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UNDERSTANDING ATOMIC PROCESSES IN TERMSOF COULOMB SINGULARITIEST. Suri¢ *R. Bo²kovi¢ Institute, Zagreb, P.O. Box 180, 10000 Zagreb, CroatiaE. G. Drukarev **Petersburg Nulear Physis Institute188300, Gathina, Leningrad region, RussiaR. H. PrattDepartment of Physis and Astronomy, University of PittsburghPittsburgh, PA 15260, USASubmitted 30 Deember 2002Many aspets of high-energy atomi proesses an be desribed in terms of singularities of a many-body Hamil-tonian using the generalized asymptoti Fourier transform (AFT) theory. The study of matrix elements indi�erent kinemati regimes is related to the study of singularities (points of nondi�erentiability) of the wavefuntions and the e� interation. These singularities re�et the singularities of the many-body Hamiltonian.We illustrate the priniples of the AFT approah in the simple example of photoabsorption by the eletronbound in a potential with a Coulomb singularity. We exhibit two general results that are important for anymany-body system: 1) the quality of approximate results in di�erent forms (�gauges�) depends on the qualityof the desription of the wave funtions in the viinity of singularities and 2) due to the harater of the Coulombsingularity, photoabsorption ross setions onverge slowly to their asymptoti form as the energy inreases. Butthe slowly onverging behavior of these ross setions is due to one ommon fator (the Stobbe fator), whihan be obtained analytially in terms of the haraterization of the viinity of the singularity. The ommonStobbe fator explains why ratios of ross setions onverge more rapidly than the ross setions themselves.PACS: 32.80.Fb 1. INTRODUCTIONHigh-energy atomi proesses an be desribed interms of singularities of the many-body Hamiltonian.The asymptoti Fourier transform (AFT) theory [1, 2℄an provide suh a desription. In this paper, we ap-ply the AFT approah to photoabsorption (at high butnonrelativisti energies) in a simple atomi system, theeletron in a potential with a Coulomb singularity. Thisserves to illustrate general points that are important ina variety of more omplex systems. In partiular, weillustrate: 1) dependene of the required wave funtionquality on the interation form (�gauge�) utilized and2) extration of a ommon fator (the Stobbe fator)*E-mail: tiho�lei2.irb.hr**E-mail: drukarev�thd.pnpi.spb.ru

that ontains all slow onvergene of the matrix ele-ments to their high-energy limit.The study of single-photon ionization proesses re-sulting in single [3, 4℄ or multiple [5, 6℄ ionization of anatom is of fundamental and pratial importane. Newexperimental possibilities, modern synhrotron souresand experimental methods [7℄ result in better under-standing of the eletron orrelation e�ets in omplexsystems and in proesses involving these systems [8�12℄.Reently, we have proposed a uni�ed desription [1, 2℄of the proesses of high-energy1) ionization by photoab-sorption, based on the mathematially well foundedAFT theory. The idea is based on the lose relation1) By high energy, we mean that the photon energy ! � EB(where EB is the binding energy of the state that is ionized), butstill ! � m (for a nonrelativisti desription of eletrons).243



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003between high-energy photoabsorption matrix elementsand the AFT of funtions with singularities (by a sin-gularity, we mean a point where a funtion is not dif-ferentiable).Aording to the AFT theory, the asymptotiFourier transform of a funtion with singularities is de-termined by the behavior of the funtion in the viinityof these singularities [13; 14℄. Beause photoabsorptionat high photon energies requires at least one large out-going eletron momentum p, we an generally arguethat the analysis is equivalent to the analysis of theasymptoti forms of Fourier transforms (FT). A slowasymptoti derease for large p, suh as 1=pn for ex-ample, of the FT of a well-loalized funtion, resultsonly from singularities of that funtion. By studyingsingularity strutures of the wave funtions, whih fol-low from the Shrödinger equation, one is then ableto address various, quite general, issues of the matrixelement (suh as the interation-form dependene ofapproximate matrix elements and the nature of onver-gene with energy to high-energy forms) without need-ing the full knowledge of the many-body wave fun-tions. The AFT approah has been applied to doubleionization [1℄ of He-like systems and single ionizationof more omplex atoms [2℄.In this paper, we desribe this approah to photoab-sorption (and perhaps other related) proesses at highbut nonrelativisti energies. We use the example of sin-gle ionization within a entral �eld independent partileapproximation (IPA) model and assume that the IPApotential near the nuleus is point Coulomb. We usethis simple and familiar model in order to illustrate themain points of our general approah in the ontext ofa relatively simple and familiar situation where mostfeatures an learly be seen. We view the idea of theAFT approah very general, and by presenting it in arelatively simple situation we want to motivate its ap-pliation to other proesses. The kinemati situationsthat our in high-energy photoabsorption an also o-ur in other proesses, e.g., in harged partile sat-tering. In suh situations, the AFT approah onnetsmatrix element of the proess with the singularities ofthe system involved in the proess.Another important motivation in onsidering thesimple system is to illustrate and emphasize two oftennegleted points, whih are general for any photoab-sorption proess, and for whih purpose an IPA modelis su�ient. The �rst point is onerned with how thequality of approximate results depends on both thequality of approximate wave funtions used and theinteration form hosen. For example, a plane-wavedesription of fast eletrons is generally inadequate, as

disussed in [15�18℄. The seond point is that due tothe Coulomb singularity, any high-energy photoabsorp-tion ross setion (for ionization of a system with an in-teration having a Coulomb singularity) has the Stobbefator, whih must be extrated in order to obtain a fastonvergene of the results. This is very important forhigh-energy studies of photoabsorption. For example,beause absolute measurements at higher energies areless aurate than at lower energies, the high-energyresults are often obtained from lower energy resultsassuming some asymptoti behavior. It is sometimesassumed [5; 19℄ that at some �nite energy (not takensu�iently high), the ross setions for photoabsorp-tion follow the leading-order Born result. This auseserrors in reported ross setions.We onsider the adequay of various forms of ma-trix elements (length (L), veloity (V) or aeler-ation (A) forms) in using approximate wave fun-tions of various qualities in the viinity of a singu-larity. We demonstrate that nonrelativisti IPA high-energy photoabsorption is determined (up to orre-tions O(1=p2) � O(1=!), where p is the outgoing ele-tron momentum) by the initial state normalization andthe point Coulomb singularity. This result is form-independent, but whether the information about thesingularity omes from the interation (as in the A-form) or from the initial and �nal state (as in the L-and V-forms), is form-dependent. In suh a way, we areable to identify neessary onditions for all the threeforms to give the orret high-energy result in the IPAase. We also expliitly obtain the order of magnitudeof the error resulting from the error in the desriptionof the wave funtions in the viinity of the singularity.We onsider this at two levels of auray (dependingon the auray of the desription of the wave funtionsin the viinity of the singularity). We �rst onsider theleading-order results in 1=p that an be obtained bytaking a simple desription of the wave funtions inthe viinity of the singularity. To illustrate the soureof the general Stobbe fator, we then use a desrip-tion that ompletely inludes the strong e�N Coulombinteration.We begin in Se. 2 with a general disussion of theAFT of singular funtions. We disuss the onnetionwith the photoabsorption matrix element and di�er-enes (modi�ations of the asymptoti AFT) requireddue to the presene of Coulomb funtions. In Se. 3,we begin the disussion of the behavior of the photoef-fet matrix element in an IPA potential. Here, we takethe simplest desription of the wave funtions, whihprovides an illustration of the main ideas. In Se. 4, weonsider the simplest ase, photoabsorption by an s-244



