми (соединения с переменной валентностью) флуктуациями, в которых с понижением температуры за счет многочастичных эффектов формируется немагнитное основное состояние. Аналогично, максимум удельного сопротивления при  $T^{
ho}_{max} \approx 5.5~{
m K}$  (кривая 1 на рис. 2), а также отрицательный минимум коэффициента термоэдс (кривая 6 на рис. 2), на наш взгляд, следует отнести к числу особенностей низкотемпературного транспорта в соединениях с флуктуациями электронной плотности, которые обусловлены формированием многочастичных состояний в матрице CeAl<sub>2</sub>. Вопрос о согласованной интерпретации особенностей на кривых  $\rho(T)$ ,  $R^a_H(T)$  и S(T) будет рассмотрен более подробно в



Рис. 11. Полевые зависимости параметра  $\mu_H = R_H^a / \rho$  для CeAl<sub>2</sub> при различных температурах. На вставке представлены зависимости  $\mu_H^{-1}(T)$  в магнитных полях  $H_0 = 3.4, 32, 60 \ \kappa \Im$ 

следующем разделе.

Подавление максимума величины  $R^{a}_{H}(T)$  в магнитном поле сопровождается его заметным смещением вверх по шкале температур (см. рис. 10). Так, в магнитном поле  $H \approx 60$  кЭ коэффициент Холла  $R_{H}^{a}(T_{max}^{R_{H}})$  уменьшается по абсолютной величине более чем в два раза (см. рис. 10), причем температура  $T_{max}^{R_H}$  возрастает до значения  $T_{max}^{R_H}(60 \text{ k}\Theta) \approx 6.5 \text{ K}.$ Столь заметное смещение низкотемпературной особенности коэффициента  $R^a_H(T)$  в сильных магнитных полях вверх по шкале температур полностью коррелирует с поведением в магнитном поле низкотемпературного максимума удельного сопротивления (см. рис. 2 и [15]). В результате при значительном и согласованном уменьшении абсолютных значений параметров  $R_H^a(4.2 \text{ K})$  и  $\rho(4.2 \text{ K})$  (в магнитном поле  $H \approx 70$  кЭ оба параметра уменьшаются примерно в три раза) их отношение  $\mu_H = R_H^a / \rho$ оказывается медленно меняющейся функцией магнитного поля (рис. 11).

Следует подчеркнуть, что отмеченный заметный сдвиг вверх по шкале температур низкотемпературных особенностей параметров  $R_H^a(T)$  и  $\rho(T)$ , завися-

918



Рис. 12. Температурные зависимости коэффициента Холла  $R_H^a - R_H^{LaAl_2}$  (см. текст) в CeAl<sub>2</sub>, представленные в обратных логарифмических координатах для различных значений магнитного поля

щий от напряженности внешнего магнитного поля, не находит простого объяснения в рамках традиционно используемой модели кондо-решетки. Действительно, в таком подходе указанные аномалии гальваномагнитных свойств в системе с сильными электронными корреляциями, как представляется, связаны с возникновением многочастичного резонанса в плотности электронных состояний в окрестности энергии  $\Phi$ ерми  $E_F$  шириной порядка  $k_B T_K$ . В такой ситуации ожидается, что резонансное рассеяние с переворотом спина электронов проводимости на локализованных магнитных моментах церия, которое обусловливает как отмеченную выше перенормировку плотности состояний, так и возникновение аномалий характеристик  $R_{H}^{a}(T)$  и  $\rho(T)$ , должно практически полностью подавляться магнитным полем  $H \sim k_B T_K/\mu_B$ , причем уменьшение по абсолютной величине параметров  $R^a_H(T^{R_H}_{max})$  и  $ho(T^{
ho}_{max})$  должно происходить без заметного изменения положения низкотемпературных особенностей гальваномагнитных характеристик.

Другой особенностью поведения аномального коэффициента Холла в CeAl<sub>2</sub>, которая также не укладывается в рамки традиционно используемого подхода, является сложная активационная зависимость  $R_H^a(T)$  в этом интерметаллиде, впервые обнаруженная в [12]. На рис. 12 зависимость аномального коэффициента Холла от температуры представлена в координатах lg $(R_H^a - R_H^{\text{LaAl}_2}) = f(1/T)$ . Легко видеть, что в таком представлении поведение  $R_H^a(T)$  позводается аномальный активационный рост

$$R_H^a(T) \propto \exp(E_{a1,2}/k_B T) \tag{2}$$

(см. рис. 12) с энергиями активации соответственно  $E_{a1}/k_B \approx 12.0 \pm 0.5$  К и  $E_{a2}/k_B \approx 7.6 \pm 0.2$  К. Отметим, что приведенные значения  $E_{a1}$  и  $E_{a2}$ , в отличие от результата работы [12], получены при учете в качестве аномальной составляющей  $R_H^a$  соединения CeAl<sub>2</sub> величины коэффициента Холла немагнитного аналога диалюмината церия — соединения LaAl<sub>2</sub>, для которого  $R_H^{\text{LaAl}_2} \approx -6 \cdot 10^{-4} \text{ см}^3/\text{Кл}$  [24]. В интервале температур III ( $T \leq 5$  К) ниже максимума поведение величин  $R_H^a(T)$  достаточно хорошо описывается зависимостью вида

$$R_H^a(T) \propto \exp(-E_{a3}/k_B T),\tag{3}$$

причем значение  $E_{a3}/k_B$ , лежащее в интервале 1.5–2.6 К, оказывается зависящим от величины внешнего магнитного поля (см. рис. 12).

