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PHOTON PROPAGATION IN A SUPERCRITICAL MAGNETIC FIELDA. E. Shabad *Tamm Department of Theoretial Physis,Lebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaSubmitted 25 August 2003We show that for the asymptotially strong (super-Shwinger) magneti �eld B exeeding the ritial valueBr = m23=eh = 4:4 � 1013 Gs, the vauum polarization e�ets beome important not only in the -range,but also for softer eletromagneti quanta, inluding X-rays and opti photons, and for eletromagneti wavesof the radio frequenies. This is a onsequene of the linearly growing term � B=Br present in the vauumpolarization in the asymptotially strong magneti �eld. The results may be essential in studying re�etion,refration, and splitting of X-rays, light and radio waves by magneti �elds of magnetars, and in onsideringemission of suh waves by harged partiles.PACS: 12.20.-m, 97.60.Jd1. INTRODUCTIONAlthough it is long sine the refrating and bire-fringing properties of a strong magneti �eld in thevauum have been realized, their only essential onse-quenes onsidered in a realisti astrophysial ontextremain the photon splitting e�et [1℄ and the e�et ofphoton apture [2�8℄. Both e�ets are urrently dis-ussed mostly in appliation to eletromagneti radi-ation in the -range. They depend ruially on thedeviation of the photon dispersion urve from its us-tomary shape in the empty vauum, k20 = jkj2, wherek0 is the photon energy and k is its momentum. For themagneti �elds B below the Shwinger ritial value,B � Br = m23=eh = 4:4 � 1013 Gs;where m and e are the eletron mass and harge, theonly essential soure of this deviation is the singularbehavior of the polarization operator ���(k) near thereation thresholds of mutually independent eletronand positron on Landau levels n; n0 by a photon (theylotron resonane) [2�4℄ or an even stronger singularbehavior of ��� near the points of a mutually bounde+e�-pair (the positronium atom) formation [5�7; 9℄.To reah (at least the lower of) these positions, thephoton must belong to the -ray range, with its energy*E-mail: shabad�lpi.ru

above or of the order 1 MeV. For this reason, the ef-fet of photon apture, with its transformation into aneletron�positron pair, derived from the singular be-havior of ���(k), applies mostly to the -quanta, aslong as their propagation in a pulsar magnetosphere oftraditional pulsars is onerned. It was estimated thatthe �elds about B = 0:1Br are su�ient to providethis e�et [4℄ and to protet the positronium atom intowhih the aptured -quantum is transformed againstionization by the aelerating eletri �eld in the polargap and by the thermal photons [5�9℄.Also the Adler e�et [1℄ of photon splitting  ! in suh �elds is usually disussed for -quanta [10�13℄.There are two reasons why, again, the -range is im-portant. The �rst is that the photon splitting beomespossible in the magneti �eld beause the deviation ofthe dispersion urve from the k20 = k2 law opens akinematial aperture for this proess � the wider, thestronger the deviation (and the deviation is strong nearthe thresholds). In addition, there is a strong birefrin-gene for the photons in the -range, beause only oneeigenvalue �2(k) of the tensor ��� is singular near thelowest (n = n0 = 0) threshold, while the other twoeigenvalues �1;3(k) remain �nite, until the next thresh-olds (n = 0, n0 = 1 or n = 1, n0 = 0) are reahed. Thisimplies that the photons of only one polarization modeare essentially a�eted by the medium. This birefrin-gene leads to polarization seletion rules in the photon210



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Photon propagation in a superritial magneti �eldsplitting proess, whih are well pronouned. The se-ond reason is dynamial. The matrix elements of thephoton splitting are subjet to the same resonant be-havior near the thresholds as the polarization operator.The aforesaid explains why mainly the -range is �rstto be a�eted by the magnetized vauum.The situation hanges onsiderably in passing tosuper-Shwinger magneti �elds B � Br, expetedto exist in soft -ray repeaters and anomalous X-raypulsars (see, e.g., Ref. [14℄). In this asymptoti range,a linearly growing term proportional to B=Br appearsin one of the eigenvalues, �2, of the polarization opera-tor [15; 16℄, thus providing an extra large ontribution(additional to the ylotron resonane) to the refrationof the vauum.In Se. 3, we study the onsequenes of this phe-nomenon for the photon propagation, basing on the�rst three leading ontributions to the asymptoti ex-pansion of the polarization operator eigenvalues forlarge B, obtained within the one-loop approximation.One of these onsequenes is a frequeny-independent,but diretion-sensitive, large refration index for prop-agation nonparallel to the magneti �eld in one (outof three) polarization modes in the kinematial do-main far from the threshold. The orresponding strongpolarization- and diretion-sensitive refration oursfor eletromagneti radiation of any frequeny range,inluding X-ray, opti, and radio range.This study is preeded by Se. 2, where exat re-sults onerning the eletromagneti radiation propa-gation in the magnetized vauum are desribed. Thesefollow only from the general properties of the relativis-ti, gauge, and harge invariane [17℄ and the Onsagertheorem [18℄. The results in Se. 2 are valid irrespe-tive of any approximation and the �eld strength, unlessthe opposite is expliitly indiated.In the Appendix, the asymptoti expansion used inSe. 3 is derived.2. EXACT FACTS ABOUTELECTROMAGNETIC EIGENMODES IN ANEXTERNAL MAGNETIC FIELDThere are three propagating eigenmodes orre-sponding to the vauum exitations with photon quan-tum numbers in an external magneti �eld B. Thedispersion law, i.e., the dependene of the energy k0of the quantum (or the frequeny in the wave) on itsmomentum k, is given for eah mode by a solution ofthe equationk2 = �i(k20 � k2k ; k2?); i = 1; 2; 3; (1)

