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NEUTRON�ANTINEUTRON OSCILLATIONSIN A TRAP REVISITEDB. O. Kerbikov *, A. E. Kudryavtsev **, V. A. Lensky ***State Researh Center Institute of Theoretial and Experimental Physis117218, Mosow, RussiaSubmitted 9 September 2003We reexamine the problem of n � �n osillations for ultra-old neutrons on�ned within a trap. We show that forup to 103 ollisions with the walls, the proess an be desribed in terms of wave pakets. The �n omponentgrows linearly with time with the enhanement fator depending on the re�etion properties of the walls.PACS: 14.20.Dh, 13.90.+i, 28.20.Cz1. INTRODUCTIONFor quite a long time, physis beyond the StandardModel ontinues to be an intriguing subjet. Several re-ations that may serve as signatures for the new physishave been disussed. One of the most elegant propo-sals is to look for n � �n osillations [1℄ (see also [2℄).There are three possible experimental settings aimedat observation of this proess. The �rst is to establisha limit on nulear instability beause �n produed in-side a nuleus will blow it up. The seond is to use aneutron beam from a reator. This beam propagatesa long distane to the target in whih the possible �nomponent would annihilate and thus be deteted. Thethird option, whih we disuss in the present paper, isto use ultra-old neutrons (UCN) on�ned in a trap.The main question is to what extent generation of the�n omponent is redued by the interation with thetrap walls. This subjet was addressed by several au-thors [3�8℄. In our opinion, a thorough investigation ofthe problem is still laking.First of all, a lear formulation of the problem ofn � �n osillations in a avity has been hitherto missing.Two di�erent approahes were used without present-ing sound arguments in favor of their appliability andwithout traing onnetions between them.In the �rst approah [4, 5℄, n � �n osillations areonsidered in the basis of the disrete eigenstates of*E-mail: borisk�heron.itep.ru**E-mail: kudryavt�heron.itep.ru***E-mail: lensky�itep.ru

the trap potential, with the splitting between n and �nlevels and �n annihilation taken into aount. The den-sity of the trap eigenstates, whih is proportional to themarosopi trap volume, is huge and the states lus-ter together extremely thikly. But these arguments donot su�e to disard the disrete-state approah be-ause the n � �n mixing parameter is muh smaller thanthe distane between adjaent levels (see below). Thetrue reason due to whih the above treatment is of littlephysial relevane is as follows. The spetrum of theneutrons provided to the trap by the soure is ontinu-ous and ertain time is needed for rearrangement of theinitial wave funtion into standing waves orrespondingto the trap eigenstates. As is shown below, this timeinterval appears to be of the order of the �-deay time,and therefore the standing wave regime, being interest-ing by itself, an hardly be reahed in the real physialsituation.The seond approah [3, 6, 7℄ treats the neutronsand antineutrons inside a trap as freely moving parti-les that undergo re�etions from the trap walls. Col-lisions with the walls result in a redution of the �nomponent ompared to the ase of the free-spae evo-lution. This suppression is due to two fators. The �rstis the annihilation inside the walls. The seond fatoris the phase deoherene of the n and �n omponents in-dued by the di�erene of the wall potentials ating onn and �n. Re�etions of antineutrons from the trap wallswere �rst onsidered in [3℄. The purpose of that paperwas to investigate the prinipal possibility to observen � �n osillations in a trap, and the authors estimated476



ÆÝÒÔ, òîì 125, âûï. 3, 2004 Neutron�antineutron osillations in a trap revisitedthe re�etion oe�ient for antineutrons without pay-ing attention to the deoherene phenomena. Only asingle ollision with the trap wall was onsidered in [3℄.A omprehensive study of n � �n osillations in a trapwas presented in [6, 7℄. Deoherene and multiple re-�etions and the in�uene of gravitational and mag-neti �elds were inluded. The approximate equationfor the annihilation probability after N ollisions ob-tained in [7, Eq. (3.8)℄ oinides with the exat formula(59) in the present paper when N � 1. As we showbelow, the N -independent asymptoti regime settles atN & 10.Derivation of the exat equation for the annihila-tion probability with an arbitrary number of ollisionsis not the only purpose of the present work. We al-ready mentioned the problem of the relation betweenthe eigenvalue and the wave-paket approahes. Withinthe wave-paket approah, some basi notions suh asthe time between suessive ollisions and the ollisiontime itself an be de�ned in a lear and rigorous way.Another question within the wave-paket formalism isthe independene of the re�etion oe�ient from thewidth of the wave paket and the appliability of thestationary formalism to alulate re�etions from thetrap walls. These and some other prinipal points arefor the �rst time onsidered in detail in the presentpaper.We also mention that an alternative approah tothe evaluation of the re�etion oe�ients for n and �nwas outlined in [8℄. It is based on the time-dependentHamilton formalism for the interation of n and �n withthe trap walls. This subjet remains outside the sopeof the present paper.The paper is organized as follows. In Se. 2, we re-all the basi equations desribing n � �n osillations infree spae. Setion 3 is devoted to the optial potentialapproah to the interation of n and �n with the trapwalls. In Se. 4, we analyze the two formalisms pro-posed to treat n � �n osillations in the avity, namelybox eigenstates and wave pakets. In Se. 5, re�etionfrom the trap walls is onsidered. Setion 6 ontainsthe main result in this work, the time dependene ofthe �n omponent prodution probability. In Se. 7,onlusions are formulated and problems to be solvedoutlined.2. OSCILLATIONS IN FREE SPACEWe start by realling the basi equations desribingn � �n osillations in free spae. The phenomenologial