Столь необычное для металлической системы поведение коэффициента Холла  $R^a_H(T)$ , как отмечалось выше, не только не укладывается в рамки представлений модели кондо-решетки, но также и не находит простого объяснения в модели асимметричного рассеяния носителей заряда [1-4]. Действительно, в основе обоих рассматриваемых подходов лежит учет в качестве превалирующего фактора резонансного рассеяния с переворотом спина электронов проводимости на локализованных магнитных моментах РЗ-ионов, причем как аномальный положительный эффект Холла в соединениях с тяжелыми фермионами (в том числе в соединениях на основе церия), так и аномалии удельного сопротивления, с точки зрения авторов работ [1-4], являются исключительно следствием специфики эффектов рассеяния. В частности, в [1-4] для оценки вклада от асимметричного рассеяния в диапазоне температур выше максимума параметра  $R_{H}^{a}(T)$  (т. е. для  $T > T_{K}$ ) получено приближенное соотношение вида

$$R_H^a(T) \propto \rho(T)\chi(T), \tag{4}$$

где  $\chi(T)$  — приведенная магнитная восприимчивость системы. Анализ данных, приведенных на рис. 2 и 10, в рамках соотношения (4) для поведения параметра  $\mu_H = R_H^a(T)/\rho(T) \propto \chi(T)$ , характеризующего рассеяние носителей заряда, в целом приводит к заключению о качественном согла-

сии экспериментальных результатов настоящей работы (см. вставку на рис. 11) с выводами авторов работ [1-4], причем кюри-вейссовское поведение,  $\mu_{H}^{-1}(T) \propto (T - \Theta_{1,2}) \propto \chi^{-1}(T)$ , характеризуется значениями парамагнитной температуры Кюри  $\Theta_1 = -350 \pm 20$ К и $\Theta_2 = -3.6 \pm 0.5$ К. Однако, как отмечалось выше, за пределами такого подхода оказывается вся совокупность многочастичных эффектов в низкотемпературном транспорте носителей заряда — активационное поведение коэффициента Холла, изменение положения особенностей характеристик  $R^a_H(T)$  и  $\rho(T)$  в магнитном поле и др. Кроме того, отсутствие в [1-4] последовательного учета влияния эффектов расщепления кристаллическим полем  $^2F_{5/2}$ -состояния церия (см. вставку б на рис. 2) на поведение холловской подвижности  $\mu_H = R_H^a(T)/\rho(T)$ затрудняет проведение количественного анализа полученных в работе экспериментальных результатов.

Для интерпретации аномалий низкотемпературного транспорта в исследуемом в работе соединении с тяжелыми фермионами существенно более предпочтительным, на наш взгляд, представляется использование подхода, основанного на формировании спин-поляронных состояний в хаббардовских полосах (см., например, монографию Мотта [25], а также работы [26,27]) вследствие быстрых спиновых флуктуаций в непосредственной окрестности локализованных магнитных моментов церия в матрице CeAl<sub>2</sub>. В рамках такого подхода получает естественное объяснение активационное поведение коэффициента Холла в CeAl<sub>2</sub> (см. рис. 12), при этом, с нашей точки зрения, энергиям активации  $E_{a1,2}$  следует сопоставить характеристики спин-поляронных комплексов, образованных в окрестности Се-центров. С понижением температуры переход от случая  $T \geq \Delta_{1,2}$  (интервал I на рис. 12,  $\Delta_{1,2}$  — параметры расщепления кристаллическим полем  ${}^2F_{5/2}$ -состояния церия,  $\Delta_1 = 100~{
m K}$  и  $\Delta_2 = 170 \text{ K} [16-18, 28-30], \text{ см. вставку } 6$  на рис. 2) к случаю  $T < \Delta_1 \approx 100$  К обусловливает смену режима быстрых спиновых 4*f*-5*d*-флуктуаций и, как следствие, изменение параметров спин-поляронных состояний в CeAl<sub>2</sub>. Для оценки радиусов локализации  $a_{p1,2}^*$  и эффективных масс  $m_{1,2}^*$  многочастичных состояний с энергиями связи  $E_{a1}/k_B \approx 12~{
m K}$  (в интервале I) и  $E_{a1}/k_B \approx 7.6$  К (в интервале II) (рис. 12) воспользуемся соотношениями

$$m_{1,2}^* = e\tau_{eff}/\mu_H,$$
 (5)

$$a_{p1,2}^* = \hbar / \sqrt{2E_{a1,2}m_{1,2}^*} \,. \tag{6}$$

Время релаксации  $\tau_{eff}$  при различных значени-

ях температуры в интервале 4–300 К может быть получено из полуширины  $\Gamma/2$  квазиупругого пика в спектрах рассеяния нейтронов CeAl<sub>2</sub> (см., например, [16]). Используя соотношение

$$\Gamma/2 = \hbar/\tau_{eff},\tag{7}$$

для  $\tau_{eff}$  (5 K) и  $\tau_{eff}$  (60 K) находим соответственно значения  $1.3 \cdot 10^{-12}$  с и  $4.1 \cdot 10^{-13}$  с. С учетом экспериментальных данных рис. 2, 10, 11 для параметра  $\mu_H(T)$  в рамках соотношений (5), (6) эффективные массы тяжелых носителей заряда и соответствующие радиусы локализации спин-поляронных состояний оказываются равными

$$\begin{split} m_1^*(60 \text{ K}) &\approx 90 m_0, \quad a_{p1}^* = 6.4 \text{ Å}, \\ m_2^*(5 \text{ K}) &\approx 57 m_0, \quad a_{p2}^* = 10 \text{ Å} \end{split}$$

 $(m_0$  — масса электрона). Следует подчеркнуть, что полученные оценки для  $m_{1,2}^*$  и  $a_{p1,2}^*$  оказываются сравнимыми по порядку величины с найденными в [31] значениями параметров  $m_e^* \approx 30m_0$ ,  $a_{ep}^* \approx 6$  Å экситон-поляронных многочастичных состояний для классического соединения с быстрыми зарядовыми и спиновыми флуктуациями — гексаборида самария SmB<sub>6</sub>.