where kk and k? are the respetive momentum ompo-nents parallel and perpendiular to the magneti �eldB and k2 is the photon 4-momentum squared,k2 = k2? + k2k � k20 :The �i in the right-hand sides in Eqs. (1) are eigenval-ues of the polarization operator [2; 3; 17℄.A general onsequene of the relativisti ovarianeis that the eigenvalues depend on the two ombinationsof the momentum spei�ed in (1). This implies thatsolutions of dispersion equations (1) have the generalstruture k20 = k2k + fi(k2?); i = 1; 2; 3; (2)and that the diretion of the group veloity v = �k0=�kin eah mode does not oinide (for k? 6= 0) with thatof the phase veloity k=k0. To see this, we alulate theomponents of the respetive group veloities v? and vkaross and along the magneti �eld B on solutions (2)of eah dispersion equation (1),v? � �k0�k? = k?k0 �k20�k2? == k?k0 1� ��i=�k2?1 + ��i=�(k20 � k2k) = k?k0 dfi(k2?)dk2? ;vk � �k0�kk = kkk0 : (3)It follows from (3) that the angle � between the dire-tion v of the eletromagneti energy propagation andthe external magneti �eld satis�es the relationv?vk � tg � = �1� ��i�k2?� 1+ ��i�(k20�k2k)!�1 tg #; (4)where # is the angle between the photon momentum(phase veloity) and the external �eld, tg # � k?=kk.The following statement holds: if the phase veloityk=k0 exeeds the veloity of light , i.e., if k2?+k2k > k20(or fi(k2?) < k2? in (2)), but the group veloity (3)does not, v2? + v2k � 1 (or d2fi(k2?)=(dk2?)2 < 0),then tg � < tg #. The onditions of this state-ment are ful�lled for the dispersion laws found withinapproximation-dependent alulations of the �i. Forthe super-Shwinger �elds, treated within the one-loopapproximation, this fat follows expliitly from equa-tions in Se. 3 below. Therefore, the photon tends todeviate loser to the magneti �eld line.It follows from the gauge invariane that�i(0; 0) = 0; i = 1; 2; 3: (5)211 2*



A. E. Shabad ÆÝÒÔ, òîì 125, âûï. 2, 2004This property implies that for eah mode, there alwaysexists a dispersion urve with fi(0) = 0, whih passesthrough the origin in the (k20 � k2k; k2?) plane. Butonly two of these three solutions may simultaneouslyorrespond to physial massless partiles, the photons.The third solution is a nonphysial degree of freedom,harateristi of gauge theories: in a magneti �eld,a photon has two degrees of freedom, the same as inthe empty vauum. Whih of the modes beomes non-physial depends on the propagation diretion and onthe spei� form of the funtion fi(k2?) in (2). We dis-uss this point for the super-Shwinger �eld limit inthe next setion. Massive branhes of solutions of (1),with fi(0) > 0, may also exist, despite (5). For them,the number of physial degrees of freedom is three,and hene all the three equations (1) an have physi-al solutions simultaneously (see, e.g., the positroniumbranhes found in [7; 19; 20℄)The refration index ni in mode i isni � jkjk0 = �1+�ik20�1=2 = �1+k2?�fi(k2?)k20 �1=2 : (6)Unlike �i, the refration index ni is not a Lorentz salarand may depend on two energy-momentum variables,after it is redued to dispersion law (2). Gauge invari-ane property (5) implies that the refration index (6)for parallel propagation, k? = 0, is exatly equal tounity for the massless (fi(0) = 0) branhes in everymode, nki = 1: (7)The eletromagneti wave propagating stritly alongthe external onstant and homogeneous magneti �eldpropagates with the veloity of light  in the vauum,the phase and group veloities oiniding in this ase.If, within a ertain approximation, the eigenvalue �iis a linear funtion of its arguments with ondition (5)satis�ed, refration index (6) for the orresponding dis-persion law depends on a single ombination of the pho-ton energy and momentum, whih is the propagationdiretion #. This happens in a nonresonant situation,for instane, as desribed in the next setion.The polarizations of the modes are desribed in anapproximation-independent way [3; 17℄ by the relationse(1) = �k?k? k0; h(1) = �k?k? � kk� ; (8)e(2)? = k?kk; e(2)k = kkkk (k2k � k20);h(2) = �k0�k? � kkkk� ; (9)

