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ELECTRONIC SPECTRUM OF THE THREE-DIMENSIONALPENROSE LATTICEYu. Kh. Vekilov *, E. I. Isaev, A. V. GodoniukTheoretial Physis Department, Mosow State Institute of Steel and Alloys119991, Mosow, RussiaSubmitted 18 Marh 2003Eletroni spetrum of the three-dimensional Penrose lattie with �entral� deoration by atoms is investi-gated using the tight binding model with the nearest-neighbor interation. Inverse partiipation ratios, highermoments of density probabilities, and fratal dimensions of the system are determined. The wave funtionsare ritial (have a power-law dependene on the distane) at all energies in the band and are multifratalmeasures leading to the entire spetrum of the exponents. The results show that the system is in the ritialstate of the metal�insulator transition. On ritial wave funtions, the ubi root temperature dependene ofthe ondutivity is obtained.PACS: 71.23.Ft, 71.30.+h1. INTRODUCTIONMeasurements of ondutivity show that at lowtemperatures, perfet quasirystals (QC) behavesimilarly to the onventional disordered ondutors(disordered metals and heavily doped semiondu-tors in the viinity of the metal�insulator transition(MIT)), and the possibility of the eletron loalization�deloalization (LD) in QCs now is atively disussed.It is known that in disordered ondutors, the ele-trons an undergo a transition to the insulating state(Anderson loalization) with the inreasing degree ofdisorder. The eletron di�usion oe�ient takes a�nite value in the onduting phase and vanishes inthe insulating phase, whih is revealed by rossing ofthe Fermi level at a ertain energy value alled themobility edge. Loalization ours for a su�ientlystrong disorder beause of quantum interferene e�etsbrought about by randomness of the disorder. At�nite temperature, aording to the saling theoryof the Anderson transition with interating eletrons[1℄, the orretion to the ondutivity in the regionL < LT and � < LT (where L is the sample size,LT = pD~=T is the interation length, and D is thedi�usion oe�ient) is proportional to pT . In theregion where � � LT > L, � � T 1=3. Su�iently*E-mail: yuri-vekilov�yahoo.om

far on the insulating side, the ondutivity followsthe Mott law for a variable range hopping (VRH)ondutivity, � = �0e�(T0=T )1=4 .Quasirystals have an extremly high resistivityvalue with a pronouned negative temperature oe�-ient and a �nite small eletroni ontribution to thespei� heat. In ontrast to the onventional disor-dered ondutors, QCs beome more insulating withinreasing the sample quality and annealing of defets.The quality measure of a QC is the resistivity ratioR = �(4:2 K)=�(300 K). More perfet samples havehigher R, and R ranges from several units to two hun-dreds and even higher depending on the objet andsample quality.Empirially, R an therefore serve as a parameterto ontrol the MIT. The highest resistivity of all theknown quasirystals ours in the iosahedral i-Al-Pd-Re QC, where the value of resistivity at 4.2 K exeeds1 Om � m. Reent experiments for i-Al-Pd-Re [2, 3℄show that for samples with all di�erent ratios R, asquare root temperature dependene of ondutivity� � pT is ordinarily observed at T < 20 K. For sam-ples with R of the order 20 and higher, this depen-dene is replaed by the � � T 1=3 law at T < 5 K.For samples with high R (� 45 and higher), a vari-able range hopping ondutivity obeying the Mott law� = �0 exp(�(T0=T )1=4) or even the Efros�Shklowskilaw � = �0 exp(�(T00=T )1=2) is observed. (The same11 ÆÝÒÔ, âûï. 5 (11) 1121



Yu. Kh. Vekilov, E. I. Isaev, A. V. Godoniuk ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003temperature dependenes of � were obtained by otherauthors for samples with slightly di�erent values ofR [4, 5℄.) We thus see that the obvious analogy ex-ists in the behavior of low-temperature ondutivityin perfet QC and in disordered ondutors near theMIT, although the reasons for the eletron loalizationin these objets are di�erent. This analogy is also validat the mirosopi level.In the theory of Anderson loalization in disorderedondutors, one is interested in the e�et of a ran-dom potential on quantum-mehanial wave funtions(WF). When the randomness is weak, the WFs are ex-tended throughout the entire system (metalli side ofthe MIT), whereas at su�iently high disorder, all WFsbeome loalized (insulator side of the MIT). In theviinity of the ritial point of the MIT, the WFs areneither extended nor exponentially deaying; as numer-ial alulations show, they display a saling behaviorand derease with the distane following a power