1/*Q*-РАЗЛОЖЕНИЕ ДЛЯ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА КВАНТОВЫХ ТОЧЕК

Ю. Е. Лозовик*

Институт спектроскопии Российской академии наук 142190, Троицк, Московская обл., Россия

В. Д. Мур, Н. Б. Нарожный**

Московский инженерно-физический институт 115409, Москва, Россия

Поступила в редакцию 3 октября 2002 г.

Предложен новый метод расчета энергетического спектра и волновых функций N-электронных квантовых точек с произвольным удерживающим потенциалом. Метод состоит в разложении по безразмерному квантовому параметру 1/Q, выражающемуся через отношение характерных кулоновской энергии взаимодействия электронов и энергии одночастичного перехода в удерживающем потенциале. Рассмотрены двухэлектронные квантовые точки с параболическим удерживающим потенциалом во внешнем магнитном поле. Проанализированы сильнокоррелированные состояния системы и спиновая перестройка в сильном магнитном поле. Получены аналитические выражения для энергии и волновых функций системы. Показано, что учет лишь первых трех членов разложения по квантовому параметру дает процентную точность при расчете энергии даже в области значений Q порядка единицы, т. е. для реализуемых в настоящее время квантовых точек на основе GaAs. Полученные выражения для энергии хорошо согласуются с экспериментальными данными для квантовых точек в перпендикулярном магнитном поле.

PACS: 67.57.Lm, 76.60.-k

1. ВВЕДЕНИЕ

Квантовые точки являются перспективным объектом для использования в опто- и наноэлектронике [1, 2]. Помимо этого, они весьма интересны как модельный объект для исследования квантовых систем из нескольких или многих частиц. В отличие от обычных атомов, где корреляционная энергия значительно меньше хартри-фоковской, в квантовых точках при изменении их размера (удерживающего потенциала) и числа электронов достижимы любые режимы — от слабокоррелированной до сильнокоррелированной и даже кристаллизованной электронной системы [3]. Анализ режима сильных корреляций в системе нескольких электронов может оказаться полезным и в более общем аспекте — при изучении ближнего порядка и возможных фазовых переходов в протяженной электронной системе. Рассмотрение режима сильных корреляций требует развития новых, непертурбативных по межэлектронному взаимодействию, методов. Настоящая работа делает шаг в этом направлении. Система нескольких электронов в квантовой точке при нулевой или достаточно низких температурах характеризуется лишь одним безразмерным квантовым параметром Q, выражающимся через отношение характерных кулоновской энергии взаимодействия электронов и энергии одночастичного перехода в удерживающем потенциале [3]. В пределе бесконечных Q система электронов кристаллизуется и ее энергия и равновесная конфигурация определяются минимумом полной потенциальной энергии. Используемый нами метод состоит в разложении по параметру 1/Q и является вариантом так называемого 1/N-разложения [4–8], где \mathcal{N} , в частности, может быть размерностью пространства, $\mathcal{N} \equiv D$ [9], либо главным квантовым числом уровня, $\mathcal{N} \equiv n = n_r + l + 1$ [10, 11], либо числом компонент волновой функции [12] и т.п.

^{*}E-mail: lozovik@isan.troitsk.ru

^{**}E-mail: narozhny@theor.mephi.ru

В пределе больших значений Q получаемые в рамках 1/Q-разложения аналитические выражения для энергий и волновых функций являются асимптотически точными. В то же время для изучаемых экспериментально квантовых точек, например на основе GaAs [13-15], параметр Q имеет порядок единицы. Оказывается, однако, что 1/Q-разложение дает удивительно хорошую точность в очень широкой области, включая даже значения $Q \sim 1$. Мы продемонстрируем это в расчетах двухэлектронных квантовых точек. В связи с задачами спинтроники представляет большой интерес перестройка спиновых состояний системы при изменении Q, т. е. при изменении удерживающего потенциала или внешнего магнитного поля. Мы изучим такой переход для основного состояния системы и сравним результаты с имеющимися экспериментальными данными.

В следующем разделе изложен метод вычисления спектра и волновых функций, основанный на разложении по безразмерному квантовому параметру 1/Q. В разд. 3 рассмотрен случай аксиально-симметричного удерживающего потенциала и приведены аналитические формулы для энергии двух- и трехэлектронных квантовых точек. В разд. 4 проанализирован важный случай параболического удерживающего потенциала. Сравнением с точным (численным) расчетом для двухэлектронной квантовой точки показано, что учет первых трех членов 1/Q-разложения обеспечивает процентную точность даже в области Q ~ 1. В разд. 5 рассмотрена квантовая точка в магнитном поле, проанализирована спиновая перестройка и продемонстрировано хорошее согласие расчетов с экспериментальными данными.

