МАГНИТНЫЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ВАРВИКИТА Fe_{1.91}V_{0.09}BO₄

А. Д. Балаев^а, О. А. Баюков^а, А. Д. Васильев^а, Д. А. Великанов^а, Н. Б. Иванова^b,

Н. В. Казак^а^{*}, С. Г. Овчинников^а, М. Абд-Эльмигид^{с**}, В. В. Руденко^а

^а Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

^b Красноярский государственный технический университет 660074, Красноярск, Россия

> ^c II. Physikalisches Institut, Universität zu Köln 50937, Köln, Germany

Поступила в редакцию 16 апреля 2003 г.

Проведены комплексные исследования структурных, магнитных и электрических свойств монокристалла $Fe_{1.91}V_{0.09}BO_4$. Измерения эффекта Мессбауэра, проведенные при T = 300 K, указывают на существование «локализованных» (Fe^{2+} , Fe^{3+}) и «делокализованных» ($Fe^{2.5+}$) состояний, распределенных по двум кристаллографически неэквивалентным позициям. Магнитные измерения показали, что исследуемый материал является ферримагнетиком P-типа ниже T = 130 K. Обнаружена прыжковая проводимость сильно взаимодействующих электронов. Обсуждение результатов ведется в сравнении со свойствами исходного варвикита Fe_2BO_4 . Дано качественное объяснение всей совокупности данных по электропроводности и намагниченности.

PACS: 72.80.Ga, 71.27.+a, 75.30.-m, 78.40.Fy

1. ВВЕДЕНИЕ

Большая часть оксиборатов переходных металлов с химической формулой $M^{2+}M^{3+}BO_4$ кристаллизуется в орторомбическую структуру варвикита ($Mg_{1.5}Ti_{0.5}BO_4$), которая представляет собой совокупность линейных, слабо взаимодействующих между собой полос, состоящих из двух внутренних и двух внешних цепочек, в которых октаэдрически окруженные двух- и трехвалентные атомы переходных металлов случайным образом занимают две неэквивалентные кристаллографические позиции. В последнее время эти соединения привлекают к себе широкое внимание как материалы с нетривиальным сочетанием свойств, присущих в значительной степени разупорядоченным сильнокоррелированым электронным системам [1–6]. С теоретической точ-

ки зрения исследование гейзенберговских одномерных цепочек с целым и полуцелым спином позволяет оценить влияние беспорядка на спектр возбуждений, рассчитать термодинамические параметры и описать свойства основного состояния. С точки зрения эксперимента имеется возможность наблюдать целый ряд явлений, таких как температурные магнитные переходы, необычное поведение кривых намагничивания и теплоемкости, а также моттовский переход от делокализованного состояния к локализованному в электропроводности. Кроме того, возможности синтеза варвикитов с большинством переходных элементов открывают широкое поле для систематического исследования их физических свойств.

В настоящее время синтезирован ряд монометаллических (Fe_2BO_4 [4], Mn_2BO_4 [6]) и, особенно, биметаллических оксоборатов (M,M') BO_4 , где M и M' могут представлять собой элементы переходной группы ($FeMnBO_4$ [7, 8], Sc $MnBO_4$ [2]), а также в каче-

^{*}E-mail: nat@iph.krasn.ru, sgo@iph.krasn.ru

^{**}M. Abd-Elmeguid

стве М может выступать и немагнитный щелочноземельный металл Mg или Ca [1].

Биметаллические оксобораты с немагнитным металлом в качестве М с точки зрения магнитного упорядочения представляют собой одномерные гейзенберговские антиферромагнитные цепочки с целым либо полуцелым спином и в данный момент являются в некоторой степени как теоретически, так и экспериментально исследованными авторами работ [9–11], причем в качестве соединения с полуцелым спином в этих работах выбрано соединение MgTiBO₄, а с целым спином — MgVBO₄. Выбор ванадия в качестве переходного металла обусловлен при этом большой протяженностью его 3d-орбиталей, что обусловливает гейзенберговскую природу обменных взаимодействий. В результате проведенных исследований было показано, что поведение магнитной восприимчивости в широком интервале температур, а также кривые намагничивания в данных системах подчиняются степенному закону, являющемуся характерным для сильно разупорядоченных спиновых цепочек как в случае S = 1/2, так и в случае S = 1. Авторы работы [9] показали, что соединение $MgVBO_4$ испытывает при T = 6 K переход в состояние спинового стекла.