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :state in a purely Coulomb potential, negleting retarda-tion in order to make omparison with the well-knownresults obtained in the Born expansion approah. Wethere illustrate our AFT approah in more detail. InSe. 5�7, we remove the onstraints of the simplest ase,identifying the resulting additional features. We showhow the approah works for non-s-states (Se. 5) andfor a general IPA potential with a point Coulomb singu-larity (Se. 6). We disuss relativisti and retardationontributions in Se. 7. Finally, in Se. 8, we show howmore aurate results (together with a measure of theirerror) an be obtained by fully inluding in the wavefuntions the interations that are strong in the viinityof the singularity (e�N). We also assess the importaneof the ontributions arising from interations that areweak in the viinity of the singularity (sreening, or or-relations more generally). We disuss the onvergeneof the results to asymptoti forms with inreasing en-ergy. We expliitly obtain a ommon fator (the Stobbefator) arising from the e�N interation that ontainsall the slowly onverging behavior. This explains whyratios of ross setions onverge to asymptoti formsmuh more rapidly than the ross setions themselves.In Se. 9, we summarize our onlusions.2. GENERAL CONSIDERATIONSIn general, the �nal-state wave funtion inhigh-energy photoionization of a many-eletron atomis of the form exp(ip � r1)�p;�, where p denotes thelarge momentum of one ejeted eletron (there must beat least one), r1 is its spae oordinate, and � denotesquantum numbers of other eletrons in the �nalstate. Beause the outgoing eletron wave funtionis desribed by a plane wave and inoming spherialwaves at large distanes (with appropriate long-rangeCoulomb logarithmi fators), these osillations limitthe range in r1 that ontributes to the matrix elementintegral, whih an be viewed as a FT in the eletronmomentum p of slowly varying funtions. (Beausewe have assumed nonrelativisti energies, there are noosillations of any retardation fator in the interationin this range.) We disuss the remaining p-dependenein the Coulomb wave funtion in this range below. Be-ause large ! neessarily implies large p, the study ofthe photoabsorption matrix element at large energiesis equivalent to the study of the asymptoti form ofthe FT.The study of the asymptoti form of the FT arisingin our problems is based on the theory of generalizedfuntions [13℄. By de�nition [14℄, a good funtion f is

an in�nitely di�erentiable funtion of n variables suhthat Rl �f�x�1�x�2 : : : �x�n ! 0; R!1 (1)for any l and m and any hoie of the indies �1,�2; : : : ; �n (with �1 + �2 + : : : + �n = m), whereR � (x21 + x22 + : : : + x2n)1=2. (In the terminologyof [14℄, these are alled � funtions.) The theorem [13,Theorem 2, p. 15℄ says that the FT of a good fun-tion is a good funtion [13; 14℄. This implies thatasymptotially, the Fourier transform g(p1; : : : ; pn) ofa good funtion dereases faster than any power ofp � (p21 + p22 + : : : + p2n)1=2. We all this the AFTtheorem. An example of suh a funtion in three di-mensions is given by f1(r) = exp(�r2). For large p,the FT F1(p) / exp(�p2=2) of this funtion dereasesexponentially, i.e., faster than any power of 1=p, in a-ordane with the AFT theorem.The funtions that appear in our photoionizationmatrix elements, even for the photoionization of a par-tile in a potential, are well loalized (beause thebound state is loalized), but are singular [20℄, i.e., non-di�erentiable, at oalesene points. The wave fun-tions, whih are eigenstates of a many-body Hamil-tonian with Coulomb interations, have singularitiesat the singularities of the Hamiltonian, whih are lo-ated at points where the partiles oalese. We usethe term oalesene points for the loations of thesesingularities. In general, there are double oalesenepoints where two partiles meet2) and multiple oales-ene points where more than two partiles oinide.The properties of wave funtions in the near viinity ofthese singularities, whih are well understood for boundstates [20; 21℄, an be extrated from the Shrödingerequation. They are known as oalesene properties,and for s-states, they are often alled Kato usp on-ditions. We use the term Kato usp onditions moregenerally, to denote exat behavior of the wave fun-tions at a two-partile singularity. (There must also besingularities in the e� interation operator, dependingon the form that we take.)In the viinity of a singularity, the funtions whoseFT is alulated an be written in terms of simplerfuntions fs (with s standing for �simple�) whose FT isknown and a remainder O whose FT is asymptotially2) Finite nulear size does not a�et our onlusions in anyway beause the distanes probed at nonrelativisti energies aremuh larger than the size of the nuleus. A �nite nulear sizeannot be relevant for photoabsorption (when the total ross se-tion is onsidered, for example) even at ultrarelativisti energies,see Se. 7.245



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003negligible. We all this the partitioning (fs+O) of fun-tions. Aording to the theory of generalized funtions,the FT of a generalized funtion with singularities isapproximated by the FT of these simpler funtions fs,while the size of the FT of the remainder O gives a mea-sure of the auray of the approximation. The pointis that by taking fs more aurately in the viinity ofthe singularity, we an in priniple ahieve arbitraryauray [14, Theorem 19, p. 52℄. A simple example ofsuh a singular funtion is given by f2(r) = exp(�r).The FT of this funtion is F2(p) / (1 + p2)�2, whihindeed dereases as a power of p. By partitioning f2 interms of polynomials3) in r and usinglim"!0 Z exp [�("r + ip � r)℄ rnd3r == 4�(n+ 1)!(ip)n+3 ( 0; even n � 0,1; odd n > 0 (2)(where we assume that p 6= 0, and therefore do not in-lude Æ-funtion terms), we reprodue the expansion ofF2(p) in powers of 1=p. If we used some other parti-tionings, we would not obtain powers in 1=p, but rathersome other funtion of p, depending on the nature offs used. The point is that the asymptoti FTs of suhsimpler funtions approah the exat FT for large p andthe FT of the remainder vanishes faster, in aordanewith the theory of the FT of generalized funtions.This is an illustration of the general idea. The fun-tions that appear in our matrix element an be writtenin terms of simpler funtions, whih are required bythe Kato onditions to have the Coulomb behavior inthe viinity of a two-partile singularity, as explainedbelow. In obtaining leading-order results, or in simpleases that we onsider for illustration, we use polyno-mials in r (the interpartile distane) as our simplerfuntions. These polynomials an be viewed as expan-sions in r (whih an exist in IPA potentials). But inmore general situations (with more eletrons involved,e.g., as onsidered in [1℄) we annot assume that sin-gular funtions are expandable in in�nite series in r inthe viinity of any singularity. In suh ases, we anstill partition a singular funtion in the viinity of asingularity into a simple funtion (perhaps a polyno-mial or the Coulomb funtion) and a remainder, whihmay not neessarily be expandable but whih vanishesfaster than the simple funtion as r approahes the sin-gularity. In obtaining our full IPA results in Se. 8,3) Polynomial partitioning requires a onvergene proedure;we multiply eah term in fs with exp(�"r) and let "! 0 after theintegration is performed. This is onsistent with the de�nitionof the FT of generalized funtions [14, p. 33℄.