В рамках предложенного подхода вполне естественное объяснение находит также обнаруженный в настоящей работе сдвиг в магнитном поле аномалий гальваномагнитных характеристик CeAl<sub>2</sub> вверх по шкале температур (см. рис. 2, 10). Образование спиновых поляронов в результате быстрых спиновых флуктуаций на Се-центрах сопровождается появлением обменного поля  $H_{ex}$ , которое в значительной степени является причиной аномального усиления коэффициента Холла и возникновения особенностей на кривых  $R^a_H(T)$  в окрестности  $k_B T_{sf} \approx \mu_B H_{ex}$ . При этом с ростом напряженности внешнего магнитного поля, наряду с подавлением быстрых спиновых флуктуаций на Се-центрах, суммирование составляющих  $H + H_{ex}$  приводит к существенному сдвигу аномалий транспортных характеристик вверх по шкале температур. В этой связи следует отметить, что при низких температурах величина  $H_{ex} \approx 75$  кЭ в CeAl<sub>2</sub> была оценена авторами работ [14, 32, 33] из анализа спектров дифракции поляризованных нейтронов. Близкое значение  $H_{ex}$ было найдено также в [22] из анализа данных измерений магнитострикции в CeAl<sub>2</sub> при гелиевой температуре:  $H_{ex} \approx 79 \pm 2$  кЭ. Дополнительной «оценкой снизу» величины обменного поля  $\mu_B H_{ex}/k_B$  может

920

являться также найденное в настоящей работе значение  $\Theta_2 \approx -3.6 \pm 0.5$  К (см. вставку на рис. 11), которое с хорошей точностью воспроизводит полученное в [34] из измерений магнитной восприимчивости соединения CeAl<sub>2</sub> значение парамагнитной температуры Кюри:  $\Theta \approx -3.9$  К.

ЖЭТФ, том 125, вып. 4, 2004

Другим немаловажным аргументом в пользу спин-поляронного подхода, предложенного нами для интерпретации низкотемпературных свойств соединения CeAl<sub>2</sub>, очевидно, может служить аномалия Шоттки низкотемпературной теплоемкости в окрестности  $T \approx 6$  K, обнаруженная авторами работы [35] при измерениях в магнитном поле  $H \approx 50$  кЭ. Напомним, что, согласно результату, полученному в настоящей работе (см. рис. 10), во внешнем магнитном поле  $H \approx 60$  кЭ зеемановское расщепление основного состояния системы в эффективном поле  $H_{eff} = H + H_{ex}$  обусловливает появление максимума на зависимости  $R^{a}_{H}(T)$  в окрестности  $T_{max}^{R_{H}}(60 \text{ к}\Theta) \approx 6.5 \text{ K}.$  При этом особый смысл приобретает расчет параметров двухуровневой системы в модели резонансного уровня, выполненный в работе [35] по результатам измерений низкотемпературной теплоемкости в CeAl<sub>2</sub>. С использованием значения  $\Gamma/2 = \hbar/\tau_{eff} = k_B T_K \approx 0.5$  мэВ для оценки ширины уровней двухуровневой системы в [35] была найдена энергия активации  $E_a/k_B \approx 9.6$  K, которая в пределах погрешности расчетов [35] и с учетом вклада от внешнего магнитного поля H = 50 кЭ в зеемановское расщепление Г<sub>7</sub>-дублета достаточно хорошо согласуется с величиной  $E_a/k_B \approx 7.6 \pm 0.2$  K, найденной в настоящей работе.

В рамках предложенного подхода при понижении температуры в интервале T < 50 K (область II на рис. 10) наряду с ростом амплитуды многочастичного резонанса в окрестности энергии Ферми Е<sub>F</sub> следует ожидать также существенной перестройки магнитной структуры спиновых поляронов. Аналогично результату, полученному для соединения FeSi с сильными электронными корреляциями [36, 37], переход к когерентному режиму спиновых флуктуаций в окрестности Се-центров должен сопровождаться образованием из спиновых поляронов ферромагнитных микрообластей (ферронов) в матрице CeAl<sub>2</sub>. Как показывает исследование, выполненное в [36, 37] для моносилицида железа, дополнительной особенностью такого «фазового превращения» в системе магнитных областей наноразмера является сохранение практически неизменными активационных характеристик (параметров зонной структуры) как для спиновых поляронов, так и для образованных из них ферромагнитных нанокластеров. По-видимому, похожая ситуация реализуется и в случае соединения CeAl<sub>2</sub>, для которого при T < 20 K в [38] обнаружено возникновение сильной дисперсии упругих постоянных и связанной с этим значительной аномалии в поглощении ультразвука в этом соединении. Следует отметить также результат, полученный авторами работ [39, 40] при исследованиях спин-решеточной релаксации ЯМР в АФМ-фазе CeAl<sub>2</sub>, который связан с обнаружением «энергетической щели в спектре возбуждения магнонов» с  $E_g = 0.87 \pm 0.08$  мэВ [39] ( $E_g = 11 \pm 3$  K [40]). Кроме того, в работе [17] при исследованиях спектров неупругого рассеяния нейтронов в магнитоупорядоченной фазе CeAl<sub>2</sub> найдены две особенности поглощения — «магнонные пики» при энергиях  $E_{a1} = 1.2 \pm 0.8$  мэВ и  $E_{a2} = 0.7 \pm 0.4$  мэВ, значения которых в пределах экспериментальной точности [17] соответствуют найденной в настоящей работе величине энергии связи спиновых поляронов  $E_{a1,2}$  (см. рис. 12). В то же время следует подчеркнуть и существенные отличия формирования многочастичных состояний в узкозонном полупроводнике FeSi, которому при низких температурах T < 40 K отвечает достаточно низкая концентрация спиновых поляронов (10<sup>17</sup>-10<sup>18</sup> см<sup>-3</sup> [36, 37]), от случая, реализующегося в интерметаллиде CeAl<sub>2</sub> в условиях значительной ширины зоны проводимости. При этом, кроме существенного влияния эффектов экранирования, в CeAl<sub>2</sub> возникает также сильное магнитное взаимодействие ферромагнитных микрообластей через РККИ-осцилляции электронной плотности (непрямой обмен). Связанные с этим особенности формирования магнитоупорядоченного состояния в CeAl<sub>2</sub> сравнительно недавно обсуждались в [19]. По-видимому, столь сложная магнитная структура в матрице CeAl<sub>2</sub> на длине среднего и дальнего магнитных порядков (антиферромагнитное упорядочение в системе ферронов субмикронного размера) и является основной причиной, создающей существенные трудности (см., например, [41-47]) в идентификации магнитоупорядоченных фаз в этом соединении.