e(3) = �k0�k?k? � kkkk� ; h(3)? = �k?k? kk;hk(3) = kkkk k?; (10)where e(i) and h(i) are the eletri and magneti �eldsin the wave belonging to mode the number i = 1; 2; 3,the ross denotes the vetor produt, and boldfae let-ters with the subsripts �k� and �?� denote vetorsalong the diretions parallel and perpendiular to theexternal magneti �eld respetively. In the mode 1wave, the eletri �eld e is parallel to k?, in mode 2 itlies in the plane ontaining the vetors k and B, andin mode 3 it is orthogonal to this plane, whih meansthat mode 3 is always transversely polarized.We note that the normalizations in Eqs. (8), (9),and (10) are di�erent, and we an therefore judgeabout vanishing of some omponents ompared to oth-ers within one equation, but not between di�erent equa-tions.Conerning the diretion of propagation, two asesare essentially di�erent. If k? = 0, we speak aboutlongitudinal propagation. Otherwise, there exists aLorentz boost along the external (onstant and ho-mogeneous) magneti �eld, whih does not hange thevalue of the magneti �eld and does not introdue anextra eletri �eld, but nulli�es kk. Hene, the gen-eral ase of nonparallel propagation k? 6= 0, kk 6= 0 isredued to purely transversal propagation, kk = 0 (inthe orresponding referene frame). One should keep inmind, however, that the above transformation hangesthe photon energy k0 and should be treated with au-tion when one onsiders a �eld with urved fore lines.For transversal propagation, k ? B (kk = 0), modes2 and 3 are transversely polarized (e(2);(3) ? k) in twomutually orthogonal planes, e(2) ? e(3), while mode 1is longitudinally polarized (e(1) k k) with no magneti�eld in it, h(1) = 0. It is expeted not to orrespond toa photon (depending on the dispersion law).On the ontrary, for longitudinal propagation,k k B, (k? = 0); modes 1 and 3 are transversely polar-ized (e(1;3) ? B) and their eletri �eld vetors lie inmutually orthogonal planes, e(1) ? e(3), as they alwaysdo, while mode 2 is longitudinally polarized (e(2) k B)and does not ontain a magneti �eld, h(2) = 0. Mode2 is then expeted not to orrespond to a photon,whereas mode 1 is a physial eletromagneti wave,whih mathes the eletromagneti wave of mode 3: to-gether, they may form a irularly polarized transversalwave beause of the degeneray property�1((k20 � k2k); 0) = �3((k20 � k2k); 0): (11)212



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Photon propagation in a superritial magneti �eldThis relation re�ets the ylindrial symmetry of theproblem of a photon propagating along the externalmagneti �eld.Another remark of almost general harater is in or-der. One might expet the possibility of the Cherenkovradiation by a harged partile moving in an opti-ally dense medium formed by the magnetized vauum.This e�et (with the Cherenkov photons softer thank0 = 2m) does not our in known situations, however.We onsider emission of a photon by an eletron in amagneti �eld, not aompanied by a hange of its Lan-dau quantum number, n = n0 (otherwise, that would bethe ylotron, and not Cherenkov, radiation). Aord-ing to the kinematial analysis of the energy and mo-mentum onservation in [21℄ (and to the study [21℄ ofanalytiity regions of the one-loop photon polarizationoperator in the eletron-positron plasma in a magneti�eld, alulated in [18℄), the Cherenkov photon withk0 < 2m an only belong to the right lower setork20 � k2k � 0; k2? � 0 (12)in the (k20 � k2k ; k2?) plane. The substantial reason forthis is the degeneration of the eletron energy with re-spet to the enter-of-orbit position in the transver-sal plane. No dynamial alulations, hitherto known,provide penetration of photon dispersion urves intothis setor. The only exeption is the nonphysial sit-uation due to exponentially strong external �elds, tobe mentioned in Se. 3.2 below. We onlude that noCherenkov emission of a photon softer than k0 = 2m ispossible under standard onditions.3. PHOTON DISPERSION IN ASUPER-SCHWINGER MAGNETIC FIELD3.1. Asymptoti expansion of polarizationtensor eigenvaluesIn the asymptoti region of superritial magneti�elds B � Br and a restrited energy of longitudinalmotion, k20 � k2k � (B=Br)m2;the three eigenvalues �1;2;3(k) of the polarization ope-rator (if it is alulated within the one-loop approxima-tion as in [17; 22℄) have the following behavior, derivedfrom equations of Ref. [3℄ (see the Appendix),�1(k20 � k2k; k2?) = �k23� �ln BBr � C � 1:21� ; (13)