Hamiltonian is a 2� 2 matrix in the basis of the two-omponent n � �n wave funtion (we set ~ = 1),Hjl = �Hj � i��2 � Æjl + �(�x)jl; (1)where j; l = n; �n, Hj = k2=2m��jB, �j is the magnetimoment, B is the external (e.g., the Earth) magneti�eld, �� is the �-deay width, � is the n � �n mixingparameter (see below), and �x is the Pauli matrix. As-suming the n and �n wave funtions to be plane waves,we write the two-omponent wave funtion of the n � �nsystem as 	̂(x; t) =   n(t) �n(t)! eikx: (2)Evolution of the time-dependent part of 	̂(x; t) is thendesribed by the equationi ��t   n(t) �n(t)! = 0B�En � i��2 �� E�n � i��2 1CA��  n(t) �n(t):! (3)The di�erene between En and E�n due to the Earthmagneti �eld is! = E�n �En = 2j�njB � 6 � 10�12 eV: (4)Diagonalizing the matrix in (3), we �nd  n(t) and  �n(t)in terms of their values at t = 0, n(t) == � n(0)�os �t+ i!2� sin �t��  �n(0) i�� sin �t��� exp ��12(i
+ ��)t� ; (5) �n(t) == �� n(0) i�� sin �t+  �n(0)�os �t� i!2� sin �t���� exp ��12(i
+ ��)t� ; (6)where 
 = En + E�n, � = (!2=4 + �2)1=2, and! = E�n�En. In partiular, if  n(0) = 1 and  �n(0) = 0,we havej �n(t)j2 = 4�2!2 + 4�2 exp(���t)�� sin2 �12p!2 + 4�2 t� : (7)477



B. O. Kerbikov, A. E. Kudryavtsev, V. A. Lensky ÆÝÒÔ, òîì 125, âûï. 3, 2004The use of this equation to test fundamental symme-tries is disussed in [9℄.Without the magneti �eld, i.e., for ! = 0, and fort� ��1, Eq. (7) yieldsj �n(t)j2 � �2t2 exp(���t): (8)This law (for t � ��1� ) has been used to establish thelower limit on the osillation time � = ��1. Aordingto the ILL-Grenoble experiment [10℄,� > 0:86 � 108 s: (9)The orresponding value of the mixing parameter is� � 10�23 eV. This number is used in obtaining numer-ial results presented below.The Earth magneti �eld leads to a strong suppres-sion of the n � �n osillations. With the value of ! givenby (4), Eq. (7) leads toj �n(t)j2 � 4�2!2 exp(���t) sin2 t=�B �� 10�23 sin2 t=�B ; (10)where �B = (j�njB)�1 � 2 � 10�4 s. In what follows,we assume that the magneti �eld is sreened.For ! = 0 but for arbitrary initial onditions,Eqs. (5) and (6) take the form n(t) = ( n(0) os �t� i �n(0) sin �t)�� exp ���iE + ��2 � t� ; (11) �n(t) = (�i n(0) sin �t+  �n(0) os �t)�� exp ���iE + ��2 � t� ; (12)where E = En = E�n.3. OPTICAL POTENTIAL MODEL FOR THETRAP WALLWe remind the reader that neutrons with the en-ergy E < 10�7 eV are alled ultra-old. An exellentreview of UCN physis was given in [11℄ (see also [12℄).A useful relation onneting the neutron veloity vin m/s and E in eV is given byv[m/s℄ = 102 � �109E[eV℄=5:22�1=2 : (13)For E = 10�7 eV, the veloity is v � 4:4 � 102 m/s.A less formal de�nition of UCN involves the notionof the real part of the optial potential orresponding