partitioning in terms of Coulomb funtions is required(beause all orders in the e�N interation are required).Suh a hoie is su�ient for our purposes; it gives a-urate results negleting the order m�2=p2 (we use thesystem of units ~ =  = 1) and allows us to ollet allCoulomb slowly onverging terms in (powers of) �a=p(when full Coulomb funtions are used), a = mZ�,where Z is the nulear harge and m is the eletronmass. If better auray is required, one must go be-yond funtions with the Coulomb shape in the viinityof a singularity.Expansion of wave funtions around the origin(whih is the position of the e�N singularity) interms of polynomials has been used previously inboth single and double ionization by photoabsorp-tion [16; 17; 22; 23℄ and in ollisions [23℄. Here, we il-lustrate generalizations of these approahes using theAFT theory [1, 2℄. We an partition (e.g., use Coulombfuntions, whih are muh better funtions than poly-nomials near the singular point) around singular pointsthat do not have to be at the origin in general andonsider all singularities on the same footing. An im-portant point of this approah is that it lari�es whihsingularities must be onsidered for these partitionings(there are more than one singularity in many-bodywave funtions and interations in general [1℄). Asshown in [1℄, the singularities that must be onsideredare determined by the kinematis of outgoing eletronmomenta, identifying situations in whih the numberof the asymptoti FTs is minimized. Another impor-tant point of our approah is that we start from exatmatrix elements (with exat wave funtions) and ex-trat and ollet all ontributions in the leading powerof 1=p, whih determine the high-energy behavior (andthe leading orretions in some ases). With our ap-proah, we identify the dominant terms and avoid los-ing any of them; we also avoid unontrolled introdu-tion of spurious ontributions. It is illustrated in [1℄how both these problems have arisen in the use of ap-proximate wave funtions.There is however a point of di�erene between ourasymptoti matrix element and the asymptoti FT.Namely, after isolating the fast osillating terms ofthe plane wave, the funtion left in the integrand stilldepends on the large momentum variable p (omingfrom the �nal-state wave funtion) through the pr-dependene (as for example in on�uent hypergeomet-ri funtions in the Coulomb ase). It might thereforebe more appropriate to talk about a generalization ofthe FT. We see in what follows that this additionalp-dependene is not a problem. The Coulomb modi�-ation of the FT results, as we demonstrate in Se. 8,246



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :in a slowly onverging fator, the Stobbe fator.Aurate evaluation of the matrix element at highenergies requires knowledge of both initial and �nalstate eletron wave funtions at the singular point orat all singular points in general, if one goes beyond theIPA. However, how muh of this knowledge is atu-ally needed in a given alulation depends on the formof the matrix element used for that alulation. Aswe demonstrate in onsidering the leading-order result,only the normalization of the initial wave funtion atthe e�N oalesene is required if the A-form is used.With other forms (V and L), we generally need furtherinformation about both the initial and �nal states. Theexeption is for the s-state ionization in the V-form, forwhih we need only the normalization and slope of theinitial state at the oalesene. In any ase, this knowl-edge gives us the leading ontribution of the high-ener-gy matrix element, whih is generally aurate to therelative order O(�mZ�=p).3. SINGULARITIES OF THE IPA MATRIXELEMENT INTEGRANDFor a single eletron in a potential, in the lowestorder of the eletron�photon interation, the matrix el-ement for photoionization by photoabsorption is givenby (in units ~ =  = 1)M = Z 	(�)�p (r)I(r)	i(r)d3r; (3)where 	i(r) = Rnl(r)Y ml (r̂) is the initial boundstate normalized to unit integrated probability den-sity (the hat denotes the unit vetor), 	p(r) == exp(ip � r)�(�)p (r) is the �nal eletron ontinuumstate normalized on the momentum sale (to asymp-totially approah a distorted plane wave of the mo-mentum p with the amplitude (2�)�3=2), and I(r) isthe interation operator, given in the three ommonlyused forms (keeping retardation to all orders) asIV = �ieik�r� � r; (4)IL = im�! � k22m� � � reik�r � eik�r(� � r)(k � r); (5)IA = �! � k22m��1 �� �ieik�r(� � r)V (r)� 1meik�r(k � r)(� � r)� : (6)

Here, � is the photon polarization and V (r) is an IPApotential energy of the type V (r) = �(Z�=r)S(r),where S(r) is a sreening funtion, whih we assume4)an be desribed as a polynomial in r for small r,S(r) = (1+s1r+s2r2+: : : ); the potential therefore hasonly a Coulomb divergene and is di�erentiable exeptat r = 0. The singularity of the potential energy resultsin singularities in the wave funtions 	p and 	i. Thesefuntions are not di�erentiable at the origin. The e�interation operator in the L- and V-forms is regular inthis sense, while in the A-form it is singular beause itinvolves the singular potential V (r), Eqs. (4)�(6). Thelarge-p behavior of the Fourier transform of a slowlyvarying funtion of r is determined by its behavior nearthe oalesene point (beause pr � 1, large p orre-sponds to small r) and only depends on the singularparts of the funtion. We thus partition the funtions	i(r) and �(�)p (r) around the oalesene point r = 0(the only singular point here). The small-r behaviorof these slowly varying portions of the integrand deter-mine the AFT.The partitioning fs + O in terms of polynomialsof the initial (bound) state with quantum numbers(n; l;m) in an IPA potential with the Coulomb singu-larity is	i(r) = N IPAi rl �� �1� al + 1r + �2r2 + �3r3 +O(r4)�Y ml (r̂): (7)In the simple funtion fs (in whih the terms are al-ternately regular and singular, with the regular �rstterm, rlY ml (r̂)), the �rst two terms are determinedsolely by the Coulomb singularity of the potential andare therefore known independently of the sreening, ex-ept for the overall normalization fator N IPAi (whihdepends on the hoie of the IPA potential). Higher-or-der terms in fs in Eq. (7) depend on the sreening ofthe IPA potential, whih determines the �i oe�ients.The fat that the �rst two terms in the parenthesis inEq. (7) are determined by the Coulomb singularity iswell known; it is a speial ase of the general behavior ofwave funtions at oalesene points of many-eletronatoms [20; 21℄. Namely, in the desription of a bound-state many-eletron atom wave funtion around anyoalesene (whih inludes any eletron�eletron o-alesene) in terms of the relative oordinate of the4) Here, we assume a potential that an be expanded in integralpowers of r in the viinity of a singularity. Using a potential thatis expandable in nonintegral powers of r (e.g., the Thomas�Fer-mi potential VTF = �Z�=r + CTF + O(pr), where CTF is aonstant) would lead to nonintegral powers of 1=p.247



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003two oalesing partiles, the �rst two terms are deter-mined by the singularity of the orresponding part ofthe Coulomb potential, up to an overall fator, andthere is a remainder that vanishes more rapidly thanlinearly in the oordinate. These two terms and thenormalization onstant are all that we need from theinitial-state wave funtion (we also need informationfrom the �nal state) in order to determine the leadingontribution in 1=p to high-energy photoabsorption inany form.In the �nal-state eletron wave funtion, the sit-uation is very similar, exept that the normalizationis not a�eted by sreening in the limit of high mo-menta. Aording to [24�27℄, the wave funtion of ahigh-energy ontinuum eletron state of momentum pin the viinity of the Coulomb singularity of the IPApotential is essentially of a Coulomb form. As shownin [27℄ using the analyti perturbation theory, the or-retions to the Coulomb wave funtion due to sreeningin the viinity of the nuleus (r � 1=a, where a = mZ�haraterizes the unsreened nulear harge) dereasewith the eletron momentum as O(1=p2) relative to theCoulomb funtions. This means that in the viinity ofthe Coulomb singularity (r � 1=a), the wave funtionrepresenting the outgoing eletron of momentum p� aan be written, following [25; 27℄, as	(�)p (r) = NCp eip�r �1F1 ��iap ; 1;�ipr(1+os#)�++ O� 1p2 ; pr; os#; si�� ; (8)where os# = p̂ � r̂, the �rst term in the right-handside is the Coulomb term while the seond term is theremainder, whih vanishes faster than 1=p (denotedby 1=p2 in O). The funtional dependene of O isalso shown; the remainder ontains all information onsreening, symbolized by the oe�ients si harater-izing the small-distane behavior of the sreened po-tential. Aording to the analyti perturbation the-ory [25; 27℄, an even more aurate ontinuum wavefuntion of the Coulomb shape is obtained in the re-gion r � 1=a by shifting the eletron momentum inEq. (8) from p to pC , by an amount determined by theparameters of the sreened potential, and by replaingthe normalization NCp (if the momentum sale normal-ization is used) bypp=pNCpC . However, although suha Coulomb funtion is more aurate, its error still de-reases as 1=p2 with large momentum p. We thereforedo not need it here, but we use it in Se. 8.The result in Eq. (8) is important for our approahbeause as we show below, it implies that the terms