2. 1/*Q*-РАЗЛОЖЕНИЕ ДЛЯ *N*-ЧАСТИЧНОЙ КВАНТОВОЙ ТОЧКИ

Рассмотрим систему из N частиц с парным кулоновским отталкиванием $V_c = \sum_{a < b}^{N} V_{ab}$, движущихся в произвольном запирающем потенциале $V_{cf} = \sum_{a=1}^{N} V_a$, где

$$V_{ab} = \frac{a_0}{r_{ab}} E_0, \quad V_a = v \left(\frac{\mathbf{r}_a}{a_0}\right) E_0. \tag{2.1}$$

Здесь $E_0 = e^2/\epsilon a_0$ и a_0 — характерные кулоновская энергия и размер системы, v — форма удерживающего потенциала, \mathbf{r}_a — радиус-вектор *a*-го электрона, $r_{ab} = |\mathbf{r}_a - \mathbf{r}_b|$, e — заряд электрона, ϵ — диэлектрическая проницаемость среды. Обозначая $\mathbf{x}_a = \mathbf{r}_a/a_0$ и вводя приведенную энергию $\varepsilon(N) = E(N)/E_0$, запишем уравнение Шредингера в виде

$$\begin{cases} -\frac{1}{4Q^2} \sum_{a=1}^{N} \Delta_a + \sum_{a=1}^{N} v(\mathbf{x}_a) + \\ + \frac{1}{2} \sum_{a \neq b}^{N} |\mathbf{x}_a - \mathbf{x}_b|^{-1} \end{cases} \Psi_N = \varepsilon(N) \Psi_N, \quad (2.2)$$

где

$$Q = \sqrt{\frac{m_* e^2 a_0}{2\epsilon\hbar^2}} = \sqrt{\frac{\mu}{\epsilon}} \frac{a_0}{2a_B}$$
(2.3)

— единственный безразмерный параметр, определяющий динамику системы. Как видно из (2.3), он выражается через квадратный корень из отношения характерных кулоновской Е₀ и кинетической $\hbar^2/2m_*a_0^2$ энергий, причем $\mu = m_*/m_e$ — отношение эффективной массы частицы к массе электрона $m_e, a_B = \hbar^2/m_e e^2 = 0.529 \cdot 10^{-8}$ см — радиус Бора. Величина параметра Q может меняться в широких пределах от значений порядка единицы для квантовых точек на основе GaAs [13-15] до $Q \gtrsim 10^4$ в случае ионных ловушек [16, 17]. Поэтому для вычисления энергетического спектра и волновых функций квантовых точек естественно использовать 1/Q-разложение, являющееся частным случаем 1/Л-разложения (см. [4-12] и указанные там ссылки). Привлекательной чертой этого метода является возможность получения результатов в аналитическом виде даже для систем с неразделяющимися переменными.

Процедура применения метода 1/Q-разложения в полной аналогии с [10] состоит в следующем. В классическом пределе, $Q \to \infty$, уравнение (2.2) определяет равновесную конфигурацию $\{\mathbf{x}_{a}^{(0)}\}$ и отвечающую ей энергию $\varepsilon^{(0)}$, равную минимуму потенциала при $\{\mathbf{x}_{a}\} = \{\mathbf{x}_{a}^{(0)}\}$. Следующее приближение отвечает малым колебаниям около положения равновесия с амплитудой пропорциональной $Q^{-1/2}$. Полагая

$$x_{a\alpha} = \left(1 + \frac{\xi_{a\alpha}}{Q^{1/2}}\right) x_{a\alpha}^{(0)}, \quad -\infty < \xi_{a\alpha} < \infty, \quad (2.4)$$

 $1 \leq a \leq N, 1 \leq \alpha \leq D$ (D — размерность системы) и разлагая волновую функцию и потенциал по степеням $Q^{-1/2}$, последовательно определяем коэффициенты в разложении волновой функции

$$\Psi_N = \Psi^{(0)} + \Psi^{(1/2)} / Q^{1/2} + \Psi^{(1)} / Q + \dots$$
 (2.5)

и соответствующие коэффициенты $\varepsilon^{(k)}$ в разложении для приведенной энергии:

$$\varepsilon(N) = \varepsilon^{(0)} + \varepsilon^{(1)}/Q + \varepsilon^{(2)}/Q^2 + \dots \qquad (2.6)$$

3. АКСИАЛЬНО-СИММЕТРИЧНЫЙ УДЕРЖИВАЮЩИЙ ПОТЕНЦИАЛ

В качестве иллюстрации метода рассмотрим двумерную (D = 2) квантовую точку с аксиально-симметричным удерживающим потенциалом. Чтобы избежать трудностей, связанных с наличием нулевой моды, выделим совместное вращение частиц. Для этого, рассматривая состояния с сохраняющейся проекцией M полного орбитального момента на ось симметрии, представим волновую функцию системы в виде

$$\Psi_N = (\rho_1 \rho_2 \dots \rho_N)^{-1/2} e^{iM\phi} \chi_M (\{\rho_a, \varphi_{ab}\}), M = 0, \pm 1, \pm 2, \dots$$
(3.1)

Здесь мы используем цилиндрические координаты

$$\mathbf{x}_a = (\rho_a, \varphi_a), \quad \phi = \sum_{a=1}^N \frac{\varphi_a}{N}, \quad \varphi_{ab} = \varphi_a - \varphi_b.$$