to the trap material (see below). Neutrons with en-ergies less than the height of this potential are alledultra-old. The two de�nitions are essentially equiva-lent beause as we see in what follows, the real part ofthe optial potential is of the order 10�7 eV for mostmaterials.Our main interest is in strongly absorptive inter-ation of the �n omponent with the trap walls. Wetherefore ignore very weak absorption of UCN on thewalls [11, 12℄. Due to omplete re�etion from the trapwalls, UCN an be stored for about 103 s (�-deaytime), as was �rst pointed out in [13℄.To be spei�, we onsider UCN with E == 0:8 �10�7 eV, whih orresponds to v = 3:9 �102 m/s(see (13)), k = 12:3 eV and de Broglie wave length� � 10�5 m. In the next setion, we desribe UCNin terms of wave pakets, and hene the above valuesmust be attributed to the enter of the paket.We treat the interation of n and �n with the trapwalls in terms of an energy-independent optial poten-tial. The validity of this approah to UCN has beenjusti�ed in a number of papers, see, e.g., [11, 12, 14℄.There is still an open question onerning the disrep-any between theoretial predition and experimentaldata on the UCN absorption. Interesting by itself, thisproblem is outside the sope of our work beause, asalready mentioned, absorption of neutrons may be ig-nored in the n � �n osillation proess. The low-energyoptial potential is given byUjA = 2�m NajA; (14)where j = n; �n; m is the neutron mass,N is the numberof nulei in a unit volume, and ajA is the j�A satteringlength, whih is real for n and omplex for �n. For neu-trons, the sattering lengths anA are aurately knownfor various materials [12℄. For antineutrons, the situa-tion is di�erent. Experimental data on low-energy �n�Ainteration are absent. Only some indiret informationmay be gained from level shifts in antiprotoni atoms,and therefore the values of a�nA used in [3, 6, 8, 15℄ as aninput in the n � �n osillation problem are similar but notthe same. We onsider the set of a�nA alulated in [16℄within the framework of internulear asade model asmost reliable. Even this partiular model leads to sev-eral solutions, and the one that we have hosen for 12C(graphite and diamond) may be alled �motivated� byRef. [16℄. To estimate the dependene on the materialof the walls and to ompare our results with those in[3℄, we also performed alulations for Cu. Satteringlengths for Cu are not given in [16℄ and we used the478



ÆÝÒÔ, òîì 125, âûï. 3, 2004 Neutron�antineutron osillations in a trap revisitedsolution proposed in [3℄. Our alulations were thusperformed with the �n�A sattering lengthsa�nC = (3� i1) fm; a�nCu = (5� i0:5) fm: (15)The sattering lengths for neutrons are [12℄anC = 6:65 fm; anCu = 7:6 fm: (16)The onentrations of atoms N entering (14) are asfollows: NC(graphite) = 1:13 � 10�16 fm�3;NC(diamond) = 1:63 � 10�16 fm�3;NCu = 0:84 � 10�16 fm�3:In aordane with (14), the optial potentials is thengiven by UnC(gr) = 1:95 � 10�7 eV;UnC(diam) = 2:8 � 10�7 eV;UnCu = 1:66 � 10�7 eV; (17)U�nC(gr) = (0:9� i0:3) � 10�7 eV;U�nC(diam) = (1:3� i0:4) � 10�7 eV;U�nCu = (2� i0:2) � 10�7 eV: (18)In this paper, we onsider partiles (n and �n) with ener-gies below the potential barrier formed by the real partof the potential. For �n and 12C, the limiting veloity isv = 4:15 � 102 m/s.4. WAVE PACKET VERSUS STANDINGWAVESIt is onvenient to use the short notationUj = Vj � iWjÆj�n (19)for optial potentials (17) and (18), where j = n; �n andthe wall material is not indiated expliitly. We on-sider the following model for the trap in whih n � �nosillations may possibly be observed. We imagine twowalls of type (19) separated by a distane L � 102 m,i.e., the one-dimensional potential well of the formUj(x) = f�(�x� L) + �(x)g fVj � iWjÆj�ng ; (20)with �(x) being the step funtion. Our goal is to followthe time evolution of the �n omponent in suh a trapassuming that the initial state is a pure n one.

