СПЕКТР АНТИФЕРРОМАГНИТНОГО РЕЗОНАНСА В ЗАРЯДОВО-УПОРЯДОЧЕННЫХ МАНГАНИТАХ $R_{0.5}Ca_{0.5}MnO_3$ (R = La, Pr, Tb): ВЛИЯНИЕ ОРБИТАЛЬНОЙ И ЗАРЯДОВОЙ СТРУКТУР

Л. Э. Гончарь^{*}, А. Е. Никифоров

Уральский государственный университет 620083, Екатеринбург, Россия

Поступила в редакцию 21 августа 2002 г.

Проведено теоретическое исследование влияния кристаллической, орбитальной и зарядовой структур на магнитную структуру и спектры спиновых волн и АФМР для кристаллов $R_{0.5}Ca_{0.5}MnO_3$ моноклинной структуры. Модель предполагает фиксированные кристаллическую, зарядовую и орбитальную структуры и позволяет определить орбитально-зависимые обменное взаимодействие и одноионную анизотропию для различных R = La, Pr, Tb. Получена шестнадцатиподрешеточная слабонеколлинеарная магнитная CE-структура, не обладающая ферромагнитной составляющей. Проведено моделирование поведения магнитной структуры во внешнем магнитном поле, получены величины полей спин-флоп-перехода для различных R. Рассчитаны закон дисперсии спиновых волн и полевая зависимость спектра антиферромагнитного резонанса.

PACS: 75.25.+z, 71.70.Ej, 75.30.Et, 76.50.+g

1. ВВЕДЕНИЕ

Внимание, уделяемое манганитам в настоящее время, объясняется наличием у них множества необычных свойств, не только широко известного эффекта колоссального магнитосопротивления. Диэлектрические фазы манганитов также становятся предметом подробных теоретических и экспериментальных исследований. Определенные сложности в изучении этих соединений связаны с описанием всех подсистем кристаллов, а именно, кристаллической решетки, зарядовой, орбитальной и спиновой подсистем с учетом их взаимосвязи. Данная работа посвящена магнитным свойствам диэлектрических манганитов $R_{0.5}Ca_{0.5}MnO_3$ (R = La, Pr, Tb), обладающих моноклинной структурой. Цель исследования показать влияние кристаллической, зарядовой и орбитальной структур на магнитное упорядочение и спектры магнонов.

Исследование взаимосвязи между орбитальной и магнитной структурами манганитов началось до-

вольно давно. Начиная с работ Гуденафа [1] и Воллана с Келером [2], качественно определено наличие такой связи. Количественные характеристики взаимодействия всех четырех подсистем активно обсуждаются и в настоящее время. Существуют несколько моделей, которые применяются для описания манганитов. Влияние решеточных искажений на магнитную структуру признано сегодня в большинстве работ [3], но учет ян-теллеровских искажений решетки, являющихся основными в формировании необычных свойств манганитов, проведен по-разному. В зарядово-упорядоченных фазах манганитов предполагается упорядочение локализованных носителей зарядов, образовавшихся за счет неизовалентного легирования.

Для объяснения взаимосвязи кристаллической, орбитальной и магнитной структур в манганитах в настоящее время используются, в основном, две модели. Первая модель, называемая моделью Кугеля–Хомского [4], подразумевает формирование орбитальной структуры за счет орбитально-зависимого обменного взаимодействия, вызывающего в дальнейшем искажение кристаллической ре-

^{*}E-mail: lyudmila.gonchar@usu.ru

шетки. Различные модификации этой модели используются во многих работах [5-9]. Достаточно часто эта модель используется для предсказания и исследования орбитальных возбуждений (орбитонов) [6,8–10]. Однако температура разрушения орбитально-упорядоченной фазы гораздо выше температуры Нееля [11, 12], что доказывает предположение о формировании орбитальной структуры взаимодействиями более сильными, чем обмен. Вторая модель, называемая моделью Канамори [13], предполагает наличие кооперативного эффекта Яна-Теллера. Эта модель также предполагает наличие орбитально-зависимого обмена, однако основная роль в ней отводится электронно-колебательному взаимодействию. Развитие модели Канамори для манганитов представлено в работах [14–17].

Описание сверхобменного взаимодействия в многоэлектронных системах — достаточно сложная задача. В некоторых соединениях знаки обменных параметров могут быть определены по правилам Гуденафа-Канамори [1]. Однако эти правила не определяют значения обменных интегралов. Обменные параметры рассчитывались из первых принципов [5] для чистого манганита, однако оказались завышенными по сравнению с экспериментом [18,19]. Общий подход к описанию чистых и легированных манганитов — это модель Хаббарда с учетом взаимодействия Хунда, кулоновского взаимодействия (одноцентрового и межцентрового) и ян-теллеровского взаимодействия в различных моделях. Для описания дополнительных носителей заряда, появляющихся при допировании редкоземельной подрешетки щелочноземельными ионами, как правило, в гамильтониан добавляется вклад двойного обмена [6, 9, 15, 16, 20-22]. Этот подход характеризуется упрощенной моделью орбитальной структуры $(d_{3z^2-r^2}$ - или $d_{x^2-y^2}$ -орбитали, оси x, y, z подразумеваются зависящими от позиции иона марганца). В некоторых работах пренебрегается t_{2q} -оболочкой. Магнитная структура (включая чистые и зарядово-упорядоченные манганиты) описывается в модели двойного обмена [5, 7, 16]. Некоторые модели [21,23] не могут описать магнитную структуру зарядово-упорядоченных манганитов СЕ-типа, наблюдаемую экспериментально [2, 24–26]. Таким образом, не всегда удается описать экспериментальные данные, и необходимо проводить более точные расчеты. Большое количество экспериментальных работ по изучению кристаллической, зарядовой, орбитальной и магнитной структур позволяет использовать полуэмпирический подход к описанию механизма сверхобменного взаимодействия в диэлектрических манганитах, который был развит в предыдущих работах [17, 27].

Магнитная структура зарядово-упорядоченных манганитов с половинным допированием изучена достаточно подробно для различных составов редкоземельно-щелочноземельной подрешетки [2, 24-26, 28-30]. Эти соединения характеризуются наличием или отсутствием зарядового упорядочения, и эта особенность является основной для формирования той или иной магнитной структуры. В зарядово-упорядоченной фазе ионы Mn³⁺ и Mn⁴⁺ присутствуют в равных долях и упорядочены в пространстве, орбитальная структура характерна для подрешетки ионов Mn³⁺, магнитная структура отвечает СЕ-типу, основное направление магнитной легкой оси — вдоль оси с (в обозначениях Pnma) [2, 24-26, 28, 29, 31]. Достаточно точная симметрийная классификация магнитных структур была проведена для чистых манганитов [32], однако существует проблема проведения классификации самой *СЕ*-структуры зарядово-упорядоченной фазы и экспериментального определения неколлинеарных компонент [33]. Зарядовая, орбитальная и СЕ-магнитная структуры могут быть разрушены температурой или магнитным полем [3].

В данной работе использована модель [17, 27, 34] орбитальной и магнитной структур, основанная на фиксированных кристаллической и зарядовой структурах, сильном электронно-колебательном взаимодействии и орбитально-зависимом сверхобмене. Переход в зарядово-упорядоченную фазу ведет к локализации дырок на ионах марганца с образованием упорядоченной структуры. В соединениях ортоманганитов с половинным легированием ионы Mn³⁺/Mn⁴⁺ чередуются в плоскости *ac* и не чередуются вдоль оси b (С-тип зарядовой структуры). При этом ионы Mn³⁺ являются ян-теллеровскими ионами, а ионы Mn⁴⁺ не имеют вырождения основного состояния в идеальном октаэдрическом окружении. С учетом этих особенностей в рамках нашей модели [17] можно количественно оценить параметры сверхобменного взаимодействия и температуры Нееля в диэлектрических манганитах. В данной работе рассчитаны особенности многоподрешеточной магнитной структуры моноклинных зарядово-упорядоченных манганитов, спектры спиновых волн и полевая зависимость антиферромагнитного резонанса при направлении внешнего магнитного поля вдоль оси легкого намагничивания. Предложенная модель является полуэмпирической, однако позволяет получить магнитную структуру и спектры магнонов исходя из кристаллической структу-

Рис.1. Орбитальная и магнитная структуры зарядово-упорядоченной фазы манганита с половинным легированием в двух соседних плоскостях вдоль оси Y (части a и б). Ионы кислорода и редкоземельно-щелочноземельной подрешетки опущены. Светлые символы обозначают ионы Mn⁴⁺, темные символы обозначают ионы Mn³⁺. Стрелками изображены основные направления магнитных подрешеток. Жирными линиями обозначены ориентации e_g-орбиталей. Числа нумеруют магнитные подрешетки

ры. Результаты работы могут быть использованы для интерпретации экспериментальных данных, где необходима точная магнитная структура.