Энергия $\varepsilon^{(0)}$ определяется из классического условия равновесия N взаимодействующих электронов в удерживающем потенциале, которое возникает в пренебрежении первым слагаемым в фигурных скобках в левой части уравнения (2.2), т.е. в пределе $Q = \infty$. Коэффициент $\varepsilon^{(1)}$ в разложении (2.6), т.е. первая квантовая поправка в приведенной энергии, есть не что иное, как энергия нормальных колебаний около положения равновесия с частотами ω_i :

$$\varepsilon^{(1)}(n_1, n_2, \dots) = \sum_{i=1}^{2N-1} \left(n_i + \frac{1}{2} \right) \omega_i,$$

$$n_i = 0, 1, 2, \dots$$
(3.2)

Следующий коэффициент $\varepsilon^{(2)}$ можно найти, учитывая ангармонические слагаемые, пропорциональные $1/Q^{3/2}$ и $1/Q^2$, в уравнении (2.2) по теории возмущений. В частности, для состояний с наименьшей энергией при заданном M имеем

$$\varepsilon^{(2)}(M) = \frac{1}{2\kappa_N}M^2 - k_N, \qquad (3.3)$$

где $\kappa_N = I_N/2Q^2$, причем I_N — «твердотельный» момент инерции системы частиц с массами $2Q^2$. При небольших значениях N, когда в равновесии частицы располагаются в вершинах правильного многогранника на расстояниях ρ_0 от центра системы, $\kappa_N = 2N\rho_0^2$, $N \leq 6$. Константа k_N зависит от формы удерживающего потенциала и выражается через параметры задачи довольно громоздким образом.

В простейшем случае двухэлектронной квантовой точки (N=2) равновесное значение ρ_0 определяется из уравнения

$$v'(\rho_0) = (2\rho_0)^{-2}.$$
 (3.4)

При этом

$$\varepsilon^{(0)} = 2v(\rho_0) + 1/2\rho_0, \quad \omega_1^2 = 2\rho_0, \quad (3.5)$$

$$\omega_2^2 = 8\rho_0^4 v''(\rho_0), \quad \omega_3^2 = 2\omega_1^2 + \omega_2^2.$$

Выражение для константы k_2 не упрощается даже для степенных потенциалов,

$$v(\rho) = \rho^{\nu}, \quad \nu > 1,$$

когда равновесное значение ρ_0 выражается аналитически:

$$\rho_0 = (4\nu)^{-1/(\nu+1)}, \quad \varepsilon^{(0)} = 2(1+\nu)(4\nu)^{-\nu/(\nu+1)},$$
$$\omega_2^2/\omega_1^2 = \nu - 1.$$

В физически важном случае параболического удерживающего потенциала ($\nu=2$) имеем

$$\rho_0 = 1/2, \quad \varepsilon^{(0)} = 3/2, \quad \omega_1 = \omega_2 = 1, \\ \omega_3 = \sqrt{3}, \quad \kappa_2 = 1, \quad k_2 = 1/36.$$
(3.6)

Отсюда для состояний двухэлектронных квантовых точек с наименьшей энергией при заданном M согласно (2.6), (3.2) и (3.3) получаем

$$\varepsilon_{M,0}(2) = 1.5 + 1.8660Q^{-1} + (0.5M^2 - 0.0278)Q^{-2}.$$
 (3.7)

Вырождение ($\omega_1 = \omega_2$) приводит к возможности полного разделения переменных в уравнении (2.2), так что именно в этом случае нетрудно провести сравнение результатов 1/Q-разложения с точными (численными) решениями. Как будет показано ниже, точность приближения (3.7) при $Q \gtrsim 1$ и m = 0, 1 (см. (4.8)) не хуже 2 %.

Аналогично, в случае $\nu = 2$ и N = 3 имеем

$$\rho_0 = (2\sqrt{3})^{-1/3}, \quad \varepsilon^{(0)} = 3\sqrt{3}/2\rho_0, \\ \omega_1 = \omega_2 = 1, \quad \omega_3 = \omega_4 = \sqrt{3/2}, \\ \omega_5 = \sqrt{3}, \quad \kappa_3 = 6\rho_0^2, \quad k_3 = -0.02843,$$
(3.8)

так что с точностью до членов, пропорциональных $Q^{-2}, \mbox{ имеем}$

$$\varepsilon_{M,0}(3) = 3.9311 + 3.0908Q^{-1} + + (0.1908M^2 + 0.0284)Q^{-2}.$$
 (3.9)

Поскольку отношение кулоновской и осцилляторной энергий для равновесных конфигураций при N = 2и N = 3 одинаково (и равно двум), а относительный вклад слагаемого $\varepsilon^{(0)}$ в случае N = 3 больше, чем в случае N = 2, можно ожидать, что точность формулы (3.9) не хуже, чем (3.7).