В данной работе мы представляем новое соединение $Fe_{1.91}V_{0.09}BO_4$ с двумя магнитными 3d-ионами. Описание его магнитных и электрических свойств проведено в сравнении со свойствами достаточно подробно исследованного в [4, 12-14] и других работах исходного варвикита Fe_2BO_4 , наиболее яркими особенностями которого являются три вида испытываемых им переходов — структурный при T = 317 К из моноклинной структуры в орторомбическую, сопровождаемый электронным переходом полупроводник-полупроводник, связанным с делокализацией носителей заряда, и магнитный при T = 155 К из парамагнитного состояния в ферримагнитное *P*-типа.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Монокристаллы $FeVBO_4$ были выращены по раствор-расплавной технологии в системе $Fe_2O_3-V_2O_3-B_2O_3-(70 \text{ PbO}+30 \text{ PbF}_2 \text{ вес.}\%)$ с промежуточным охлаждением раствора-расплава от 900 до 780 °C. В работе [4] отмечаются трудности в выращивании кристаллов Fe_2BO_4 из раствора-расплава, в связи с чем авторами был применен твердофазный синтез, позволивший получить лишь поликристаллические образцы в совокупности с другими фазами, впоследствии удалявшимися путем магнитной очистки. Тем не менее нами были получены кристаллы FeVBO₄, которые имели правильную форму, гладкую поверхность и кристаллизовались в виде иголок длиной до 1.0 см и толщиной 0.10–0.15 мм.

Для определения количества входящих элементов был выполнен энергодисперсионный рентгеновский анализ (EDAX ZAF Quantification), который показал, что относительное содержание железа в образце равно 95.42 ат.%, а содержание ванадия — 4.58 ат.%. Таким образом, формульная единица замещенного варвикита — Fe_{1.91}V_{0.09}BO₄.

Спектр рентгеновской дифракции был получен на установке D8ADVANCE. Сканирование по углу $2\theta = 13.4 - 89.7^{\circ}$ для линии излучения K_{α} на Cu с $\lambda = 1.5406$ показало орторомбическую структуру (*Pnam*) при комнатной температуре. Измеренные параметры решетки приведены в табл. 1 в сравнении с данными [15] для Fe₂BO₄. Объем элементарной ячейки Fe_{1.91}V_{0.09}BO₄ равен 274.82 Å³, что практически совпадает с объемом ячейки Fe₂BO₄ равным 275.02 Å³, однако, как видно из таблицы, при комнатной температуре кристаллическая структура Fe_{1.91}V_{0.09}BO₄ является орторомбической, в то время как для Fe₂BO₄ выражены моноклинные искажения.

Измерения температурных и полевых зависимостей намагниченности были выполнены на вибрационном магнитометре со сверхпроводящим соленоидом. Измерения намагниченности в нулевом поле были получены на SQUID-магнитометре.

Мессбауэровские измерения были проведены с источником Co⁵⁷(Cr) на порошках монокристаллических образцов Fe_{1.91}V_{0.09}BO₄ толщиной 5–10 мг · см⁻¹ по естественному содержанию железа при комнатной температуре.

Также были выполнены резистивные измерения на постоянном токе в диапазоне температур T = 90-430 К по двухконтактной схеме. Для измерения высоких сопротивлений был использован тераомметр E6-13A, позволяющий измерять сопротивления до 10^{13} Ом. Контакты были выполнены с использованием индиевой пасты, их омичность проверена путем исследования вольт-амперных характеристик. Термопара медь-константан находилась непосредственно вблизи образца. Нагрев и охлаждение образца проводились со скоростью 1 К в минуту во избежание паразитного градиента температур.