2. КРИСТАЛЛИЧЕСКАЯ И ОРБИТАЛЬНАЯ СТРУКТУРЫ

Рассматриваемые кристаллы R_{0.5}Ca_{0.5}MnO₃ при низких температурах обладают искаженной перовскитной структурой симметрии $P2_1/m$ и зарядовым упорядочением [2, 24-26]. Эта группа является подгруппой *Pnma*, которой описывается пространственная симметрия кристалла чистого манганита. В связи с наличием ионов марганца в различных зарядовых состояниях, которые располагаются в шахматном порядке в базисной плоскости (см. рис. 1, рис. 2), в кристалле возникают дополнительные искажения. Подрешетка ионов марганца разделяется на три позиции (см. табл. 1). Ионы в позициях а, *b* обладают искажениями кислородного окружения *е*-типа, а ионы в позиции f — нет. Орторомбическое искажение идеальной перовскитной решетки [35] меняется в соответствии с низкосимметричным искажением за счет зарядовой неэквивалентности ионов.

Рис.2. Фрагмент ячейки $R_{0.5}Ca_{0.5}MnO_3 \ c \ \varepsilon$ -типом искажения. Ионы R^{3+} , Ca^{2+} опущены; X, Y, Z — система координат групп Pnma и $P2_1/m$; x_p, y_p, z_p — квазикубическая система координат

1. Искажение R-типа представляет собой поворот кислородных октаэдров вокруг псевдокубической оси $[110]_p$ с удвоением ячейки по всем трем осям ($\{k_{13}\}\tau_9(C_1C_10)$ в обозначениях Ковалева [36] или ($\varphi\varphi 0$) в обозначениях [37]). В моноклинной

Ион (позиция)	X(a)	Y(b)	Z(c)
R, A (1)-2 e	$1/4 + V_{XR1}$	0	V_{ZR1}
R, A (2)- $2e$	$3/4 + V_{XR1}$	0	V_{ZR2}
R, A $(3)-2e$	V_{XR3}	0	V_{ZR3}
R, A $(3)-2e$	$1/2 + V_{XR3}$	0	V_{ZR3}
$Mn^{3+}(1)-2a$	0	1/4	0
$Mn^{3+}(2)-2b$	1/2	-1/4	0
$Mn^{4+}(3)-4f$	1/4	1/4	$1/2 - V_{ZMn}$
O(1)-2e	u_{X1}	0	u_{Z1}
O(2)-2e	$1/2 + u_{X1}$	0	u_{Z1}
O(3)-2 e	$1/4 + u_{X1}$	0	$1/2 + u_{Z2}$
O(4)-2e	$3/4 + u_{X1}$	0	$1/2 + u_{Z3}$
O(5)-4 f	$+v_{X1}$	$-1/4 + v_Y$	$1/4 + v_{Z1}$
O(6)-4 f	$5/8 + v_{X1}$	$-1/4 + v_Y$	$1/4 + v_{Z2}$
O(7)-4f	$1/8 + v_{X3}$	$-1/4 - v_Y$	$3/4 + v_{Z3}$
O(8)-4 f	$5/8 + v_{X3}$	$-1/4 - v_Y$	$3/4 + v_{Z4}$

Таблица 1. Координаты атомов в примитивной ячейке кристалла в зарядово-упорядоченной фазе (группа симметрии $P2_1/m$, по сравнению со справочником [36] оси повернуты для сравнения с обозначениями осей Pnma: xyz [36] = ZXY)

структуре различают три значения угла $\varphi - \varphi_1$ (*a*), φ_2 (*b*), φ_3 (*f*), которые по знаку соответствуют этому искажению, а по величине различаются.

2. Искажение M-типа представляет собой поворот кислородных октаэдров вокруг оси $[001]_p$ с удвоением ячейки по двум осям ($\{k_{11}\}\tau_3(00C_2)$ в обозначениях [36] или (00ψ) в обозначениях [37]). В моноклинной структуре различают три значения угла $\psi - \psi_1$ (a), ψ_2 (b), ψ_3 (f), которые по знаку соответствуют этому искажению, а по величине различаются.

3. Искажение Q_{ε} описывает деформацию кислородного октаэдра *е*-типа (см. рис. 2) с удвоением по двум осям $(\{k_{11}\}\tau_5 \text{ в обозначениях [36] и с выбором луча <math>[1/2 \ 1/2 \ 0]_p$). В моноклинной структуре это искажение является характерным только для окружения трехвалентных ионов марганца. Удвоение происходит по одной оси $[110]_p$.

4. Для окружения четырехвалентного марганца характерно искажение a-типа (всестороннее сжатие) в связи с меньшим радиусом иона Mn^{4+} по сравнению с Mn^{3+} .

Соответствующие базовые искажения сопровождаются подстройкой решетки, в результате чего появляется Q_{θ} -искажение, *e*-искажение двух позиций иона Mn^{3+} становится различным по величине. Вследствие взаимодействия *е*-искажений вокруг ионов Mn³⁺ и *а*-искажений вокруг ионов Mn⁴⁺ происходит сдвиг ионов Mn⁴⁺ вдоль оси [110]_p. Этот сдвиг определяет волновой вектор орбитальной структуры [17].

Благодаря кооперативному эффекту Яна-Теллера орбитально-вырожденное основное состояние ионов трехвалентного марганца ⁵*E* расщепляется. На каждом марганце устанавливается орбитальное состояние с волновой функцией

$$\psi_n = \varphi_{n\theta} \sin \frac{\phi_n}{2} + \varphi_{n\varepsilon} \cos \frac{\phi_n}{2}, \qquad (1)$$

где ($\varphi_{n\theta}, \varphi_{n\varepsilon}$) — базисные функции *E*-уровня, а углы ϕ_n подчиняются соотношению (см. рис. 1) [27]

$$\phi_a \approx -\phi_b, \quad \phi_1 = \phi_5 = \phi_9 = \phi_{13} = \phi_a, \\ \phi_3 = \phi_7 = \phi_{11} = \phi_{15} = \phi_b.$$
(2)

Величины этих углов выражаются через искажения в кристалле:

$$\sin \phi_n = \frac{Q_{\varepsilon n}}{\sqrt{Q_{\theta n}^2 + Q_{\varepsilon n}^2}}, \quad \cos \phi_n = \frac{Q_{\theta n}}{\sqrt{Q_{\theta n}^2 + Q_{\varepsilon n}^2}}.$$
 (3)

Для рассматриваемых соединений величины углов орбитальной структуры приведены в табл. 2. В груп-

Таблица 2. Характерные параметры искажений кристаллической структуры в зарядово-упорядоченных фазах кристаллов манганитов R_{0.5}Ca_{0.5}MnO₃ (рядом с названием соединения указана ссылка на экспериментальные данные, исходя из которых проводился расчет)

	La [24]	$\Pr[25]$	Tb [26]
ϕ_a , град	-126.0°	-123.6°	-111.1°
ϕ_b , град	126.3°	120.6°	112.5°
φ_1 , град	-9.1°	-9.9°	11.6°
φ_2 , град	-9.1°	-9.9°	11.6°
φ_3 , град	-9.3°	-10.1°	11.7°
ψ_1 , град	5.4°	8.0°	-8.8°
ψ_2 , град	3.5°	4.6°	-11.6°
ψ_3 , град	4.7°	6.5°	10.2°
Θ_b , град	158.3°	156.3°	152.5°
Θ_b' , град	158.3°	156.3°	152.9°
Θ_{ac} , град	162.3°	157.9°	152.2°
$r_b, \mathrm{\AA}$	1.92	1.91	1.90
$r_b', Å$	1.92	1.91	1.90
$r_{ac}, \mathrm{\AA}$	1.96	1.94	1.97

пе $P2_1/m$ *е*-искажения зависят от сдвигов ионов (см. табл. 1) как

$$\begin{aligned} Q_{\theta a} &= \frac{1}{\sqrt{12}} \left[b - \frac{1}{\sqrt{2}} \left(\frac{a}{2} + c \right) \right] + \\ &+ \frac{1}{\sqrt{6}} \left[-(\nu_{X1} + \nu_{X3})a + (\nu_{Z1} - \nu_{Z3})b \right], \\ Q_{\varepsilon a} &= \frac{1}{\sqrt{2}} \left[(\nu_{X1} - \nu_{X3})a - (\nu_{Z1} + \nu_{Z3})b \right], \\ Q_{\theta b} &= \frac{1}{\sqrt{12}} \left[b - \frac{1}{\sqrt{2}} \left(\frac{a}{2} + c \right) \right] + \\ &+ \frac{1}{\sqrt{6}} \left[-(\nu_{X1} + \nu_{X3})a + (\nu_{Z2} - \nu_{Z4})b \right], \\ Q_{\varepsilon b} &= \frac{1}{\sqrt{2}} \left[(\nu_{X1} - \nu_{X3})a - (\nu_{Z2} + \nu_{Z4})b \right]. \end{aligned}$$
(4)

Орбитальная структура зарядово-упорядоченного манганита изображена на рис. 1.