4. ДВУМЕРНАЯ ДВУХЭЛЕКТРОННАЯ КВАНТОВАЯ ТОЧКА С ПАРАБОЛИЧЕСКИМ УДЕРЖИВАЮЩИМ ПОТЕНЦИАЛОМ

Для параболического удерживающего потенциала $V_a = m_* \Omega^2 \mathbf{r}_a^2/2$ характерные размер a_0 и энергия E_0 системы равны

$$a_0 = \left(\frac{2e^2}{\epsilon m_*\Omega^2}\right)^{1/3} = \frac{\epsilon}{\mu}Q^2 2a_B,$$

$$E_0 = Q\hbar\Omega = \frac{\mu}{\epsilon^2 Q^2} E_B,$$
(4.1)

а безразмерный квантовый параметр

$$Q = \frac{1}{\hbar} \left(\frac{m_* e^4}{2\epsilon^2 \Omega}\right)^{1/3} = \left(\frac{\mu}{\epsilon^2}\right)^{1/3} \left(\frac{E_B}{\hbar \Omega}\right)^{1/3}, \quad (4.2)$$

где Ω — крутизна удерживающего потенциала и $E_B = m_e e^4/2\hbar^2 = 13.606$ эВ — энергия электрона на первой боровской орбите.

Как уже упоминалось выше, в этом случае движение центра масс и относительное движение частиц,

$$\mathbf{R} = \mathbf{x}_1 + \mathbf{x}_2, \quad \mathbf{r} = \mathbf{x}_1 - \mathbf{x}_2, \quad (4.3)$$

в уравнении (2.2) разделяются: $\Psi_2 = \Psi_F \Psi_{rel},$ $\varepsilon(2) = \varepsilon_F + \varepsilon_{rel},$ и мы имеем

$$\left\{-\frac{1}{2Q^2}\Delta_{\mathbf{R}} + \frac{1}{2}R^2\right\}\Psi_F = \varepsilon_F\Psi_F,\qquad(4.4)$$

$$\left\{-\frac{1}{2Q^2}\Delta_{\mathbf{r}} + \frac{1}{2}r^2 + \frac{1}{r}\right\}\Psi_{rel} = \varepsilon_{rel}\Psi_{rel}.$$
 (4.5)

Первое из этих уравнений определяет спектр и волновые функции Фока–Дарвина [18],

$$\varepsilon_F = (|M_F| + 2n_F + 1)/Q = (n_1 + n_2 + 1)/Q, \quad (4.6)$$

где $M_F = 0, \pm 1, \pm 2, \ldots, n_F, n_1, n_2 = 0, 1, 2, \ldots$ и

$$\Psi_F(\mathbf{R}) \equiv \Psi_{M_F n_F} = \frac{1}{\sqrt{2\pi R}} e^{iM_F \varphi_F} \chi_{M_F}(R) = \\ = \Psi_{n_1}(R_1) \Psi_{n_2}(R_2) \quad (4.7)$$

— волновая функция кругового осциллятора, $\mathbf{R} = \{R, \varphi_F\} = \{R_1, R_2\}$ [19]. При этом $\Psi_{n_i}(R_i)$ волновые функции одномерного осциллятора с массой Q и частотами $\omega_i = 1, i = 1, 2$.

С другой стороны, выделяя в волновой функции Ψ_{rel} угловую часть,

$$\Psi_{rel}(\mathbf{r}) \equiv \Psi_m = \frac{1}{\sqrt{2\pi r}} e^{im\varphi} \chi_m(r), \quad \mathbf{r} = (r,\varphi), \quad (4.8)$$

приходим к одномерному уравнению

$$\left\{-\frac{1}{2Q^2}\left(\frac{d^2}{dr^2} - \frac{4m^2 - 1}{4r^2}\right) + \frac{1}{2}r^2 + \frac{1}{r}\right\}\chi_m = \varepsilon_m\chi_m, \quad (4.9)$$

 $\varepsilon_{rel} \equiv \varepsilon_m$. В классическом пределе оно определяет точку равновесия $r_0 = 1$ и отвечающую ей энергию $\varepsilon^{(0)} = 3/2$, равную минимуму потенциала при $r = r_0$, что совпадает с (3.6), поскольку $r_0 = 2\rho_0$. Полагая в соответствии с (2.4)

$$r = 1 + \frac{\xi}{Q^{1/2}}, \quad -\infty < \xi < \infty,$$
 (4.10)

и учитывая только три первых члена в разложениях (2.5) и (2.6), получаем

$$\begin{cases} -\frac{1}{2}\frac{d^2}{d\xi^2} + \frac{3}{2}\xi^2 - \frac{\xi^3}{Q^{1/2}} + \frac{\xi^4}{Q} \\ \} \chi_m(\xi) = \\ = \left(\varepsilon^{(1)} + \frac{\varepsilon^{(2)}}{Q} - \frac{4m^2 - 1}{8Q}\right)\chi_m(\xi), \quad (4.11) \end{cases}$$

т. е. уравнение Шредингера для одномерного ангармонического осциллятора. Отсюда в нулевом приближении по параметру $Q^{-1/2}$ имеем

$$\varepsilon^{(1)} = \sqrt{3}(n+1/2),$$

$$\chi_n^{(0)} = \left(\frac{\sqrt{3}}{\pi}\right)^{1/4} \frac{\exp\left(-\sqrt{3}\xi^2/2\right)}{\sqrt{2^n n!}} H_n(\xi^{1/4}),$$
 (4.12)

где $H_n(x)$ — полином Эрмита, n = 0, 1, 2... — осцилляторное квантовое число. Учет ангармонических поправок дает

$$\varepsilon_m = \frac{3}{2} + \frac{\sqrt{3}(n+1/2)}{Q} + \frac{(n+1/2)^2 + 6m^2}{12Q^2} - \frac{7}{144Q^2}.$$
 (4.13)