�2(k20 � k2k; k2?) = �Bm2(k20 � k2k)�Br �� exp�� k2?2m2 BrB � 1Z�1 (1��2)d�4m2�(k20�k2k)(1��2) ; (14)�3(k20 � k2k; k2?) = �k23� �ln BBr � C��� �3� �0:21k2? � 1:21(k20 � k2k)� : (15)Here, � = 1=137 is the �ne struture onstant andC = 0:577 is the Euler onstant. Equations (13)and (15) are aurate up to terms dereasing with Bas (Br=B) ln(B=Br) and faster. Equation (14) is a-urate up to terms logarithmially growing with B. In�1;3, we also took the limitk2? � (B=Br)m2;whih is not the ase for �2, where the fatorexp(�k2?Br=2m2B) is kept di�erent from unity, be-ause it is important near the ylotron resonane, asexplained in Se. 3.2 below. The integral in (14) anreadily be alulated, but we do not need its expliitform here.The parts growing with B in �1;2;3 were writtenin [16℄, their derivation from equations of Ref. [3℄ istraed in detail in [19; 20℄. The linearly growing termin Eq. (14) was obtained in [15℄ in a di�erent way usinga two-dimensional (one time, one spae) diagram teh-nique developed to serve the asymptoti magneti �eldregime. The logarithmi terms in the expressions abovedo not dominate over the onstant terms unless expo-nentially large magneti �elds are inluded into onsid-eration1). The derivation of all terms in Eqs. (13), (14),and (15), inluding those that do not grow with B, isgiven in the Appendix using a straightforward methoddi�erent from the one applied earlier in [19; 20℄. Theasymptoti expressions used in [13℄ do not oinide withours, exept for the term linear in B.The limiting expressions (13), (14), and (15) do sat-isfy the exat properties (11) and (5).In this paper, we only deal with the transpareny re-gion, k20 � k2k � 4m2 (i.e., with the kinematial domain1) That would be unreasonable not only beause suh �eldsare hardly expeted to exist in nature, but mainly beause theironsideration is beyond the sope of quantum eletrodynamis:the logarithmially growing terms in (13) and (15) are assoiatedwith the absene of asymptoti freedom in QED (f . analogousasymptoti behavior [23℄ in the Euler�Heisenberg e�etive La-grangian).213



A. E. Shabad ÆÝÒÔ, òîì 125, âûï. 2, 2004where �1;2;3 are real), beause we are interested in pho-tons with k0 < 2m, or even k0 � 2m, whih never reahthe free pair reation threshold k20 � k2k = 4m2. Theeigenvalue �2 in (14) has a singular branhing pointin the omplex plane of the variable (k20 � k2k) nearthe lowest pair reation threshold (k20 � k2k)thr = 4m2.Thresholds of reation of e+e�-pairs with the eletronand the positron on exited Landau levels n; n0 6= 0,(k20 � k2k)n;n0thr == m2 "�1 + n BBr�1=2 +�1 + n0 BBr�1=2#2 ; (16)are shifted in the asymptoti regime to the in�nitely re-mote region. Therefore, the eigenvalues �1;3, whih areresponsible for photons of suh polarizations that anonly reate e+e�-pairs with at least one harged par-tile in an exited Landau state, do not ontain imagi-nary parts or singular branhing points in this regime.On the other hand, the eigenvalue �2 has only one sin-gular branhing point, orresponding to the possibilityof reation of the eletron and positron in the lowestLandau states by the photon polarized as in mode 2.The singular threshold behavior of (14) near the pointk20 � k2k = 4m2 � �; � > 0; �! 0is �2(k) � 2�Bm3Br exp�� k2?2m2 BrB ��� �4m2 � k20 + k2k��1=2 : (17)As ould be expeted, this is the same as the behaviorof the exat one-loop expression for �2(k) [3℄ near thisthreshold, before the limiting transition to large �eldshas been performed.3.2. Propagation of eigenmodes in thesuper-Shwinger �eld limitIf Eq. (13) for �1 is taken as the right-hand side ofEq. (1), the latter has only one solution, whih is thetrivial dispersion law k2 = 0. With the relation k2 = 0satis�ed, however, the 4-potential orresponding to theeletromagneti �eld of mode 1 beomes proportionalto the photon 4-momentum vetor k�, unless kk = 0(see [3; 19; 20℄). Therefore, for nonparallel propagation,mode 1 orresponds to only the gauge degree of free-dom disussed in Se. 2, with no real eletromagneti�eld assoiated with it.