Качественно пояснить «зигзагообразное» пространственное распределение ян-теллеровских искажений в кристалле можно, принимая во внимание сдвиг иона Mn^{4+} вдоль оси Z, вызванный подстройкой решетки под полносимметричное искажение окружения ионов Mn⁴⁺ и ян-теллеровское искажение окружения ионов Mn³⁺. Этот ион «тянет за

собой» соседние связи, в результате чего две взаимно перпендикулярные связи с кислородом удлиняются, а две — укорачиваются. Таким образом, линия сдвига четырехвалентного марганца является разделяющей линией трехвалентных марганцев с положительными и отрицательными Q_{ε} -искажениями, а знак этих искажений вдоль направления сдвига не меняется. Поскольку знак сдвига Mn⁴⁺ меняется вдоль оси X, очевидно, что в этом направлении примитивная ячейка удваивается. Роль сдвига четырехвалентного марганца в формировании орбитальной структуры La_{0.5}Ca_{0.5}MnO₃ обсуждается еще в работе Гуденафа [1], однако в этой работе предлагаются сдвиги по двум взаимно перпендикулярным псевдокубическим направлениям. В работах [24–26] предполагается смещение этого иона именно вдоль оси Z.

3. ОРБИТАЛЬНАЯ ЗАВИСИМОСТЬ МАГНИТНЫХ ВЗАИМОДЕЙСТВИЙ

Изотропный обмен

Учитывая различие расстояний металл-лиганд r_b (Mn³⁺-O), r'_b (Mn⁴⁺-O), r_{ac} и углов сверхобменной связи $\Theta_b, \, \Theta'_b, \, \Theta_{ac}$ для пар взаимодействующих ионов вдоль оси z_p и в базисной плоскости, авторы работы [17] получили зависимости для параметров изотропного обмена ионов марганца в кристалле зарядово-упорядоченного манганита от орбитального состояния взаимодействующих ионов марганца в кристалле: $J^i = \frac{J_0^i \cos^2 \Theta_i}{r_i^{10}} F_i(\phi),$

гле

$$F_{1}(\phi) = 1 + 2\alpha \cos \phi + \beta \cos^{2} \phi,$$

$$\Theta_{1} = \Theta_{b}, \quad r_{1} = r_{b},$$

$$F_{2}(\phi) = 1 - \frac{\alpha'}{2} \left(\cos \phi - \sqrt{3} \sin \phi \right),$$

$$\Theta_{2} = \Theta_{ac}, \quad r_{2} = r_{ac},$$

$$F_{3}(\phi) = 1 - \frac{\alpha'}{2} \left(\cos \phi + \sqrt{3} \sin \phi \right),$$

$$\Theta_{3} = \Theta_{ac}, \quad r_{3} = r_{ac},$$

$$F_{4}(\phi) = 1, \qquad \Theta_{4} = \Theta'_{b}, \quad r_{4} = r'_{b},$$

(6)

а $J_0^i, \alpha, \alpha', \beta$ — параметры, которые зависят от сорта магнитных ионов в паре и от сорта промежуточного иона (их можно определить из экспериментальных данных), ϕ — угол ян-теллеровского искажения в паре ионов (для пары Mn³⁺-Mn³⁺) или на

 10^{*}

(5)

F

8

6

4

2

0

-2

-4

-6

0

 30°

 60°

90°

Рис. 3. Зависимость угловой части обменных интегралов (6) вдоль оси *b* (1 — *F*₁) и в базисной плоско-

сти $(2 - F_{2,3})$ от угла ян-теллеровского искажения

одном ионе в паре $(Mn^{3+}$ для пары $Mn^{3+}-Mn^{4+})$.

В работе [17] определены параметры зависимо-

сти (6): $J_0^1 = 1.24 \cdot 10^3$ мэВ · Å¹⁰, $\alpha = 1.0$, $\beta = 4.5$; $J_0^{2,3} = -4.22 \cdot 10^2$ мэВ · Å¹⁰, $\alpha' = 5.1$, $J_0^4 = 0.97 \cdot 10^3$ мэВ · Å¹⁰. Зависимость обмена

от ян-теллеровского угла представлена на рис. 3. Структурные параметры для $R_{0.5}Ca_{0.5}MnO_3$ взяты из работ [24–26] и приводятся в табл. 2, где r_b — расстояние между Mn^{3+} и кислородом вдоль оси b; r'_b — расстояние между Mn^{4+} и кислородом вдоль оси b; r_{ac} — среднее расстояние от Mn^{3+} и Mn^{4+} до

(угла орбитальной структуры) ϕ

 120°

 150°

 180°

 ϕ

Характерной особенностью зависимости (6), так же как в чистом манганите [17, 34], является возможная смена величины и знака обменного параметра в *ac*-плоскости (знак «—» обозначает ферромагнитное взаимодействие), что обусловит смену магнитной структуры при неизменной кристаллической структуре ($P2_1/m$). Это отличает ян-теллеровские соединения от прочих магнитных диэлектриков. Возможным проявлением этой особенности может быть наличие магнитного упорядочения *A*-типа в двухслойном манганите [20, 27].

Одноионная анизотропия и зеемановское взаимодействие

Одноионная анизотропия появляется во втором порядке теории возмущений по спин-орбитальному взаимодействию. В работах [17, 34] получено выражение для одноионной анизотропии подрешетки трехвалентного марганца в локальных осях кислородных октаэдров, зависящее от угла орбитального упорядочения:

$$H_{an}^{(n)} = D_n S_{nz_l}^2 + E_n (S_{nx_l}^2 - S_{ny_l}^2), \tag{7}$$

$$D_n = 3P\cos\phi_n, \quad E_n = \sqrt{3}P\sin\phi_n. \tag{8}$$

Значения D_n оказываются положительными $(\cos \phi_n < 0, P < 0)$ и одинаковыми для всех магнитных ионов в ячейке, а E_n обладает разным знаком и величиной для различных позиций $(a \ u \ b)$ ионов Mn^{3+} .

Величина P определена в работе [34] и равна $P \approx -0.1$ мэВ. Там же определена и орбитальная зависимость g-тензоров зеемановского взаимодействия ионов Mn^{3+} в локальных осях кислородного окружения. Поскольку для полевых зависимостей спектра влияние неэквивалентности и анизотропии g-тензоров незначительно, в данной работе g-тензоры ионов марганца считаются изотропными и равными 2. В этом случае зеемановское взаимодействие описывается гамильтонианом

$$\hat{H}_{Zeem} = 2\mu_B \sum_{n} (\mathbf{H} \cdot \mathbf{S}_n).$$
(9)

кислорода в плоскости $ac; \Theta_b$ — угол сверхобменной связи Mn^{3+} –O– Mn^{3+} вдоль оси $b; \Theta'_b$ — угол сверхобменной связи Mn^{4+} –O– Mn^{4+} вдоль оси $b; \Theta_{ac}$ средний угол сверхобменной связи в плоскости ac. Обменное взаимодействие внутри базисной плоскости является следствием наличия орбитальной и зарядовой структур. Зарядовая структура определяет ферромагнитный характер взаимодействия ионов Mn^{3+} – Mn^{4+} , поскольку орбитально-независимая часть этого взаимодействия отрицательна, а наличие орбитально-зависимой части взаимодействия позволяет менять знак взаимодействия, так что появляется слабый антиферромагнитный обмен. Особенности кристаллической и зарядовой структур (такие как шахматное упорядочение ионов марганца различной валентности и славиг Mn^{4+}

марганца различной валентности и сдвиг Mn⁴⁺ вдоль оси *c*) формируют орбитальную структуру подрешетки Mn³⁺ [17]. Наличие этого комплекса факторов является причиной ферромагнитных