in the partitioning of the �nal state around the oa-lesene that ontribute to the high-energy matrix el-ement are not a�eted by sreening. We show this tothe leading order in 1=p, further simplifying fs in thepartitioning of Eq. (8). Beause distanes involved inthe proess are r � 1=p and beause we onsider highenergies for whih p� mZ�, while the wave funtionsare onsidered at �xed pr, the terms that are importantfor our disussion here involve terms up to linear in theparameter mZ�=p, with further terms ontributing tohigher orders in 1/p. We write	(�)p (r) = NCp eip�r �1� iapg(�) (i(pr + p � r)) ++ O� 1p2 ; pr; os#; si�� ; (9)where O inludes all ontributions of the order a2=p2and higher-order ontributions from the full Coulombfuntion in Eq. (8), andg(�)(i�) = � 12�i I� e�i�t ln� t� 1t � dtt == 1Z0 �e�i�t � 1� dtt (10)determines all ontributions of the order a=p to thefull Coulomb wave funtion for pr � 1. Here, � is aounterlokwise oriented losed ontour enirling theut [0; 1℄. By inserting Eqs. (9) and (7) in Eq. (3),we obtain a series of integrals of funtions that ontainpowers of r, the g(�) funtion, and angular funtions.The funtion g(�)(i�) is needed in alulating the lead-ing ontribution to the high-energy matrix element ingeneral. It ontains p-dependene through pr, whihmay appear undesirable, at �rst sight, if we want toview this high-energy matrix element as a FT. It fol-lows from expliit alulations, however, that there isno additional p-dependene in a FT integral also in-volving g(�) funtion despite the p-dependene of theg(�) funtion.The fator exp(�"r) is introdued in order toahieve a onvergent integration of eah term in the se-ries; after the integration is performed, the limit "! 0is taken. As noted in Se. 2, this proedure is onsis-tent with the de�nition of the FT of generalized fun-tions [13℄. For the AFT theorem (and we also assumefor the AFT involving the g(�) funtion), we must un-derstand the singularities of the integrand. The singu-larity properties of the wave funtions are immediatelyidenti�able in these series, whih involve powers of r248



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :and angular funtions suh as powers of p̂ � r̂ = os#and spherial harmonis. For example, r and os# aresingular at the origin (as funtions of x, y, and z), buttheir produt is not (r os# = z), nor are their squares(we also note that rlY ml is regular).We see in what follows that the leading ontributionto the high-energy matrix element an be obtained inany form using only the �rst two terms in fs of therespetive partitioning of the initial and �nal state inEqs. (7) and (9), while negleting some of these �rsttwo terms may lead to erroneous results in some forms.Higher-order terms in the expansion give higher-or-der ontributions in 1=p, as is explained below and isdemonstrated using simple examples in Ses. 4 and 5.To the leading order in 1=p, the form-independent high-energy matrix element for photoabsorption in an IPAmodel is obtained fromM = N IPAi NC�p lim"!0 Z exp(�ip � r� "r)�� �1 + iapg(�)� (i(pr + p � r))� I(r)rl �� �1� al + 1r�Y ml d3r; (11)where I(r) an take forms like Eqs. (4)�(6), whih alsoontain di�erent powers of r and angular funtions.Expression (11) is a form-independent term thatgives the leading order in 1=p for large p. We seefrom Eq. (11) that the only di�erene from the purelyCoulomb ase is in the initial-state normalization,whih depends on the IPA potential. All other termsare determined by the Coulomb singularity. There-fore, in an IPA model with a Coulomb singularity,information about sreening persists at high energiesonly in the initial-state normalization. This behaviorfor high-energy photoabsorption in an IPA potential isknown [26℄, but it is just one aspet of the persisteneof the eletron�eletron interation in high-energy pho-toabsorption, disussed within the AFT approah fortwo-eletron atoms in [2℄.In a matrix-element form, in whih the interationoperator is regular (suh as the V-form and L-form, tobe denoted by IRV and IRL ) rather than singular (as inthe A-form, ISA), the ontribution from the term in theintegrand involving the �rst terms of the simple fun-tions fs of both the partitionings of 	i and of �(�)vanishes for any l (while in the A-form, this term givesthe leading nonvanishing ontribution). The leadingnonvanishing ontributions in suh forms (L or V) in-volve the produt of the �rst term from �(�) (whih isregular, to be denoted as Rf ) with the seond term in

	i (singular, Si) and the produt of the seond termfrom �(�) (singular, Sf ) with the �rst term in 	i (regu-lar, Ri). These two ontributions are of the same orderin 1=p. In summary, in the leading order in 1=p, weobtain the nonvanishing ontribution fromM = Z exp(�ip � r� "r) [Rf + Sf ℄�� 264 IRLIRVISA 375 [Ri + Si℄!! Z exp(�ip � r�"r)264 Rf IRLSi+Sf IRLRiRf IRV Si+Sf IRV RiRf ISARi 375 : (12)We expliitly evaluate Eq. (11) for an H-like po-tential in the next two setions, and we disuss theobtained leading-order results further, omparing themwith the Born-approximation results in di�erent forms.The two approahes must of ourse agree. We notethat the results in Eqs. (11) and (12) re�et the im-portane of the singularity region. This means that ifone wants to improve results, one needs to partitionfuntions in terms of funtions that better desribe thebehavior in the viinity of the singularity. (This is onlyone of the points of distintion from a perturbative ap-proah, e.g., the Born expansion. The Born expansiongives the same weight to all regions, while the AFT ap-proah tells us that the singularity region is importantfor high-energy photoabsorption.) Partitioning of thewave funtions in terms of funtions that are more a-urate in the viinity of the singularity provides moreaurate results. The results in Se. 8, for example, areobtained using partitioning in terms of Coulomb fun-tions (whih inlude the e�N interation to all orders).The integrals involved in evaluating Eq. (11) areelementary and are of two types. The integrals that in-volve the �rst term in the square brakets from the �nalstate and powers of r and produts of spherial harmon-is from the e� interation and the initial state5) aregiven byJ1 = lim"!0 Z exp(�ip � r� "r)rnY ML (r̂)d3r == 2�(n+ 2)!(ip)n+3 Y ML (p̂)fLn+3; (13)where5) These produts of spherial harmonis an be ombined intoone YML .249