Возвращаясь к экспериментальным результатам, представленным на рис. 10 и 12, отметим, что обнаруженная в работе для аномального вклада в коэффициент Холла соединения CeAl<sub>2</sub> при T < 10 K зависимость вида  $R_H^a(T) \propto \exp(-E_{a3}/k_BT)$  аналогична предсказанной авторами [48] на основании расчетов поведения коэффициента Холла в системе с топологически нетривиальными спиновыми конфигурациями (фазы Берри). Как показано в [48, 49], в такой ситуации эффект Холла модифицируется за счет возникновения внутреннего магнитного поля  $H_{int} = \langle h_z \rangle \propto (1/k_B T) \exp(-E_a/k_B T)$ , которое складывается с напряженностью внешнего поля H.

В заключение настоящего раздела приведем достаточно грубую оценку радиуса локализации многочастичных состояний, воспользовавшись результатами рис. 10. При этом параметру  $R_{H}^{a}$  сопоставим эффективное значение приведенной концентрации носителей на атом церия  $\nu = (R_H e N_{Ce})^{-1}$  (правая ось на рис. 10). В такой ситуации изменению величины  $\nu$  в интервале  $0 < \nu \leq 1$  может быть сопоставлено увеличение эффективного объема, приходящегося на носитель, которое, как представляется, обусловлено многочастичными эффектами в матрице CeAl<sub>2</sub>. Зная характерное расстояние Ce-Ce в кристаллической структуре фазы Лавеса соединения CeAl<sub>2</sub> ( $a_{\rm Ce-Ce} \approx 3.5$  Å [50]) для значений  $\nu = N/N_{\rm Ce} = 0.2$ -0.3, в окрестности максимума параметра  $R_{H}^{a}$  получаем грубую оценку:  $a_{p}^{*} = 6-16$  Å.

# 4.4. Разделение вкладов в транспортные коэффициенты $ho(T),\ S(T)$ и $R^a_H(T)$

Как было ранее отмечено в разд. 3, поведение кривых удельного сопротивления  $\rho(T)$  (рис. 2, кривая 1), коэффициента термоэдс S(T) (рис. 2, кривая 6) и коэффициента Холла  $R_H^a(T)$  (рис. 10, 12, H = 3.4 кЭ) в интервале температур 1.8–300 К характеризуется наличием ряда аномалий, позволяющих сделать вывод о согласованном изменении указанных параметров в диапазонах температур 50–300 К (I), 5–50 К (II) и T < 5 К (III) в соединении CeAl<sub>2</sub>. При этом отличительной особенностью транспорта носителей заряда в области I является определяющий вклад процессов неупругого рассеяния, связанного с переходами между основным ( $\Gamma_7$ ) и двумя возбужденными дублетами (см. вставку б рис. 2) <sup>2</sup>*F*<sub>5/2</sub>-состояния церия. Режиму I транспорта носителей в CeAl<sub>2</sub> в интервале 100-300 К отвечают линейная зависимость  $\rho(T)$  в сочетании с медленно меняющимся положительным (12-15 мкВ/К) коэффициентом термоэдс и близким к активационному поведением коэффициента Холла с  $E_{a1}/k_B \approx 12$  К. Смена режима от I к II (см. рис. 2, 10, 12, а также рис. 13) сопровождается резким изменением измеряемых величин  $\rho$ , S,  $R_{H}^{a}$ , причем наряду с существенным отклонением от линейной зависимости  $\rho(T)$  на кривых S(T) и  $R^a_H(T)$  в окрестности  $T \approx 50$  К наблюдаются соответственно инверсия знака (см. рис. 2, кривая



Рис. 13. Разложение на вклады температурных зависимостей транспортных характеристик  $\sigma(T)$  (*a*), S(T) (*b*) и  $R_H^a(T)$  (*b*) в CeAl<sub>2</sub> в интервалах температур I, II и III

6) и излом (см. рис. 12). Набор низкотемпературных особенностей поведения параметров  $\rho$ , S,  $R_H^a$  в переходной области 4–12 К между интервалами II и III (рис. 2, 10, 12, 13) также позволяет отчетливо установить смену асимптотик указанных транспортных характеристик в соединении CeAl<sub>2</sub>.