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для расчета магнитных свойств зарядово-упорядоченной фазы манганитов был использован гамильтониан

$$\hat{H} = \sum_{m>n} J_{mn} (\mathbf{S}_m \cdot \mathbf{S}_n) + \sum_{n=2k-1} \hat{H}_{an}^{(n)} + \hat{H}_{Zeem}.$$
(10)

Существование поворотов кислородных октаэдров мы учитываем не только зависимостью от угла сверхобменной связи в обменном параметре (6), но и в остальных слагаемых. Для спиновых переменных в слагаемых одноионной анизотропии осуществляется переход из локальной системы координат, связанной с осями октаэдра, в общую систему с помощью матриц

$$M(\varphi, \psi) = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} \times \\ \times \begin{pmatrix} \cos\psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi \end{pmatrix} \times \\ \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{pmatrix}.$$
(11)

Соответствие углов поворота и орбитальной структуры в примитивной магнитной ячейке задается следующим образом:

$$M n_{1}(\varphi_{1}, \psi_{1}, \phi_{a}), M n_{5}(\varphi_{1}, \psi_{1}, \phi_{a}), M n_{9}(-\varphi_{1}, \psi_{1}, \phi_{a}), M n_{11}(-\varphi_{1}, \psi_{1}, \phi_{a}), M n_{3}(\varphi_{2}, \psi_{2}, \phi_{b}), M n_{7}(\varphi_{2}, \psi_{2}, \phi_{b}), M n_{13}(-\varphi_{2}, \psi_{2}, \phi_{b}), M n_{15}(-\varphi_{2}, \psi_{2}, \phi_{b}), M n_{2}(\varphi_{3}, \psi_{3}), M n_{4}(\varphi_{3}, \psi_{3}), M n_{6}(\varphi_{3}, \psi_{3}), M n_{8}(\varphi_{3}, \psi_{3}), M n_{10}(-\varphi_{3}, \psi_{3}), M n_{12}(-\varphi_{3}, \psi_{3}), M n_{14}(-\varphi_{3}, \psi_{3}), M n_{16}(-\varphi_{3}, \psi_{3}).$$
(12)

Значения углов поворота октаэдров приведены в табл. 2. В соответствии с экспериментально наблюдаемой магнитной структурой *CE*-типа, обусловленной знаками обменных параметров (см. табл. 3) в этих соединениях, магнитная ячейка должна быть удвоена по сравнению с кристаллической вдоль оси с. Таким образом, магнитная ячейка содержит 16 ионов марганца: 4 — в позиции a, 4 — в позиции b и 8 — в позиции f. После соответствующих преобразований гамильтониан (10) можно переписать как энергию магнитной ячейки в терминах базисных векторов магнитной структуры для шестнадцати подрешеток (в приближении ближайших соседей):

$$\begin{split} E &= \frac{1}{16} \left\{ 4J_{1} \left[(\mathbf{a}_{1} \cdot \mathbf{A}_{1}) + (\mathbf{c}_{1} \cdot \mathbf{C}_{1}) + \right. \\ &+ \left. \left. + (\mathbf{f}_{1} \cdot \mathbf{F}) + (\mathbf{g}_{1} \cdot \mathbf{G}) \right] + \right. \\ &+ \left. + 4J_{\mathrm{II}} \left[(\mathbf{a}_{2} \cdot \mathbf{A}_{1}) + (\mathbf{c}_{2} \cdot \mathbf{C}_{1}) + \right. \\ &+ \left. \left. + (\mathbf{f}_{2} \cdot \mathbf{F}) + (\mathbf{g}_{2} \cdot \mathbf{G}) \right] + \right. \\ &+ \left. + \left. \left. + (\mathbf{f}_{1} \cdot \mathbf{F}) - (\mathbf{g}_{1} \cdot \mathbf{G}) \right] + \right. \\ &+ \left. + \left(\mathbf{f}_{1} \cdot \mathbf{F} \right) - (\mathbf{g}_{1} \cdot \mathbf{G}) \right] + \\ &+ \left. + \left(\mathbf{f}_{2} \cdot \mathbf{F} \right) - (\mathbf{g}_{2} \cdot \mathbf{G}) \right] + \\ &+ \left. + \left(\mathbf{f}_{2} \cdot \mathbf{F} \right) - (\mathbf{g}_{2} \cdot \mathbf{G}) \right] + \\ &+ \left. + 2J_{\mathrm{VI}} \left[-\mathbf{a}_{1}^{2} + \mathbf{c}_{1}^{2} + \mathbf{f}_{1}^{2} - \mathbf{g}_{2}^{2} \right] + \\ &+ 2J_{\mathrm{VI}} \left[-\mathbf{a}_{2}^{2} + \mathbf{c}_{2}^{2} + \mathbf{f}_{2}^{2} - \mathbf{g}_{2}^{2} \right] + \\ &+ \left. + 2J_{\mathrm{VII}} \left[-\mathbf{A}_{1}^{2} + \mathbf{A}_{2}^{2} + \mathbf{A}_{3}^{2} + \mathbf{C}_{1}^{2} - \mathbf{C}_{2}^{2} - \mathbf{C}_{3}^{2} + \mathbf{F}^{2} - \mathbf{G}^{2} \right] \right\} + \\ &+ \left. + \sum_{i=1,2} \left\{ \lambda_{i}^{1} (a_{iX}^{2} + c_{iX}^{2} + f_{iX}^{2} + g_{iX}^{2}) + \right. \\ &+ \left. \lambda_{i}^{2} (a_{iZ}^{2} + c_{iZ}^{2} + f_{iZ}^{2} + g_{iZ}^{2}) + \right. \\ &+ \left. \lambda_{i}^{2} (a_{iX}^{2} + c_{iZ}^{2} + f_{iZ}^{2} + g_{iZ}^{2}) + \right. \\ &+ \left. \lambda_{i}^{4} (a_{iX} a_{iZ} + c_{iX} c_{iZ} + f_{iX} f_{iZ} + g_{iX} g_{iZ}) + \right. \\ &+ \left. \lambda_{i}^{5} (a_{iX} f_{iY} + a_{iY} f_{iX} + c_{iX} g_{iY} + c_{iY} g_{iX}) + \right. \\ &+ \left. \lambda_{i}^{6} (a_{iY} f_{iZ} + a_{iZ} f_{iY} + c_{iY} g_{iZ} + c_{iZ} g_{iY}) \right\} + \\ &+ \left. 2\mu_{B} \left(\mathbf{H} \cdot \left\{ \mathbf{f}_{1} + \mathbf{f}_{2} + \mathbf{F} \right\} \right), \quad (13) \end{split}$$

где $\mathbf{f}_1 = \mathbf{S}_1 + \mathbf{S}_5 + \mathbf{S}_9 + \mathbf{S}_{11}, \ \mathbf{g}_1 = \mathbf{S}_1 - \mathbf{S}_5 - \mathbf{S}_9 + \mathbf{S}_{11}, \ \mathbf{a}_1 = \mathbf{S}_1 + \mathbf{S}_5 - \mathbf{S}_9 - \mathbf{S}_{11}, \ \mathbf{c}_1 = \mathbf{S}_1 - \mathbf{S}_5 + \mathbf{S}_9 - \mathbf{S}_{11} - \mathbf{6}$ азисные векторы магнитной структуры для позиции $a; \ \mathbf{f}_2 = \mathbf{S}_3 + \mathbf{S}_7 + \mathbf{S}_{13} + \mathbf{S}_{15}, \ \mathbf{g}_2 = \mathbf{S}_3 - \mathbf{S}_7 - \mathbf{S}_{13} + \mathbf{S}_{15}, \ \mathbf{a}_2 = \mathbf{S}_3 + \mathbf{S}_7 - \mathbf{S}_{13} - \mathbf{S}_{15}, \ \mathbf{c}_2 = \mathbf{S}_3 - \mathbf{S}_7 + \mathbf{S}_{13} - \mathbf{S}_{15} - \mathbf{6}$ базисные векторы магнитной структуры для позиции $b; \ \mathbf{F} = \mathbf{S}_2 + \mathbf{S}_4 + \mathbf{S}_6 + \mathbf{S}_8 + \mathbf{S}_{10} + \mathbf{S}_{12} + \mathbf{S}_{14} + \mathbf{S}_{16}, \ \mathbf{G} = \mathbf{S}_2 - \mathbf{S}_4 - \mathbf{S}_6 + \mathbf{S}_8 - \mathbf{S}_{10} + \mathbf{S}_{12} + \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{A}_1 = \mathbf{S}_2 + \mathbf{S}_4 + \mathbf{S}_6 + \mathbf{S}_8 - \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{A}_2 = \mathbf{S}_2 + \mathbf{S}_4 - \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} + \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{A}_3 = \mathbf{S}_2 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{A}_3 = \mathbf{S}_2 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{A}_3 = \mathbf{S}_2 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_3 = \mathbf{S}_3 - \mathbf{S}_4 - \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_3 = \mathbf{S}_2 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_3 = \mathbf{S}_2 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_3 = \mathbf{S}_3 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_3 = \mathbf{S}_3 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_3 = \mathbf{S}_3 - \mathbf{S}_4 + \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{S}_{12} - \mathbf{S}_{14} - \mathbf{S}_{16}, \ \mathbf{S}_6 - \mathbf{S}_8 + \mathbf{S}_{10} - \mathbf{$