4m
2

k
2

0

0.5

0.5 1.50

1.0

2.01.0

k
2

0 − k
2

‖

k
2

⊥A family of dispersion urves for mode 2 (solutions ofEq. (1) with Eq. (14) taken for the right-hand side)below the threshold k20 � k2k = 4m2. The values ofthe external magneti �eld orresponding to the urvesare (from left to right) B = 10Br ; 100Br; 1000Br .The straight line is the light one dispersion urve forB = 0. The dashed horizontal line marks the maximumto whih the photon with the energy k0 may proeedif k0 < 2m. The variables along the axes are plottedin the units of 4m2 � 1 MeV2Solutions of Eq. (1) for the seond mode i = 2 withEq. (14) taken for �2 are plotted in the Figure for threevalues of the �eld B using MATHCAD ode. Thesesolutions are dominated by ylotron resonane (17),whih auses a strong deviation of the dispersion urvesin the Figure from the shape k2 = 0 (the light one). Ask2? ! 1 near the threshold on the dispersion urves,the quantity k2?Br=m2B must be kept di�erent fromzero even in the large-�eld limit under onsideration.Behavior of the dispersion urves of mode 2 near thethreshold for super-Shwinger magneti �elds B � Bris the same as for the �moderate� �elds B � Br, andtherefore it also presents the photon apture e�et forphotons harder than 2m, known for suh �elds [4℄: ifwe alulate (4) near the threshold k20�k2k = 4m2 usingEq. (17) as �2 to obtaintg � = k?kk BrBm2 (4m2 � k20 + k2k); (18)we onlude that the angle � between the external mag-neti �eld and the diretion of the wave paket propa-gation in mode 2 tends to zero, the faster, the strongerthe �eld. If the photon energy k0 is slightly less than2m, the photon may be lose to the threshold when itskk disappears. At this upper point, the wave paket214



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Photon propagation in a superritial magneti �eldstops, beause the group veloity lengthv2? + v2k = v2k(1 + tg2 �);equal to k2k=k20 aording to the seond line in (3)and (18), disappears together with kk.Applied to the onventional pattern of a pulsar mag-netosphere, this e�et ats as follows [4℄. A urvature-quantum emitted tangentially to the magneti foreline, i.e., plaed initially at the origin in the Figure,then evolves along its dispersion urve as it propa-gates in the dipole magneti �eld with its fore lineurved, beause the omponents kk and k? are hang-ing. The maximum value of the ordinate k20 � k2k o-urs at kk = 0, and it is the photon energy squared,k20 . If the latter is greater than 4m2, the photon mayreah the horizontal asymptote in the Figure. Here, itsgroup veloity dk0=dk? aross the magneti �eld dis-appears, dk0=dk? ! 0, and hene it propagates alongthe magneti �eld and does not ross the threshold, be-ause the other branh of the dispersion urve, whihpasses above the threshold, is separated from the initialbranh by a gap. A mixed state � photon-pair � isatually formed [4℄, analogous to the polariton knownin ondensed matter physis. The massless part of itsspetrum is presented by the dispersion urves in theFigure. The photon gradually turns into the e+e� pairand exists mostly in that form when it is �nally prop-agating along the magneti fore lines. This apturinge�et is important for the formation of radiation of pul-sars with the �elds B > 0:1Br, beause it prevents thesreening of the aelerating eletri �eld in the polargap (if the binding of the eletron�positron pair into apositronium atom is taken into aount [5�9℄). It mayalso be essential for magnetars with their �elds approx-imately 1014�1015 Gs.The new features introdued by super-Shwinger�elds are that the dispersion urves for mode 2 in theFigure already step aside from the light one far fromthe resonane region. This means that although thephotons softer than 2m = 1 MeV annot proeed tothe values of the ordinate in the Figure higher thantheir energy squared (orresponding to kk = 0), theyan still reah the region where the transversal groupveloity dk0=dk? beomes muh less than unity and aretherefore aptured to the trajetory almost parallel tothe magneti �eld. This is how the apture e�et ex-tends to the photon energies below the border k0 = 2m.The ylotron singularity at the pair-reation thresholdin suh �elds is so strong that even low-energy photonsthat are unable to reate a pair are sensitive to it, pro-vided that they belong to mode 2!

In addition to extension of the photon apture ef-fet to softer photons, the inlusion of super-Shwinger�elds into onsideration has another impat. It leads toa large diretion-dependent refration of mode 2 ele-tromagneti waves of low frequeny. To see this, weonsider the limit k20 � k2k � 4m2 (19)in Eq. (14), whih redues to negleting k20 � k2k in theintegrand in (14). Then (14) beomes�2(k) = �3� (k20 � k2k) BBr exp�� k2?2m2 BrB � : (20)The exponential fator in (20) annot be essentialwithin region (19). Dispersion equation (1) for mode2 (i = 2) then has solutions expressing the photon en-ergy k0 as a funtion of its transversal and longitudinalmomentum,k20 = k2k + k2?�1 + �3� BBr��1 : (21)Equation (21) analytially presents the straight lineparts of the dispersion urves in the Figure adjaentto the origin for various values of B. The omponentsv?;k of the group veloity, Eq. (3), alulated from (21)are v? = k?k0 �1 + �3� BBr��1 ; vk = kkk0 : (22)The modulus of the group veloity squared is nowgiven byv2? + v2k = 11 + �3� BBr + �3� BBr os2 #1 + �3� BBr os2 #; (23)where # is the angle between the photon momentumand the �eld, tg # = k?=kk. Equation (23) has themaximum value of unity for the parallel propagation,# = 0, in aordane with the general statement inSe. 2, and is minimum for perpendiular propagation,# = �=2.Expression (4) for the angle � between the diretionof the eletromagneti energy propagation and the ex-ternal magneti �eld in the super-Shwinger limit formode 2 beomesv?vk = tg � = k?kk �1 + �3� BBr��1 == tg #�1 + �3� BBr��1 : (24)215