	$a, \mathrm{\AA}$	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	β	$V, \mathrm{\AA}^3$
$\mathrm{Fe}_{1.91}\mathrm{V}_{0.09}\mathrm{BO}_4$	3.1727	9.3831	9.2317	89.993	274.84
$\mathrm{Fe_2BO_4}$	3.1688	9.3835	9.2503	90.22	275.02

Таблица 1

3. ИЗМЕРЕНИЯ ЭФФЕКТА МЕССБАУЭРА

Мессбауэровский спектр монокристалла $Fe_{1.91}V_{0.09}BO_4$ при комнатной температуре (рис. 1) представляет собой наложение нескольких квадрупольных дублетов. Разрешение линий спектра хуже, чем для незамещенного варвикита [4,14], что может быть связано как с понижением температуры электронной делокализации $Fe^{2+}-Fe^{3+}$, так и с добавлением ванадия.

Функции распределения вероятности квадрупольного расщепления $P(E_Q)$ для трех валентных состояний железа Fe^{3+} , $\mathrm{Fe}^{2.5+}$, Fe^{2+} в спектре замещенного варвикита приведены на рис. 2. Эти функции носят качественный характер, поскольку в качестве подгоночных параметров использованы величины изомерных сдвигов, общие для каждого распределения. Видно, что катионы Fe^{3+} и Fe^{2+} занимают две неэквивалентные по локальному окружению позиции I и II. Катионы $\mathrm{Fe}^{2.5+}$ имеют три сорта локальных окружений, различающихся по величине квадрупольного расщепления. Таким образом, наблюдаемый спектр $\mathrm{Fe}_{1.91}\mathrm{V}_{0.09}\mathrm{BO}_4$ следует аппроксимировать семью квадрупольными

Рис.1. Мессбауэровский спектр Fe_{1.91}V_{0.09}BO₄ при комнатной температуре

10 ЖЭТФ, вып. 5 (11)

Рис.2. Функция распределения вероятности квадрупольного расщепления в Fe_{1.91}V_{0.09}BO₄

дублетами. Аналогичная модель использована авторами работы [14] при расшифровке спектра незамещенного варвикита Fe₂BO₄.

Параметры сверхтонкой структуры, полученные в результате подгонки модельного спектра к экспериментальному методом наименьших квадратов

	$\delta(lpha_{ m Fe}),~{}_{ m MM}/{}_{ m c}$	ΔE_Q , мм/с	Γ , мм/с	A, %
$\mathrm{Fe}^{3+}(\mathrm{I})$	0.378	0.192	0.350	20
${\rm Fe}^{3+}({\rm II})$	0.287	0.743	0.286	14.5
$\mathrm{Fe}^{2+}(\mathrm{I})$	1.196	1.236	0.576	16.4
$\mathrm{Fe}^{2+}(\mathrm{II})$	1.192	2.147	0.344	14.6
$\mathrm{Fe}^{2.5+}(\mathrm{I})$	0.76	_	0.504	15.6
$\mathrm{Fe}^{2.5+}(\mathrm{IIa})$	0.75	1.006	0.583	13.3
$\mathrm{Fe}^{2.5+}(\mathrm{IIb})$	0.702	1.736	0.304	5.5

Таблица 2

в предположении лоренцевой формы линий, представлены в табл. 2. Изомерные сдвиги Fe²⁺ (I, II) и Fe³⁺(I, II) типичны для «локализованных» состояний этих катионов, находящихся в высокоспиновом состоянии и октаэдрической координации кислорода. Изомерные сдвиги Fe^{2.5+}(I, IIa, IIб) характерны для смешанной валентности катионов Fe^{2+} и Fe^{3+} , возникающей в результате быстрого электронного обмена между этими ионами. Соотношение величин изомерных сдвигов говорит о том, что электронная плотность на ядрах железа в позиции II выше, чем в позиции І. В то же время величины квадрупольных расщеплений свидетельствуют о большей степени искажения координационного октаэдра в позиции II. Относительно высокая локальная симметрия в позиции I позволяет отнести наблюдаемый синглет Fe^{2.5+}(I) к этой позиции, а два дублета Fe^{2.5+}(IIa) и Fe^{2.5+} (Пб) — к неэквивалентным состояниям в позиции II.