Таблица 3. Параметры сверхобменного взаимодействия для зарядово-упорядоченных фаз манганитов R_{0.5}Ca_{0.5}MnO₃ (рядом с названием соединения указана ссылка на экспериментальные данные, исходя из которых проводился расчет). Обозначения соответствуют формуле (14)

R	$J_{\rm I}, $ мэ ${ m B}$	$J_{ m II}, $ мэВ	$J_{ m III}, $ мэ $ m B$	$J_{\rm IV}, $ мэВ	$J_{ m V}, $ мэВ	$J_{ m VI}, $ мэВ	$J_{ m VII}, $ мэВ
La [24]	-2.33	-2.41	0.58	0.59	2.67	2.59	1.29
Pr [25]	-2.16	-2.50	0.61	0.85	2.16	2.16	1.21
Tb [26]	-2.07	-1.81	1.03	0.86	1.55	1.64	1.21

 $C_1 = S_2 - S_4 - S_6 + S_8 + S_{10} - S_{12} - S_{14} + S_{16},$ $C_2 = S_2 + S_4 - S_6 - S_8 - S_{10} - S_{12} + S_{14} + S_{16},$ $C_3 = S_2 - S_4 + S_6 - S_8 - S_{10} + S_{12} - S_{14} + S_{16} - 5_{10}$ базисные векторы магнитной структуры для позиции f; обменное взаимодействие между магнитными подрешетками

$$J_{I} = J_{1-2} = J_{1-8} = J_{4-5} = J_{5-6} = J_{9-10} =$$

$$= J_{9-16} = J_{12-13} = J_{13-14},$$

$$J_{II} = J_{2-3} = J_{3-8} = J_{4-7} = J_{6-7} = J_{10-11} =$$

$$= J_{11-16} = J_{12-15} = J_{14-15},$$

$$J_{III} = J_{1-4} = J_{1-6} = J_{2-5} = J_{5-8} = J_{9-12} =$$

$$= J_{9-14} = J_{10-13} = J_{13-16},$$

$$J_{IV} = J_{3-4} = J_{3-6} = J_{2-7} = J_{7-8} = J_{11-12} =$$

$$= J_{11-14} = J_{10-15} = J_{15-16},$$

$$J_{V} = J_{1-9} = J_{5-13}, \quad J_{VI} = J_{3-11} = J_{7-15},$$

$$J_{VII} = J_{2-10} = J_{4-12} = J_{6-14} = J_{8-16},$$
(14)

$$\lambda_i^1 = \frac{\sqrt{3}}{4} P \sin \phi_i \sin 2\psi_i,$$

$$\lambda_i^2 = \frac{1}{4} P \times$$

$$\times \left(3\cos\phi_i\cos^2\varphi_i - \sqrt{3}\sin\phi_i\sin^2\varphi_i\sin 2\psi_i\right),$$

$$\lambda_i^3 = \frac{1}{4} P \times$$

$$\times \left(3\cos\phi_i\cos^2\varphi_i - \sqrt{3}\sin\phi_i\cos^2\varphi_i\sin 2\psi_i\right), \quad (15)$$

$$\lambda_i^4 = \frac{\sqrt{3}}{2} P \sin\phi_i\cos\varphi_i\cos 2\psi_i,$$

$$\lambda_i^5 = \frac{\sqrt{3}}{2} P \sin\phi_i\sin\varphi_i\cos 2\psi_i.$$

$$\lambda_i^{6} = -\frac{1}{4} P \sin 2\varphi_i \left(3\cos\phi_i + \sqrt{3}\sin\phi_i \sin 2\psi_i \right),$$
$$i = 1, 2.$$

Для количественного описания свойств R_{0.5}Ca_{0.5}MnO₃ мы использовали значения перечисленных выше параметров, собранные в табл. 3 и табл. 4.

Магнитная структура во внешнем магнитном поле

Минимизация магнитной энергии в модели (13) приводит к многоподрешеточной магнитной структуре, которая имеет неколлинеарный вид и классифицируется для всех трех позиций иона марганца как $(g_{1X}, 0, g_{1Z}), (g_{2X}, 0, g_{2Z}), (G_X, 0, G_Z)$ (см. рис. 4а, в) без учета поворотных искажений и как $(g_{1X}, c_{1Y}, g_{1Z}), (g_{2X}, c_{2Y}, g_{2Z}), (G_X, C_{1Y}, G_Z)$ (см. рис. 4a, г) при учете поворотов, что соответствует представлению Γ_1 \mathbf{k}_{12} (a, b) и Γ_2 \mathbf{k}_{12} (f) группы $P2_1/m$. Примерное направление оси легкого намагничивания антиферромагнитной структуры слегка отклонено от оси с кристалла. В отличие от чистого манганита, данная структура не обладает слабым ферромагнетизмом, что затрудняет экспериментальное определение ее деталей. Структура всей магнитной ячейки примерно соответствует СЕ_Z-типу, что подтверждается экспериментом [24, 25, 31].

Выражение (13) позволяет предположить основные составляющие магнитной структуры. Сравнивая коэффициенты при квадратах компонент базисных векторов магнитной структуры, можно видеть, что наибольшие отрицательные коэффициенты имеются при квадратах компонент a_{1X}^2 , g_{1X}^2 $(-J_V/8 + \lambda_1^1)$ и a_{1Z}^2 , g_{1Z}^2 $(-J_V/8 + \lambda_1^3)$, a_{2X}^2 , g_{2X}^2 $(-J_{VI}/8 + \lambda_2^1)$ и a_{2Z}^2 , g_{2Z}^2 $(-J_{VI}/8 + \lambda_2^3)$ подрешеток трехвалентного марганца. Кроме того, a_{1X} и a_{2X} , g_{1X} и g_{2X} , a_{1Z} и a_{2Z} , g_{1Z} и g_{2Z} связаны между собой через обменное взаимодействие с ионами Mn^{4+} , а a_{1X} и a_{1Z} , g_{1X} и g_{1Z} , a_{2X} и a_{2Z} , g_{2Z} связаны в слагаемых анизотропии с коэффициентами $\lambda_{1,2}^1$. Из табл. 4 и формулы (13) следует, что преобладание какой-либо из этих структур определяется обменными

R	La [24]		Pr	[25]	Tb [26]		
i	1 2		1 2		1	2	
$\lambda_i^1,$ мэВ	0.006	-0.004	0.009	-0.006	-0.012	0.016	
$\lambda_i^2,$ мэВ	0.042	0.043	0.040	0.037	0.026	0.027	
$\lambda_i^3, \;$ мэВ	-0.005	0.005	-0.009	0.007	0.013	-0.014	
$\lambda_i^4, $ мэВ	0.067	-0.068	0.085	-0.072	0.075	-0.071	
$\lambda_i^5,$ мэВ	-0.011	0.011	-0.012	0.013	0.016	-0.015	
$\lambda_i^6, $ мэВ	0.015	0.012	0.017	0.011	-0.006	-0.017	

Таблица 4. Параметры одноионной анизотропии для зарядово-упорядоченных фаз манганитов R_{0.5}Ca_{0.5}MnO₃ (рядом с названием соединения указана ссылка на экспериментальные данные, исходя из которых проводился расчет). Обозначения соответствуют формуле (15)

Рис. 4. Магнитная структура моноклинного кристалла $R_{0.5}Ca_{0.5}MnO_3$: a — подрешетки Mn_a^{3+} , Mn_b^{3+} , составляющие g_{1X} , g_{1Z} , g_{2X} , g_{2Z} ; δ — подрешетки Mn_a^{3+} , Mn_b^{3+} , составляющие c_{1Y} , c_{2Y} ; ϵ — подрешетка Mn_f^{4+} , составляющие G_X , G_Z ; ϵ — подрешетка Mn_f^{4+} , составляющая C_{1Y}

взаимодействиями с подрешеткой Mn^{4+} . Поскольку наибольшие по величине отрицательные коэффициенты позиций a, b выделяют разные проекции базисных векторов (X, Z соответственно) и $|\lambda_1^1| < |\lambda_2^3|$, можно заключить, что ось Z будет примерно совпадать с осью легкого намагничивания магнитной структуры в целом за счет обменного взаимодействия. Тот же обмен (вклады в (13) с коэффициентами $J_{\mathrm{I}}, J_{\mathrm{II}} < 0$ и $J_{\mathrm{III}}, J_{\mathrm{IV}} > 0$) определяет основные компоненты магнитной структуры g_{1Z}, g_{2Z}, G_Z .