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003fLk = 1Z�1 PL(x)dx(x� i")k (14)and PL(x) is the Legendre polynomial. The integralsof the seond type, involving g(�)(i(pr + p � r)) fromthe �nal state and powers of r and produts of spher-ial harmonis from the e� interation and the initialstate, are given byJ2 == lim"!0 Z exp(�ip � r�"r)g(�)�(i(pr+p�r))rnYML d3r == 2�(n+ 2)!(ip)n+3 YML (p̂)hLn ; (15)wherehLn = 1Z�1 dxPL(x)��8<:n+1Xj=0 (�1)n�j(x� i")n+2�j � 1(n+ 2� j)(x� i")n+3 ++ i� + ln(x� i")(x� i")n+3 9=; : (16)In performing the radial integration in Eq. (15), weused the integral form (the seond form in Eq. (10)) ofthe funtion g(�)(i(pr+ p � r). The integrations over xin Eqs. (14) and (16) are elementary, and we evaluatethem for spei� L in Ses. 4 and 5.Expressions (13) and (15) show how higher powersin r lead to higher powers in 1=p. We note that whileJ2 gives a nonzero result for any n and L (beause gontains both regular and irregular terms), J1 is zerofor n and L for whih rnY ML is regular, in aordanewith the AFT theorem. Therefore, depending on theform used, at least one of the two �rst terms in the fsfuntions of eletron states gives a ontribution to theleading order of the matrix element, while all furtherterms beyond the �rst two give higher-order ontribu-tions.4. THE SIMPLEST CASE: GROUND STATEIONIZATION OF AN H-LIKE ATOMWe now disuss how the leading ontribution tothe matrix element is obtained in the three forms inEqs. (4)�(6), in the simple and familiar ase of pho-toionization of the ground state of an H-like atom withretardation negleted.

When we neglet retardation and use the nulearCoulomb potential, the A-, V-, and L-forms of the ma-trix element are obtained usingIA = iZ�! � � r̂r2 ; IV = �i� � r; IL = im!� � r (17)for the interation operators, where ! is the photonenergy and � is the photon polarization. The V- andL-forms of the interation operator are regular, but theA-form is not, beause it was obtained by taking thegradient of the potential. We note that the A-formis irregular at the origin both beause it is divergentand beause its value near the origin depends on thediretion of approah.As we have seen, the large-p asymptoti behaviorof the FT of a slowly varying funtion of r is deter-mined by its behavior near the oalesene point; itonly depends on the singular parts of the funtion inthe small-r limit. We therefore begin by partitioningthe funtions 	i(r) and �(�)p (r) around the oalesenepoint r = 0 (the only singular point here). We write	i(r) = Ni(1� ar + : : : );�(�)p (r) = NCp �1�iapg(�) (i(pr+p � r)) + : : :� : (18)If we proeed as desribed in the previous setion,we obtain the familiar high-energy expression, whih isusually obtained in the V-form by assuming that theenergeti outgoing eletron an be regarded free andan be represented by a plane wave [28�30℄. But in ourproedure, we must be more areful and must not makesuh an assumption, whih is inorret in general (e.g.,for non-s-states or even for s-states in the L-form).Substituting Eqs. (18) and (17) in the matrix el-ement in Eq. (3), we obtain a series of integrals in-volving powers of r and powers of os#. (We hoosethe p diretion as the z axis in this integration, andonly funtions of os# therefore appear). Applying� � r	i = � � r̂ (�a + a2r + : : : ), we obtain integralsof the two types in Eqs. (14) and (16). The integralinvolving the �rst term from fs of the partitioning of�(�)p and terms from the partitioning of 	i is [1℄Z exp [�("+ ip � r)℄ rn� � r̂ d3r == 2�(n+ 2)! � � p̂(ip)n+3 Cn;Cn =8><>: �2=(n+ 1); even n � �2,0; odd n > �1,i�; n = �1. (19)
250



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :We note that the zero result for odd n > �1 followsfrom the AFT theorem beause the integrand funtionis not singular; for even n and for n = �1, the inte-grand funtion is singular. Integrals involving the termg(�)(pr; os#) in the partitioning of �(�)p are easily per-formed using the integral representation in Eq. (10).We obtain [1℄Z exp [�("+ip � r)℄ g(�)� (i(pr+p � r)) rn� � r̂ d3r == 2�� � p̂(ip)n+3Dn; (20)where Dn = 2(n+ 2)! (1� i�)=(n+ 1)for even n � 0 andDn = (n�1)=2Xk=0 2k + 2n� 2kfor odd n > 0, D�2 = i��2, andD�1 = ��2=2�i��2.In both Eqs. (19) and (20), the p-dependene of theresults is seen by inspetion, resulting from the natureof the saling in pr. Equation (19) shows that higherpowers in r lead to higher powers in 1=p, but nonva-nishing ontributions ome only from singular terms.We use this behavior in identifying the leading ontri-butions in 1=p in our alulations. In the partitioning ofthe �nal-state wave funtion in Eq. (18), the �rst termis of ourse regular, while the seond term (g(�)) is sin-gular. The same is true for the initial state, not onlyfor this s-state, but for any state with angular momen-tum l for whih the �rst terms of fs in the partitioningaround r = 0 are	i � rlY ml (1� ar=(l + 1) + : : : ):We further note that in the ase of an s-state, theontributions from the �rst term of 	 (whih is then aonstant) vanish in the V-form beause of the deriva-tive in the interation operator � � r. For non-s-states,there are nonvanishing ontributions from this �rstterm (when multiplied with g from �(�)), whih mustbe taken into aount in order to obtain the orrethigh-energy matrix element, whih would be missing ifa ontinuum plane wave had been assumed (negletingthe terms in g).Therefore, in the V-form for the s-state ase, theleading ontribution involves only the �rst term in �and the seond term in the partitioning of the initialstate 	, justifying the usual alulation involving theplane-wave approximation for the �nal state. Using

Eq. (19), we obtain the familiar result for s-state ion-ization negleting retardation (dipole approximation),M = �A� � p̂p3 C0 = 2A� � p̂p3 ; (21)where A = 4�aNiNCp .We now show that we obtain the same result usingthe same proedure in the L-form. Here, the singularityof the �nal state also ontributes, however, and an in-orret result is obtained if a plane wave is assumed toprovide an adequate desription of the energeti ele-tron. In terms of our approah, suh an assumptionwould imply taking the term in the integrand involvingthe �rst term from the partitioning of � and the seondterm from the partitioning of 	. This ontribution is6A� � p̂p3 C2 = 4A� � p̂p3(we have put ! = p2=2m), whih is twie the orret re-sult in Eq. (21). But as we have already explained, wemust inlude all terms ontributing to the same powerin 1=p. We must therefore inlude the term in the inte-grand that involves the seond term g(�) from �� andthe �rst term from 	i. This gives the ontribution�A4 � � p̂p3 D1 = �2A� � p̂p3 :The sum of the two terms gives the orret high-energylimit, Eq. (21), showing that the L-form and the V-formindeed agree.Finally, we an alulate the photoe�et matrix el-ement in the A-form using the same proedures. As wehave already remarked, the eletron�photon interationoperator IA, Eq. (17), is singular at the origin in thisform, with a singularity arising from the singularity ofthe potential. The leading ontribution to the matrixelement in Eq. (3) in the A-form omes from the �rstterms in the partitioning of �(�) and 	i only (a termin the integrand that did not ontribute in the L- andV-form due to its regularity, not only for the s-statease, but for any l). All other terms ontribute withhigher powers in 1=p. For the s-state, the result in theA-form is easily evaluated with the help of Eq. (19) forn = �2, again giving the same result, i.e., Eq. (21).(We note that in the A-form, the next-to-leading termin 1=p an also be obtained without referring to sreen-ing; it involves g(�) or ar. We use this fat in Se. 8 indisussing onvergene toward the high-energy limit.)5. BEYOND s-STATESWe now disuss non-s-states, staying within oursimple H-like model without retardation, and building251