Распределение ионов Fe²⁺, Fe^{2.5+}, Fe³⁺ по кристаллографическим позициям I и II, полученное из мессбауэровского эксперимента, позволяет нам записать формулу замещенного варвикита в виде

$$(Fe_{0.383}^{3+}Fe_{0.313}^{2+}Fe_{0.299}^{2.5+})_{I}(Fe_{0.278}^{3+}Fe_{0.279}^{2+}Fe_{0.359}^{2.5+}V_{0.09}^{2+})_{II}BO_{4}.$$

Формульный дефицит катионов в позиции I (~ 0.005) мал по сравнению с содержанием ванадия в кристалле и может быть связан с ошибкой эксперимента. Таким образом, данные эксперимента свидетельствуют о том, что ванадий входит только в позицию II в структуре данного варвикита. С учетом условия электронейтральности формальная валентность ванадия равна 2+.

Из сравнения полученного катионного распреде-

ления в исследуемом кристалле с распределением в незамещенном варвиките [13, 14]

$$(\mathrm{Fe}_{0.36}^{3+}\mathrm{Fe}_{0.38}^{2+}\mathrm{Fe}_{0.26}^{2.5+})_{\mathrm{I}}(\mathrm{Fe}_{0.36}^{3+}\mathrm{Fe}_{0.38}^{2+}\mathrm{Fe}_{0.26}^{2.5+})_{\mathrm{II}}\mathrm{BO}_{4}$$

следует, что ванадий замещает ионы Fe^{2+} в позиции II, при этом общее число катионов железа в кристалле, подверженных быстрому электронному обмену, возросло с 0.52 (Fe_2BO_4) до 0.66 ($Fe_{1.91}V_{0.09}BO_4$) атомов на формульную единицу. Введение ванадия в кристалл изменяет соотношение числа «делокализованных» атомов в позициях I и II. Так, присутствие ванадия в подрешетке II увеличивает число «делокализованных» атомов в этой подрешетке с 0.26 (Fe_2BO_4) до 0.359 ($Fe_{1.91}V_{0.09}BO_4$). Это увеличение значительно больше по сравнению с увеличением в позиции I (с 0.26 до 0.299 атомов на формульную единицу).

Возможно, ванадий провоцирует упорядочение разновалентных катионов в той подрешетке, в которую входит, подобно упорядочению в варвиките марганца [6], например, V–Fe²⁺–Fe³⁺–V–Fe²⁺–Fe³⁺. Вероятно, два неэквивалентных состояния Fe^{2.5+} (IIa) и Fe^{2.5+} (IIб) возникают вследствие такого процесса.

4. НАМАГНИЧЕННОСТЬ

На рис. 3 приведена температурная зависимость намагниченности M(T) соединения $\operatorname{Fe}_{1,91}V_{0,09}BO_4$, измеренная в нулевом магнитном поле с помощью SQUID-магнитометра, а на рис. 4 — кривая M(T)для внешнего магнитного поля H = 1 кЭ, измеренная вибрационным магнитометром. Внешнее магнитное поле Н приложено параллельно иголке, вдоль оси а кристалла. Широкий максимум в намагниченности, наблюдаемый при T = 60 К, характеризует Р-тип ферримагнитного упорядочения, переход в парамагнитное состояние происходит при T = 130 К. На кривой M(T) рис. 3 видна особенность вблизи T = 120 K, ранее также наблюдавшаяся авторами работ [12–14] для Fe₂BO₄. Авторы работы [12] приписывают эту особенность переходу Вервея в примесной фазе магнетита Fe₃O₄. Авторы работ [13, 14] указывают на существование серии переходов в интервале температур 45-130 К и объясняют эти особенности различными температурными зависимостями намагниченности двух подрешеток в незамещенном Fe₂BO₄. В нашем случае магнитные измерения и рентгеновская дифракция, проведенные на высококачественных монокристаллах, не показали присутствия примеси магнетита. Вероятно, особенность при T = 120 К присуща самой ис-