Суммируя результаты (4.6) и (4.13), для полной энергии $E(2) = \varepsilon(2)E_0$ получаем

$$E_{n_1 n_2 m n} = \hbar \Omega \left\{ \frac{3}{2} Q + n_1 + n_2 + 1 + \sqrt{3} \left(n + \frac{1}{2} \right) + \left[\frac{1}{12} \left(n + \frac{1}{2} \right)^2 + \frac{1}{2} m^2 - \frac{7}{144} \right] \frac{1}{Q} \right\},$$

$$n_1, n_2, n = 0, 1, 2, \dots, \quad m = 0, \pm 1, \pm 2, \dots \quad (4.14)$$

Разложения (4.13) и (4.14) асимптотически точны при $Q \to \infty$ и фиксированных квантовых числах *п* и *m*. Их точность при конечных значениях параметра Q можно выяснить сравнением с численным решением уравнения (4.9). Такое сравнение представлено на рис. 1. Видно, что первые три члена 1/Q-разложения обеспечивают точность не хуже 1 % для $n, m \leq 1$ и $Q \geq 1.5$. Заметим, что приближение (4.12) для волновой функции справедливо лишь в области ее локализации, $r \sim r_0$, а при $r \rightarrow 0$ и $r \to \infty$, т.е. в подбарьерной области, применимо квазиклассическое приближение (подробнее см. в [10, 11]). Таким образом, асимптотически точное в пределе $Q = \infty$ выражение (4.14) для энергии «затягивается» в область значений параметра $Q \sim 1$. Это, по-видимому, является общим свойством различных версий 1/*N*-разложения.

Как следует из (3.1), (4.6)-(4.8),

$$M = M_F + m, \quad |M_F| = n_1 + n_2 - 2n_F.$$
 (4.15)

Поскольку $n_1 = n_2 = 0$ для состояний с наименьшей энергией при заданной проекции M, имеем $n_F = 0$ и M = m, так что, как и следовало ожидать, спектры (3.7) и (4.14) полностью совпадают.

5. ДВУХЭЛЕКТРОННАЯ КВАНТОВАЯ ТОЧКА В ПОПЕРЕЧНОМ МАГНИТНОМ ПОЛЕ

Уравнение Шредингера для двумерной двухэлектронной квантовой точки в поперечном магнитном поле \mathcal{H} в симметричной калибровке векторного потенциала

$$\mathbf{A} = \frac{1}{2} \left[\mathbf{\mathcal{H}} \times \mathbf{r} \right]$$

с учетом спинов электронов имеет вид

$$\left\{-\frac{\hbar^2}{2m_*}\left(\frac{\partial^2}{\partial\mathbf{r}_1^2} + \frac{\partial^2}{\partial\mathbf{r}_2^2}\right) + \frac{1}{2}m_*\Omega_L^2\left(\mathbf{r}_1^2 + \mathbf{r}_2^2\right) + \frac{e^2}{\epsilon|\mathbf{r}_1 - \mathbf{r}_2|} - \hbar\omega_L\left(L_z + \mu gS_z\right)\right\}\Psi = E\Psi, \quad (5.1)$$

где

$$\Omega_L = \sqrt{\Omega^2 + \omega_L^2}, \qquad (5.2)$$

 $\omega_L = e\mathcal{H}/2m_*c = \omega_B\mathcal{H}/\mu\mathcal{H}_a$ — ларморовская частота, $\hbar L_z$ и $\hbar S_z$ — операторы проекций полных орбитального и спинового моментов электронов, а g — эффективный множитель Ланде. Здесь $\mathcal{H}_a = cm_e^2 e^3/\hbar^3 = 2.3506\cdot 10^5~{\rm Tr}$ — атомное магнитное поле и $\omega_B = m_e e^4/2\hbar^3 = 2.067\cdot 10^{16}~{\rm c}^{-1}$.

Полагая

$$\Psi_{MM_F\Sigma}^{(S)} = \frac{1}{2\pi\sqrt{Rr}} \exp\left[i(M_F\varphi_F + m\varphi)\right] \times \\ \times \chi_{M_F}(R)\chi_m(r)\chi^{(S)}, \quad m = M - M_F, \quad (5.3)$$

где χ_{M_F} и χ_m определены в (4.7) и (4.8), а $\chi^{(S)}$ — двухэлектронная спиновая функция, имеем

$$E_{MM_F\Sigma}^{(S)}(2;\mathcal{H}) = \varepsilon_{MM_F}^{(S)}(\mathcal{H})E_0 - - (M + \mu g \Sigma) \hbar \omega_L, \qquad (5.4)$$
$$\varepsilon_{MM_F}^{(S)}(\mathcal{H}) = \varepsilon_F + \varepsilon_{rel}.$$

Здесь M и Σ — проекции полных орбитального и спинового моментов на направление магнитного поля, а ε_F и ε_{rel} определяются из уравнений (4.4) и (4.5), в которых сделана замена $Q \to Q_L$, где

$$Q_L = \frac{1}{\hbar} \left(\frac{m_* e^4}{2\epsilon^2 \Omega_L} \right)^{1/3}.$$
 (5.5)

Для антипараллельных спинов, S = 0 (синглет), квантовое число m в силу принципа Паули принимает только четные, а для антипараллельных, S = 1(триплет), — нечетные значения.

