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QUANTUM RECOGNITION OF EIGENVALUES, STRUCTUREOF DEVICES, AND THERMODYNAMIC PROPERTIESYu. I. Ozhigov *Institute of Physis and Tehnology, Russian Aademy of Sienes117218, Mosow, RussiaSubmitted 1 April 2002Quantum algorithms speeding up the lassial ounterparts are proposed for the following problems: reogni-tion of eigenvalues with a �xed preision, reognition of moleular and eletroni devie strutures, and �ndingthermodynami funtions. We mainly onsider strutures generating sparse spetra. These algorithms requirethe time from about the square root to the logarithm of the time of the lassial analogues and give exponentialmemory saving for the �rst three problems. For example, the time required for distinguishing two devies withthe same given spetrum is about the seventh root of the time of the diret lassial method, and about thesixth root for the reognition of an eigenvalue. Mirosopi quantum devies an therefore reognize moleularstrutures and physial properties of environment faster than big lassial omputers.PACS: 03.67.Lx1. ELECTRONIC DEVICES AND QUANTUMCOMPUTATIONS1.1. Statement of the problem and outline ofthe workThe aim of this paper is to build e�etive quantumalgorithms for problems of the following types:1. given a quantum gate array generating a uni-tary operator U and a omplex number !, to determinewhether it is an eigenvalue of U with a �xed preision,2. to reognize the struture of an unknown ele-troni or moleular devie given only aess to its fun-tion.The �rst problem is an important intermediate stepin solving the seond1). We onsider them sequentially.Reognition of eigenvalues. This problem islosely related to �nding the eigenvalue distributionor density of states (DOS), i.e., the energy levelsE0 < E1 < : : : and the dimensions of the orrespond-*E-mail: ozhigov�ftian.oivta.ru1) A straightforward alulation shows that the simulation ofevolution generated by a given Hamiltonian up to a time instant� with a �xed auray requires the number of steps of the order�2 on a quantum omputer. This means that all results of thispaper an be generalized to arbitrary quantum systems.

ing subspaes d0; d1; : : : The DOS plays a key role inalulating thermodynami funtions given byF =Xj a(j)dj exp�� EjkBT � (1)for some values a(j) suh that the summands rapidlyonverge to zero. For example, this expression givesthe partition funtion Q if all a(j) = 1, the averageenergy if a(j) = Ej=Qand the entropy ifa(j) = �kBQ ln�exp�� EjkBT � =Q� :Having an e�ient method of �nding dj , we wouldbe able to obtain thermodynami funtions and to de-termine important properties (e.g., heat apaity) ofenvironment onsisting of suh moleules. The bestknown lassial method of �nding the DOS was pro-posed by Hams and Raedt in [1℄. Their method re-quires the time of the order given by the dimension Nof the spae of states and the memory of the same order(whereas the diret method of alulating eigenvaluesrequires the time of the order N3). The �rst quantumalgorithm for this problem proposed by Abrams and384



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :Lloyd in [2℄ requires the same O(N) time and logarith-mi memory. The method proposed in the present workrequires the time of the order given by the square rootof the lassial one and memory of the order ln2N .The idea of our approah is as follows. We use aombination of the Grover searh algorithm (GSA), theAbrams and Lloyd method [2℄ of revealing eigenvalues,and the universal quantum funtion of appliation App.The Abrams and Lloyd method of revealing eigenvaluesis based on the appliation of U ontrolled by anillaryqubit � asUondjx; �i �! ( jU x; �i if � = 1;jx; �i if � = 0:We note that it is a diret generalization of Shor's trik,whih an be obtained if U is a multipliation by a giveninteger modulo q [3℄.Reognition of devie strutures. We separatetwo versions of this general problem: reognition ofmoleular strutures and reognition of eletroni ir-uits.If we want to determine a moleular struture, it isnatural to assume that its funtionality is given as thespetrum of its Hamiltonian, e.g., the set of its energylevels. It is therefore required to �nd a quantum systemwhose Hamiltonian has a given spetrum.The problem of reognition of eletroni iruits isstated di�erently. An eletroni devie is onsidered asa soure of eletromagneti �elds that an ontrol somequantum system Q. Let suh a �eld indue evolution ofthe system with the Hamiltonian H in the time frameÆt. We then have the orrespondene(eletroni devie) �! (Hamiltonian, Æt).The evolution of the quantum system Q indued by thisHamiltonian an be represented as a unitary transfor-mation U = exp�� ihHÆt� :Given a devie C and a time instant t, we an thenassoiate some unitary transformation UC with it. Weassume that we have reognized a iruit C if we havefound some iruit C1 suh that UC = UC1 with highauray. We write U instead of UC for the iruit Cthat we want to reognize. In fat, we solve a moregeneral problem where the tested devie C an be usedas a blak box ating on n qubits as a funtion UCsuh that if x is an input, then UC jxi is the result ofits ation on this input. The tested devie an ontainits own quantum memory and an be entangled with Qin the ourse of performing the transformation U , but

