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INTERNAL ENERGY OF HIGH DENSITY HYDROGEN:ANALYTIC APPROXIMATIONS COMPAREDWITH PATH INTEGRAL MONTE CARLO CALCULATIONSS. A. Trigger a, W. Ebeling a, V. S. Filinov b*,V. E. Fortov b, M. Bonitz  **a Institut für Physik, Humboldt-Universität BerlinD-10115, Berlin, GermanybInstitute for High Energy Density, Russian Aademy of Sienes127412, Mosow, Russia Fahbereih Physik, Universität RostokD-18051, Rostok, GermanySubmitted 30 September 2002The internal energy of high density hydrogen plasmas in the temperature range T = 10000 : : : 50000 K is alu-lated by two di�erent analyti approximation shemes � the method of an e�etive ion�ion interation potentialand the Padé approah within the hemial piture � and are ompared with the diret path integral MonteCarlo results. A reasonable agreement between the results obtained from the three independent alulations isfound and the reasons for still existing di�erenes are investigated. Interesting high density phenomena suh asthe onset of ion rystallization are disussed.PACS: 52.25.Kn, 52.65.Pp1. INTRODUCTIONThermodynamis of strongly orrelated Fermi sys-tems at high pressure is of growing importane inmany �elds, inluding shok and laser plasmas, astro-physis, solids, and nulear matter, see Refs. [1�6℄ foran overview. In partiular, thermodynami propertiesof hot dense plasmas are essential for the desription ofplasmas generated by strong lasers [5℄. Further, amongthe phenomena of urrent interest are the high-pressureompressibility of deuterium [7℄, metallization of hy-drogen [8℄, plasma phase transition et., whih ourin situations where both interation and quantum ef-fets are relevant. Among the early theoretial paperson dense hydrogen we refer to Wigner and Hunting-ton [9℄, Abrikosov [10℄, Ashroft [11℄, and Brovman etal. [12℄; onerning the plasma phase transition, seeNorman and Starostin [13℄, Kremp et al. [14℄, Saumon*E-mail: �linov�ok.ru**E-mail: bonitz�physik.uni-rostok.de

and Chabrier [15℄, and Shlanges et al. [16℄, and alsosome earlier investigations of one of us [17�20℄. Amongthe early simulation approahes, we refer to severalMonte Carlo alulations, e.g., [21�23℄.There has been a signi�ant progress in reent yearsin studying these systems analytially and numerially,see, e.g., [1; 2; 4; 24�28℄ for an overview. But there re-mains an urgent need to test analyti models by anindependent numerial approah. In addition to themoleular dynamis approah, e.g. [24, 26℄, the path-in-tegral Monte Carlo (PIMC) method is partiularly wellsuited to desribe thermodynami properties in thehigh density region. This is beause it starts fromthe fundamental plasma partiles, eletrons and ions,(physial piture) and treats all interations, inlud-ing bound state formation, rigorously and selfonsis-tently. We note a remarkable reent progress in ap-plying these tehniques to Fermi systems, see, e.g.,Refs. [1, 2, 29, 30℄ for an overview.Several methods have been developed to perform527



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003quantum Monte Carlo alulations. We �rst mentionthe restrited PIMC method (RPIMC) [31�34℄, wherespeial assumptions on the density operator �̂ are in-trodued in order to redue the sum over permutationsto even (positive) ontributions only. It an be shown,however, that this method does not reprodue the or-ret ideal Fermi gas limit [35℄. An alternative is givenby diret fermioni PIMC simulations (DPIMC), whihhave oasionally been attempted by various groups,see, e.g., [36, 37℄ and referenes therein. But thesesimulations have been very ine�ient beause of thefermioni sign problem. Reently, three of us proposeda new path-integral representation for the N -partiledensity operator [38�41℄ that allows diret fermionipath integral Monte Carlo simulations of dense plas-mas in a wide range of densities and temperatures.Using this onept, the pressure and energy of a de-generate strongly oupled hydrogen plasma [39�42℄ andthe pair distribution funtions in the partial ionizationand dissoiation region [40, 41℄ have been omputed.This sheme is rather e�ient when the number of timeslies (beads) in the path integral is less than or equalto 50 and was found to work well for temperatureskBT > 0:1Ry.One di�ulty of PIMC simulations is that reliableerror estimates are often not available, in partiular forstrongly oupled degenerate systems. Here, we makea omparison with two independent analyti methods.The �rst is the method of an e�etive ion�ion inter-ation potential (EIIP) that has previously been de-veloped for appliation to simple solid and liquid met-als [12, 24℄ and whih is here adopted to dense hydrogenfor the �rst time. The seond is the method of Padé ap-proximations in ombination with Saha equations, i.e.,the hemial piture (PACH) [3℄. The Padé formu-las are onstruted on the basis of the known analytilow-density [3, 43℄ and high density [3℄ limits and areexat up to quadrati terms in the density, interpolat-ing between the virial expansions and the high densityasymptoti regime [19, 44, 45℄.We show here that both methods, EIIP and PACH,provide results for the internal energy that agree wellwith eah other at high densities where the eletronsare strongly degenerate and no bound states exist, ap-proximately for n > 1024 m�3. In this region, thereis also a good agreement with reent density funtionalresults [46℄. The agreement of the PACH and DPIMCresults is good below 1022 m�3. For intermediate den-sities, where the ionization degree hanges strongly, weobserve deviations. Also, at high densities, the DPIMCresults tend to lower energies than the analyti ap-proahes. Finally, they reveal several interesting ef-