В пределе слабых полей, $\omega_L \ll \Omega$, энергия $E_{MM_F\Sigma}^{(S)}$ отличается от $\varepsilon(2)E_0$ только линейным по $\hbar\omega_L$ зеемановским сдвигом. В сильном магнитном поле, когда $\omega_L \gg \Omega$, параметры a_0 и Q определяются величиной магнитного поля:

$$a_0(\mathcal{H}) = 2a_B \left(\frac{\mu}{\epsilon}\right)^{1/3} \left(\frac{a_{\mathcal{H}}}{a_B}\right)^{4/3}$$
$$Q(\mathcal{H}) = \left(\frac{\mu}{\epsilon}\right)^{2/3} \left(\frac{a_{\mathcal{H}}}{a_B}\right)^{2/3},$$

где $a_{\mathcal{H}} \equiv a_B \sqrt{\mathcal{H}_a/\mathcal{H}}$ — «магнитная» длина. При $a_{\mathcal{H}} \gg a_B$, т.е. когда магнитное поле много меньше

Рис.1. Приведенные энергии ε_m как функции квантового параметра Q для состояний с m = 0 (a) и m = 1 (b). Сплошные линии — точное (численное) решение уравнения (4.9); штриховые — результат 1/Q-разложения (4.13). У кривых указаны значения радиального осцилляторного квантового числа n

атомного, в приближении (2.6) из (5.4) и (4.14) получаем

$$E_{MM_F\Sigma}^{(S)}(2;\mathcal{H}) = \hbar\Omega_L \times \\ \times \left\{ \frac{3}{2}Q_L + |M_F| + 2n_F + 1 + \sqrt{3}\left(n + \frac{1}{2}\right) + \left[\frac{1}{12}\left(n + \frac{1}{2}\right)^2 + \frac{1}{2}\left(M - M_F\right)^2 - \frac{7}{144}\right]\frac{1}{Q_L} \right\} - \\ - \hbar\omega_L \left(M + \mu g\Sigma\right), \quad (5.6)$$

 $n_F, n = 0, 1, 2, \dots, M_F = 0, \pm 1, \pm 2, \dots$

В экспериментах [14] методом одноэлектронной туннельной спектроскопии были измерены энергии $E_{gr}(N)$ основных состояний N-электронных двумерных квантовых точек в гетероструктурах на основе GaAs ($\mu = 0.67$, $\epsilon = 12.5$, g = 0.44) в перпендикулярном магнитном поле $0 \leq \mathcal{H} \leq 16$ Тл. Согласно [20], для низколежащих уровней в реальных двумерных квантовых точках хорошим приближением является осцилляторная модель, т. е. параболический удерживающий потенциал

$$V_a(N) = \frac{1}{2}m_*\Omega^2(N)\mathbf{r}_a^2$$

в уравнениях (2.1) и (2.2). Такое приближение для удерживающего потенциала удобно сравнивать с экспериментальными данными [14], рассматривая зависимость приведенной энергии от магнитного поля:

$$\varepsilon_M^{(S)}(N;\mathcal{H}) = \frac{E_{M\Sigma}^{(S)}(N;\mathcal{H}) + (M + \mu g \Sigma)\hbar\omega_L}{Q_L(N)\hbar\Omega_L(N)}, \quad (5.7)$$

где S — квантовое число, которое характеризует симметрию волновой функции и при N = 2 совпадает с полным спином. Отметим, что знак парамагнитного слагаемого в энергии выбран так, что для состояний с наименьшей энергией при заданных M и Σ эти квантовые числа не могут быть отрицательными, см., например, формулу (5.4). В отличие от $E_{M\Sigma}^{(S)}(N;\mathcal{H})$, приведенная энергия в случае параболического удерживающего потенциала является универсальной функцией только одного параметра $Q_L(N)$. Последний определяется уравнением (5.5), в котором эффективная крутизна $\Omega_L(N)$ удерживающего потенциала может зависеть, как это отмечено в работе [21], от числа электронов в квантовой точке.

Результаты такого анализа для N = 2 приведены на рис. 2. Экспериментальные точки взяты из рис. 3a работы [14] и пересчитаны по формуле (5.7). При этом для энергии основного состояния одно-электронной квантовой точки,

$$E_{gr}(1) = \hbar\Omega_L(1) - \frac{1}{2}\mu g\hbar\omega_L, \qquad (5.8)$$

использовалось указанное в [14] значение $\hbar\Omega(1) =$ = 3.6 мэВ. Для крутизны удерживающего потенциала двухэлектронной квантовой точки получено значение $\hbar\Omega \equiv \hbar\Omega(2) = 3.8$ мэВ. Перескок экспериментальных точек с линии $\varepsilon_0^{(0)}(2; \mathcal{H})$ на линию $\varepsilon_1^{(1)}(2; \mathcal{H})$ отвечает синглет-триплетному кроссингу [14, 22].