Рис. 3. Температурная зависимость намагниченности $Fe_{1.91}V_{0.09}BO_4$ в нулевом поле

Рис. 4. Температурная зависимость намагниченности $Fe_{1,91}V_{0.09}BO_4$ в магнитном поле H = 1 кЭ

следуемой системе ${\rm Fe}_{1.91}{\rm V}_{0.09}{\rm BO}_4,$ что, возможно, верно и для ${\rm Fe}_2{\rm BO}_4.$

Кривая M(T) на рис. 4, в свою очередь, имеет тот же характер, что и температурная зависимость намагниченности Fe₂BO₄ [12], но, как можно заметить, присутствие ионов ванадия даже в сравнительно небольших количествах существенно понижает температуру магнитного перехода. Дальний магнитный порядок в Fe_{1.91}V_{0.09}BO₄ устанавливается при T = 130 K, тогда как для Fe₂BO₄ он имеет место при T = 155 K. Тот же эффект ранее наблюдал-

Рис.5. Кривые намагничивания $Fe_{1.91}V_{0.09}BO_4$: T = 4.2 K (1), T = 100 K (2)

ся нами при исследовании серии твердых растворов ${\rm Fe}_x {\rm V}_{1-x} {\rm BO}_3$ [16].

Кривые намагничивания монокристалла $Fe_{1.91}V_{0.09}BO_4$ (рис. 5), полученные при температурах 4.2 К и 100 К, демонстрируют нескомпенсированный магнитный момент равный $0.1\mu_B$ на формульную единицу. Эта величина больше полученного для Fe_2BO_4 значения $0.06\mu_B$ [4]. При H > 1 Тл кривые M(H) представляют собой линейные зависимости без каких-либо особенностей, что соответствует повороту векторов намагниченности подрешеток к направлению внешнего магнитного поля.

Как видно на рис. 5, в области слабых полей обнаруживается ненулевая намагниченность образца, что, по-видимому, связано с наличием магнитной кристаллографической анизотропии.

5. ЭЛЕКТРОСОПРОТИВЛЕНИЕ

Температурная зависимость электросопротивления монокристаллов $Fe_{1.91}V_{0.09}BO_4$ в целом характерна для боратов 3*d*-металлов, таких как Fe_2BO_4 , VBO_3 , $Fe_xV_{1-x}BO_3$ [16], и характеризуется резким повышением сопротивления при низких температурах и диэлектризацией образца (рис. 6). Особенности поведения электронной системы этих материалов могут быть прослежены лишь на логарифмических зависимостях сопротивления от обратной температуры.

Известные законы изменения $\rho(T)$ в большин-

Рис. 6. Температурная зависимость логарифма удельного сопротивления

стве своем могут быть получены как частные случаи из общего выражения

$$\rho(T) = A_0 \exp(\Delta_n/T)^{1/n}, \quad n = 1, 2, 3, 4.$$

Для n = 1 формула представляет проводимость простого активационного типа с энергией активации Δ_1 . Прыжковая проводимость невзаимодействующих локализованных электронов в разупорядоченных изоляторах и полупроводниках при низких температурах подчиняется закону Мотта (n = 4). Такой тип проводимости был найден в твердых растворах серии Fe_xV_{1-x}BO₃ и монокристалле VBO₃ при температурах ниже комнатной. Значение n = 2указывает на кулоновское взаимодействие между локализованными электронами в трехмерной системе. Эфрос и Шкловский [17] показали, что вследствие такого взаимодействия одноэлектронная плотность состояний стремится к нулю вблизи уровня Ферми. При этом сопротивление зависит от температуры по закону $\ln R \propto (\Delta_2/T)^{1/2}$, где параметр Δ_2 дается выражением

$$\Delta_2 \sim e^2 / \varepsilon \zeta,$$

 е — заряд электрона, є — диэлектрическая постоянная вещества, ζ — линейный размер локализации.