fets, suh as formation of lusters and the onset of ionrystallization.2. PHYSICAL PARAMETERS AND BASICEFFECTSWe study a hydrogen plasma onsisting of Ne ele-trons and Np protons (Ne = Np = N). The total pro-ton (atom) density is n = Np=V . The average distanebetween the eletrons is the Wigner�Seitz radiusd = � 34�n�1=3 ;and other harateristi lengths are the Bohr radiusaB = ~2me2 ;the Landau length l = e2kT ;and the De Broglie wave length�e = h(2�mekT )1=2of the eletrons. The degeneray parameter is n�3e.We de�ne the dimensionless temperature � = kT=Ry,whih varies between 0:06 < � < 0:4 in the tempera-ture interval onsidered below. We also introdue theWigner�Seitz parameterrs = daBand the dimensionless lassial oupling strength� = e2kTd:Hydrogen is antisymmetri with respet to theharges (e� = �e+) and symmetri with respet to thedensities (n+ = n� = n). Ions and eletrons behavequite di�erently beause of the big mass di�erene,mp = 1836 me. At the temperatures onsidered, theions an be treated lassially as long as n . 1027 m�3.For these temperatures and densities, the proton ou-pling parameter is in the range 0 < � < 150, and wean therefore expet strong oupling e�ets. We studyinternal energies of the �uid hydrogen system and startwith providing some simple estimates for guidane. Inthat follows, we give all energies in Rydberg units.First, at very low densities, the eletrons and pro-tons behave as an ideal Boltzmann gas. Therefore, the528



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :energy (of free eletrons and protons) per proton isgiven by � = E=N = 3�: (1)In other words, the low-density limit is, in our tem-perature interval, a positive number in the region � �� 0.2�1.2. With inreasing the density, we expet aregion where atoms and possibly also a few moleulesare formed [17, 41℄. In the region of atoms, a lowerbound for the energy per proton is� = 32� � 1; (2)where the last term represents the binding energy 1Ryof H-atoms. If moleules are formed, the orrespondingestimate per proton is lower,� = 34� � 1:17: (3)Generally, the existene of a lower bound for the en-ergy per proton was proven by Dyson and Lenard [47℄and Lieb and Thirring [48℄,E=N > �C; (4)where the best estimate known to us (whih is ertainlymuh too large) is C � 23 [48℄. We see that with in-reasing the density, the energy per proton tends tonegative values and an reah a �nite minimum. Fur-ther density inrease auses the energy to inrease againas a result of quantum degeneray e�ets.To understand this inrease, we �rst onsider thelimit of a very high density (but in the region wherethe protons are lassial). The �rst estimate of theenergy is then � = 32� + 2:21r2s ; (5)whih is positive. The last term, representing the Fermienergy of the eletrons, strongly inreases with the den-sity (as n2=3). In the next approximation, aording toWigner's estimate [49℄1), we must take the Hartree on-tribution to the eletron energy and the orrespondingestimate for the proton energy into aount. The lat-ter is estimated under the assumption that the protonsform a lattie. This way, we �nd the estimate� = �32� � 0:8755rs �+�2:21r2s � 0:916rs � : (6)1) Wigner's original estimate for the lattie energy was or-reted later on and we use an improved result. For a disussionof various estimates, see, e.g., hapter V of G. D. Mahan, Ma-ny-Partile Physis, Plenum Press (1990).

The two orretions that were added to Eq. (5) are bothnegative and sale as n1=3. In other words, these inter-ation terms might play a major role with dereasingthe density. At a ritial density, the energy per protonan beome negative. This density an be estimatedfrom Eq. (6) by solving the quadrati equation0 = 32� r2s � 1:7915 rs + 2:21 (7)perturbatively, starting with the zero temperaturelimit, and adding the �rst orretion (linear in �),r0s � 1:234+ 2:283� + : : : (8)As � ! 0, this result oinides with Wigner's riterionfor the existene of moleules: for d < aB , moleulesannot exist beause there is no room for formingbound state wave funtions. Aording to Eq. (8),moleules exist at a �nite temperature only for larger das thermal �utuations inrease the wave funtion over-lap. More generally, with inreasing the temperature,the energy beomes positive at lower density omparedto the ase where T = 0.Summarizing the qualitative results obtained in thissetion, we an state that we expet the following gen-eral behavior of the internal energy per proton in thegiven temperature range: at zero density, the energystarts with the ideal gas expression that depends onlyon the temperature. With inreasing the density, theenergy per proton beomes negative beause of orre-lation e�ets (bound states, eletron orrelations, andproton orrelations). A minimum is formed and at adensity where the proton density is lose to the inverseBohr radius ubed, the energy per proton turns to pos-itive values and is more and more determined by theideal eletron energy inreasing with n2=3, orreted byorrelation ontributions of the order n1=3 determinedby the Hartree term and by proton�proton oupling ef-fets. In what follows, we show that this qualitativepiture is supported by the results of our alulations.3. THE METHOD OF AN EFFECTIVEION�ION INTERACTION POTENTIALIt is well known that in plasmas and plasma-like sys-tems, in a broad parameter range, the interation be-tween the eletron and ion subsystems is weak, whereasthe interartions within the eletron and ion subsys-tems an be strong. The orresponding small param-eter is the ratio uei=EF of the harateristi value ofthe eletron�ion interation uei to the eletron Fermienergy EF . Therefore, the approximation of a small7 ÆÝÒÔ, âûï. 3 529