Поскольку к настоящему времени отсутствует надежная и согласованная интерпретация транспортных характеристик соединений с тяжелыми фермионами на основе церия, включая выяснение природы и идентификацию различных вкладов в проводимость, термоэдс и коэффициент Холла, представляет интерес провести такой сравнительный анализ по результатам измерений, выполненных в настоящей работе на поликристаллических образцах CeAl<sub>2</sub> высокого качества. Среди немногих известных примеров совместной интерпретации данных сопротивления и термоэдс в цериевых интерметаллидах следует отметить работу [51], авторы которой использовали соотношение Нордгейма вида

$$\rho S = \rho_0 S_0 + \rho_{mag} S_{mag}$$

для анализа примесного и магнитного вкладов в  $\rho(T)$  и S(T) соединения  ${\rm CeNi_2Sn_2.}$  Однако столь

упрощенное представление суммы составляющих низкотемпературного транспорта в тетрагональном соединении с  $\Delta \approx 20$  К и  $T_{sf} = T_K \approx 1.6$  К представляется по меньшей мере недостаточно точным. Кроме того, согласно выводам работы [52], соотношение Гортера–Нордгейма, как и правило Матиссена  $\rho = \sum_i \rho_i$ , не является хорошим приближением в случае соединений с тяжелыми фермионами, где необходимо принимать во внимание качественную перестройку плотности электронных состояний в окрестности  $E_F$ .

Таким образом, более правильным представляется использование стандартных соотношений для  $\sigma$ , S и  $R_H^a$  в виде [53]

$$\sigma = \sum_{i=1}^{3} \sigma_i, \tag{8}$$

$$S\sigma = \sum_{i=1}^{3} \sigma_i S_i, \tag{9}$$

$$R_{H}^{a} \sum_{i=1}^{3} \sigma_{i}^{2} = \sum_{i=1}^{3} \sigma_{i}^{2} R_{Hi}^{a}.$$
 (10)

Поскольку при анализе экспериментальных данных настоящей работы применение суммы немагнитного  $S_0$ , положительного кондовского  $S_d^{(1)}(T)$  и отрицательного резонансного  $S_d^{(2)}(T)$  термов в рамках подхода, предложенного в [52], оказалось невозможным (в [52] для температуры инверсии термоэдс получено соотношение  $T_{inv}^S < 0.6T_K \approx 3$  K, которое заведомо противоречит значению  $T_{inv}^S \approx 46$  K в CeAl<sub>2</sub>), далее нами реализован феноменологический подход к разделению вкладов в  $\sigma$ , S и  $R_H^a$  в этом соединении.

Подчеркнем также, что, насколько нам известно, вплоть до настоящего времени не проводилось самосогласованного анализа вкладов в транспортные коэффициенты  $\sigma$ , S и  $R_H^a$  для соединений с тяжелыми фермионами на основе редкоземельных элементов.

Принимая во внимание, что в области I наиболее существенными являются неупругие процессы рассеяния носителей, сопровождающиеся переходами между дублетами  ${}^2F_{5/2}$ -состояния церия, которые отстоят на  $\Delta_1 \approx 100$  K,  $\Delta_2 \approx 170$  K от основного дублета  $\Gamma_7$ , в работе для представления вкладов  $\sigma_1$ ,  $S_1$  и  $R_{H1}^a$  (см. рис. 13) использовались следующие аналитические выражения:

$$\sigma_{1} = \sigma_{0}(T) \exp(-\Delta_{1}/k_{B}T),$$

$$\sigma_{0}(T) = 1.03/T^{\alpha}, \quad \alpha = 0.73,$$

$$S_{1} = S_{0}^{(I)} + BT, \quad S_{0}^{(I)} = 11 \text{ MKB/K},$$

$$B = 0.0085 \text{ MKB/K}^{2},$$

$$R_{H1}^{a} = R_{H1}^{a(0)} \exp\left(\frac{E_{a1}^{R_{H}}}{k_{B}T}\right) - R_{H}^{\text{LaAl}_{2}},$$

$$R_{H1}^{(0)} \approx 0.89 \cdot 10^{-3} \text{ cm}^{3}/\text{K}\pi,$$

$$E_{a1}^{R_{H}}/k_{B} \approx 12 \text{ K}.$$
(11)

При этом предэкспоненциальный множитель  $\sigma_0(T)$  был найден подгонкой экспериментальной зависимости с помощью процедур оптимизации программы ORIGIN 6.1.

В выражениях (11) для описания «неупругого» вклада  $\sigma_1$  было использовано весьма упрощенное соотношение, дающее активационную зависимость проводимости в переходной области при T < 100 К, основным требованием к которому явилось обращение в нуль составляющей  $\sigma_1$  при  $T \ll 100$  К. Очевидно, в действительности в высокотемпературном вкладе присутствует также составляющая  $\sigma_{\Gamma_7}$  от рассеяния носителей на основном дублете  $\Gamma_7$ , которая, в отличие от «неупругого» вклада, сохранительные оценки относительной величины указанной составляющей в области I приводят к значению  $\sigma_{\Gamma_7} \leq 0.1\sigma_1$ , что, на наш взгляд, оправдывает используемое приближение.

Кроме того, наряду с небольшим линейным членом в выражениях (11) присутствует большой постоянный вклад  $S_1$  в термоэдс, что позволяет воспользоваться формулой Хикса для термоэдс в условиях сильных хаббардовских корреляций:

$$S_0^{\rm I} = \frac{k_B}{e} \ln\left(\frac{1-\nu}{\nu}\right),\tag{12}$$

где, как и в предыдущем разделе, использовано обозначение  $\nu = N/N_{\rm Ce}, N_{\rm Ce} \approx 1.5 \cdot 10^{22} {\rm ~cm^{-3}}$  в CeAl<sub>2</sub>. Отсюда для оценки концентрации носителей в интервале температур 100–300 К получаем  $\nu_{\rm I} \approx 0.53$  и  $N_{\rm I} \approx 8 \cdot 10^{21} {\rm ~cm^{-3}}$ . Следует подчеркнуть, что формула (12) является высокотемпературной асимптотикой параметра S, что в нашем случае отвечает формированию полосы спин-поляронных состояний шириной  $E_{a2}/k_B \approx 12$  К в окрестности  $E_F$ .