Легко видеть, что при отсутствии поворотных искажений в кристалле коэффициенты в выражении (13) $\lambda_{1,2}^1 = \lambda_{1,2}^3 = \lambda_{1,2}^5 = \lambda_{1,2}^6 = 0$, из чего следует, что в этом случае структуры с компонентами g_{1X} , g_{2X} , G_X и g_{1Z} , g_{2Z} , G_Z становятся эквивалентны.

Благодаря наличию орбитальной структуры, выделяется ось легкого намагничивания кристалла и появляются неколлинеарные компоненты магнит-

$$\alpha_{a} = \frac{S_{1}\lambda_{1}^{4}\sin(2\alpha_{f})}{S_{2}(J_{\rm I} - J_{\rm III}) + S_{1}\lambda_{1}^{4}\cos(2\alpha_{f})},$$

$$\alpha_{b} = \frac{S_{1}\lambda_{2}^{4}\sin(2\alpha_{f})}{S_{2}(J_{\rm II} - J_{\rm IV}) + S_{1}\lambda_{2}^{4}\cos(2\alpha_{f})},$$
(16)

$$\cos(2\alpha_f) = \frac{S_1(\lambda_1^4 + \lambda_2^4)(J_{\rm I} - J_{\rm III})(J_{\rm II} - J_{\rm IV})}{S_2\lambda_1^4\lambda_2^4(J_{\rm I} - J_{\rm III} + J_{\rm II} - J_{\rm IV})},$$

где $S_1 = 2 -$ спин Mn^{3+} , $S_2 = 3/2 -$ спин Mn^{4+} .

При учете поворотов расчет заметно усложняется, поэтому проведен в численной форме. Величины соответствующих углов неколлинеарности магнитных моментов ионов марганца приведены в табл. 5. Согласно экспериментальным данным [24, 25], в зарядово-упорядоченных манганитах моноклинной структуры магнитная структура имеет ось легкого намагничивания, отклоненную от оси с, направление последней объясняется наличием небольшой несоразмерности кристаллической структуры, которая в нашей модели не учтена. В нашей модели такое отклонение качественно объяснимо. Так же, как в чистом и зарядово-упорядоченном орторомбическом манганите [17], направление оси легкого намагничивания вдоль псевдоперовскитной диагонали (ось а или с) обусловлено наличием магнитной анизотропии с меняющимся знаком коэффициента Е_n. В случае моноклинной структуры для позиции а локальной легкой осью является ось y_p , а для позиции b — ось x_p . Однако коэффициенты E_n для этих позиций не только имеют разные знаки, но и различаются по величине. Вследствие этого направление оси легкого намагничивания слегка отличается от диагонали. Величина Х-составляющей магнитной структуры в нашей модели, в среднем, меньше наблюдаемой в эксперименте (ср. α_f и α^{exp} в табл. 5). Таким образом, орбитальная структура лишь частично обусловливает эту особенность. Зигзагообразная орбитальная структура в сочетании с поворотными искажениями, зависящими от знаков обменного взаимодействия, может являться причиной наличия или отсутствия слабого ферромагнетизма в кристалле. $CE_{X,Z}$ -структура $(\Gamma_1 \mathbf{k}_{12} (a, b) \Gamma_2 \mathbf{k}_{12} (f)$ группы $P2_1/m$) соответствует полностью антиферромагнитной структуре, $A_{X,Z}$ -структура ($\Gamma_1 \mathbf{k}_7$ (a, b, f) группы $P2_1/m$) обладает слабым ферромагнитным моментом, аналогично чистому манганиту. Переход между этими структурами может быть осуществлен изменением орбитального угла ϕ до величины, большей 140°. Такой переход может быть осуществлен, например, с помощью внешнего давления. Таким образом, имеется возможность получения слабого ферромагнетизма в кристалле с помощью немагнитных воздействий.

Особенностью формирования магнитной структуры зарядово-упорядоченных манганитов является наличие подрешетки Mn⁴⁺, магнитная анизотропия которой невелика и в нашей модели не учитывается [17]. Тем не менее благодаря сильной одноионной анизотропии соседних ионов Mn³⁺ и обменному взаимодействию, подрешетка четырехвалентных ионов марганца также обладает осью легкого намагничивания, направленной примерно посередине между осями легкого намагничивания Mn³⁺ позиции *a* и Mn³⁺ позиции *b*.

Поведение магнитной структуры антиферромагнетика с осью легкого намагничивания во внешнем магнитном поле обычно рассматривается согласно простой модели с одним анизотропным вкладом, описывающим ось легкого намагничивания (в нашем случае это $D(g_{1Z}^2 + g_{2Z}^2 + G_Z^2))$. В этом случае при поле, направленном вдоль оси легкого намагничивания, магнитная структура до некоторой величины поля (H_{c1}) остается неизменной, после чего происходит «опрокидывание» магнитных подрешеток (спин-флоп-переход) перпендикулярно направлению внешнего поля. В дальнейшем при усилении внешнего поля направление магнитных моментов постепенно приближается к направлению поля, пока не произойдет насыщение (спин-флип-переход при H_{c2}). При таком подходе поведение неколлинеарных компонент не рассматривается.

В нашей модели поведение магнитной структуры более сложное. Это, в первую очередь, связано с учетом неколлинеарных компонент магнитной структуры. При увеличении магнитного поля вдоль оси Z к имеющимся компонентам магнитной структуры добавляются взаимодействующие с f_{1Z} -, f_{2Z} -, F_{Z} -составляющими компоненты (f_{1X} , $a_{1Y}, f_{1Z}), (f_{2X}, a_{2Y}, f_{2Z}), (F_X, A_{1Y}, F_Z) - \Gamma_3 \mathbf{k}_7$ (a, b, f), что приводит к усложнению поведения магнитной подсистемы во внешнем магнитном поле. Легко видеть, что любое направление магнитного поля внутри плоскости ас приводит к появлению тех же дополнительных компонент магнитной структуры. Спин-флоп-переход, также наблюдающийся в этих соединениях [31], с точки зрения симметрии не приводит, в отличие от чистых манганитов [34], к качественному изменению магнит-

R	α_a , град	α_b , град	α_f , град	γ_a , град	γ_b , град	γ_f , град	α^{exp} , град
La [24]	-3.57°	3.42°	-4.62°	-0.28°	-0.25°	-0.16°	20°
Pr [25]	-3.87°	3.27°	-9.91°	0.32°	0.29°	0.19°	35°
Tb [26]	-3.73°	4.45°	12.05°	-0.29°	-0.21°	-0.4°	_

Таблица 5. Параметры магнитной структуры R_{0.5}Ca_{0.5}MnO₃. (рядом с названием соединения указана ссылка на экспериментальные данные, исходя из которых проводился расчет)

Рис. 5. Зависимость суммарной намагниченности (на одну формульную единицу) *M* от внешнего магнитного поля *H*

ной структуры: так, после достижения критического значения внешнего магнитного поля появляется ферромагнитная составляющая структуры и смена примерной оси легкого намагничивания с Z на X. При дальнейшем увеличении поля происходит увеличение Γ_3 \mathbf{k}_7 -компоненты структуры и уменьшение соответствующих компонент исходной структуры (Γ_1 \mathbf{k}_{12} (a, b) Γ_2 \mathbf{k}_{12} (f)). Таким образом, очевидно, что полное насыщение в данной системе недостижимо, так же как и в чистом манганите [34].

Обилие дополнительных компонент магнитной структуры, имеющих большое значение для понимания влияния внешнего магнитного поля, значительно затрудняет аналитические расчеты. Поэтому ниже приведем результаты численных расчетов (см. рис. 5). Величины критических полей H_{c1} для La_{0.5}Ca_{0.5}MnO₃ составили 4.2 Tл, для $Pr_{0.5}Ca_{0.5}MnO_3 - 6.4$ Tл, для $Tb_{0.5}Ca_{0.5}MnO_3 - 5.8$ Tл. Значение поля H_{c1} для $Pr_{0.5}Ca_{0.5}MnO_{3-\delta}$ согласуется с найденным в эксперименте для $Pr_{0.5}Ca_{0.5}MnO_{3-\delta}$ в работе [31] и равным примерно 2–5 Tл. Значения других критических полей измерены не были. Поле спин-флоп-перехода для зарядово-упорядоченных манганитов имеет значение на порядок меньшее, чем для чистого манганита (21 Тл [38] — эксперимент, 19 Тл [34] — теория).