Согласно работе [13], проводимость исходного варвикита Fe₂BO₄ подчиняется простому активационному закону с энергией активации $\Delta_n \approx 0.33$ эВ. Исследование электросопротивления нового монокристалла Fe_{1.91}V_{0.09}BO₄ показало нарушение линейной зависимости $\ln \rho(T) \propto T^{-1}$. Такое поведе-

Рис.7. Зависимость $\ln R$ от обратной температуры $T^{1/2}$

ние сопротивления можно приписать существованию различных конкурирующих механизмов проводимости. Обработка экспериментальных данных, проведенная по методу наименьших квадратов, дала следующую эмпирическую зависимость:

$$R(T) = A_1 \exp(\Delta_1/T) + A_2 \exp(\Delta_2/T)^{1/2},$$

где множители A_1 и A_2 слабо зависят от температуры. Первый член описывает активационный характер проводимости, второй связан с прыжками сильно коррелированных электронов (рис. 7). Величина энергии активации равна 0.15 ± 0.01 эВ. Энергия кулоновского взаимодействия Δ_2 оказалась равной 4.92 ± 0.009 эВ и является характерной величиной для оксидных соединений.

Теоретическое исследование электронной структуры природного варвикита MgTiBO₄ было проведено в работах [18, 19]. Авторы показали, что для правильного описания электронных свойств системы необходимо учитывать электронные корреляции на узлах 3*d*-металлов. Согласно этим расчетам, уровень Ферми E_F расположен внутри *d*-зоны переходного металла и допирование такого типа соединений может вызвать смещение E_F в область энергетической щели.

Изучая электрические свойства незамещенного соединения Fe_2BO_4 , авторы работы [20] предположили, что зарядовое упорядочение в этом кристалле также является следствием кулоновского отталкивания. Широкий, слабо выраженный переход полупроводник-полупроводник при T = 317 K, без

заметного изменения энергии активации, имеющий место в Fe_2BO_4 [4], не проявился в замещенном соединении $Fe_{1.91}V_{0.09}BO_4$. Однако необходимо отметить, что в работе [4] измерения были выполнены на поликристаллических образцах, следовательно, нельзя не учитывать влияния межзеренных границ.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Очевидно, новое соединение $Fe_{1.91}V_{0.09}BO_4$ имеет магнитные и электронные свойства, отличные от свойств Fe_2BO_4 , хотя нельзя утверждать, что они изменяются коренным образом. Экспериментальные данные позволяют выделить некоторые общие особенности в свойствах исходного соединения Fe_2BO_4 и нового варвикита $Fe_{1.91}V_{0.09}BO_4$:

 — орторомбическая структура при высоких температурах;

 существование двух неэквивалентных кристаллографических положений;

— ферримагнитное упорядочение *P*-типа.

Согласно результатам нейтронной дифракции, проведенной на незамещенном Fe_2BO_4 , структура этого варвикита представляет собой совокупность линейных, слабо взаимодействующих между собой полос, каждая из которых состоит из двух внутренних и двух внешних цепочек (рис. 8). Октаэдры (M,M')O₆, имеющие общую грань, создают бесконечные цепочки параллельные короткой кристаллографической оси *a*. Полосы связываются через общую вершину и тригональные BO₃-группы. Взаимодействие между катионами, принадлежащими к октаэдрам одной и той же полосы, осуществляется через два атома кислорода, находящихся в вершинах общей грани. В этом случае угол M–O–M' приблизительно равен 90° и внутри полосы возникает кос-

Рис.8. Структура Fe_{1.91}V_{0.09}BO₄ в плоскости (100); I и II — неэквивалентные кристаллографические позиции катионов

венный 90-градусный обмен. Взаимодействие между катионами, принадлежащими ближайшим полосам, осуществляется через один атом кислорода, находящийся в общей вершине октаэдров.