В общем случае положение кроссинга, т.е. значение магнитного поля \mathcal{H}_{cr} , при котором сравниваются энергии уровней с различной симметрией [22], определяется из уравнения

$$E_{M_1\Sigma_1}^{(S_1)}(N;\mathcal{H}_{cr}) = E_{M_2\Sigma_2}^{(S_2)}(N;\mathcal{H}_{cr}).$$
(5.9)

Рис.2. Приведенная энергия $\varepsilon_M^{(S)}(2; \mathcal{H})$ как функция параметра $1/Q_L$ для значения крутизны удерживающего потенциала $\hbar\Omega = 3.8$ мэВ. Сплошные линии — расчет по уравнению (4.9) с заменой $Q \rightarrow Q_L$. Экспериментальные точки пересчитаны по уравнениям (5.7), (5.8) из данных работы [14] (рис. 3*a*). На вставке детально представлены экспериментальные точки в интервале $0.86 < 1/Q_L < 0.89$ (0 < $\mathcal{H} < 2$ Тл)

Рис. 3. Приведенная энергия $\varepsilon_M^{(S)}(2;\mathcal{H})$ для $\hbar\Omega = 3.8$ мэВ в области значений магнитного поля $0 < \mathcal{H} < 8$ Тл. Сплошные линии — результат точного расчета, штриховые — вклад трех первых членов 1/Q-разложения

Для двухэлектронной квантовой точки в рамках 1/Q-разложения это дает

$$\mathcal{H}_{cr}^{(1/Q)} = \gamma \mu \frac{\hbar\Omega}{E_B} \mathcal{H}_a,$$

$$\frac{\gamma}{(1+\gamma^2)^{2/3}} = \frac{M_2^2 - M_1^2}{2(\Delta M + \mu g \Delta \Sigma)Q}.$$
(5.10)

Здесь $\gamma = \hbar \omega_{cr} / \hbar \Omega$, $\hbar \omega_{cr} = \mu^{-1} (\mathcal{H}_{cr} / \mathcal{H}_a) E_B$, $\Delta M = M_2 - M_1 > 0$ и $\Delta \Sigma = \Sigma_2 - \Sigma_1$. Отсюда для синглет-триплетного ($\Delta M = \Delta \Sigma = 1$) кроссинга \mathcal{H}_{s-t} при $\hbar \Omega = 3.8$ мэВ получаем $\mathcal{H}_{s-t}^{(1/Q)} = 2.13$ Тл. Точный расчет дает значение $\mathcal{H}_{s-t}^{exact} = 2.25$ Тл в то время как экспериментальный результат $\mathcal{H}_{s-t}^{exp} = 2.0$ Тл [14].

Для максимального значения \mathcal{H}_m магнитного поля, соответствующего кроссингу при заданной крутизне удерживающего потенциала $\hbar\Omega$, согласно (5.10) имеем

$$\mathcal{H}_m^{(1/Q)} = \sqrt{3}\mu \mathcal{H}_a \hbar \Omega / E_B. \tag{5.11}$$

Поскольку из этого равенства следует оценка $\mathcal{H}_m^{(1/Q)} \approx 7.6$ Тл, триплет-синглетный кроссинг в области значений магнитного поля $0 < \mathcal{H} < 8$ Тл не осуществляется. Точный расчет по уравнению (5.1) подтверждает это заключение (см. рис. 2 в настоящей работе, а также рис. 3 в работе [15]).

Что касается характерных нерегулярностей на рис. За работы [14] в области 2 Тл < \mathcal{H} < 8 Тл, которые могут имитировать дополнительные кроссинги, то они, по-видимому, обязаны осцилляциям проводимости как функции магнитного поля [14], т.е. эффекту Шубникова – де Гааза [23]. На рис. 2 настоящей работы эти осцилляции проявляются в поведении экспериментальных точек при 0.9 < $1/Q_L < 1.1$, что как раз и соответствует упомянутому выше интервалу значений магнитного поля \mathcal{H} . Как следует из значений $\mathcal{H}_{s-t}^{(1/Q)}$ и $\mathcal{H}_{s-t}^{exact}$, при-

Как следует из значений $\mathcal{H}_{s-t}^{(1/Q)}$ и $\mathcal{H}_{s-t}^{exact}$, приведенных выше, погрешность 1/Q-разложения в определении кроссинга составляет примерно 5%. Она связана с погрешностью в вычислении энергии $\varepsilon_M^{(S)}(2;\mathcal{H})$ в рассматриваемой области значений параметра Q_L . Судить о ней можно по рис. 3, из которого следует, что первые три члена 1/Q-разложения обеспечивают точность вычисления энергии не хуже 3%.

6. ЗАКЛЮЧЕНИЕ

Развит непертурбативный метод расчета многоэлектронных квантовых точек, использующий разложение по безразмерному квантовому параметру 1/Q, выражающемуся через отношение характерных энергии кулоновского взаимодействия электронов и энергии электрона в заданном удерживающем потенциале. Метод дает аналитические выражения для спектра и волновых функций системы. Эти выражения асимптотически точны в пределе больших Q. Однако учет лишь нескольких членов разложения по 1/Q дает точность около 1 % даже в области $Q \sim 1$. Рассмотрена спиновая перестройка двухэлектронной квантовой точки в сильном магнитном поле и продемонстрировано хорошее согласие расчетов с экспериментальными данными, полученными с помощью метода одноэлектронной туннельной спектроскопии.