law(�ritial� WFs) [6�8℄.Disussions of the problem of loalization of ele-troni states in QCs began immediately after their dis-overy (see, e.g., [9℄). High-resistive QCs are usuallyattributed to the existene of a deep pseudogap in thedensity of eletroni states (DOS) at the Fermi level(DOS at the Fermi level in QC is low but �nite) and tothe tendeny of the eletrons at the Fermi level to beloalized. But the presene of a pseudogap is not suf-�ient to explain the high value of resistivity; its mainreasons are seen in the low eletron mobility, whih isobviously aused by the spei� symmetry of QC. Fromthe general standpoint, one an onlude that due toself-invariant struture of QCs, the WFs must be riti-al. The ritial behavior of the wave funtions in QCshas been well established in the ases of one- and two-dimensional QCs [10; 11�13℄. But for three-dimensionalsystems (iosahedral quasirystals), the �rst publia-tions were ontroversial [14�16℄, and even some re-ent publiations ontain the laim that in the three-dimensional ase, the ritial nature of wave funtionsmay be lost to some extent [17, 18℄. At the same time,other numerial investigations of the eletron spetraof low-order periodi approximants of iosahedral QCsshow that most of the WFs are still ritial, althoughthe eletron spetrum does not ontain a hierarhialgap struture typial of the Cantor set of measure zeroin one-dimensional QCs [19�21℄. Thus, the problem ex-ists and more information on the eletron spetra andWFs is required in order to judge about the eletronloalization in three-dimensional (iosahedral) QCs.In this paper, we present the results of a numer-ial investigation of the saling behavior of the ele-

tron spetrum and WFs of the three-dimensional Pen-rose lattie. The main information needed to har-aterize the LD transition in QCs is obtained. Theinverse partiipation numbers (the seond momentsof the density probabilities) and the generalized in-verse partiipation numbers (higher moments) are ob-tained. Fratal dimensions of the spetrum are ob-tained and ritial behavior of the WFs is studied.The results are important for understanding the ele-tron loalization�deloalization transition in iosahe-dral QCs. This work is a ontinuation of the previ-ous ones [19, 20℄, where the singularities of the eletronspetrum of iosahedral QCs and the e�et of small per-turbations on it have been studied using tight-bindingand level-statisti methods. In [19℄, singularities of theeletron spetrum were analized, and it was shown thatthe spetrum is not Cantorian, but ontains a singularpart. In [20℄, we studied the in�uene of hemial disor-der and phasons on the eletron spetrum by hangingon-site energies and transfer integrals.This paper is organized as follows. In Se. 2, weonsider the main model approximations and alula-tion tehnique. In Se. 3, the results of investigationof the saling behavior of the eletron spetrum aredisussed. Setion 4 ontains onlusions.2. MODEL APPROXIMATIONS ANDCALCULATION TECHNIQUESThe eletroni spetrum of the three-dimensionalPenrose lattie (the Amman�Kramer network) treatedas a strutural limit of a sequene of periodi ubiapproximants with inreasing period has been studiedin the framework of the tight-binding approximation(TBA). The �rst �ve ubi approximants to the iosa-hedral QCs (1/1, 2/1, 3/2, 5/3, and 8/5) were investi-gated. We onsidered the entral deoration of approx-imants with �atoms� of one type, namely atoms withone s-orbital per atom loated at rombohedral enters.The unit ells of these approximants ontained 32, 136,576, 2440, and 10330 atoms respetively. The proje-tion tehnique for onstrution of approximants wasdesribed previously [19℄. To minimize the number ofadjustable parameters of the model, we used a Hamil-tonian with onstant hopping integrals between nearestneighbors (atoms).The Hamiltonian was expressed asH =Xi jii"ihij+Xi6=j jiitijhjj: (1)If atoms of only one type are present, the diagonal ele-ments "i an be omitted. In this ase, the Shrödinger1122