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003uei=EF ratio is valid for systems with degenerate ele-trons if EF � Te � Ti, where Te and Ti are the eletronand ion temperatures respetively (below, we onsiderthe ase where Te = Ti). Typial systems where thisapproximation is appliable are simple solid and liq-uid metals and nontransitional metals in general; thisapproximation serves as a basis for the omputationof thermodynami and eletron kineti properties, see,e.g., [24, 50℄.For simple metals, the Fermi energy is not very largeompared with the harateristi eletron�ion Coulombinteration taken at the average interpartile distane.But beause the wave funtions for the ondution ele-trons and the eletrons bound in the ion shells are or-thogonal, a partial ompensation of the eletron�ionCoulomb attration ours at small distanes, whihe�etively weakens the eletron�ion interation. Thisfat is desribed in the theory of simple metals inthe framework of the so-alled pseudopotential theory.The alulation of the pseudopotential is a ompliatedproblem in general, in partiular due to its nonloalstruture [50, 51℄. For pratial appliations, it an berepresented approximately as a loal interation withone or two �tting parameters for eah metal. On thebasis of the pseudopotential theory, all thermodynamiproperties and eletron kineti oe�ients an be alu-lated with a su�iently high auray for a wide rangeof temperatures and pressures. Naturally, these alu-lations require a reliable knowledge of the properties ofthe two quasi-independent subsystems: the degenerateeletron liquid in the positive harge bakground andthe lassial ion subsystem with some e�etive stronginter-ion interation.It is apparent that there is also a wide range ofparameters for highly ionized strongly ompressed hy-drogen plasmas where the eletron�ion interation isweak. For these parameters, the ompliated problemof alulating the properties of a strongly oupled quan-tum eletron�proton system an be essentially simpli-�ed. In so doing, the results obtained for high om-pression (when no bound eletron states � hydrogenatoms or moleules � exist), do not require any �tting,in ontrast to the ase of simple metals, beause theinter-ion potential for hydrogen is a purely Coulombone. The data obtained with this analyti approxima-tion an therefore be onsidered as a reliable basis foromparison with the results of alternative approahes,inluding analyti and simulation methods for degener-ate quantum systems of Fermi partiles. The results ofthis pseudopotential approah are espeially importantfor onditions of the extreme ompression where theplasma is haraterized by a strong interation within

the eletron and espeially the ion subsystem. For thesedi�ult situations, experimental data are still missingand new aurate numerial methods for Fermi systemsare only emerging.We onsider the Hamiltonian of an eletron�protonplasma, where the q = 0 in�nite ontributions to thepotentials anel beause of quasineutrality (and we re-tain the harge number Z of the ions for generality),H =Xk �kaykak+ 12V Xk;k0;q 6=0 4�e2q2 ayk�qayk0+qak0ak++ 1V Xk;q0 6=0uei(q)aykak+q NiXj=1 exp(iq �Rj) ++ 12V Xi6=j Xq 6=0 4�Z2e2q2 exp(iq � (Ri �Rj)) +Ki: (9)Here, �k is the energy of the eletron with the momen-tum ~k and uei(q) = �4�Ze2q2is the Fourier omponent of the eletron�proton inter-ation potential. For the eletron degrees of freedom inthe Hamiltonian H , the seondary quantization repre-sentation is used, with ayp and ap being the respetivereation and annihilation operators of an eletron withmomentum p. For lassial ions, the oordinate repre-sentation is more onvenient, and Ri therefore denotesthe oordinate of the i-th ion in Eq. (9). As in thetheory of simple metals [12, 24℄, two main approxima-tions have to be used to alulate the plasma energy.The �rst is the adiabati approximation for the ion mo-tion, whih is slow ompared to the eletron one. Theseond is the smallness of the ratio of the harateris-ti eletron�proton Coulomb interation to the Fermienergy EF . The respetive parameter is�ei = Ze2dEF = Z� kTEF / n�1=3:Calulation of the eletron energy in the external �eldof immobile ions (protons) leads to the energy of theplasma given as a funtion of the ion oordinatesRj . Ingeneral, the perturbation theory in terms of the param-eter �ei gives rise not only to pair but also to higher-order ion�ion interations, whih are quite ompliated.To the seond order of perturbation theory in the pa-rameter �ei, the energy per one eletron of the plasma530



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :with a �xed proton on�guration fRjg is easily writtenasE (fRjg)Ni = hHieNi = �e + 32kT �� 12 Z d3q(2�)3 u2ei(q)�e(q)"e(q) �� Z2ni2�e(q = 0) + 12V Ni Xq Xi6=j Veff (q)�� exp(iq � (Ri �Rj)); (10)where �e is the energy (per ion) of the orrelated ele-tron liquid in the homogeneous positive harge bak-ground. The respetive funtions �e(q) and "e(q) arethe stati polarization funtion and the stati diele-tri funtion of the orrelated eletron liquid. They arerelated by the usual equality"e(q) = 1 + 4�e2q2 �e(q): (11)The Fourier omponent of the e�etive pair intera-tion potential between the ions, Veffii , involved in (10)is given byVeffii (q) = 4�Z2e2q2 � u2ei(q)�e(q)"e(q) = 4�Z2e2q2"e(q) : (12)In what follows, we onentrate on hydrogen and setZ = 1, whih leads to the e�etive proton�proton in-teration Veffpp (q) = 4�e2q2"e(q) : (13)It is lear that in ontrast to liquid metals, wherethe presene of the pseudopotential leads to a moreompliated struture of the e�etive potential, in adense hydrogen plasma, the e�etive potential is deter-mined only by the eletron sreening. As shown in [12℄for liquid metals, the additional pair interation aris-ing from third- and fourth-order terms in the expansionof the eletron energy in the pseudopotential an playan important role in the e�etive interation. A de-tailed analysis of the e�etive potential of a hydrogenplasma [52℄ revealed that these terms are essential onlyfor su�iently rari�ed plasma onditions (rs > 1:5) andare pratially negligible for higher densities, rs < 1:5,whih we onsider in this paper. In fat, for rs > 1:6,the struture of the e�etive ion�ion potential in hy-drogen hanges drastially and an be onsidered as apreursor of the appearene of moleular states. In thispaper, we use the simplest version of the method of thee�etive ion�ion potential that inludes the eletron�proton interation up to the seond order, and we are