Большой интерес вызывает не только поведение магнитной структуры во внешнем магнитном поле, но и возможность разрушения зарядового упорядочения магнитным порядком не *СЕ*-типа [20] или внешним магнитным полем [3, 31, 39-42]. Величины внешних магнитных полей, при которых зарядово-упорядоченная фаза разрушается, приводятся разные. Так, для Pr_{0.5}Ca_{0.5}MnO_{3-δ} в работе [31] эта величина составляет примерно 5-8 Тл (при $T \sim 80$ K); для $Pr_{0.5}Sr_{0.5}MnO_3$ — 5-6 Тл при $T \approx 0$ [39]; для различных составов $Pr_{0.5}Ca_{0.5-x}Sr_{x}MnO_{3}$ [40] переход предполагается при полях примерно от 20–30 Тл ($T < T_N$) для x = 0, а в эксперименте при полях до 5 Тл не наблюдался даже в образцах с высоким содержанием стронция; авторы работы [41], исследовавшие соединения $R_{0.5}Ca_{0.5}MnO_3$ (R = La, Pr, Nd, Sm), наблюдали разрушение зарядово-упорядоченной фазы полями, равными 0-15 Тл для La_{0.5}Ca_{0.5}MnO₃, 16-25 Тл для Pr_{0.5}Ca_{0.5}MnO₃, 5-23 Тл для Nd_{0.5}Ca_{0.5}MnO₃ и 23-36 Тл для Sm_{0.5}Ca_{0.5}MnO₃ при низких температурах (меньшая величина соответствует переходу при уменьшении поля, бо́льшая — при увеличении); в работе [42] для соединения La_{0.5}Ca_{0.5}MnO₃ сообщается о полях 0.4-3 Тл, для которых начинается постепенное уничтожение антиферромагнитной фазы при различных температурах. Несмотря на различные величины полей разрушения зарядово-упорядоченной фазы, можно обратить внимание на то, что по порядку величины они близки к полям спин-флоп-перехода. Можно ли при этом говорить о полевых зависимостях магнитной структуры и самом спин-флоп-переходе, рассматривая кристалл как зарядово-упорядоченный? Подобное приближение возможно по нескольким причинам. Во-первых, мы предполагаем наличие идеального монокристалла — без двойников и доменов. В работах [40-42] проводились исследования поликристаллов. Во-вторых, как сообщается в работах [25, 31], при достаточно низких температурах зарядово-упорядоченная фаза устойчива, таким образом, мы можем ограничиться низкотемпературным приближением. При этом можно предположить, что разрушения зарядово-упорядоченной фазы не будет в случае отсутствия ферромагнитной составляющей магнитной структуры, и механизм двойного обмена будет подавлен. При наличии даже небольшого ферромагнетизма в кристалле благодаря двойному обмену появляются области с делокализованными носителями заряда, т.е. с разрушающимся зарядовым порядком. В случае образования А-структуры при неизменной симметрии кристаллической решетки, как было сказано выше, появляется слабая ферромагнитная составляющая, инициирующая разрушение зарядово-упорядоченной фазы. При приложении внешнего магнитного поля заметная ферромагнитная составляющая структуры может появиться сразу (Н направлено перпендикулярно оси легкого намагничивания) или при $H > H_{c1}$ (**H** направлено параллельно оси легкого намагничивания, см. рис. 5). Прочие направления представляют промежуточный случай перехода. В поликристаллическом образце поле спин-флоп-перехода является максимальным полем, при котором во всех зернах образца появляется ферромагнитный момент. Таким образом, можно предположить, что спин-флоп-переход может начать разрушение или полностью разрушить зарядовое упорядочение, поэтому предсказание поведения зарядово-упорядоченной системы во внешнем магнитном поле можно делать, если поле направлено вдоль оси легкого намагничивания и незначительно превышает поле спин-флоп-перехода.

Спиновые волны и антиферромагнитный резонанс

Для энергии (12) в линейном приближении спиновых волн исследованы дисперсионные зависимости магнонов (рис. 6). Вследствие шестнадцатиподрешеточной модели магнитной структуры спектр спиновых волн имеет шестнадцать ветвей. Спектр разделен на шесть зон по несколько близкорасположенных ветвей в каждой (две — в первой, второй, пятой, шестой, четыре — в третьей и четвертой). Характерной особенностью дисперсии спектра является заметное различие кривых в направлениях [ξ00] и [00ξ], т.е. вдоль орбитального зигзага и в перпендикулярном направлении внутри плоскости *ас.* Необходимо отметить, что такое

Рис. 6. Дисперсионные зависимости энергии E магнонов $R_{0.5}Ca_{0.5}MnO_3$ для различных направлений магнитной зоны Бриллюэна от волнового вектора ξ : a соответствует $Tb_{0.5}Ca_{0.5}MnO_3$, δ — $Pr_{0.5}Ca_{0.5}MnO_3$, δ — $Pr_{0.5}Ca_{0.5}MnO_3$, δ — $Pr_{0.5}Ca_{0.5}MnO_3$, δ

различие обусловлено не только сильным ферромагнитным взаимодействием внутри зигзага и слабой антиферромагнитной связью между зигзагами (т. е. магнитной подсистемой), но и взаимным расположением орбитальной, зарядовой и магнитной подрешеток. Так, уменьшение количества подрешеток до шести (по схеме 1' = 1, 13; 2' = 2, 8, 12,14; 3' = 3, 15; 4' = 4, 6, 10, 16; 5' = 5, 9; 6' = 7,11; 1'-6' «новые подрешетки», 1-16 подрешетки в обозначениях рис. 1) описывает дисперсионные зависимости в направлениях [$\xi\xi0$] и [$0\xi0$], однако в двух других исследуемых направлениях эта модель ведет к совершенно идентичным дисперсионным зависимостям, т. е. влияние орбитальной структуры на спектр спиновых волн теряется. Кроме того, модель шести подрешеток подразумевает пренебрежение поворотными искажениями в одноионной анизотропии, которые обусловливают выделение оси легкого намагничивания кристалла, т.е. не может описать спин-флоп-переход.

При k = 0 энергетический спектр магнитных возбуждений можно наблюдать с помощью AФMP (см. рис. 7). Без внешнего магнитного поля нижние ветви спектра расщеплены и разделены энергетической щелью. Образование такой щели характерно для легкоосного антиферромагнетика. Снятие вы-

Рис.7. Зависимость энергий E АФМР от внешнего магнитного поля H, направленного параллельно оси легкого намагничивания для R_{0.5}Ca_{0.5}MnO₃: $a - La_{0.5}Ca_{0.5}MnO_3$; $\delta - Pr_{0.5}Ca_{0.5}MnO_3$; $e - Tb_{0.5}Ca_{0.5}MnO_3$; $e - scпери-ментальные данные для Pr_{0.5}Ca_{0.5}MnO_{3-\delta}$ [31]

рождения нижних ветвей спектра обусловлено, так же как в чистом манганите [34], наличием орбитально-зависимой одноионной анизотропии, для которой характерны смена оси легкого намагничивания внутри плоскости *ас.* Увеличение расщепления между вырожденными ветвями — это следствие наличия подрешетки Mn⁴⁺, которые в нашей модели не обладают магнитной анизотропией.

Величины щели ΔE и расщепления δE , по нашим расчетам, для La_{0.5}Ca_{0.5}MnO₃ составили $\Delta E = 1.98$ мэВ, $\delta E = 1.43$ мэВ, для Pr_{0.5}Ca_{0.5}MnO₃ — $\Delta E = 1.81$ мэВ, $\delta E = 0.68$ мэВ, для Tb_{0.5}Ca_{0.5}MnO₃ — $\Delta E = 2.00$ мэВ, $\delta E =$ = 1.18 мэВ. Значения для Pr_{0.5}Ca_{0.5}MnO₃ качественно согласуются с найденным в эксперименте в работе [31]: $\Delta E = 0.64$ мэВ, $\delta E = 0.12$ мэВ. Расхождение наших расчетов и экспериментальных данных можно объяснить наличием вакансий по кислороду в исследованном образце, что, как утверждают авторы, является причиной наличия свободных носителей заряда в небольшом количестве. Носители заряда приводят к появлению двойного обмена, что даже при небольших концентрациях может вызвать заметные изменения в спектрах АФМР, как, например, в манганите, легированном стронцием [43].