ÆÝÒÔ, òîì 124, âûï. 5 (11), 2003 Eletroni spetrum of the three-dimensional Penrose lattieequation in the tight-binding approximation an bewritten as Xij tij	j = Ei	i; (2)where the transfer integrals are set equal to a nonzeroonstant tij = �1 only in the ase of the nearest-neighbor atoms. The periodi boundary onditionshave been used to help redue the size-dependene ef-fets.We study the loalization problem in the TBAby alulating the inverse partiipation numbers (mo-ments or 2q-norms of the wave funtion) de�ned by therelation P�1 = jj	jj2q = Pj j	j j2q(Pj j	j j2)q ; (3)from whih �partiipation ratios� and fratal dimen-sions Dq an be determined. P is alled the partiipa-tion number beause it is the measure of the numberof sites that ontribute to a state of a given energy Ei.The orresponding fration p = P=N of all the sites isalled the partiipation ratio. The value of p for q = 2 isfrequently used in the problem of eletron loalization.The WFs were lassi�ed in aordane with theirnormalization integrals. They are onsidered deloal-ized if Zjrj<R j	(r)j2dr � Rd;where d is the spae dimensionality. They are as-sumed loalized when their �nite norms exist, and arede�ned as �ritial�, 	 � r�, when they annot benormalized in an in�nite spae and are not deloal-ized. Strongly loalized WFs orrespond to the asewhere � = 1 and freely extended wave funtions or-respond to the ase where � = 0; 	 an be normalizedin three-dimensional ase only for � � 3/2. For ex-tended states, the moments of the WF depend on thesystem size as jj	jjextended2q � N1�q , as follows fromEq. (3). For exponentially deaying loalized funtions,we have jj	jjexp:lo2q � N0. We an therefore obtain theexponent of the wave funtions by analyzing the sys-tem size dependene of the moments alulated in thesystem of a su�ient size. For the relative number ofstates with moments jj	jj2q � N , the integrated dis-tribution funtion de�ned asI2q() = 1N NXn=1 �( � logN jj	jj2q)gives the integrated distribution of the exponents of apower-law deay for a spei�ed system if the �nite-size
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Fig. 1. Inverse partiipation numbers P�1 and the par-tiipation ratio (q = 2) for the �rst �ve rational approx-imants
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momentsFig. 2. Fratal dimensionality (qp) for di�erent mo-ments (2q-norms) of the spetrum (Dp=0 = 3 for allapproximants)orretion is negligible. The proedure of �nding theexponent � has been desribed in [19℄ (also see [13℄for two-dimensional Penrose lattie), and we here notethat the behavior of the funtion (q; �) was analyzedfor the �rst �ve approximants, and as a result, the �lo-alization� exponent � was found for eah approximantunder investigation.From the relation Pq � N�Dq(q�1), whih is ap-plied near the �ritial� point, we obtained the frataldimensions Dq of the system (here, N is the number ofatoms in the unit ell of an approximant).3. RESULTS AND DISCUSSIONSThe results of alulations are presented in Figs. 1�4. The behavior of the inverse partiipation numbers,1123 11*
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Fig. 3. Distribution of the loalization exponent � (	 � r��) on the energy band. The eigenstates are ritial at allenergiespartiipation ratios (Fig. 1), and fratal dimensions(Fig. 2) shows that the eletroni states are neitherloalized nor deloalized in all the onsidered approx-imants (the �rst �ve approximants were onsidered).Indeed, the inverse partiipation numbers P are pro-portional to N , where  must vanish for loalizedstates beause they �t into a sample of a given size,and  = 1 for states uniformly extended over the en-tire sample. Beause the alulated value of P doesnot satisfy both these limits, we an assume that theWF or rather its envelope fall as an inverse power ofthe distane, 	 � r��. We next see (Fig. 2) that thealulated dimensions Dq of the system satisfy the in-equalities D0 > D1 > D2 > : : : , where for all approxi-mants, D0 is equal to topologial dimension (3), andthe dimensions are therefore not simple fratal, butmultifratal. The multifratality regime means thatthe system is in the ritial state, and the WFs at rit-iality are multifratal measures leading to the entirespetrum of ritial exponents. The spetrum of mul-tifratal dimensions has universal features for states inthe viinity of the MIT. We an therefore onlude thatthe ground state of the three-dimensional perfet QCis a ritial state of the MIT.The results in Fig. 3 show that the WFs are rit-ial at all energies in the band. The dependene	 � r�� is typial of the ritial state of the sys-tem. It is known that systems without harateris-ti intrinsi length sales obey homogeneity laws un-der resaling. The absene of length sales means that