this entanglement must then be eliminated. The ex-istene of suh an entanglement implies that this aseannot be desribed by the Hamiltonian of the systemQ. For simpliity, we assume that the unknown ir-uit is built from elementary funtional elements takenfrom some �xed set. The next natural assumption isthat the size of the iruit is limited by some onstant suh that the iruit is some unknown ombinationof  funtional elements. We let E denote all iruits ofthe length . We an enode suh C 2 E by a string [C℄of ones and zeroes suh that the deoding proedure iseasy and we an immediately rereate a iruit givenits ode. We an therefore look through all iruits bylooking through their odes. The same oding an bebuilt for eletroni devies.A straightforward solution of the problems is lear.For the problem of reognition of moleular struturesall that we need is to be able to reognize eigenvalues ofthe transformation generated by a given iruit. Eaheigenvalue of a unitary operator has the form e2�i!,where ! is a real number from [0; 1) alled the fre-queny. In what follows, the spetrum is meant to bethe set of all frequenies. Let all the frequenies begrouped near points of the form l=M , where M is notvery large and l = 0; 1; : : : ;M � 1. We assume thatthe aeptable preision of the reognition of frequen-ies is 1=M . Having an algorithm for the eigenvaluereognition, we an apply it repeatedly, onstrutingspetra generated by all possible iruits, and thus �ndthe sought iruit with the given spetrum. If we needto reognize a iruit of an eletroni devie, we anexamine all possible iruits taken in some order. Ex-amination of one iruit means that we run it on allpossible inputs one after another and ompare the re-sults with the orresponding result of the tested devieation.For the problem of the reognition of moleularstrutures, our method requires the time of the ordersixth root of the time of the diret lassial method,whereas memory saving is exponential. For the prob-lem of the reognition of eletroni iruits, our methodgives at least square-root time saving in the ase wherethe lassial ounterparts exist (this is the narrow for-mulation where the tested devie generates a lassialmapping). But the advantage an be greater in thegeneral ase. For example, we an distinguish betweentwo devies with the same spetrum in the time aboutthe seventh root of the time of the brute fore method.To reognize devies at the quantum level, we mustbe able to store and perform operations on odes ofdi�erent iruits. This possibility is based on the ex-istene of a quantum analogue of the universal Klini13 ÆÝÒÔ, âûï. 2 385



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003funtion. This is a unitary operator App suh that forall quantum devies C and all inputs x,Appjx; [C℄i = jUC x; [C℄i:We assume that for a wide range of quantum deviesC with  partiles, C an be enoded as an integer [C℄in time O() suh that the quantum omplexity of Appis also O().We here onsider a partiular ase of the problemwhere all eigenvalues of U are known a priori or anbe obtained in advane. This restrition is not veryonstraining. To illustrate the tasks that an be solvedby the proposed method, we onsider several examplesof the problem of reognition of an eletroni deviewhose spetrum is known.Reognition of quantum algorithms is designed assubroutines. Suh an algorithm must restore the inputif we apply it twie. Computing a funtion f , it ats asjx; bi �! jx; b+ f(x) mod 2i:All known quantum algorithms an be represented inthis form. For suh quantum algorithms, the uni-tary transformation U has only two eigenvalues, 1 and�1. Given a ontrolling devie for suh an algorithm(whih an also inlude lassial elements and anillaryqubits), we an quikly reognize its onstrution. Al-ternatively, we an quikly �nd a quantum or lassialalgorithm for a given task.We onsider the �lassial� partiular ase of thereognition problem where U maps eah basi state toa basi state, whih means that the matrix of U on-sists of ones and zeroes and in addition U equals U�1.Here, the evident reognition strategy takes the numberof steps of the order ard(E). In this ase, the prob-lem an be reformulated as �nding suh t that somegiven prediate A(t; s) is true for all s. This is theproblem of veri�ation of logial formulas. Its quan-tum solution in a time about the square root of thelassial time based plainly on Grover's trik was pro-posed in [4℄. This method is inappliable in the generalase where UC is an arbitrary involutive unitary trans-formation, e.g., suh that U = U�1. This general aseis preisely the subjet of this work. Here, we annotreognize a iruit so easily as in the �lassial� asebeause it is di�ult to ompare two quantum statesUC jxi and U jxi.The general idea of our approah to the reognitionof arbitrary eletroni devies is as follows. We inludethe devie C whose struture we want to reognize intothe lassial ontrolling part of a quantum omputer.We onsider the main system of n qubits. The tested