therefore restrited to su�iently high densities orre-sponding to rs < 1:5.Further progress an be made using the randomphase approximation (RPA) for �e together with thelong-wavelength and short-wavelength limits,�RPA(q) == 8>><>>: �RPA(0) �1� 112 q2q2F � ; q � qF ;�RPA(0)43 q2Fq2 ; q � qF ; (14)where ~qF = p2m�F is the Fermi momentum of theeletrons. The analysis of this expression shows thatthe main ontribution to energy (10) omes from smallwave numbers2). With su�ient auray, we antherefore neglet the q dependene of �e in Eq. (10),and in partiular, in e�etive potential (12), replaing�RPA(q)! �RPA(0):This implies that we also neglet the well-known smallosillations of the e�etive potential for large distanes,whih are the result of a logarithmi singularity of thederivative d�RPAdq ����q=2qF :For the densities under onsideration (whih are muhhigher than the usual metalli densities), these osil-lations are not essential for the thermodynami fun-tions. On the other hand, it is ruial to alulate thepolarization funtion �e(0) fully selfonsistently,�e(0) = � �n��e�T;V ; �e = ��n�e�n �T;V ; (15)where �e is determined by (10) and onsequently takesthe eletron�eletron exhange and orrelations into a-ount. In the ase of degenerate eletrons, we an useone of the analyti approximations for �e suh as, forexample, that of Nozières and Pines or Wigner, see,e.g., [53℄ for an overview. Below, we use Wigner's for-mula for the orrelation energy, although the approxi-mation of Nozières and Pines is better for small rs (inthe region rs < 1, where the deviations between theseapproximations for the orrelation energy beome es-sential, we an ompletely neglet orrelations in om-parison to the kineti and exhange terms). Beause�RPAe (0) = �2TF4�e2 ;2) As shown by [52℄, for hydrogen at rs < 1:6 (to whih we ap-ply the EEIP method) the ontribution of nonzero wavenumbersis omparatively small. For rs > 1:65, however, the situationstarts to hange drastially.531 7*



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003it is lear that Eq. (15) implies a renormalization�RPAe ! �e due to the eletron�eletron interation,and therefore, a renormalization of the momentum�TF ! ~�TF ,�e(0) = �RPAe (0) (rs); ~�TF � �TFp(rs);(rs) = �9�4 �2=3 6r2s �r2s �2�e�r2s � 2rs ��e�rs ��1 : (16)Beause the e�etive proton�proton potential is de-sribed by the sreened potential of the Thomas�Fermitype in the onsidered approximation, see Eqs. (12)�(16), �pp(r) = e2r exp�� r~rTF � ; (17)we onlude that a renormalization of the sreening ra-dius due to eletroni orrelations ours,~rTF = 1~�TF � rTFp(rs) : (18)We now rewrite Eg. (10) for the onsidered approx-imation as � = �e + �i; (19)�i = 32kT + 12N Xi6=j �pp(Ri �Rj)�� e2d ��2 + 32�2� ; (20)where � � d~�TF . After averaging over the proton po-sitions with the Gibbs distribution (denoted by h: : : i),Eq. (19) an be represented as the sum of two terms:the energy �e of a degenerate eletron liquid in the pos-itive homogeneous harge bakground and the energyof sreened lassial harged protons interating viasreened potential (18) and renormalized by the on-stant terms obtained above,�i = �u+ 32� kT; (21)withu � �8<: d2Ne2 *Xi6=j �pp(Ri�Rj)+��2� 32�29=; : (22)Here, u is the ioni interation energy in kT units.With the auray (kT=EF )2, energy (21) oinideswith the usual thermodynami energy determined from

the free energy of the system beause the eletrons aredegenerate in the onsidered parameter range (withthe same auray). Expression (21) implies that as�! 0, the energy of a lassial one-omponent systemof harged partiles interating via a sreened (Debyeor Yukawa) potential tends to in�nity as 3kBT�=2�2(i.e., the sreening radius diverges). As a funtion ofthe two parameters, � and the dimensionless sreeninglength �, the funtion u=� has been tabulated in [54; 55℄for the alulations of the phase diagram of a purelylassial one-omponent Debye plasma (OCP), basedon aurate MC alulations for the Debye system. Inwhat follows, we use these numerial results to alu-late the energy of a dense hydrogen plasma in the aboveapproximations. Within the Wigner approximation forthe eletron energy,�e = �2:21r2s � 0:916rs + �orr�Ry;�orr = � 0:88rs + 7:8 ; (23)we obtain from Eq. (16) that(rs) = 22:1r2s'(rs) ;'(rs) = 22:1r2s �3:664rs � 1:76rs(rs+7:8)2� 1:76r2s(rs+7:8)3 ; (24)where (rs ! 0) ! 1. The total internal energy inEq. (21) an now be expressed in terms of the tabu-lated funtion u=� as� = �2:21r2s �0:916rs +�orr+ 2rs �u�+ 32���Ry : (25)Numerial results omputed from this approximationare inluded in Figs. 1�3 below.Alternatively, we an use additional approxima-tions for the omputation of the internal energy ofthe plasma. This an be done by averaging Eq. (10)over the ion Gibbs distribution with the same e�etiveHamiltonian. We then immediately �nd the averageenergy per protonhEfRigiNp = �e + 32kBT � 12 Z d3q(2�)3 u2ei(q)�e(q)"e(q) ++ 12 Z d3q(2�)3Veffii (q) [Sii(q)� 1℄ == �e + 32kBT + 12 Z d3q(2�)3 uii(q) [Sii(q)� 1℄�� 12 Z d3q(2�)3 u2ei�e(q)"e(q) Sii(q); (26)532