Как отмечалось в [36] для спин-поляронных состояний в матрице FeSi, соответствующая активационная зависимость коэффициента Холла спин-поляронного транспорта в соотношениях (11)



Рис. 14. Разложение величин  $S\sigma$  (*a*) и  $R_H^a\sigma^2$  (*б*) для CeAl<sub>2</sub> на парциальные вклады в интервалах температур I, II и III

также позволяет получить приближенную оценку концентрации носителей,

$$N_{\rm I}^{\rm CeAl_2} = \frac{1}{e R_{H1}^{a(0)}} \approx 7 \cdot 10^{21} \text{ cm}^{-3},$$

достаточно хорошо согласующуюся с полученным выше результатом.

С понижением температуры в интервале 50–100 К происходит смена асимптотик всех исследуемых параметров транспорта носителей заряда в CeAl<sub>2</sub> (см. рис. 13, 14). При этом соответствующие вклады в величины  $\sigma$ , S и  $R_H^a$  оказываются сравнимы по порядку величины. Аналогичная ситуация реализуется и в переходной области температур 5–10 К между интервалами II и III, где сравнимыми по величине оказываются составляющие  $\sigma_2$  и  $\sigma_3$ ,  $S_2$  и  $S_3$ , а также  $R_{H_2}^a$  и  $R_{H_3}^a$  (см. рис. 13, 14). При этом в рамках феноменологического подхода к разделению вкладов в низкотемпературный транспорт нами далее использовалась следующая процедура. В интервале III для аппроксимации экспериментальных данных, приведенных на рис. 2, 10, использовались аналитические зависимости вида

$$\sigma_3 = AT^{-\beta}, \quad \beta = 1.44,$$

$$S_{3} = S_{0}^{\text{III}} + CT, \quad S_{0}^{\text{III}} = -18 \text{ MKB/K},$$

$$C = -0.8 \text{ MKB/K}^{2},$$

$$R_{H3}^{a} = DT^{0.7}, \quad D = 0.76386.$$
(13)

Соотношения (13) позволяют достаточно точно описать поведение экспериментальных кривых  $\sigma^{exp}$ ,  $S^{exp}$ ,  $R_{H}^{exp}$  при T < 4 K.

Далее, из условия аддитивности проводимости  $\sigma$ (соотношение (8)) вычитанием из экспериментальной кривой  $\sigma^{exp}$  суммы вкладов  $\sigma_1 + \sigma_3$  была получена составляющая  $\sigma_2$ . При анализе вкладов  $S_2$ и  $R_{H_2}^a$  использовались соотношения, описывающие активационное поведение термоэдс и коэффициента Холла в интервале II:

$$S_{2} \propto \frac{k_{B}}{e} \frac{E_{a2}^{S}}{k_{B}T},$$

$$R_{H2}^{a} = R_{H2}^{a(0)} \exp\left(\frac{E_{a2}^{R_{H}}}{k_{B}T}\right) - R_{H}^{\text{LaAl}_{2}}.$$
(14)

Как легко видеть из представленных на рис. 13 составляющих величин  $\sigma$ , S и  $R_H^a$ , а также из приведенной на рис. 14 проверки их аддитивности в рамках соотношений (9), (10), предложенная процедура разделения вкладов, несмотря на ее приближенный характер, в целом позволяет получить количественное описание поведения транспортных коэффициентов в CeAl<sub>2</sub> и выполнить ряд оценок микроскопических параметров, характеризующих электронную структуру этого соединения. При этом в рамках применяемой процедуры оценки энергии активации коэффициента термоэдс в интервале II приводят к заметно меньшему значению  $E_{a2}^S/k_B \approx 3.6 \text{ K}$ по сравнению с результатом для коэффициента Холла  $E_{a2}^{H}/k_{B} \approx 7$  К. Далее, использование величины  $R_{H2}^{a(0)} \approx 1.03 \cdot 10^{-3} \ {
m cm}^3/{
m K}$ л в (14) для оценки концентрации носителей дает в интервале II для  $N_{\rm II}$ значение 6  $10^{21}$  см<sup>-3</sup> или  $\nu = N_{\rm H}/N_{\rm Ce} \approx 0.4$ . Численное значение  $S_0^{\rm III} = -18$  мкB/K в (13) формально может быть также использовано в рамках спин-поляронного подхода для оценки приведенной концентрации носителей в переходной области температур 5-10 К. При этом применение высокотемпературной асимптотики термоэдс — соотношений (12) — представляется оправданным, поскольку формирование узкой полосы многочастичных состояний в окрестности  $E_F$  с энергией активации  $E_{a2}/k_B \approx 7.6$  К приводит при T < 20 К,

согласно представленным выше аргументам, к образованию ферромагнитных нанокластеров на базе спин-поляронных состояний. В результате для параметров  $\nu_{\rm II-III}$  и  $N_{\rm II-III}$  имеем

$$\nu_{\rm III} \approx 0.45, \quad N_{\rm III} \approx 6.8 \cdot 10^{21} \ {\rm cm}^{-3}$$