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003on the general features already enountered in the s-state ase. We again utilize the AFT theorem, identi-fying the singular part of the integrand funtion, andevaluating the dominant ontributions through the par-titioning of the bound state in Eq. (7) and the parti-tioning of the �nal state in Eq. (9) around the eletron�nuleus oalesene. The required integrals are given inEqs. (13) and (14). Now, however, a plane wave doesnot adequately desribe the fast outgoing eletron, ex-ept in the A-form, in whih the eletron�photon in-teration provides the needed singular behavior for theintegrand funtion.The leading ontribution in 1=p to the high-energyphotoabsorption matrix element M in Eq. (3), whihin the A-form is obtained by taking the leading, regularterms in the partitioning of the initial and �nal eletronstates, isM l;m0 = �2imZ�NCi l!(2�)3=2(ip)l+3 4�3 ��X� Y ��1 (�) Z d
 Y �1 (r̂)Y ml (r̂)(os#� i")l+1 : (22)The remaining angular integration involves only ele-mentary integrals (13). For l = 1, the ase that wedisuss below in other forms for illustration, Eq. (22)gives M1;m0 = (�1)1�m 8�iap4 NiNCp Y m1 (�): (23)(For simpliity, expression (22) is obtained with thez axes taken in the diretion of p̂. Rotation to �xedoordinates must be made in integrating over eletronangles.) We note that the part M0 of the matrix ele-ment M is obtained in the A-form using plane waves.In other forms, the alulation of M0 requires higher-order (singular) terms, from both initial and �nal statesin general. We therefore do not allM0 the �rst (plane-wave) Born approximation result, beause it is the�rst Born approximation only in the A-form and is ahigher-order Born result in other forms in general.While a plane wave is su�ient for an initial s-statein the V-form, this is not true for l > 0, as we demon-strate. With the V-form, it is onvenient to express

� � r	i as� � r [Rl(r)Y ml (r̂)℄ =r4�3 1X�=�1Y ��1 (�)�� "r l + 12l+ 3 h1; �; l;mjl+ 1;m+ �iY m+�l+1 (r̂) �� � ddr � lr�Rl ��r l2l� 1 h1; �; l;mjl� 1;m+ �iY m+�l�1 (r̂) �� � ddr + l + 1r �Rl� ; (24)where h1; �; l;mjL;Mi are the Clebsh�Gordan oe�-ients. For l > 0, the term with the lowest power in r inthe partitioning of the funtion in Eq. (24) around theoalesene (r = 0) is regular, and it omes from theseond term of Eq. (24). Therefore, for the L-form, theterm g(�) from the �nal-state funtion �� also on-tributes to the lowest order. The exeption, for theV-form, is the s-state, as we saw in the previous sub-setion, beause the seond term in Eq. (24) is zero andthe lowest power in r is singular for l = 0.For illustration, we onsider the initial l = 1 ase.Inserting expression Eq. (24) for l = 1, using a linearpolynomial in the partitioning around the oaleseneR1 = Nir[1 � (a=2)r + O(r2)℄, inluding ontributionsfrom the g(�) term, and performing the integration byhoosing the diretion of p as the z axis, we obtain thematrix element in the V-form asMV = iaNiNCp Y m1 (�) Z exp(�ip � r� "r)�� � (�1)m2jmj � 3P2(os#)r + 23r � ipg(�)� �� (ipr(1 + os#))� d3r == (�1)1�m 8�iap4 NiNCp Y m1 (�); (25)whih oinides with the result obtained in the A-form, Eq. (22). Assuming that a plane wave is anadequate representation of the fast eletron wave fun-tion and therefore negleting the ontribution from the�nal-state singularity, one would obtain a nonzero re-sult (in the hosen frame, where p is direted alongthe z axes) only for the angular momentum proje-tion m = 0, and even that result would be erroneousby the fator 2. The ontribution to the matrix ele-ment in Eq. (25) oming from the g funtion part is�8�iaNiNCp Y m1 (�)=p4.252



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :In both V- and L-forms, the interation of the out-going eletron with the potential (��nal-state intera-tion�) ontributes for any l > 0. In ontrast, in theA-form, the transition operator is singular and onlythe leading terms (the lowest powers in r) in both ini-tial and �nal states are needed for any l to obtain theorret leading ontribution.6. SCREENED POTENTIALSWe now demonstrate that the previous results aresu�ient to determine the asymptoti behavior of non-retarded photoabsorption in a general entral potentialto the leading order in 1=p. The entire previous dis-ussion, although given for a nulear point Coulombpotential model, is in fat valid for a general IPA po-tential that has a singularity of the Coulomb potentialat the nuleus. Our disussion relied on the behaviorof wave funtions and interations at this singularity.For the leading terms in the partitionings that we uti-lized, these behaviors are the same for an IPA poten-tial as long as it is Coulomb at the singularity. To seethe e�ets of the di�erene between an IPA potential(with the Coulomb singularity) and a pure Coulombpotential, we onsider a potential energy of the typeV (r) = �(Z�=r)S(r), where S(r) is a sreening fun-tion that behaves as S(r) = (1 + s1r + s2r2 + : : : ) forsmall r, as assumed in Se. 3.The interation operators in the L- and V-forms areindependent of the potential. In the A-form, we obtainIIPAA = � i! [V (r); � � r℄ = i! � � rV (r): (26)The partitioning of IIPAA around the oalesene givesIIPAA = iZ�� � r̂! � 1r2 � s2 � 2s3r + : : :� : (27)We note that the term involving s2 in Eq. (27), whihis regular, ontributes three more powers relative tothe �rst term. In ontrast, the �rst term from wavefuntions involving sreening ontribute with two morepowers in 1=p.We thus onlude that in the leading order, thesame expression for photoionization at high energiesis obtained in the IPA potential and in the Coulombase (in Se. 8, we show that this is in fat true in the�rst two orders). The normalization fators N IPAi aredi�erent, however, and IPA preditions therefore dif-fer from the purely Coulomb ase predition by thesefators.

7. RETARDATION AND RELATIVITYWe now disuss the inlusion of retardation. Thishanges the forms of the interation operators. In theV-form, the hange is simple: the retarded interationis IV = �i exp(ik � r)� � r, where k is the photon mo-mentum. In the L- and A-forms, obtained by applyingommutator relations to the V-form, the momentum kalso appears in fators multiplying exp(ik �r), as an beseen from Eqs. (4)�(6). In evaluating the integrals, weneed to speify how to deal with the photon retardationosillating term exp(ik � r) in the e� interation I(r).One way, partiularly if retardation to a ertain orderin k is onsidered, is to expand exp(ik � r) in powers ofk�r. Another way of dealing with exp(ik � r) is to attahit to the fast osillating term exp(�ip � r) and onsiderthe FT in the variable � = p�k, beause p�k is largein the nonrelativisti region whenever p is large, andour arguments using the AFT theorem in the asymp-toti region apply. We note here that in the IPA sin-gle ionization from the ground state, retardation e�etsgive a ontribution of the relative order (v=)2 [31; 32℄,where v is the veloity of the outgoing eletron, whih isof the same order as the relativisti ontribution. Thisfat is used in the ase of a two-eletron atom [1℄ toargue that retardation e�ets have the same relativeontribution in single ionization and in double ioniza-tion in the region, where the shake-o� mehanism isdominant, due to fatorization of the matrix elementinto a (retardation-independent) orrelation term and(generally, retardation-dependent) absorption term.We however note that at relativisti energies, whenp � k, neither expanding in k nor assuming � large(in omparison to m) is generally valid. It is still truein ertain kinemati situations, but these are not dom-inant for the photoabsorption proesses at those ener-gies. Namely, at relativisti energies (and as ! !1), aregion around the nuleus of the Compton wavelengthdistanes ontinues to ontribute to photoabsorption,for arbitrarily high energies. This implies that althoughit is a relatively small region, the �nal-state wave fun-tion in the whole region, not just at the point of oa-lesene, is needed, and ertain knowledge to all ordersin a is required [22℄. Under the analytiity assumption,the region is haraterized by an expansion around theorigin, and expansion of the matrix element as a seriesin a=� is still possible. The plane-wave approximationis no longer valid in any form, but partitioning in termsof Coulomb funtions is fully justi�ed.253