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :where we introdued the ion�ion struture fator Sii(k)de�ned ash%k1%k2i = NSii(k1)Æk1+k2;0 +N2Æk1;0Æk2;0;%k �Xj exp(�ik �Rj) ; Æk;0 = ( 1; k = 0;0; k 6= 0: (27)Equation (26) an be simpli�ed by replaing, ap-proximately, the full struture fator by the OCP stru-ture fator SOCPii omputed with the e�etive ion�ioninteration. The total energy an then be written asthe sum of three ontributions: the �rst from the ele-tron subsystem, the seond from the lassial ion OCPsubsystem (eah imbedded into a positive and nega-tive harge bakground respetively), and a third term�POLi that desribes a perturbation-theory approxima-tion for the polarization of the eletron liquid by theions. The resulting formulas oinide with the pertur-bation approximations derived by Hansen, De Witt,and others [22, 23℄,hEfRigiNp = �e + �OCPi + Æ� ; (28)
Æ� = e2� 1Z0 dq� 1"e(q) � 1�SOCPii (q): (29)As is lear from the above derivations, Eqs. (28)and (29) are less aurate than the full EIIP modelpresented above.4. PADÉ APPROXIMATIONS AND CHEMICALPICTURE: THE PACH METHODIn this setion, we brie�y explain the method ofPadé approximations in ombination with the hemi-al piture, i.e., Saha equations [3, 19, 44, 45℄ (PACH).On the basis of the PACH approximation, we alulatethe internal energy for the three isotherms T = 10000,

30000, and 50000 K. This method works with only an-alytial formulas, whih are rather ompliated, how-ever; nevertheless, the alulation of one energy datapoint takes no more than a few seonds on a PC.The Padé approximations were onstruted in ear-lier works from the known analyti results in the limi-ting ases of low density [3, 43℄ and high density [3℄.The struture of the Padé approximations was devisedsuh that they are analytially exat up to quadratiterms in the density (up to the seond virial oe�ient)and interpolate between the virial expansions and thehigh density asymptoti expressions [19, 44, 45℄. Theformation of bound states was taken into aount usingthe hemial piture.We here follow these ited works in large part, onlythe ontribution of the OCP-ion�ion interation, whihis the largest one in most ases, was substantially im-proved following [56℄. With respet to the hemialpiture, we restrited ourselves to the strong ionizationregion, where the number of atoms is still relatively lowand no moleules are present. We here disuss only thegeneral struture of the Padé formulas. The internalenergy density of the plasma is given byE = Eid +Eint; (30)where Eid is the internal energy of an ideal plasma on-sisting of Fermi eletrons, lassial protons, and lassi-al atoms, and Eint = Np (�e + �i + �a) (31)is the interation energy. The splitting of the inter-ation ontribution to the internal energy orrespondslargely to the previous setion. The individual pieesare as follows.1) The eletron�eletron interation �e. This termorresponds to the OCP energy of the eletron subsys-tem. Instead of the simple expressions used in earlierwork [19; 42; 44℄, we here used a more re�ned formulafor the energy [57℄. This formula is an interpolation be-tween the Hartree limit with the Gell-Mann�Brüeknerorretion (already used in the previous setion), theWigner limit, and the Debye law inluding quantumorretions,�e = � (r3s + 50) [aH + aW (rs)℄ + 2p6d0r5:5s �2:5 + 24dHr4s�2(r3s + 50)rs + 2:3r4s�2 + 2p6d1r5:5s �2 + r7s�3 : (32)
533



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003Here, a Wigner funtion has been introdued asaW (x) = 2b0x�� ln 1 + �x0:5 exp�� b12b0�+ 2b0xaW ��1! ; (33)and the onstants take the valuesd0 = 0:5; d1 = 0:6631; dH = 0:125;aH = 0:91633; aW = 0:87553;b0 = 0:06218; b1 = 0:0933:We mention that similar formulas are also valid forother thermodynami funtions with the onstants ad-justed [57℄. The formula for the OCP used here on-tains all the terms taken into aount in the previoussetion and in addition, also temperature-dependentorretions.2) The ion ontribution to the internal energy �i.This term was alulated in the previous setion. Wehere use a proedure based on approximation (28),(29). This enables us to use the results of the MCalulations of Hansen, De Witt, and others [23, 58℄.In aordane with Eqs. (28) and (29), the ion ontri-bution is split into two terms,�i = �OCPi + �POLi ; (34)where the �rst is the OCP ontribution of the protonsand the seond represents the polarization of the pro-ton OCP by the eletron gas. For the region of highdensities, i.e., large � and small rs, we use the MonteCarlo data that were parameterized by De Witt as [23℄�OCPi = �0:8946�+ 0:8165�0:25 � 0:5012; (35)�POLi = �rs(0:0543� + 0:1853�0:25 � 0:0659): (36)We note that the polarization term desribes the or-retion due to sreening of the proton�proton inter-ation by the eletron �uid. In order to obtainthese expressions, semilassial Monte Carlo alula-tions were performed based on e�etive ion intera-tions that model the eletrons as a responding bak-ground [22, 23℄. We do not need to go into the detailsof this method beause the proedure orresponds toEq. (29) derived in the previous setion.In the low density limit, we used the Debye law withquantum orretions [3, 45℄,�OCPi = �0:86603�d0�1:5[1�B1�1:5℄; (37)