Можно предположить, что при замещении части ионов железа на ванадий в исследуемом кристалле $Fe_{1.91}V_{0.09}BO_4$ магнитная 3D-структура сохраняется и также представляет собой совокупность подструктур в виде полос. Введение ванадия приводит к увеличению магнитного момента насыщения, что может быть связано с уменьшением абсолютного значения намагниченности подрешетки II.

Исследование показало, что добавление ванадия вызывает изменение электрических свойств системы. Чтобы понять причину таких изменений, необходимо сравнить электронные структуры Fe₂BO₄ и Fe_{1.91}V_{0.09}BO₄. Для этих соединений характерны сильные электронные корреляции в узких d-зонах, формирующие как локализованные магнитные моменты, так и диэлектрическое основное состояние. Наличие сильных электронных корреляций не позволяет надежно рассчитать зонную структуру традиционными одноэлектронными методами зонной теории в приближении локального функционала плотности. Расчет зонной структуры родственного бората FeBO3 был выполнен с использованием метода локального спинового функционала плотности [21] и в обобщенном градиентном приближении, учитывающем нелокальные поправки к локальному функционалу плотности [22]. К сожалению, в работе [22], где обсуждается изменение параметров решетки и магнитного состояния под давлением, не приведены сами зонная структура и плотность одноэлектронных состояний N(E). Поэтому мы будем в основном опираться на результаты работы [21], где приведены парциальные вклады в плотность одноэлектронных состояний от различных орбиталей $B_{2s,2p}, O_{2s,2p}$ и Fe_{3d}. Согласно этому расчету дно пустой зоны проводимости (С) и потолок валентной зоны (V) формируются гибридными s-, p-состояниями В и О. Вблизи потолка валентной зоны находится узкая d-зона Fe. В одноэлектронном расчете уровень Ферми находится внутри *d*-зоны и кристалл приобретает металлические свойства. Учет сильных электронных корреляций ведет к модификации расчетов локального спинового функционала плотности [21], и основной эффект заключается в расщеплении d-зоны на нижнюю заполненную (LHB) и верхнюю пустую (UHB) подзоны, разделенные большой щелью порядка U, где U — внутриатомный кулоновский матричный элемент. Типичное значение U для 3*d*-металлов составляет примерно 5 эВ.

Рис. 9. Схема плотности состояний Fe_2BO_4 (a) и $Fe_{1.91}V_{0.09}BO_4$ (б)

Предлагаемая нами модель зонной структуры для исходного кристалла Fe_2BO_4 приведена на рис. 9*a*. Штриховыми линиями выше LHB показан примесный акцепторный уровень, обусловливающий активационную проводимость с энергией активации E_a . При этом носителями будут электроны из LHB.

Замещение части ионов железа на ванадий приводит к увеличению степени беспорядка в кристалле, вследствие чего появляется псевдощель с порогом подвижности ε_{c1} для зоны проводимости и ε_{c2} на потолке валентной зоны. Уровень Ферми попадает в область локализованных состояний (рис. 96). Вследствие кулоновских взаимодействий плотность состояний на уровне Φ ерми $N(\varepsilon_F)$ обращается в нуль [17]. В случае одноэлектронных состояний проводимость определялась бы обычным моттовским законом: $\ln \sigma(T) \propto (\Delta_4/T)^{1/4}$, характеризующим термически активированные прыжки переменной длины. Поскольку носителями на потолке валентной зоны являются сильно коррелированные электроны, неудивительно, что для Fe_{1.91}V_{0.09}BO₄ проводимость ближе к закону Эфроса-Шкловского: $\ln \sigma(T) \propto (\Delta_2/T)^{1/2}$. Согласно [17] $\Delta_2 \sim e^2/\varepsilon \zeta$, где ζ — длина локализации электрона. В нашем случае локализация 3*d*-электронов обусловлена внутриатомными сильными электронными корреляциями

и естественно положить $\zeta \sim a_B$, где a_B — боровский радиус, тогда $\Delta_2 \sim U$.