A. E. Shabad ÆÝÒÔ, òîì 125, âûï. 2, 2004Beause tg � < tg #, the photon emitted tangentiallyto urved fore lines bends towards these lines. This isalso related to low-frequeny radiation.The refration index (6) in mode 2 for k20 � k2k �� 4m2 and B � Br is given byn2 = 0BB� 1 + �3� BBr1 + �3� BBr os2 #1CCA1=2 : (25)The refration index obtained depends on the dire-tion of the photon momentum, haraterized by theangle #, but does not depend on its energy. In otherwords, there is no frequeny dispersion in a wide rangefrom slow radio waves up to soft -rays with k0 � 2m.This is a onsequene of the fat that only linear partsin momenta squared were atually left in �2 (orre-spondingly, f(k2?) in (2) is proportional to k2? aord-ing to (21)).Refration index (25) reahes its maximum fortransversal propagation (kk = 0, # = �=2),n?2 = �1 + �3� BBr�1=2 == �1 + 7:7 � 10�4 BBr�1=2 : (26)For B � 10Br, the deviation of refration index (26)from unity exeeds that value for gases at atmospheripressure in the opti range by an order of magnitude;for B � 1000Br, it reahes the value harateris-ti of transparent liquids and glass; the refration in-dex (26) beomes equal to that of diamond (n = 2:4)for B = 27 � 1016 Gs.Contrary to the ase of mode 2 just onsidered, thepolarization tensor eigenvalue �3 in (15) ontains nei-ther the ontribution linearly growing with the external�eld nor the resonane. For mode 3, dispersion equa-tion (1) with its right-hand side given as (15) has thesolution k20 = k2k + k2?Z � �=3�Z ; (27)where Z = 1� �3� �ln BBr � C � 1:21� : (28)The known absene of the asymptoti freedom inQED manifests itself in the negative sign in front ofthe logarithm in (28). This results in pathologial on-sequenes for the �elds as large as Br exp(3�=�). In

this domain, the oe�ient of k2? in (27) �rst beomesless than zero and then greater than unity as the �eldgrows. The orresponding dispersion laws are nonphys-ial beause they lead to the group veloity greater thanunity. In the negative slope ase in (27),e > BBr exp(�0:21� C � 3�=�) > 1;the dispersion urve enters the setor (12) aeptablefor the Cherenkov radiation. But this is the Cherenkovemission of tahyons! It is also odd that in the latterase, eletromagneti waves an only propagate insidethe one 0 < tg # < �1 + �3�Zwith its axis along the external �eld, irrespetive of theway they are produed. This domain of exponentiallylarge external �elds is not of our interest in this paper.For the �elds that are not exponentially large, withthe logarithmi terms of the order of unity, one shouldtreat all the terms marked by the oe�ient �=3�in (27) as small. Then, �nally, the dispersion law formode 3 beomesk20 = k2k + k2? �1� �3�� : (29)Notably, the �eld-ontaining logarithmi terms haveanelled here. Therefore, dispersion law (29) of mode3 is saturated in the sense that unlike Eq. (21) for mode2, it has reahed the universal form, independent of theexternal �eld in the super-Shwinger limit. The refra-tion index of mode 3 orresponding to (29) isn3 = 1+ �6� sin2 #: (30)Again, similarly to (26), the maximum refrationin mode 3 is ahieved at perpendiular propagation,# = �=2: n?3 = 1 + 3:8 � 10�4: (31)This refration index is of the order of that of gaseousammonia and annot be made larger by inreasing theexternal �eld any further.4. CONCLUSIONWe have found that in the asymptoti ase ofexternal magneti �elds B that an be orders of mag-nitude larger than the Shwinger value 4:4 � 1013 Gs,the refrative apaity of the magnetized vauumgrows unlimitedly with this �eld for eletromagnetiradiation belonging to polarization mode 2, but omes216