devie then generates a unitary transformation on thissystem. We then �nd the eigenvetors of U using Uondby the above method and ompare them with the eigen-vetors of iruits from E hoosing a iruit that givesthe best approximation. Here, GSA is used at the laststep and at the several intermediate steps.The sparse spetrum assumption. In this pa-per, we mainly onsider iruits generating sparse spe-tra. This means that the spetra of the operators UCare designed suh that the frequenies are assembledin groups and the minimum distane between frequen-ies from the di�erent groups is greater than 1=M andthe maximum distane between frequenies in the samegroup is less than 1=L. In the problems of eigenvalueand moleular struture reognition, we require thatL = 16M , whih is not very restriting. In the prob-lem of reognition of eletroni devies, we assume thatL� M , whih is a stronger limitation. A spetrum isalled sparse if M = onst as N �! 1. Our algo-rithms show the best performane for sparse spetra.Spetra that are not sparse are alled dense. Fordense spetra, our methods give less advantage overthe lassial algorithms (see Se. 3.6). An exam-ple of a dense spetrum is given by !k = k=N ,k = 0; 1; : : : ; N�1. Similar problems for dense spetrarequire additional investigations.We write !0 � ! i� !0 and ! belong to the samegroup. For simpliity, we also assume that for eahgroup of frequenies, there exists a number of the forml=M positioned between some two frequenies of thisgroup, where l is an integer less than M .1.2. Abstrat model of quantum omputer.�Plug and play� tehnologyTo build algorithms reognizing iruits, we need anabstrat model of the quantum omputer. A quantumomputer onsists of two parts, quantum and lassi-al. The lassial part exatly determines what uni-tary transformation must be performed on the quan-tum part at eah time instant and therefore plays therole of a ontroller for the quantum part. These unitarytransformations are of two types: working transforma-tions, whih our omputer performs itself, and querytransformations, whih are indued by a tested devie,U or Uond.We an suppose that the quantum part Q onsistsof nulear spins or interating dipoles (or some otherquantum two-level systems) and the lassial part is asoure of eletromagneti �elds determining the evolu-386



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :tion of the quantum part. The general form of a stateof the quantum part is� = 2��1Xi=0 �iei;where the basi states e0; : : : ; e2��1 are simply stringsof ones and zeroes of the length � > n; this length isthe size of the quantum part that an ontain someauxiliary qubits in addition to the input for U , N = 2nis the number of all lassial input words for U , and2��1Xi=0 j�ij2 = 1:The lassial part determines when the tested de-vie is to be �swithed on� (this usually ours manytimes) and when the result of the omputation is to beobserved. Observation of a state � gives every basistate ei with the orresponding probability j�ij2.The problem of reognition of eletroni devies pre-sumes the so-alled �plug and play� tehnology wherethe tested devie is applied only as a blak box. If querytransformations are only U , then our model evidentlysatis�es the requirements of the �plug and play� teh-nology, where we lassially ontrol swithing the testeddevie. An implementation of Uond in the frameworkof this tehnology is not so easy beause it requires aquantum ontrol on appliations of the devie2).It is nevertheless possible to implement Uond in theframework of the �plug and play� tehnology. Thisproblem requires additional investigations; here, wesimply presume that it is possible. This di�ulty doesnot exist in the problems of the eigenvalue and moleu-lar struture reognition. Here, we an manage withoutorales beause having an expliit form of a quantumgate array realizing the universal funtion of applia-tion App, we an ontrol its ations in eah elementat the quantum level separately and simultaneously,thereby implementing Uond.Let every basi state be partitioned asei = jplae for ode [C℄; R�1; R�2; : : : ; R�li;where eah registerR�i is in turn partitioned into a plaefor the argument, plaes for time instants, and plaesfor the orresponding frequenies. A omplex index �iontains one or two integers, and the length of ei istherefore a polynomial in  and n of at most seonddegree.2) This would evidently be possible provided we have aess tothe internal details of our devie and an simultaneously ontroltheir work at the quantum level. But this assumption ontraditsthe �plug and play� tehnology.