The �rst question to be answered is how to desribethe wave funtion of the system. Two di�erent ap-proahes seem to be feasible and both were disussedin the literature [4, 6, 8℄. The �rst is to onsider osil-lations ouring in the wave paket and to investigateto what extent re�etions from the walls distort thepiture ompared to the free-spae regime. The seondapproah is to onsider the eigenvalue problem in po-tential well (20), to �nd energy levels for n and �n, andto onsider osillations in this basis. Beause of di�er-ent interations with the walls, the levels of n and �n aresplitted and the �n levels aquire annihilation widths.At �rst glane, this approah might seem inade-quate beause in a trap with L � 102 m, the den-sity of states is very high, the harateristi quantumnumber orresponding to the UCN energy is very large,and the splitting ÆE between adjaent n-levels (or be-tween the levels of the n and �n spetra) is extremelysmall. The values of all these quantities are given be-low, and it follows that ÆE < 10�14 eV. However, thisapproah annot be disarded without further analysisbeause the n � �n mixing parameter � � 10�23 eV ismuh smaller than ÆE.To understand the relation between the two ap-proahes, we note that the initial onditions orrespondto a beam of UCN provided by a soure. The momen-tum spetrum of UCN depends on the spei� experi-mental onditions. In order to stay on general groundsand at the same time to simplify the problem, we as-sume that the UCN beam entering the trap has theform of a Gaussian wave paket. We suppose that att = 0, the enter of the wave paket is at x = x0, andhene k(x; t = 0) = (�a2)�1=4 �� exp�� (x� x0)22a2 + ikx� ; (21)where a is the width of the wave paket in oordinatespae. The normalization of wave funtion (21) or-responds to one partile in the entire one-dimensionalspae, +1Z�1 dxj k(x; t = 0)j2 = 1: (22)For E = 0:8 � 10�7 eV and the beam resolution�E=E = 10�3, we havek = 12:3 eV; a = 3:2 � 10�3 m: (23)479



B. O. Kerbikov, A. E. Kudryavtsev, V. A. Lensky ÆÝÒÔ, òîì 125, âûï. 3, 2004The width of wave paket (21) inreases with time a-ording to a0 = a"1 +� tma2�2#1=2 � tma (24)and beomes omparable with the trap size L fort � 103 s. For the wave hitting the wall and there�eted wave to be learly resolved, the ondititona0=v � �L, or a0 � L must be satis�ed, where �L � 1 sis the time between two onseutive ollisions with thetrap walls. Re�etion of the wave paket from the wallsis onsidered in detail in the next setion. Here, weshow that t � 103 s is the harateristi time neededfor the rearrangement of the initial wave paket intostationary states of the trapping box.We onsider the eigenvalue problem for potentialwell (20). The parameters of potential (20) for neu-trons are Vn � 2 � 10�7 eV and L � 102 m. Thenumber of levels isM � Lp2mV� � 108� : (25)Aording to (23), the enter of wave paket (21) hasthe momentum k = 12:3 eV, whih orresponds toa state with the number of nodes j � 2 � 107 andkjL � 6 � 107 � 1. Positions of suh highly exitedlevels in a �nite-depth potential are indistinguishablefrom the spetrum in a potential box with in�nite walls.Therefore, 'j(x) �r 2L sin!jx; !j = �jL : (26)Wave funtions (26) desribe semilassial states withj � 1 in a potential well with sharp edges. The �fre-queny� !j is very high ompared to the width of thewave paket in momentum spae,!j � 6 � 105 m�1 � � = 1p2a � 2 � 102 m�1:This implies that the wave paket spans over a largenumber of levels. To determine this number, we notethat the distane between adjaent levels around theenter of the wave paket isÆE = Ej+1 �Ej � 10�14 eV:The highly exited levels within the energy band�E = 10�3E � 10�10 eVorresponding to wave paket (21) are to a high au-ray equidistant, as they should be in the semilassialregime. The number of states within �E is�j = �E=ÆE � 104

and their density in momentum spae is�(!) = a�j � L=� � 106 eV�1: (27)We an now answer the question formulated at thebeginning of this setion, namely whether the n � �n os-illations in the trap should be desribed in terms ofthe wave paket or in terms of the stationary eigen-funtions. At t = 0, the wave funtion has the formof the wave paket (21) provided by the UCN soure.Due to ollisions with the trap walls, transitions fromthe initial state (21) into disrete (or quasi-disrete for�n) eigenstates (26) our.The time evolution of the initial wave funtion (21)proeeds aording to (x; t) = Z dx0G(x; t;x0; 0) k(x0; 0); (28)where G(x; t;x0; 0) is the time-dependent Green's fun-tion for potential well (20). Using the spetral repre-sentation for G, we an write (x; t) =Xj e�iEjt'j(x) Z dx0'�j (x0) k(x0; 0): (29)In the semilassial approximation, the distane be-tween the adjaent levels is ÆE = �=�L, and thereforeone may think that at t = �L, i.e., already at the �rstollision, the neighboring terms in (29) would aneleah other. But this is not the ase. Indeed,'j+1(x) exp(�iEj+1t) + 'j(x) exp(�iEjt) == exp(�iEjt)ip2L hexp(i!jx)�1 + exp�i �L(x� vt)���� exp(�i!jx)�1 + exp��i �L(x+ vt)��i :Therefore, there is a onstrutive interferene atx = �vt either in the �rst or in the seond term re-spetively. This is true with the whole sum of terms in(29) taken into aount, and hene we an pass fromsummation to integration in (29). The overlap of thewave funtions entering (29) an be easily evaluatedprovided the enter of the wave paket x0 is not withinthe bandwidth distane a0 from the trap walls. The480