�POLi = �0:71744�1:5[1� C1�1:5℄: (38)Here, the temperature funtions B1 and C1 desriberather omplex quantum orretions, whih are, how-ever, expliitly known and are easily programmed [3℄.The Padé approximations that onnet the high- andthe low-density limits are onstruted by standardmethods [19, 44, 45℄ and are not given here expliitly.For the OCP energy of the ions, we use the very au-rate formulas proposed by Kahlbaum [56℄.3) The atomi ontribution �a. In the region ofdensities and temperatures studied in this work, thisontribution gives only a small orretion (exept forT = 10000 K). We alulate the number of atoms onthe basis of a nonideal Saha equation desribed below.The formation of moleules is not taken into aount.We restrit alulations to the region where the numberdensity of atoms is smaller than that of the eletrons.The ontributions to the hemial potential that appearin the Saha equation are alulated in part from salingrelations and in part by numerial di�erentiation of thefree energy given earlier [19, 44℄. For the partition fun-tion in the Saha equation, we use the Brillouin�Plank�Larkin expression [3, 45℄. The nonideal Saha equationthat determines the ionization degree (the density ofatoms) is solved by iterations, starting from the idealSaha equation. Beause of a high degree of ionization,the atomi interation ontributions an be approxi-mated in the simplest way by the seond virial ontri-bution and by treating the atoms as small hard spheresand by negleting the harged partile-neutral intera-tion.The results of our Padé alulations for a broaddensity interval for three isotherms are inluded inFigs. 1�3.5. SUMMARY OF THE PATH INTEGRALMONTE CARLO SIMULATIONSThe analyti approximations disussed in the pre-vious setions work very well at high densities if boundstates are of minor importane. These onditions arenot ful�lled for densities below the Mott point orre-sponding to rs > 1. Here, reently developed DPIMCsimulations an be used. Starting from the basiplasma partiles, eletrons and ions, they �automati-ally� aount for bound state formation and ioniza-tion and dissoiation. Furthermore, in ontrast to thehemial piture, no restritions on the type of hem-ial speies are made and the appearane of omplexaggregates suh as moleular ions or lusters of severalatoms are fully inluded. On the other hand, simula-534



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :tions are expeted to beome inreasingly di�ult athigh densities where the eletron degeneray is largedue to the fermion sign problem. It is therefore veryinteresting to ompare results of the DPIMC approahwith alternative theories that are expeted to omple-ment eah other. This is done in the next setion.But �rst, we brie�y outline the idea of our DPIMCsheme. All thermodynami properties of a two-omponent plasma are de�ned by the partition funtionZ; for Ne eletrons and Np protons, it is given byZ(Ne; Np; V; �) = Q(Ne; Np; �)Ne!Np! ;Q(Ne; Np; �) =X� ZV dq dr �(q; r; �;�); (39)where � = 1=kBT . For a quantum system, the ex-at density matrix is not known in general, but anbe onstruted using a path-integral representation[21; 59�61℄,ZV dR(0)X� �(R(0); �;�) == ZV dR(0) : : : dR(n) �(1)�(2) : : : �(n) ��X� XP (�1)�P S(�; P̂ �0) P̂ �(n+1); (40)where�(i) � ��R(i�1); R(i); ��� �� hR(i�1)j exp(���Ĥ)jR(i)i;with �� � �n+ 1 ; ��2a = 2�~2��ma a = p; e:Here, Ĥ = K̂+ Û is the Hamilton operator ontainingthe kineti and potential energy ontributions, K̂ andÛ, respetively, withÛ = Ûp + Ûe + Ûepbeing the sum of the Coulomb potentials between pro-tons (p), eletrons (e), and eletrons and protons (ep).Further, � omprises all partile spins and the partileoordinates are denoted byR(i) = (q(i); r(i)) � (R(i)p ; R(i)e ); i = 1; : : : n+ 1;R(0) � (q; r) � (R(0)p ; R(0)e ); R(n+1) � R(0);

where q and r denote the eletron and proton oordi-nates respetively and �0 = �:The partiles are then represented by fermioni loopswith the oordinates (beads)[R℄ � [R(0);R(1); : : : ;R(n);R(n+1)℄:The spin gives rise to the spin part of the density ma-trix S, and the exhange e�ets are taken into aountby the permutation operator P̂ that ats on the ele-tron oordinates and spin projetions and by the sumover permutations with the parity �P . In the fermioniase (minus sign), the sum ontains Ne!=2 positive andnegative terms, whih leads to the notorious sign prob-lem. Beause of the large mass di�erene of eletronsand ions, the exhange of the latter is not inluded.Thermodynami funtions are given by derivativesof the logarithm of the partition funtion with respetto thermodynami variables. In partiular, the internalenergy E follows from Q by�E = ��� lnQ�� ; (41)whih gives (f. [42℄ for details)�E = 32(Ne +Np) + 1Q 1�3Npp ��3Nee �� NeXs=0 Z dq dr d� �s(q; [r℄; �) ��( NpXp<t �e2jqptj+ nXl=0 " NeXp<t ��e2jrlptj + NpXp=1 NeXt=1 	epl #++ nXl=1 "� NeXp<t Clpt��e2jrlptj2 + NpXp=1 NeXt=1Dlpt ����ep�jxlptj #�� 1detjj n;1ab jjs � detjj n;1ab jjs�� );Clpt = hrlptjylpti2jrlptj ; Dlpt = hxlptjylpi2jxlptj ;
(42)

where 	epl � �� �[�0�ep(jxlptj; �0)℄��0 ������0=��ontains the eletron�proton Kelbg potential �ep (f.Eq. (45) below), h: : : j : : : i denotes the salar produt,and qpt, rpt, and xpt are di�erenes of the two oordi-nate vetors,qpt � qp � qt; rpt � rp � rt;535