В заключение подчеркнем, что преимущество 1/Q-разложения по сравнению с другими версиями $1/\mathcal{N}$ -разложения состоит в том, что Q является управляющим параметром, при изменении которого не меняется ни размерность системы, ни ее симметрия, ни форма эффективной потенциальной энергии (в отличие, например, от 1/D- или 1/n-разложения). Именно поэтому метод 1/Q-разложения дает хорошую точность при вычислении характеристик квантовых точек в областях как слабых, так и сильных электронных корреляций.

В силу сказанного можно надеяться, что метод 1/Q-разложения можно будет с успехом применять и для квантовых точек или кластеров с большим числом частиц с произвольными формой удерживающего потенциала и видом межчастичного взаимодействия.

Авторы признательны А. Н. Петросяну и М. С. Фофанову за помощь в проведении численных расчетов. Работа частично поддержана РФФИ (гранты №№ 00-02-16354, 01-02-16850), а также Министерством образования РФ (грант № 1501).

ЛИТЕРАТУРА

- 1. R. C. Ashoori, Nature 379, 413 (1996).
- T. Chakraborty, Quantum dots, Elsevier Sci. Publ., Amsterdam (1999).
- Yu. E. Lozovik and V. A. Mandelshtam, Phys. Lett. 165A, 469 (1992); Ю. Е. Лозовик, УФН 153, 356 (1987); А. V. Filinov, M. Bonitz, and Yu. E. Lozovik, Phys. Rev. Lett. 86, 3851 (2001).
- 4. E. Witten, in *Recent Development in Gauge Theories*, Plenum Press, New York (1980).
- 5. L. G. Jaffe, Rev. Mod. Phys. 54, 407 (1982).
- 6. A. Chatterjee, Phys. Rep. 186, 249 (1990).
- Dimensional Scaling in Chemical Physics, ed. by D. R. Herschbach, J. Avery, and O. Goscinsky, Kluwer, Dordrecht (1993).

- New Methods in Quantum Theory, ed. by C. A. Tsipis, V. S. Popov, D. R. Herschbach, and J. S. Avery, Kluwer, Dordrecht (1995).
- 9. А. А. Belov, А. Gonsales, and Yu. E. Lozovik, Phys. Lett. 142 А, 389 (1990); А. А. Белов, Ю. Е. Лозовик, ЖЭТФ 67, 2413 (1988); ТМФ 81, 405 (1989); А. А. Белов, Ю. Е. Лозовик, В. А. Мандельштам, ЖЭТФ 98, 25 (1990).
- 10. В. С. Попов, В. М. Вайнберг, В. Д. Мур, Письма в ЖЭТФ 41, 439 (1985); ЯФ 44, 1103 (1986);
 V. S. Popov, B. M. Karnakov, and V. D. Mur, Phys. Lett. 224A, 15 (1996).
- 11. Б. М. Карнаков, В. Д. Мур, В. С. Попов, ЯФ 64, 729 (2001).
- S. M. Apenko, D. A. Kirzhnits, and Yu. E. Lozovik, Phys. Lett. 92A, 107 (1982).
- R. S. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeifer, K. W. Buldwin, and K. W. West, Phys. Rev. Lett. 71, 613 (1993).
- 14. T. Schmidt, M. Tewordt, R. H. Blick, R. J. Hayeg, D. Pfannkuche, K. V. Klitzing, A. Förster, and H. Lüth, Phys. Rev. B 51, 5570 (1995).
- L. P. Kowenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, Science 278, 1788 (1997).
- **16**. Г. Демельт, УФН **160**, 129 (1990).
- R. Blumel, J. M. Chen, E. Peik, W. Quint, W. Schleich, Y. R. Shen, and H. Walther, Nature **334**, 309 (1988);
 S. L. Gilbert, J. J. Bollinger, and D. J. Wineland, Phys. Rev. Lett. **60**, 2022 (1988); Th. Sauter, H. Gilhaus,
 I. Siemers, R. Blatt, W. Neuhauser, and P. E. Toscek,
 Z. Phys. D **10**, 153 (1988); J. Hoffnagle, R. G. DeVoe,
 L. Reyna, and R. G. Brewer, Phys. Rev. Lett. **61**, 255 (1988); V. Gomer, H. Strauss, and D. Meschede, Appl. Phys. B **60**, 89 (1995).
- V. Fock, Z. Phys. 47, 446 (1928); C. G. Darwin, Proc. Cambr. Phil. Soc. 27, 86 (1930).
- 19. З. Флюгге, Задачи по квантовой механике, т. 1, Мир, Москва (1974).
- 20. N. A. Bruce and P. A. Maksym, Phys. Rev. B 61, 4718 (2000).
- 21. P. Hawrylak, Phys. Rev. Lett. 20, 3347 (1993).
- 22. M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992).
- 23. Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, Москва (1979).