Следует также подчеркнуть, что сравнение значений энергии активации термоэдс  $(E_{a2}^S/k_B \approx 3.6 \text{ K})$ и коэффициента Холла  $(E_{a2}^{R_H}/k_B \approx 7 \text{ K})$ , а также найденного в данной работе ( $\Theta_p\,\approx\,3.6~{\rm K})$  и измеренного в [34] ( $\Theta_p \approx 3.9$  K) значений парамагнитной температуры Кюри позволяет, по-видимому, сделать предположение о присутствии двух составляющих примерно одинаковой величины, определяющих при низких температурах формирование многочастичных состояний в матрице CeAl<sub>2</sub>. При этом можно ожидать, что спин-поляронный (магнитный) вклад в  $E_{a2}$ , не проявляющийся в температурной зависимости термоэдс [53], в то же время является доминирующим для магнитных обменных параметров  $\Theta_p$  и  $H_{ex} \approx 75$  кЭ. В рамках такого предположения можно ожидать сложения вкладов от экситонной (4f<sup>+</sup>-5d<sup>-</sup>) и спин-поляронной составляющих при формировании значения  $E_{a2}^{R_H}$ , характеризующего низкотемпературное поведение коэффициента Холла. В то же время представленных экспериментальных результатов явно не достаточно для надежного обоснования экситон-поляронной природы многочастичных состояний в исследуемом в настоящей работе соединении CeAl<sub>2</sub> с быстрыми флуктуациями электронной плотности.

В заключение настоящего раздела отметим, что в рамках используемого подхода к разделению вкладов в низкотемпературный зарядовый транспорт наиболее сложным, на наш взгляд, представляется количественный анализ составляющих  $\sigma_3$ ,  $S_3$  и  $R_{H3}^a$  при T < 5 K, где наряду с установлением когерентности (формированием зон тяжелых носителей) приходится учитывать также эффекты, связанные с возникновением сложного магнитного порядка в исследуемых интерметаллидах на основе церия.

## 5. ЗАКЛЮЧЕНИЕ

Представленные в работе детальные измерения эффекта Холла в соединении  $CeAl_2$  с быстрыми флуктуациями электронной плотности позволили разделить и классифицировать вклады в аномальный эффект Холла в этом соединении с тяжелыми фермионами. Обнаруженное в работе при T < 10 К появление «четной по магнитному полю» аномаль-

ной магнитной составляющей холловского сопротивления оказывается обусловленным особенностями установления среднего и дальнего магнитных порядков и реализацией сложной магнитной фазовой *H*-*T*-диаграммы в CeAl<sub>2</sub> при низких температурах. Этот результат совместно с оценками магнитных обменных параметров  $\Theta_p \approx 3.6$  К и  $H_{ex} \approx 75$  кЭ, по-видимому, свидетельствует в пользу возникновения ферромагнитных областей наноразмера в матрице CeAl<sub>2</sub> при температурах, существенно превышающих температуру Нееля  $T_N \approx 3.85$  К в этом соединении. Показано, что изменение с температурой основной аномальной компоненты  $R_{H}^{a}$  в этом соединении с тяжелыми фермионами носит сложный активационный характер. Обнаруженное поведение величины  $R^a_H(T)$  в CeAl<sub>2</sub> не согласуется с интерпретацией в рамках моделей асимметричного рассеяния об определяющей роли эффектов рассеяния при формировании аномалий коэффициента Холла в концентрированных кондо-системах.

Исследованные в работе особенности подавления аномального эффекта Холла в сильном магнитном поле, по-видимому, свидетельствуют о необходимости учета спин-поляронных эффектов при интерпретации поведения транспортных характеристик в интерметаллидах на основе церия. Выполнены оценки параметров, характеризующих многочастичные состояния, возникающие в матрице CeAl<sub>2</sub> при низких и промежуточных температурах (эффективные массы, радиус локализации). Представленный в работе оригинальный анализ вкладов в транспортные характеристики соединения CeAl<sub>2</sub>, выполненный по результатам исследований эффекта Холла совместно с данными измерений удельного сопротивления и коэффициента термоэдс, также позволяет сделать вывод о наличии существенных ограничений подхода, использующего модель кондо-решетки, применительно к описанию совокупности свойств концентрированных кондо-систем на основе церия.

Работа выполнена в рамках проектов РФФИ (№№ 01-02-16601, 03-02-06531), проекта «Новые материалы» Министерства образования РФ (№ 202.07.01.023), а также при финансовой поддержке программы ОФН РАН «Сильнокоррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах», программы развития приборной базы научных организаций Минпромнауки РФ, проекта INTAS № 00-807 и программы поддержки молодых ученых РАН. Особая благодарность за индивидуальную поддержку выражается Фонду содействия отечественной науке (В. В. Г. и С. В. Д.), Правительству Москвы и Фонду Сороса (А. В. Б. и М. И. И.).