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Photon propagation in a superritial magneti �eldto saturation at a moderate level of orretions of theorder of �=3� for mode 3. For the �parallel energy�of the photon not lose to the ylotron resonane,k20 � k2k � 4m2, the refration e�ets for mode 2essentially exeed the above small orretions, typialof the nonasymptoti domain, already for B � 10Br.In the range of photon frequenies/energies extendingfrom zero to soft -rays, a regime is established forwhih the dispersive properties of the magnetized va-uum are independent of the photon frequeny/energyin eah mode, but do depend on the diretion of itspropagation. Apart from the fat that the refrationindex in mode 2 for the propagation nonparallel to theexternal �eld grows numerially with the �eld, it isremarkable that the angle between the group veloityand the diretion of the photon momentum also grows,the wave paket being attrated by the fore line ofthe external �eld. The e�et of -quantum aptureby a strong magneti �eld, known to exist due toresonane phenomena assoiated with free and boundpair reation, is thus extended to lower energy ranges.Therefore, not only hard -rays, but also X-rays, lightand radio-waves undergo strong dispersive in�ueneof the magnetized vauum when the magneti �eldsare of the order of magnitude of those estimated toexist in magnetars. In view of this, the eletromag-neti energy analization phenomena may beomeimportant not only within the traditional ontextdesribed in Se. 3.2 above, but also in appliation tothe sattering of eletromagneti waves falling ontothe magneti �eld from outside [2℄. These may be, forinstane, the X-rays emitted from the aretion diskor from the pulsar surfae outside the region where themagneti �eld enters it. The problem of the bendingof eletromagneti radiation by the dipole magneti�eld of a neutron star was reently addressed in [24℄,and the ompetition of this proess with the e�etsof gravity was onsidered2). We insist, however, thatsuh e�ets annot be adequately treated disregardingthe refration index dependene on the diretionof propagation and using the quadrati-in-the-�eldexpressions for the polarization operator, only valid inthe low-�eld limit, as is the ase in Ref. [24℄.I am indebted to Professor Hugo P�erez Rojas forthe hospitality extended to me during the Workshopon Strong Magneti Fields and Neutron Stars at ICI-MAF in Havana and for enouraging me to refreshthe study of magneti optis of the vauum. I a-2) The author is indebted to H. Mosquera Cuesta who at-trated his attention to that work.
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A. E. Shabad ÆÝÒÔ, òîì 125, âûï. 2, 2004where M(t; �) = h t� h t�2 sh t (A.6)and �1(t; �) = 1� �2 sh(1 + �)t2 sh t ; (A.7)�2(t; �) = 1� �24 h t; (A.8)�3(t; �) = h t� h �t2 sh2 t : (A.9)The notation �lim� in (A.4) stands for the asymptotilimit limt!0 �i(t; �)sh t = 1� �24t ; i = 1; 2; 3: (A.10)The fat that �i are independent of the fourth pos-sible dimensionless variable z1=z2 seems to be anapproximation-independent manifestation of analyt-iity properties due to dispersion relations of theKramers�Kronig nature.We �rst onsider �(1)i . It is independent of the pho-ton energy and momentum. With the notationgi(t) = 1Z�1 �i(t; �) d�; (A.11)Eq. (A.4) an be represented as�(1)i = 2�� 1Z0 exp�� tBrB ��gi(t)sh t � 13t� dt: (A.12)The integrals in (A.11) are expliitly alulated to giveg1(t) = 14t sh t � sh 2tt � 2� ; g2(t) = h t3 ;g3(t) = 1sh2 t �h t� sh tt � : (A.13)Our goal is now to �nd the asymptoti behaviorof (A.12) as BBr !1: (A.14)The integrands in (A.12) do not ontain singularitiesat t = 0, but would ause divergene at t ! 1 if wejust set the limiting valueexp(�tBr=B) = 1:

We must therefore divide the integration domain intotwo parts. In addition,3g2(t)sh t ! 1as t!1, and hene we have to add and subtrat thislimit beforehand in the integrand of �(1)2 . This is notrequired in handling the ases of i = 1; 3, beauseg1;3sh t ! 0su�iently fast. We thus have3�2��(1)i = 1Z0 exp�� tBrB ��3gi(t)sh t �1t � Æi2� dt++ Æi2 1Z0 exp�� tBrB � dt == TZ0 exp�� tBrB ��3gi(t)sh t �1t�Æi2� dt+ BBr Æi2++ 1ZT exp�� tBrB ��3gi(t)sh t � Æi2� dt�� 1ZT exp�� tBrB � dtt == TZ0 �3gi(t)sh t �1t� dt�Æi2T+ 1ZT �3gi(t)sh t �Æi2� dt++ BBr Æi2 + ln�BrB �+ C + lnT; (A.15)where T is an arbitrary positive number, Æi2 is the Kro-neker delta, and C is the Euler onstant. We haveomitted the exponentials in the �rst two integrals afterthe seond equality sign in (A.15) beause the resultingintegrals onverge. We then used the known asymp-toti expansion of the standard exponential-integralfuntion, whih is given by (up to terms linearly de-reasing with B=Br) [25℄� 1ZT exp�� tBrB � dtt = ln BrB + lnT + C: (A.16)The most slowly dereasing term negleted in3 1ZT dt exp (�tBr=B) gi(t)sh t218



ÆÝÒÔ, òîì 125, âûï. 2, 2004 Photon propagation in a superritial magneti �eldis Æi1 3Br4B ln BrB ;beause g1(t)sh t � 14t2as t ! 1. Other negleted terms derease at leastas fast as Br=B, beause 3gi(t)= sh t � Æi2 dereasesexponentially, as exp(�2t), for i = 2; 3 when t is large.Numerial alulations using MATHCAD ode al-low evaluating the onstants (dhi=dT = 0)hi = TZ0 dt�3gi(t)sh t � 1t�++ 1ZT �3gi(t)sh t � Æ1;2� dt+ lnT � Æi2T (A.17)involved in (A.15) ash1 = 1:21; h2 = �0:69; h3 = 0:21: (A.18)Finally, in the asymptoti regime B=Br � 1, we have�(1)i = 2�3� �ln BrB + C + hi + BBr Æi2� (A.19)up to terms dereasing at least as fast as integral pow-ers of the ratio Br=B and to the slower term�2� BrB ln BrB ;omitted in �(1)1 .We now turn to �(2)i in Eq. (A.5). This dependson the three arguments as indiated in (A.5). We areinterested in the asymptoti domain desribed by on-dition (A.14) and 2eBz1 !1: (A.20)We keep the ratio 2eB=z2 �nite whenever it makessense.The asymptoti expansion of (A.7), (A.8), and(A.9) in powers of exp(�t) and exp(�t) produes anexpansion of (A.5) into a sum of ontributions om-ing from thresholds (16), the singular behavior at thethreshold points originating from the divergenes of thet-integration in (A.5) near t =1 (see [3; 19; 20℄ for thedetails). The leading terms in the expansion of (A.7),(A.8), and (A.9) at t!1 are��1(t; �)sh t ����� t!1 = 1� �2 exp(t(� � 1))); (A.21)