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 20038. CONVERGENCE OF THE CROSSSECTIONS TO THE HIGH-ENERGY LIMIT.THE STOBBE FACTORHere, we disuss the rate of onvergene toward theexat IPA high-energy limit for the ross setions thatwe have obtained using the asymptoti behavior of ma-trix element (11). The ratio of the �rst orretion to theleading ontribution is of the order 1=p, and it gives avery slow onvergene of the matrix elements and rosssetions. In fat, it onverges as �a=p � �pEK=!,where EK is the K-shell binding energy. We note thata slowly onverging fator (i.e., onverging as �a=p rel-ative to the asymptoti onstant value) exists in the�nal-state normalization, whih isNCp = 1(2�)3=2��1 + iap� e�a=2p: (28)But there are also other Coulomb terms with this slowonvergene (e.g., the �rst orretion, whih is unaf-feted by sreening). In fat, if partitioning of the ini-tial state was performed in terms of polynomials, a sim-ilar slowly onverging term would ome from eah termof the polynomial. Beause of this and also beause ofthe possibility of large Z, we inlude the e�N intera-tion ompletely in both the initial and �nal states bypartitioning the wave funtions in the viinity of thesingularity in terms of Coulomb funtions. Formally,this means that we write the initial-state wave fun-tion as	IPAi (r) = N IPAiNCi 	Ci (r) +O �(�C2 � �2)rl+2� ; (29)where �2 (�C2 ) is the oe�ient multiplying the thirdterm in a polynomial partitioning of the IPA (Coulomb)wave funtion (7), 	Ci (r) is a normalized Coulomb wavefuntion with the same quantum numbers as 	IPAi (r),and O[(�C2 ��2)rl+2℄ represents the di�erene betweenthe Coulomb and sreened third term in a polynomialpartitioning of the wave funtions and all higher-orderdi�erenes. The terms represented by O are small, aswe disuss below.For the �nal state, we take the Coulomb part ofEq. (8), but with a shifted energy and with the or-reted normalization [25; 27℄. Aording to [25; 27℄,as already mentioned, the exat IPA wave funtionis Coulomb in the viinity of the e�N singularity. Asu�iently aurate funtion (ontaining the dominantterms of the relative order 1=p2) is obtained if theshifted momentum pC is used instead of the true mo-mentum p. The momentum p haraterizes the ele-tron at large distanes from the nuleus. If we want

to desribe the sreened wave funtion in the viinityof the nuleus by a Coulomb funtion, we must use,aording to [25; 27℄, the shifted momentum pC . Inaddition, if the funtion is normalized on the momen-tum sale, the normalization is a�eted and is givenby N IPAp = ppC=pNCpC . The �nal state is thereforegiven by 	(�)p (r) =rpCp 	(�)pC (r) +O� 1p2� ; (30)where the shifted momentum pC is [25℄p22m � p2C2m = jECB j � jEIPAB j; (31)with ECB (EIPAB ) denoting the hydrogen-like (IPA)binding energy of the state that is ionized.We arrive at the following approximation for theIPA matrix element:M = N IPAiNCi rpCp Z 	C(�)�p (r)IA(r)	Ci (r)d3r ++O� 1p2� = N IPAiNCi rpCp MCl +O� 1p2� : (32)From Eq. (32), it immediately follows that at high en-ergies, d�IPA = �N IPAiNCi �2 d�C +O� 1p2� ; (33)where d�C is the di�erential ross setion obtainedfrom Coulomb H-like wave funtions alulated at theshifted momentum pC and O indiates how rapidly theerror dereases. (The momentum p from the phasespae anels p from the fator pC=p leaving onlythe shifted momentum pC in the right-hand side ofEq. (33).) The error in Eq. (33) is determined by theerrors in the wave funtions. Aording to the resultsin [25℄, the di�erene between sreened and Coulombfuntions is very small when unnormalized funtions(with the same �rst oe�ient in the expansion taken)are ompared; for potentials with a polynomial expan-sion, this differene dereases as 1=p2 for small r6).6) We note that the use of a potential that annot be expandedin integral powers of r might not give a small orretion vanishingas 1=p2, as given in Eq. (33). For example, the Thomas�Fermipotential (see footnote 4) leads to a orretion vanishing slower,i.e., as 1=p3=2. However, the Thomas�Fermi model fails in theviinity of the nuleus (whih is the region determining high-energy photoabsorption), where it predits a too large eletrondensity, see, e.g., B. G. Englert and J. Shwinger, Phys. Rev.A 29, 2331 (1984).254



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :This implies that dominant terms of the relative order1=p2 are olleted. We illustrate the fast onvergeneof this proedure for the ases involving low-Z atoms(He) and outer shells of higher-Z atoms (the L-state ofNe).For Coulomb states, the integrals in Eq. (32) anbe evaluated analytially. As illustrative examples, wehave the ross setion per eletron for the eletron ion-ization from the 1s, 2s and 2p shells [15℄�C1s = 32�a5�p3m3!3(p2 + a2)2�ap �exp ap �� � 4 artg pa���� �exp��ap �� exp���ap ���1 ; (34)�C2s = 4�a5�p(p2 + a2)3m3!3[p2 + (a=2)2℄2 2�ap �� exp �ap �� � 4 artg 2pa ���� �exp��ap �� exp���ap ���1 ; (35)�C2p = �a7�p[p2 + (11=12)a2℄3m3!3[p2 + (a=2)2℄3 2�ap �� exp �ap �� � 4 artg 2pa ���� �exp��ap �� exp���ap ���1 : (36)To illustrate the meaning of Eq. (33), we apply it to thealulation of high-energy photoabsorption and om-pare the result with those obtained within the fullFok�Slater IPA alulations. Our omparison with rel-ativisti alulations is fully justi�ed for low-Z atomsand for s-shells of higher-Z atoms, for whih retarda-tion and relativisti ontributions anel to a high de-gree even at higher energies. However, for our illustra-tive purposes, we also show p-state results for Ne, forrelatively small photon energies.In Table 1, we show the total ross setion forK-shell ionization obtained from Eq. (33) for Z = 2using (Ni=NCi )2 = 0:7358 (whih indiates large sreen-ing) [33℄ and ompare it with the results of the full IPAalulations from [33℄. As we see from Table 1, theagreement between the high-energy result in Eq. (33)and the full IPA alulations is already very good at