# ЛИТЕРАТУРА

- P. Coleman, P. W. Anderson, and T. V. Ramakrishnan, Phys. Rev. Lett. 55, 414 (1985).
- 2. A. Fert and P. M. Levy, Phys. Rev. B 36, 1907 (1987).
- 3. P. M. Levy and A. Fert, Phys. Rev. B 39, 12224 (1989).
- 4. P. M. Levy, Phys. Rev. B 38, 6779 (1988).
- N. B. Brandt, V. V. Moshchalkov, N. E. Sluchanko et al., Sol. St. Comm. 53, 645 (1985).
- V. V. Moshchalkov, F. G. Aliev, N. E. Sluchanko et al., J. Less Comm. Met. 127, 321 (1987).
- T. Penney, F. P. Milliken, S. von Molnar et al., Phys. Rev. B 34, 5959 (1986).
- A. Fert, P. Pureur, A. Hamzic, and J. P. Kappler, Phys. Rev. B 32, 7003 (1985).
- T. Hiraoka, E. Kinoshita, T. Takabatake et al., Physica B 199-200, 440 (1994).
- H. Sugawara, H.R. Sato, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 66, 174 (1997).
- U. Welp, P. Haen, G. Bruls et al., J. Magn. Magn. Mat. 63-64, 28 (1987).
- 12. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., Письма в ЖЭТФ 76, 31 (2002).
- 13. Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., ЖЭТФ 113, 339 (1998).
- B. Barbara, J. X. Boucherle, J. L. Buevoz et al., Sol. St. Comm. 24, 481 (1977).
- F. Lapierre, P. Haen, A. Briggs, and M. Sera, J. Magn. Magn. Mat. 63–64, 76 (1987).
- 16. F. Steglich, C. D. Bredl, M. Loewenhaupt, and K. D. Schotte, J. de Phys., Coll. C5-Suppl. 40, 301 (1979).
- S. Osborn, M. Loewenhaupt, B. D. Rainford, and W. G. Stirling, J. Magn. Magn. Mat. 63-64, 70 (1987).
- M. Loewenhaupt, W. Reichardt, R. Pynn, and E. Lindley, J. Magn. Magn. Mat. 63-64, 73 (1987).
- **19**. Н. Е. Случанко, А. В. Богач, И. Б. Воскобойников и др., ФТТ **45**, 1046 (2003).

- 20. M. Croft, I. Zoric, and R. D. Parks, Phys. Rev. B 18, 345 (1978).
- 21. M. Croft, I. Zoric, and R. D. Parks, Phys. Rev. B 18, 5065 (1978).
- 22. E. Fawcett, V. Pluzhnikov, and H. Klimker, Phys. Rev. B 43, 8531 (1991).
- 23. N. B. Brandt and V. V. Moshchalkov, Adv. Phys. 33, 373 (1984).
- 24. M. Christen and M. Godet, Phys. Lett. 63A, 125 (1977).
- **25**. Н. Ф. Мотт, *Переходы металл-изолятор*, Наука, Москва (1979), с. 171.
- 26. S. H. Liu, Phys. Rev. B 37, 3542 (1988).
- 27. T. Portengen, Th. Ostreich, and L. J. Sham, Phys. Rev. B 54, 17452 (1996).
- 28. M. Loewenhaupt, B. D. Rainford, and F. Steglich, Phys. Rev. Lett. 42, 1709 (1979); M. Loewenhaupt and U. Witte, J. Phys.: Condens. Matter 15, S519 (2003).
- 29. P. Thalmeier and P. Fulde, Phys. Rev. Lett. 49, 1588 (1982).
- 30. G. Guntherodt, A. Jayaraman, G. Batlogg et al., Phys. Rev. Lett. 51, 2330 (1983).
- 31. N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov et al., Phys. Rev. B 61, 15, 9906 (2000).
- 32. B. Barbara, M. F. Rossignol, J. X. Boucherle et. al., Phys. Rev. Lett. 45, 938 (1980).
- 33. A. Benoit, J. X. Boucherle, J. Flouquet et al., in Valence Fluctuations in Solids, ed. by L. M. Falicov, W. Hanke, and M. B. Maple, North-Holland, Amsterdam (1981), p. 197.
- 34. M. C. Croft, R. P. Guertin, L. C. Kupferberg, and R. D. Parks, Phys. Rev. B 20, 2073 (1979).
- 35. C. D. Bredl, F. Steglich, and K. D. Shotte, Z. Phys. B 29, 327 (1978).
- **36**. Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., ЖЭТФ **119**, 359 (2001).

- 37. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Phys. Rev. B 65, 064404 (2002).
- 38. G. Hampel and R. H. Blick, J. Low Temp. Phys. 99, 71 (1995).
- 39. D. E. MacLaughlin, O. Peca, and M. Lysak, Phys. Rev. B 23, 1039 (1981).
- 40. J. L. Gavilano, J. Hunziker, O. Hudak et al., Phys. Rev. B 47, 3438 (1993).
- 41. S. M. Schapiro, E. Gurewitz, R. D. Parks, and L. C. Kupferberg, Phys. Rev. Lett. 43, 23, 1748 (1979).
- 42. A. Schenk, D. Andreica, M. Pinkpank et al., Physica B 259-261, 14 (1999).
- 43. A. Schenk, D. Andreica, F. N. Gygax, and H. R. Ott, Phys. Rev. B 65, 024444 (2001).
- 44. A. Amato, Rev. Mod. Phys. 69, 4, 1119 (1997).
- 45. E. M. Forgan, B. D. Rainford, S. L. Lee et al., J. Phys.: Condens. Matter 2, 10211 (1990).
- 46. F. Giford, J. Schweizer, and F. Tasset, Physica B 234–236, 685 (1997).
- **47**. T. Chattopadhyay and G. J. McIntyre, Physica B **234–236**, 682 (1997).
- 48. J. Ye, Y. B. Kim, A. J. Millis et al., Phys. Rev. Lett. 83, 3737 (1999).
- 49. Y. B. Kim, P. Majumdar, A. J. Millis, and B. I. Shraiman, E-print archives cond-mat/9803350 (1998).
- E. Walker, H. G. Purwins, M. Landolt, and F. Hulliger, J. Less Comm. Met. 33, 203 (1973).
- 51. J. Sakurai, H. Takagi, T. Kuwai, and Y. Isikawa, J. Magn. Magn. Mat. 177–181, 407 (1998).
- 52. K. H. Fisher, Z. Phys. B 76, 315 (1989).
- 53. P. M. Chaikin, in Organic Superconductivity, ed. by V. Z. Kresin and W. A. Little, Plenum Press, New York (1990), p. 101.