ÆÝÒÔ, òîì 125, âûï. 3, 2004 Neutron�antineutron osillations in a trap revisitedoverlap is given by the integralZ dx0'�j (x0) k(x0; 0) � i(2p�La)1=2 �� 0Z�L dx0 exp�� (x0 � x0)22a2 + i(k � !j)x0� == i(2p�La)1=2 �� LZ0 dx00 exp�� (x00 + x0)22a2 � i(k � !j)x00� : (30)At this step, we have omitted the exponential with thehigh frequeny (k+!j). We next take (x00+x0)=(p2a)as a new variable and assume that jx0j � a,L � jx0j � a (we reall that x0 is negative beause�L < x < 0). The result is thatZ dx0'�j (x0) k(x0; 0) ��i�p�aL �1=2 exp��a22 (k�!j)2+i(k�!j)x0� : (31)Corretions to (31) are of the order of a=L. Wenow onsider frequeny summation in (29). This sum-mation an be replaed by integration over ! beausethe density of semilassial states �(!) is very high. Wethus arrive at (x; t) = 1�p�a�1 + i tma2��1=2 ��0BB�exp2664� �(x; t)2a2�1 + t2m2a4�3775++exp2664� �(�x; t)2a2�1 + t2m2a4�37751CCA ; (32)�(x; t) = (x� x0 � v0t)2 � it (x� x0)2ma2 ��2ik0a2(x�x0)+ik20a2m t+2ik0x0�a2+ t2m2a2� : (33)The seond term in Eq. (32) desribes the re�etedwave paket (see the next setion). Aording to (21),(28), and (32), all that happens to the wave paketin the trap is broadening and re�etions. This is true

during some initial period of its life history at least.How long does this period last? The answer to thisquestion may be obtained by estimating the aurayof performing frequeny integration instead of summa-tion over disrete states in (29).To estimate the time sale for the rearrangement ofinitial wave paket (21) into trap standing waves (26),it is onvenient to introdue the di�ereneÆ (x; t) =  sum(x; t) �  int(x; t)between the �exat� wave funtion (29) and the ap-proximate integral representation (32). WheneverÆw(t) = Z dx �j sumj2 � j intj2� == 2 Z dxR( intÆ )� 1; (34)we an onsider osillations as proeeding in the wavepaket basis. Withf(!) =rp�a2L2 �� exp��a22 (k0�!)2�i !22mt+i!(x�x0)+ikx0� ; (35)we have the estimateÆ (x; t) =Xn f(!n)� Z d!�(!)f(!) == �Xn !n+1Z!n d!�(!)(f(!)� f(!n)) �� �Xn !n+1Z!n d!�(!)f 0(!n)(! � !n) == �12Xn f 0(!n)(!n+1 � !n): (36)From (35), we obtain thatf 0(!) = g(!)f(!);g(!) = i(x� x0 � vt)� (k0 � !)a2: (37)Beause f(!) is a narrow Gaussian peak, we an sub-stitute g(!) by g(k0), and then (36) results inÆ (x; t) � �2L(x � x0 � v0t) int(x; t): (38)From (34) and (38), we haveÆw � �2L +1Z�1 dxjx � x0 � v0tjj int(x; t)j2 // a0L � tmaL � t103 s ; (39)3 ÆÝÒÔ, âûï. 3 481