Основным критерием качественного сравнения с данным экспериментом, на наш взгляд, может служить форма полевой зависимости спектра в направлении оси легкого намагничивания ($\sim c$). Поведение полевой зависимости частот является характерным для легкоосного антиферромагнетика. При увеличе-

нии поля в направлении оси легкого намагничивания две нижние ветви спектра еще более расходятся. При $H = H_{c1}$ наблюдается небольшой скачок, связанный с явлением спин-флоп-перехода. В обычных антиферромагнетиках при этом поле нижняя ветвь имеет нулевую энергию. В нашей модели в области полей спин-флоп-перехода ожидается лишь небольшой скачок резонансной частоты. Дальнейшее поведение полевой зависимости аналогично зависимости при направлении поля Н перпендикулярно оси легкого намагничивания (а), что объясняется ослаблением влияния этой оси на спектр за счет взаимодействия влияний орбитальной и зарядовой структур, а именно, за счет наличия чередования подрешеток трехвалентных ионов марганца, обладающих сильной орбитально-зависимой одноионной анизотропией, и подрешеток четырехвалентных ионов марганца, магнитной анизотропией которых можно пренебречь и искажение кислородного окружения которых не сказывается на формировании оси легкого намагничивания кристалла. Таким образом, магнитные структуры с примерной легкой осью вблизи оси а и вблизи оси с гораздо слабее различаются по энергии, чем в чистом манганите [34], поэтому скачок частот АФМР становится слабым. Подобное поведение наблюдалось и в эксперименте [31] в пределах диапазона измерений, однако полевая зависимость выше поля спин-флоп-перехода экстраполирована прямой, стремящейся к нулю в области малых полей.

5. ЗАКЛЮЧЕНИЕ

Таким образом, в нашей работе представлена простая модель, которая описывает дисперсию и полевые зависимости [31] энергии спиновых волн, а также полевую зависимость суммарной намагниченности. В модель включены орбитально-зависимые взаимодействия: обмен, одноионная анизотропия; зеемановское взаимодействие; орбитальная и зарядовая структуры предполагаются фиксированными и не зависящими от магнитных взаимодействий. Анизотропный обмен в модели отсутствует, а все поворотные искажения учтены в других взаимодействиях.

Вследствие простоты модели в результатах работы ясно прослеживается зависимость магнитной структуры и спектров магнонов от орбитального, зарядового и кристаллического упорядочений. По этой же причине возможно качественно объяснить как формирование магнитной структуры, так и ее поведение во внешнем магнитном поле.

Работа выполнена при частичной финансовой поддержке программы CRDF (REC-005), Министерства образования РФ (грант E00-3.4-277) и РФФИ (грант 02-02-96412). Авторы благодарят З. Йирака (Чехия) за предоставление точных экспериментальных данных, включенных в доклад [25] на конференции ICNS2001 (13–16 сентября, г. Мюнхен, Германия).

ЛИТЕРАТУРА

- 1. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
- E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
- M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1040 (1998); E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
- 4. К. И. Кугель, Д. И. Хомский, УФН **136**, 621 (1982).
- I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. Lett. 76, 4825 (1996).
- G. Khaliullin and V. Oudovenko, Phys. Rev. B 56, R14243 (1997).
- I. V. Solovyev and K. Terakura, Phys. Rev. Lett. 83, 2825 (1999).
- J. Van den Brink, P. Horsch, F. Mack, and A. M. Oles, Phys. Rev. B 59, 6795 (1999).
- J. Van den Brink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett. 83, 5118 (1999).
- 10. Saitoh et al., Nature 410, 180 (2001).
- D. L. Huber, G. Alejandro, A. Caneiro et al., Phys. Rev. B 61, 12155 (1999).
- M. V. Zimmermann, J. P. Hill, D. Gibbs et al., Phys. Rev. Lett. 83, 4872 (1999); H. Kawata, T. Arima, Y. Tokura et al., Phys. Rev. Lett. 81, 582 (1999).
- 13. J. Kanamori, J. Appl. Phys. (Suppl.) 31, 14S (1960).
- 14. A. J. Millis, Phys. Rev. B 53, 8434 (1996).
- L. F. Feiner and A. M. Oles, Phys. Rev. B 59, 3295 (1999); S. Fratini, M. Capone, M. Grilli, and D. Feinberg, in: CP 554, *Physics in Local Lattice Distortions*, ed. by H. Oyanagi and A. Bianconi, 371 (2000).

- T. Hotta, S. Yunoki, M. Mayr, and E. Dagotto, Phys. Rev. B 60, R15009 (1999); T. Hotta, Y. Takada, H. Koizumi, and E. Dagotto, Phys. Rev. Lett. 84, 2477 (2000); S. Yunoki, T. Hotta, and E. Dagotto, Phys. Rev. Lett. 84, 3714 (2000).
- 17. L. E. Gontchar, A. E. Nikiforov, and S. E. Popov, J. Magn. Magn. Mat. 223, 175 (2001).
- F. Moussa, M. Hennion, J. Rodriguez-Carvajal et al., Phys. Rev. B 54, 15149 (1996).
- 19. K. Hirota, N. Kaneko, A. Nishizawa, and Y. Endoh, J. Phys. Soc. Jpn. 65, 3736 (1996).
- 20. J. Q. Li, Y. Matsui, T. Kimura, and Y. Tokura, Phys. Rev. B 57, R3205 (1998).
- R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 58, 11583 (1998); R. Maezono and N. Nagaosa, Phys. Rev. B 62, 11576 (2000).
- 22. T. Mizokawa, D. I. Khomskii, and G. A. Sawatzki, Phys. Rev. B 61, R3776 (2000); T. Mizokawa, D. I. Khomskii, and G. A. Sawatzki, Phys. Rev. B 63, 024403 (2001).
- 23. M. Van Veendaal and A. J. Fedro, Phys. Rev. B 59, 1285 (1999).
- 24. P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).
- 25. Z. Jirák, C. Martin, M. Hervieu, and J. Hejtmanek, Reported at Int. Conf. on Neutron Scattering ICNS2001 13-16 September 2001, Munich (see abstract in: Conference Programme and Abstracts ICNS2001, ed. by J. Neuhaus and A. Meyer, p. 146 (2001)).
- 26. J. Blasco, J. Garcia, J. M. de Teresa et al., J. Phys.: Condens. Matter 9, 10321 (1997).
- 27. L. E. Gontchar and A. E. Nikiforov, Czechosl. J. Phys. 52, Suppl. A, p. A245 (2002).

- 28. Z. Jirák, S. Krupička, Z. Šimša et al., J. Magn. Magn. Mat. 53, 153 (1985).
- 29. F. Damay, Z. Jirák, M. Hervieu et al., J. Magn. Magn. Mat. 190, 221 (1998).
- 30. A. Machida, Y. Moritomo, K. Ohoyama et al., Phys. Rev. B 62, 80 (2000).
- 31. S. Kawamata, S. Noguchi, K. Okuda et al., J. Magn. Magn. Mat. 226–230, 854 (2001).
- **32**. В. Е. Найш, ФММ **92**, 5 (2001).
- **33**. В. Е. Найш, ФММ **92**, 16 (2001).
- 34. Л. Э. Гончарь, А. Е. Никифоров, С. Э. Попов, ЖЭТФ 118, 1411 (2000).
- 35. А. Е. Никифоров, С. Э. Попов, С. Ю. Шашкин, ФММ 87, 16 (1999).
- 36. О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- 37. К. С. Александров, А. Т. Анистратов, Б. В. Безносиков, Н. В. Федосеева, Фазовые переходы в кристаллах галлоидных соединений, Наука, Новосибирск (1981).
- 38. K. Hirota, A. Nishizawa, and Y. Endoh, J. Magn. Magn. Mat. 177–181, 864 (1998).
- 39. Y. Tomioka, A. Asamitsu, Y. Morimoto, H. Kuhawara, and Y. Tokura, Phys. Rev. Lett. 74, 5108 (1995).
- 40. S. Krupička, M. Maryško, Z. Jirák, and J. Hejtmanek, J. Magn. Magn. Mat. 206, 45 (1999).
- 41. M. Respaud, J. M. Broto, H. Rakoto et al., J. Magn. Magn. Mat. 211, 128 (2000).
- 42. J. Lope, P. N. Lisboa-Filho, W. A. C. Passos et al., J. Magn. Magn. Mat. 226–230, 500 (2001).
- 43. A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin et al., Physica B 284–288, 1414 (2000).