Экспериментальные результаты показали сосуществование двух различных механизмов проводимости: прыжкового и активационного с энергией активации Δ_1 . Этот факт указывает на то, что наряду с локализованными электронами в системе присутствуют зонные носители.

В заключение отметим, что полученные монокристаллы $Fe_{1.91}V_{0.09}BO_4$, в отличие от исходного Fe_2BO_4 , не претерпевают структурного перехода. Добавление ванадия заметно понижает температуру магнитного упорядочения, изменяет тип проводимости и распределение катионов $Fe^{2+},\ Fe^{3+},\ Fe^{2.5+}$ по кристаллографически неэквивалентным позициям.

Работа выполнена при финансовой поддержке РФФИ (грант № 03-02-16286) и ФПЦ «Интеграция» (грант № Б0017).

ЛИТЕРАТУРА

- J. C. Fernandes, R. B. Guimarães, M. A. Continentino et al., Phys. Rev. B 50, 16754 (1994).
- 2. R. B. Guimarães, J. C. Fernandes, M. A. Continentino et al., Phys. Rev. B 56, 1, 292 (1997).

- 3. R. Norrestam, Z. Kristallogr. 189, 1 (1989).
- J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez et al., J. Mater. Chem. 9, 205 (1999).
- M. A. Continentino, B. Boechat, R. B. Guimarães et al., J. Magn. Magn. Mat. 226-230, 427 (2001).
- R. Norrestam, M. Kritikos, and A. Sjoerdin, J. Sol. St. Chem. 114, 311 (1995).
- M. J. Buerger and V. Venkatakrishnan, Mater. Res. Bull. 7, 1201 (1972).
- K. Bluhm and A. Utzolino, Z. Naturforsch. B 50, 1450 (1995).
- M. A. Continentino, J. C. Fernandes, R. B. Guimarães et al., Phil. Mag. B 73, 4, 601 (1996).
- B. Boechat, A. Saguia, and M. A. Continentino, Sol. St. Comm. 98, 5, 411 (1996).
- A. Saguia, B. Boechat, and M. A. Continentino, J. Magn. Magn. Mat. 230, 1300 (2001).
- M. A. Continentino, A. M. Pedreira, R. B. Guimarães et al., Phys. Rev. B 64, 014406-1 (2001).

- A. P. Douvalis, V. Papaefthymiou, A. Mookarika et al., J. Phys.: Condens. Matter. 12, 177 (2000).
- A. P. Douvalis, V. Papaefthymiou, A. Mookarika et al., Hyperfine Interactions 126, 319 (2000).
- 15. J. P. Attfield, J. F. Clarke, and D. A. Perkins, Physica B 180, 581 (1992).
- 16. Н. Б. Иванова, В. В. Руденко, А. Д. Балаев и др., ЖЭТФ 121, 354 (2002).
- 17. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).
- M. Matos, R. Hoffmann, A. Latge et al., Chem. Mater. 8, 2324 (1996).
- 19. D. C. Marcucci, A. Latge, E. V. Anda et al., Phys. Rev. B 56, 3672 (1997).
- 20. J. P. Attfield, A. M. Bell, L. M. Rodriguez-Martinez et al., Nature 396, 655 (1998).
- A. V. Postnikov, St. Bartkowski, M. Neumann et al., Phys. Rev. B 50, 14849 (1994).
- 22. K. Parlinski, Eur. Phys. J. B 27, 283 (2002).