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003xpt � rp � qt; rlpt = rpt + ylpt;xlpt � xpt + ylp; ylpt � ylp � ylt;with yna = ��e nXk=1 �(k)a :We introdued dimensionless distanes between neigh-boring verties on the loop, �(1); : : : �(n), and thus, ex-pliitly, [r℄ � [r; y(1)e ; y(2)e ; : : : ℄: The density matrix �sin Eq. (42) is given by�s(q; [r℄; �) = CsNe exp(��U(q; [r℄; �))�� nYl=1 NeYp=1�lppdet jj n;1ab jjs; (43)whereU(q; [r℄; �) = Up (q) + fUe([r℄;��) + Uep(q; [r℄;��)gn+ 1 ;�lpp � exp[��j�(l)p j2℄:Density matrix (43) does not involve an expliit sumover the permutations, and hene, does not involve thesum of terms with alternating signs. Instead, the en-tire exhange problem is ontained in a single exhangematrix given byjj n;1ab jjs � jj exp�� ���2e j(ra � rb) + yna j2� jjs: (44)As a result of the spin summation, the matrix arriesa subsript s indiating the number of eletrons havingthe same spin projetion.The potential �ab in Eq. (42) is an e�etive quan-tum pair interation between two harged partiles im-mersed into a weakly degenerate plasma. It has beenderived by Kelbg et al. [62; 63℄, who showed that it on-tains quantum e�ets exatly in the �rst order in theoupling parameter �,�ab(jrabj;��) = eaeb�abxab �� �1� exp(�x2ab) +p� xab [1� erf(xab)℄	 ; (45)where xab = jrabj=�ab; we emphazise that the Kelbgpotential is �nite at zero distane.The struture of Eq. (42) is obvious: we have sepa-rated the lassial ideal gas part (the �rst term). Theideal quantum part in exess of the lassial one andthe orrelation ontributions are ontained in the inte-gral term, where the seond line results from the ioni

orrelations (the �rst term) and the ee and ei intera-tions at the �rst vertex (the seond and the third termrespetively). Equation (42) therefore ontains an im-portant limit of the ideal quantum plasma in a naturalway. The third and fourth lines are due to further ele-troni verties and the expliit temperature dependene(Eq. (42)) and volume dependene (the orrespondingequation of state) of the exhange matrix, respetively.The main advantage of Eq. (42) is that the expliit sumover permutations has been onverted into the spin de-terminant that an be very e�iently omputed usingstandard linear algebra methods. Furthermore, eah ofthe sums in urly brakets in Eq. (42) is bounded as thenumber of verties inreases, n!1. The error of thetotal expression is of the order 1=n. Expression (42)and the analogous result for the equation of state aretherefore well suited for numerial evaluation using thestandard Monte Carlo tehniques, see, e.g., [21, 29℄.In our Monte Carlo sheme, we used three types ofsteps, where either eletron or proton oordinates, ri orqi, or inidividual eletroni beads �(k)i were moved untilonvergene of the alulated values was reahed. Ourproedure has been extensively tested. In partiular,we found from omparison with the known analyti ex-pressions for the pressure and energy of the ideal Fermigas that the Fermi statistis is very well reproduedwith a limited number of partiles (N . 100) and beadsfor degeneray up to n�3 . 10 [40℄. We also performedextensive tests for few-eletron systems in a harmonitrap, where the analytially known limiting behavior(e.g., energies) is again well reprodued [64; 65℄. Forthe present simulations of dense hydrogen, we variedboth the partile number and the number of time slies(beads). As a result of these tests, we found that toobtain onvergent results for the thermodynami prop-erties of hydrogen in the density�temperature regionof interest here, partile numbers Ne = Np = 50 andbeads numbers in the range n = 6 : : : 20 are an aept-able ompromise between auray and omputationale�ort [39�41℄.6. NUMERICAL RESULTS. COMPARISON OFTHE ANALYTIC AND SIMULATION DATAWe now disuss the numerial results. We haveomputed the internal energy of dense hydrogen usingtwo analyti (EIIP and PACH) approahes and DPIMCsimulations. The data are shown in Figs. 1�3 for threetemperatures, 10000, 30000, and 50000 K, respetively.We �rst onsider the general behavior that is most536