B. O. Kerbikov, A. E. Kudryavtsev, V. A. Lensky ÆÝÒÔ, òîì 125, âûï. 3, 2004where a0 is given by (23).Roughly speaking, the time t � 103 s needed forthe neutron wave funtion to rearrange into the trapeigenstate is omparable to the neutron life-time, andthe neutron would rather �die� than adjust to the newboundary onditions. The wave paket formalism istherefore used in what follows. Some additional sub-tleties arising from the quantization of levels in thetrapping box are disussed in Se. 7.5. REFLECTION FROM THE TRAP WALLSWe return to one-dimensional trap (20). Let thepartile moving from x = �1 enter the trap at t = 0through the window at x = �L. At t = �L, it reahesthe wall at x = 0, the n omponent is re�eted from thewall and the �n omponent is partly re�eted and partlyabsorbed. The wave paket desribing the interationwith the wall has the form (x; t) = ��3=4ra2 +1Z�1 dk j(k; x)�� exp��a22 (k � k0)2 + iL(k � k0)� i t2mk2� ; (40)where j = n; �n and j(k; x) = eikx +R(k)e�ikx == eikx + �j(k)e�j(k)e�ikx: (41)For the n omponent, �n(k) = 1 beause we negletvery weak absorption of neutrons at the surfae. Theintegral (40) with the �rst term in (41) is trivial. Tointegrate the seond term in (41), we note that dueto the Gaussian form fator with ak0 � 103 � 1, thedominant ontribution to integral (40) omes from anarrow interval of k around k0. Expanding Rj(k) atk � k0 and keeping the leading term, we obtainRj(k) � �j(k0) exp(i�j(k0))�� �1 + i�0j(k0)(k � k0) + Æj�n �0j(k0)�j(k0) (k � k0)� �� �j(k0) exp �i�j(k0) + i�0j(k0)(k � k0)� : (42)The validity of the last step for �n beomes lear fromthe expliit expressions for ��n(k) and ��n(k) presentedbelow.

Integration in (40) an now be easily performed,with the result [17℄ j(x; t) = 1�p�a�1 + i tma2��1=2 ��0BB�exp2664� �in(x; t)2a2�1 + t2m2a4�3775++ Rj(k0) exp2664� �refl(x; t)2a2�1 + t2m2a4�37751CCA ; (43)�in(x; t) = (x+ L� v0t)2 � it (x+ L)2ma2 ��2ik0a2(x+L)+ik20a2m t+2ik0L�a2+ t2m2a2� ; (44)�refl(x; t) = �in(�x+ �0; t) ++ 2ik0�0�a2 + t2m2a2� : (45)From (43)�(45), we see that the essene of R(k) inthe wave paket formalism is the same as in the ti-me-independent approah. Therefore, imposing stan-dard boundary onditions at x = 0, we obtain the re-�etion oe�ientsRj(k) = �j(k) exp(i�j(k)) = k � i�jk + i�j ; (46)�n = [2m(Vn �E)℄1=2;��n = [2m(V�n � iW�n �E)℄1=2 = �0�n � i�00�n; (47)tg�n = �2k�nk2 � �2n ; tg ��n = �2k�0�nk2 � (�0�n)2 � (�00�n)2 ; (48)�n = 1; �2�n = 1� 4k�00�n(k + �00�n)2 + (�0�n)2 : (49)For 12C (graphite), in partiular,� = 0:56; � � ��n � �n = 0:72: (50)The �rst term in the right-hand side of (45) an bewritten as [�x+L�v0(t��0=v0)℄2. Hene the ollisiontime or time delay is [17, 18℄�j;oll = �0j(k0)v0 = Re 2mk�j : (51)482



ÆÝÒÔ, òîì 125, âûï. 3, 2004 Neutron�antineutron osillations in a trap revisitedFor neutrons, i.e., for real �n, Eq. (51) gives thewell-known result�n;oll = [E(Vn �E)℄�1=2:This result is in line with the naive estimate�n;oll � l=v0 � 10�8 s [8℄, where l . � is thepenetration depth.For 12C (graphite), Eq. (51) yields�n;oll = 0:7 � 10�8 s; ��n;oll = 1:1 � 10�8 s: (52)Equations (43)�(45) supplemented by the above in-equality allow following the time evolution of the beaminside the trap. We imagine an observer plaed at thebandwidth distane from the wall, i.e., at x = �a. A-ording to (43)�(45), suh an observer onludes thatthe inident wave (the �rst term in (43)) dominates attimes t � �L � �a, while the re�eted wave prevailsat t � �L + �a. With this splitting of the time inter-val around N�L; N = 1; 2; : : : , we use the notation(N�L�) and (N�L+) for the moments before and afterthe Nth ollision. Thus, we an alulate the �n produ-tion rate beause we have rigorous de�nitions of theollision time and the time interval between the twosubsequent ollisions.6. ANNIHILATION RATE IN A TRAPWe an now inquire into the problem of time-dependene of the �n prodution probability. In freespae, it is given by j �n(t)j2 = �2t2 (see (2)), while ina trap with the omplete annihilation or total loss ofoherene at eah ollision, it has a linear time depen-dene j �n(t)j2 = �2�Lt [8℄.To avoid umbersome equations and beause weonsider the time interval t� ��1� , we omit exp(���t)fators. Prodution of �n during the ollision an also benegleted [8℄. The di�erene in ollision times (52) forn and �n may also be ignored. In the previous setion,we have seen that the interation of the wave paketwith the wall is desribed in terms of re�etion oe�-ients (46) 1).We assume that at t = 0, a pure-n beam entersthe trap at x = �L. After rossing the trap, i.e., at1) An alternative desription using time-evolution operatorswas proposed in [8℄.