Table 1. The total ross setions �K for photoab-sorption from theK-shell of He (Z = 2) obtained usingEq. (33) in omparison with the full IPA alulations�KS; exp(�a�=p) is the Stobbe fator!, keV �1s, b �KS, b exp��a�p �Eq. (33) Ref. [33℄1 396 402 0.5421.5 107 109 0.5962 41.7 43.2 0.6333 10.9 11.2 0.6824 4.20 4.23 0.7155 1.99 2.03 0.7396 1.08 1.10 0.7578 0.408 0.411 0.7841 keV, despite the large sreening; in the energy range1�2 keV, the disagreement is around 1�2%. This is tobe ompared with the lowest-order result, whih givesabout 50% disagreement in the same energy range,as indiated in Table 1 by the value of the fatorexp(�a�=p) (see the explanation for this fator below).For the L-state of Ne, sreening is even larger((Ni=NCi )2 = 0:4386 for 2s state and (Ni=NCi )2 == 0:2277 for 2p). In Table 2, we show the total rosssetion for the 2s and 2p states of Ne and ompare themwith the full relativisti IPA alulations. For the 2sstate, Eq. (33) gives results that onverge to the fullIPA result very fast; the disagreement is around 6%at 1 keV and is less than 1% at 4 keV. Similarly, theresults in Eq. (33) for the 2p state onverge rapidly toIPA results in the same energy range. This very goodagreement between the results in Eq. (33) and the fullIPA results already at relatively small energies, evenfor Ne, an be explained by the properties of IPA wavefuntions in the viinity of the Coulomb e�N singu-larity. Namely, at the photon energy region 1�2 keV,the distanes involved (distanes around the singular-ity at whih the momentum is transfered between theeletron and the nuleus) are within the K-shell or-bit for Ne, and well within the K-shell orbit for He,where the sreening is small. Therefore, the shapesof the wave funtions at these distanes are basiallyCoulomb. This is a very important point that we useand generalize in our approah. The high-energy pho-toabsorption is essentially of the Coulomb type. Thismeans that the high-energy behavior of ross setions(we here mean the keV range, as in our examples) is de-255



T. Suri¢, E. G. Drukarev, R. H. Pratt ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003Table 2. The total ross setions �2s and �2p for photoabsorption from the respetive subshells 2s and 2p of Ne(Z = 10) obtained using Eq. (33) in omparison with the full IPA alulations �2sS and �2pS; exp(��a=p) is the Stobbefator!, keV �2s, b �2sS, b �2p, b �2pS, b exp��a�p �Eq. (33) Ref. [33℄ Eq. (33) Ref. [33℄1 11276 10600 5629 5416 0.0392 1932 1895 492 495 0.0904 289 290 37.4 38.9 0.1748 38.5 39.1 2.51 2.65 0.28610 19.7 20.0 1.030 1.092 0.32515 5.67 5.77 0.1987 0.2144 0.39820 2.309 2.353 0.0607 0.0669 0.44930 0.637 0.651 0.0112 0.0128 0.51950 0.122 0.125 0.00129 0.00159 0.600termined by the properties of funtions near the singu-larity, whih is of the Coulomb type. The sreening ef-fets enter these IPA examples, of ourse, but in a sim-ple way as a onstant fator. By straightforward gen-eralization of these �ndings in high-energy many-bodyalulations, we an signi�antly simplify alulationsinvolving e�e orrelation, as shown in [1℄.Another important point that we want to makein this subsetion, relevant for more omplex sys-tems [1; 34℄, is the relatively fast onvergene of theratios of photoabsorption ross setions to the resultspredited by lowest-order results (the Born approxima-tion results in the A-form). We �rst note that the slow-est onverging fator in our examples in Eqs. (34)�(36)is exp(��a=p). In partitioning wave funtions aroundthe oalesene, we obtain this fator by olleting allCoulomb interation in the �nal state for eah term inthe partitioning of the initial state. The fator is there-fore present for any state. The existene of a ommonslowly onverging fator provides fast onverging ra-tios of the ross setions. Further, the ratios of theross setions for ionization from subshells of the sameshell onverge partiularly fast, as we illustrate usingour examples for the L-shell, Eqs. (35) and (36). In ourexamples, the ratio�2s�2p � ! + a212m +O�a2! � (37)is a nearly linear funtion of the photon energy ! inthe keV range. If we had used the lowest-order resultin 1=p, we would obtain �2s=�2p � !, whih is verysimilar to the exat result (in the keV range for Ne,

for example), although the �rst-order results for rosssetions di�er by an order of magnitude from the exatresults in this energy range, as indiated roughly by thefator exp(��a=p) in Table 2.9. CONCLUSIONSWe have illustrated the AFT nonrelativisti ap-proah to atomi proesses by studying high-energyphotoionization (with inident photon energies ! � m)of an eletron bound in a entral potential. We havedemonstrated that in this ase, high-energy ionizationby photoabsorption an be understood in terms of thesingularities of the Hamiltonian, whih also illustratesmore general situations. Our disussion did not de-pend on the hoie of the form [length (L), veloity(V), aeleration (A), et.℄ of the photoionization ma-trix element.Beause photoabsorption at high photon energiesrequires at least one large outgoing eletron momen-tum, we have argued that the analysis is equivalent tothe analysis of the asymptoti form of the FT. Basedon the Fourier transform theory, we have shown that aslow asymptoti derease of the photoabsorption ma-trix element for large momentum p (suh as 1=pn) isrelated to singularities of the e�N potentials. We havedemonstrated how this large-momentum behavior anbe obtained from the behavior of wave funtions andinterations around singularities. With this approah,we an identify the dominant terms and avoid omittingany of them.We have applied our approah to study the256



ÆÝÒÔ, òîì 124, âûï. 2 (8), 2003 Understanding atomi proesses : : :high-energy total ross setion for ionization in aentral potential with the Coulomb e�N singularity.We have demonstrated that the approah and the �nalresults are form (�gauge�) independent. However, thedependene of the �nal results on the quality of theinitial and �nal state wave funtions in the viinityof a singularity varies with form (�gauge�). We havefound that the aeleration form, whih plaes thesingularities of the Hamiltonian in the e� interation,has the least requirement on the quality of wavefuntions at the singularity, in situations onsidered.We have shown that in the A-form, the leadingontribution to the photoabsorption matrix element isthe lowest-order Born result. In the L- and V-forms,it is generally a higher-order Born result, with theexeption of the V-form in the ground state ionization,where it is also the lowest-order Born result. Thismeans that in general (exept in the A-form), the fasteletron annot be represented by a plane wave, evenin the high-energy limit. For this leading ontributionto the matrix element, the A-form requires only theproper normalization of the initial state at the e�Nsingularity. In ontrast, the L- and V-forms requireknowledge of both the normalization and slope of thewave funtions at the singularities.We have disussed slow onvergene of the rosssetions to the high-energy limit, onsidering theionization of an eletron in a sreened potential. Wehave demonstrated that by olleting all Coulombterms in the viinity of the e�N singularity, we alsoollet the dominant terms up to the relative order1=p2 and provide fast onvergene of the ross setions.Although the negleted terms in the matrix elementare still of the relative order 1=p2, they are negligible.Thus, we have demonstrated that the high-energybehavior of ross setions (in the keV range, as in ourexamples) is determined by the properties of funtionsnear the singularity, whih is of the Coulomb type.The sreening e�ets enter through normalizationfators in the IPA ases. We have also demonstratedthat the only slowly onverging fator (the Stobbefator exp(��a=p), whih onverges as 1=p, while allother terms onverge faster) is ommon for ionizationfrom all states. The existene of a ommon slowlyonverging fator provides fast onverging ratios of theross setions.This paper was supported by the Croatian Ministryof Siene under Grants �� 00980205 and 0098012,and by the National Siene Foundation under Grant�PHY0201595. Two authors (T. S. and E. G. D.)are grateful for the hospitality of the Department of
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