some observable F shows a typial homogeneity lawF (sx) = skF (x), where k is alled the homogeneity ex-ponent and s is a real number. This implies that theresaling of x an be ompensated by a resaling of theobservable F . For real-valued funtions F (x), the solu-tion of the homogeneity equation is a power-law fun-tion F (x) � xk. The funtion 	 � r�� is therefore asolution of the homogeneity equation with the homo-geneity exponent k = �, and we have a sale-invariantbehavior of the system, typial of the ritial states. IfF (x) is a funtional of powers q of those observablesthat are involved in the de�nition of F (x) (i.e., mo-ments in our ase), F (x)=F [q℄(x), then in the simplestsituation, k(q) de�ned byF [q℄(sx) = sk(q)F [q℄(x)is a linear funtion of q. If k(q) signi�antly deviatesfrom linearity, the saling behavior of F (x) is anoma-lous, and the system therefore shows the multifratalbehavior [22℄. Calulations show that the multifratalbehavior of the system beomes pronounedly apparentfor higher-order approximants (5/3).Considering the behavior of the loalization expo-nent �, we see that � tends to a ertain value in thethermodynami limit (N ! 1). It is known from thetheory of Anderson transitions that near the transitioninto the dieletri (metalli) state, the orrelation (lo-alization) length � tends to in�nity. As mentionedabove, the Anderson loalization theory for interatingeletrons implies that � / T 1=3 at the ritial point1124
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1:61:41:21:00:80:6 2 51 43 Approximant's orderFig. 4. The loalization exponent � (averaged over theband) for di�erent approximantsof the MIT, where � � LT > L, with LT = pD~=Tbeing the �interation� length [3℄. For QCs, the on-ventional piture of the Anderson loalization in disor-dered systems is not relevant. In QCs, the eletronistates an be loalized by the quasiperiodi potentialitself, and as we have shown (Fig. 3), the WFs in thethree-dimensional QC behave as in the ritial stateof the MIT for onventional disordered systems. Asshown in [23℄, it is possible to obtain the � / T 1=3dependene by onsidering a variable range hoppingondutivity (VRH) on the ritial WFs. Following theMott proedure, we de�ne the tunneling integral on theritial WFs asI � j	j2 � jR��j2 � exp(�2� lnR): (4)We then de�ne the ondutivity� / I exp (��E)=kT );where�E = 3=(4�R3N(EF )) is the minimal ativationenergy for hopping over the distane R. The expressionexp(�2� lnR) exp(��E=kT ) (5)has a maximum when the exponent(�2� lnR � �E=kT ) has a minimum. Substituting�E and �nding this minimum, we obtain � / T 2�=3.In order to obtain � / T 1=3, the exponent � must beequal to 0.5. The results of alulations of � (Fig. 4)show that � dereases as the order of the approximantinreases. It is di�ult to say to what value � tends inthe thermodynami limit, but the tendeny is obvious.The results of alulations also show that the valueof � depends on the moment number, and the last

expression for � should involve some realization of �.Therefore, the result oinides with the experimentand preditions of the saling theory of loalization forthe �ritial� region of MIT.4. CONCLUSIONThe result of investigating saling behavior ofthe eletron spetrum for the �rst several periodiapproximants (1/1, 2/1, 3/2, 5/3, 8/5) of the three-dimensional Penrose lattie with entral deorationhave been presented. The ritial behavior e�etsare visible even for these low-order approximants.The alulated WFs are �ritial� for all energiesin the band and are multifratal measures with theentire spetrum of �ritial� exponents. The ele-troni states are more loalized at the Fermi levelthan at the bottom of the band. The results showthat the bakground state of the perfet regulariosahedral QC should be the �ritial� state of theloalization�deloalization transition. The natureof eletron loalization in iosahedral quasirystalshas been disussed previously [9, 19, 20℄, and it wasshown that this loalization is unstable under smallperturbations (phasons, hemial disorder, and themagneti �elds). The �ritial� behavior of the WFsan explain the experimentally observed power-lawdependene of ondutivity, � / T 1=3. Calulating theVRH probability on �ritial� WFs, we immediatelyobtain the � / T 2�=3 law. For oinidene with theexperiment, the realization of the exponent � shouldbe equal to 0.5 in the thermodynami limit. At thesame time, it is impossible to obtain the Mott law on�ritial� WFs for the VRH ondutivity on insulatingside of the MIT, and new ideas are neessary.We are grateful to the Russian Foundation for BasiResearh (grant � 03-02-16970) and the Royal SwedishAademy of Sienes for �nanial support.REFERENCES1. B. L. Altshuler and A. C. Aronov, JETP Lett. 37, 410(1983).2. J. Delahaye and C. Berger, Phys. Rev. B64, 094203(2001).3. V. Srinivas, M. Rodmar, R. König, S. J. Poon, andO. Rapp, Phys. Rev. B65, 094206 (2002).4. Chang-Ren Wang and Shui-Tien Lin, J. Phys. So.Jpn. 68, 3988 (1999).1125
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