��2(t; �)sh t �����t!1 = 1��24 (1+2 exp(�2t)) ; (A.22)��3(t; �)sh t ����� t!1 = 2 exp(�2t): (A.23)Changing the variable as � = t=eB and taking intoaount that M(1; �) = 1=2 (see (A.6)), we eva-luate (A.5) near the lowest singular thresholds (n = 0;n0 = 1 or n0 = 0; n = 1 for i = 1 in (16), n = n0 = 1for i = 3, and n = n0 = 0 and n = n0 = 1 for i = 2) as�(2)i = 2�eB� 1Z�1 d� 1Z0 d� exp(�m2�)�� ��i(eB�; �)sh eB� ����� t!1 �� �exp�� z22eB � z1(1� �2)4 �� � 1� : (A.24)After integration over � we obtain, e.g.,�(2)1 = 4�eB� 1Z�1 d�(1� �)��� exp (�z2=2eB)4m2 + 4(1� �)eB + z1(1� �2)�� 14m2 + 4(1� �)eB� : (A.25)The pole in the above expression, aused by the inte-gration over t, turns into the inverse square root sin-gularity after the integration over � (f. the derivationof (17) from (14)). In the limit (A.14), (A.20) whenB � m2, B � jz1j, no singularity remains in this ex-pression (it is shifted to the in�nitely remote region)and we are left with�(2)1 = 2�� �exp�� z22eB�� 1� :The same situation ours for �(2)3 and for higherthresholds (also for ontributions into �(2)2 other thanthose oming from the �rst term in (A.22)). The resultof the alulation analogous to (A.25) is�(2)3 = 4�� �exp�� z22eB�� 1� :We onlude that in the limit (A.14), (A.20), there areno ylotron resonanes in the eigenvalues �1; 3 aord-ing to (A.1), and that �(2)1 does not introdue a singularontribution into �2. Consequently, there is no reason219



A. E. Shabad ÆÝÒÔ, òîì 125, âûï. 2, 2004to keep the ratio eB=z2 �nite as B ! 1, in �1;3, be-ause z2 may grow in�nitely on the dispersion urveonly when there is a resonane.We must therefore onsider only the limit when allthe three arguments in �(2)1;3 tend to zero. Handling thislimit in (A.5) is straightforward:lim�(2)1;3 = �2��eB 1Z0 dt�� 1Z�1 d� �1;3(t; �)sh t �z2M(t; �) + z1 1� �24 t� : (A.26)Both integrations here onverge, and hene this ontri-bution dereases as z1=eB and z2=eB when B ! 1.This is to be negleted within our sope of auray.The situation is di�erent with �(2)2 . The resonanebehavior is here present due to the ontribution of theleading asymptoti term (1 � �2)=4 in (A.22). It isresponsible for the �rst threshold at �z1 = 4m2 (theground Landau state n = n0 = 0 in (16)), whih re-mains in its plae as B !1. We must therefore keepthe ratio z2=eB nonzero in passing to the limit of large�elds (beause z2 ! 1 near the singular threshold onthe dispersion urve) for the ontribution of this terminto �(2)2 . The ontributions of nonleading terms inexpansion (A.22) to �(2)2 are nonsingular and shouldbe treated along the same lines as �1;3 above. Theyderease as z1=eB, z2=eB and are to be negleted. Fi-nally, for (A.5) we are left in the limit (A.14), (A.20)with�(2)2 = 2�� 1Z0 dt exp�� tBrB � 1Z�1 d� 1� �24 �� �exp��z2M(t; �)eB � z1 1� �24eB t�� 1� : (A.27)Changing the integration variable as t = eB� and usingthe asymptoti form M(eB�; �) = 1=2, eB� � 1, we�nally obtain (after the � integration) the leading on-tribution to �(2)2 in the limit (A.14), (A.20),�(2)2 = 2�eB� 1Z�1 d� (1� �2)�� exp (�z2=2eB)4m2 + z1(1� �2) � 2�eB3�m2 : (A.28)Combining Eqs. (A.28) and (A.19) in aordanewith (A.1), and bearing (A.2) and (A.3) in mind, we
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