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :learly seen for the highest temperature, f. Fig. 3a.The overall trend is an inrease of the energy with den-sity, whih is partiularly rapid at high densities be-ause of eletron degeneray e�ets; this is learly seenfrom the ideal plasma urve (dashed and dotted lines inthe lower parts of Figs. 1�3). The nonideal plasma re-sults show a prominent deviation from this trend, whihis in full agreement with the disussion in Se. 2, theformation of an energy minimum (where the energy anbeome negative) at intermediate densities. Our alu-lations for a nonideal hydrogen plasma asymptotiallyapproah the ideal urve both at low density (the ideallassial plasma) and at high density (the ideal mix-ture of lassial protons and quantum eletrons). Forintermediate densities, between 1021 and 1025 m�3,the nonideal plasma energy is signi�antly lower thanthe ideal energy beause of strong orrelations and for-mation of bound states. As the temperature dereases,this region broadens. In partiular, we learly see thatthe total energy indeed reahes negative values for thetemperatures onsidered.We now ompare the results of the di�erent meth-ods. We onsider three density regions separately,A) the high density limit, B) the region around theminimum, and C) the region below the minimum.A) The �rst observation from Figs. 1�3 is that forall temperatures (inluding temperatures above thoseshown), the PACH and EIIP approahes pratially o-inide in the limit of high densities. It is also inter-esting to ompare these approahes with another the-oreti approah based on the density funtional the-ory (DFT). Reently, Xu and Hansen [46℄ publisheddata for T = 10000 K and rs � 1:5, whih are alsoinluded in Fig. 1. Evidently, in the high density limit,PACH and EIIP oinide with these DFT data, f.Fig. 1. This good agreement of the three ompletelyindependent approahes � EIIP, PACH and DFT �is a strong indiation that they an yield reliable re-sults for a fully ionized marosopi hydrogen plasmaat high densities. This asymptoti agreement is notsurprising, beause the ideal Fermi gas limit is �builtinto� eah of these three approahes. But this gives noinformation about the lowest densities for whih theseresults remain quantitatively orret. The presentedomparison is therefore greatly important as giving ahint (although not a proof) that the value of that min-imum density is above n � 3 � 1024 m�3, f. Figs. 1�3.We next observe that at higher densities, theDPIMC simulations yield lower energies and a shiftof the energy inrease to higher density values om-pared with the analyti models. This tendeny be-omes stronger with inreasing the temperature, as an
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S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003grees of sophistiation, rigorous theoreti results arevery rare. In partiular, as mentioned above, the EIIPmodel breaks down here (we reall that its present ver-sion is limited to rs � 1:5, f. Se. 3). Also, the presentversion of the PACH approah uses a hemial piturewith a nonideal Saha equation, but treats bound statesin a very simple approximation (see above) and there-fore yields only approximate results in situations with alow ionization degree. In ontrast, the DPIMC resultshave no suh limitations and provide reliable results inthis region in priniple. On the other hand, there ex-ist spei� tehnial di�ulties at low densities, wherethe extension of bound eletron wave funtions is manyorders of magnitude smaller than the interpartile dis-tane, whih leads to very slow onvergene of DPIMCsimulations (and other quantum Monte Carlo meth-ods as well). This explains the di�erent energies ofthe DPIMC and Padé results at the lowest densities atT = 10000 K, where the plasma onsists of atoms, see,e.g., [16, 20℄, while good agreement is found at highertemperatures. 7. DISCUSSIONThis work is devoted to the investigation of the to-tal energy of warm dense plasmas in the temperaturerange between 100000 and 50000 K. We presented anew theoreti approah to high density plasmas basedon the theory of an e�etive ion�ion potential. Thismethod was shown to be quite e�ient for fully ionizedstrongly orrelated plasmas above the Mott density.Furthermore, a detailed omparison of several theoretiapproahes and simulations was performed over a widedensity range. The �rst inluded the EEIP and PACHanalyti models on the one hand and reent DFT dataof Xu and Hansen [46℄ on the other hand. The se-ond group of data onsisted of several new data pointsbased on DPIMC simulations of a orrelated proton�eletron system with degenerate eletrons. From theseomparisons, we onlude that the three theoreti ap-proahes � PACH, EEIP, and DFT � are in a verygood agreement with eah other for a fully ionized hy-drogen plasma in the high density region where rs < 1.We therefore expet these results to be reliable fordensities above 3 � 1024 m�3. This agreement of thethree independent analyti methods is highly interest-ing beause the physial approximations involved arevery di�erent. On the other hand, our DPIMC simu-lations agree with the available RPIMC data for tem-peratures above 50000 K, f. Figs. 1�3 and Ref. [42℄.This agreement over a broad range of parameters is er-

tainly remarkable beause the plasma is far outside theperturbative regime: it is strongly orrelated and theeletrons are degenerate, and the two simulations areessentially independent.The omparison of our DPIMC simulation resultswith the analyti data reveals an overall good agree-ment. In addition, existing deviations are a usefulguide for future improvement and extension of the var-ious approahes. Most importantly, the good quality ofthe quantum Monte Carlo data in the region of stronghanges of the ionization degree �lls a gap in the presentvariants of analyti methods. These data an be used toimprove the treatment of a dense plasma via analytimethods in the theoretially very ompliated regionof strong orrelations and strongly varying ionizationand dissoiation degrees. Moreover, the high densityasymptoti results of the analyti methods may be use-ful for further improvement of the simulations.Further, our DPIMC simulations revealed an insta-bility of the homogeneous plasma state around the min-imum of the energy isotherm T = 10000 K for densitiesbetween 1023 and 1024 m�3. We have given argumentsthat this is related to the droplet formation, whih isa strong indiation of a �rst-order phase transition [68℄that has previously been predited by many authorson the basis of simple hemial models. The existeneof a plasma phase transition would have drasti on-sequenes for transport properties of many astrophys-ial objets, suh as giant planets, and its veri�ationtherefore remains an important theoretial issue. Itwould therefore be very interesting if independent �rst-priniple simulations, in partiular RPIMC, ould re-produe this result. This, however, may require a par-tiular hoie of nodes of the density matrix that allowan inhomogeneous equilibrium plasma state. Finally,at very high densities, our DPIMC simulations revealedordering of protons into a strongly orrelated �uid andthe onset of the formation of a proton Wigner rystal.These interesting physial e�ets in high-pressure hy-drogen are of relevane for many astrophysial systemsand many laboratory experiments, inluding ultraolddegenerate trapped ions and laser plasmas.In onlusion, we may state that the analytimethods and the DPIMC approah are already in areasonable overall agreement. Both methods should bedeveloped to further explore the equilibrium propertiesof dense hydrogen.We aknowledge stimulating disussions withH. E. DeWitt, W. D. Kraeft, D. Kremp, B. Militzer,R. Redmer, and M. Shlanges. This work has beensupported by the Deutshe Forshungsgemeinshaft540
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