t = (�L�), the time-dependent parts of the wave fun-tions are given by (12)2), n(�L�) = os(��L) exp(�iE�L); �n(�L�) = sin(��L) exp[�i(E�L + �=2)℄: (53)After the �rst re�etion at t = (�L+), we have n(�L+) = os(��L) exp[�i(E�L��n)℄; �n(�L+) = ��n sin(��L) exp[�i(E�L���n+�=2)℄: (54)Evolution from t = (�L+) to t = (2�L�) again proeedsin aordane with (12), �n = 12 sin(2��L) �1 + �ei���� exp[�i(2E�L � ��n + �=2)℄ �� ��L �1 + �ei�� exp[�i(2E�L � ��n + �=2)℄; (55)where � = ��n��n is the deoherene phase and � � ��n.The answer for  (N�L�) now seems evident: �n(N�L�) = ��L 1� �NeiN�1� �ei� �� exp[�i(NE�L � �n + �=2)℄: (56)This onjeture is easy to verify by indution. Fort = (2�L�), the result was derived expliitly in (55).Evolving (56) through one re�etion at t = N�L andfree propagation from t = (N�L+) to t = ((N+1)�L�),we arrive at (56) with (N +1) instead of N . This om-pletes the proof.Therefore, the admixture of �n before the N th olli-sion, i.e., at t = N�L� isj �n(N�L�)j2 = �2�2L 1 + �2N � 2�N osN�1 + �2 � 2� os � : (57)The annihilation probability at the jth ollision isPa(j) = (1� �2)j �n(j�L�)j2: (58)The total annihilation probability after N ollisions istherefore given byPa(N) = (1� �2) NXk=1 j �n(k�L)j2 == �2�2L(1� �2)1 + �2 � 2� os � �N + �2(1� �2N )1� �2 ��2�os � � �� �N [os(N + 1)� + � osN�℄1 + �2 � 2� os � � : (59)2) We state this although the Gaussian form fator in (43) alsodepends on time, the orresponding terms in the time-dependentShrödinger equation are of the order of 1=ak0 ompared to thederivative of the exponent exp(�iEt); we also note that the formfators are the same for n and �n up to a onstant multiplier.483 3*



B. O. Kerbikov, A. E. Kudryavtsev, V. A. Lensky ÆÝÒÔ, òîì 125, âûï. 3, 2004After several ollisions, the terms proportional to �N ,�2N , and �N+1 may be dropped beause � � 0:5 (see(50)). Then (59) takes the formPa(N) � �2�2L1 + �2 � 2� os � ���N(1� �2) + 1� (1� �2)21 + �2 � 2� os �� : (60)Three di�erent regimes may be inferred from (60).For a very strong annihilation, i.e., �� 1,Pa(N) = �2�2LN = �2�Lt: (61)For the omplete deoherene at eah ollision, i.e., for� = �,Pa(N) = �2�2L�N 1��1+�+�(2��)(1+�)2� � 1��1+��2�Lt: (62)For the (unrealisti) situation where � = 0,Pa(N) = �2�2L�N 1+�1����(2+�)(1��)2� � 1+�1���2�Lt: (63)For the values of � and � orresponding to optialpotentials (17) and (18), the quantityQa(N) = (�2�2LN)�1 = (�2�Lt)�1Pa(N)alulated in aordane with the exat equation (59)is displayed in Fig. 1. This �gure shows that the lin-ear time dependene settles after about 10 ollisionswith the trap walls. The asymptoti value of Qa(N),whih may be alled the enhanement fator, is 1.5�2depending on the wall material.Proposals have been disussed in the literature [6,19℄ to ompensate the deoherene phase � by applyingthe external magneti �eld. Assuming the ideal situa-tion that the regime � = 0 may be ahieved in suh away and also assuming that the re�etion oe�ient �an be varied in the whole range by varying the trapmaterial, we plot the quantity Neff (�) de�ned asPa(N) = �2�2LNeff (�) (64)in Fig. 2. Thus de�ned, Neff (�) obviously depends alsoon the number of ollisions N ; the results for N = 10and N = 50 are presented in Fig. 2. This �gure showswhat an be expeted from the trap experiments in themost favorable, although hardly realisti senario.7. CONCLUDING REMARKSWe have reexamined the problem of n � �n osilla-tions for UCN in a trap. Our aim was to present a
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Fig. 2. Plot of the Neff dependene versus � at � = 0.The solid line is for the number of ollisions N = 50,the dashed line orresponds to N = 10lear formulation of the problem, to alulate the am-plitude of the �n omponent for an arbitrary observa-tion time and for any given re�etion properties of thetrap walls. We have shown that for the physially re-levant observation time (i.e., for the time interval lessthan the �-deay time), the proess of n � �n osillationsis desribed in terms of wave pakets, while the stan-ding-wave regime may settle only at later times. Byalulating the di�erene between the n and �n ollision484



ÆÝÒÔ, òîì 125, âûï. 3, 2004 Neutron�antineutron osillations in a trap revisitedtimes, the new light has been shed on the deoherenephenomena. For the �rst time, an exat equation hasbeen derived for the annihilation probability for an ar-bitrary number of ollisions with the trap walls. Inline with the onlusions of the previous authors onthe subjet, this probability grows linearly with time.We have alulated the enhanement fator enteringthis linear time dependene and found this fator to be1.5�2 depending on the re�etion properties of the wallmaterial.Despite the extensive investigations reviewed inthis artile and the results of the present paper, the listof problems for further work is large. The entral andmost di�ult task is to obtain reliable parameters ofthe optial potential for antineutrons. The beam of �nwith the energy in the range of 10�7 eV will be hardlyaessible in the near future. Therefore, work has tobe ontinued along the two lines mentioned above: todedue the parameters of the optial potential fromthe level shifts in antiprotoni atoms and to onstrutreliable optial models that an be onfronted with theavailable experimental data on �n�nulear interationat higher energies. In a forthoming publiation,we plan to present numerial alulation of the timeevolution of a wave paket into standing waves andto disuss some features of n � �n osillations in theeigenfuntion basis, whih were not disussed inRef. [4℄. Another task is to perform alulationfor the spei� geometry of the trap and a realis-ti spetrum of the neutron beam. This requires aninput orresponding to a spei� experimental setting.The authors are grateful to Yu. A. Kamyshkov forinterest in this work and disussions. Useful remarksand suggestions from L. N. Bogdanova, F. S. Dzhep-arov, A. I. Frank, V. D. Mur, V. S. Popov, andG. V. Danilian are gratefully aknowledged.One of the authors (B. O. K.) expresses his grati-tude for �nanial support to V. A. Novikov, L. B. Okun,INTAS grant � 110, and K. A. Ter-Martirosian sien-ti� shool grant NShool�1774.REFERENCES1. V. A. Kuzmin, Pis'ma Zh. Eksp. Teor. Fiz. 13, 335(1970).

2. R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett.44, 1316 (1980).3. K. G. Chetyrkin et al., Phys. Lett. B 99, 358 (1981).4. S. Marsh and K. W. MVoy, Phys. Rev. D 28, 2793(1983).5. M. Baldo Ceolin, in: Festshrift for Val Telegdi, ed.by K. Winter, Elsevier Publishers, Amsterdam (1988),p. 17.6. R. Golub and H. Yoshiki, Nul. Phys. A 501, 869(1989).7. H. Yoshiki and R. Golub, Nul. Phys. A 536, 648(1992).8. B. O. Kerbikov, Phys. Atomi Nulei 66, 2178 (2003).9. Yu. G. Abov, F. S. Dzheparov, and L. B. Okun, Pis'maZh. Eksp. Teor. Fiz. 39, 493 (1984).10. M. Baldo Ceolin et al., Z. Phys. C 63, 409 (1994).11. I. M. Frank, Usp. Fiz. Nauk 161, 109 (1991).12. V. K. Ignatovih, The Physis of Ultraold Neutrons,Clarendon Press, Oxford (1990).13. Ya. B. Zeldovih, Zh. Eksp. Teor. Fiz. 36, 1952 (1959).14. M. Lax, Revs. of Mod. Phys. 23, 287 (1951); Phys.Rev. 85, 621 (1952).15. J. Hufner and B. Z. Kopeliovih, E-print arhiveshep-ph/9807210.16. Ye. S. Golubeva and L. A. Kondratyuk, Nul. Phys. B(Pro. Suppl.) 56A, 103 (1997).17. V. M. Galitsky, B. M. Karnakov, and V. I. Ko-gan, Problems in Quantum Mehanis, Nauka, Mosow(1992) (in Russian).18. C. J. Goebel and K. W. MVoy, Ann. Phys. 37, 62(1966).19. V. K. Ignatovih, Phys. Rev. D 67, 016004 (2003).
485