2. OBTAINING NEW ALGORITHMS FROMBASIC QUANTUM TRICKS2.1. GSA and the amplitude ampli�ationThe GSA proposed in [5℄ is one of the two basiquantum triks. It is used for quikly obtaining a quan-tum state �a given the inversion I�a along this state. Theinversion along some state �a is de�ned byI�aj�xi = ( j�xi if x?a;�j�ai if x = a:We also assume that I�a ats as the identity if �a does notexist. A typial situation is where a state is unknownbut the inversion along it an be performed easily. Forexample, let �a be a solution of the equation f(x) = 1with a simply omputable Boolean funtion f . Theinversion I�a an then be implemented by modulo-2 ad-dition of f(x) to an anillary qubit initialized byj0i � j1ip2 :This transformation maps the state����x; j0i � j1ip2 �to the same state with the sign �+� or ��� depend-ing on whether the equality f(x) = 1 is satis�ed. Thetransformation is unitary and an easily be performedgiven a devie performing f . All sequential transfor-mations in our formulas are applied from right to left.The GSA is a sequential appliation of the trans-formation G = I�aI~0 to a randomly preset state ~0. Ifwe apply this transformation O(pN) times, where Nis the dimension of the main spae, then an observationof the quantum part yields �a with a visible probability,whereas �nding �a without a quantum omputer wouldhave required the number of steps of the order N .A minor di�ulty is here that we do not exatlyknow the time instant t at whih the iterations mustbe terminated in order to make the probability of er-ror negligible, as required in applying the GSA as asubroutine. The following simple trik helps here.We de�ne the number B = B(N) suh that 1=Bis the average value of jha j ~0ij for ~0 uniformly dis-tributed on a sphere of radius 1 in the spae of inputs.A straightforward alulation shows that B = O(pN).Let GenArgj be operators generating arbitrary ve-tors �aj from the spae of inputs belonging to inde-pendent uniform distributions, j 2 f1; 2; : : : ; kg, andlet GenTimeArgj be operators generating time instantstj from independent uniform distributions on integers387 13*



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003from the segment [0; B℄. We arrange k opies of twoworking registers, for the input and for the storage ofa time instant, and apply the orresponding operator(I~0I�a)tjGenArgjGenTimejto eah register. If �a exists, the probability to obtain�a observing any single register is at least 1/4 (see [6℄)and the probability to obtain any other �xed state isnegligible beause our operators GenArgj generate in-dependent uniformly distributed samples. If �a does notexist, whih implies that I�a is the identity, then theprobability to obtain any �xed state is negligible. Welet �aj denote the ontents of the j-th register for theargument in the resulting state. We onsider the follow-ing riterion: if at least one �fth of �aj ; j = 1; 2; : : : ; k,oinide, we deide that �a is this value, otherwise �adoes not exist. We now alulate the error probabil-ity of this riterion. Let K be the number of those jfor whih �aj = �a. By the entral limit theorem, theprobability that the fration(k=4)�Kp(k=4) � (3=4)belongs to the segment [�1; �2℄ onverges to1p2� �2Z�1 e�x2=2dx:Straightforward alulations then show that the prob-ability that K � k=5 is of the order1Z�1 e�x2=2dxfor �1 of the order pk. To make the error probabilityof the order 1=pN , it therefore su�es to hoose k ofthe order n = logN . This method an be used notonly for the GSA but also for other algorithms. If theprobability to obtain the orret result for eah of thek registers is some positive number p independent ofthe dimensionality, then to make the error probability1=N1, it su�es to hoose k of the order logN1. Inwhat follows, we use this simple trik without speiallymentioning it and let Nj denote the simultaneous op-erations of the same type on all working registers. Weassume that all ensembles generated by the di�erentj-th opies of operators are taken from independentdistributions.We use the standard normkAk = supk�xk=1 kA�xk

on operators in a Hilbert spae. Given an operator A,we let A� denote an operator suh that kA� A�k � �.In what follows, we use the above method requiringopies of registers, thereby raising the auray of ouroperators to the required level. When we must repeatan operator T times, the required auray of one ap-pliation must be 1=T and as shown above, it an beensured by only linear prie in memory. Instead of A,we therefore always use A�, where � = O(1=T ), when-ever an operator A must be repeated T times; we donot expliitly indiate this in the notation.2.2. Revealing the eigenvaluesThe seond basi quantum trik is used for revealingeigenvalues of a given unitary operator U . We de�ne anoperator revealing frequenies in aordane with [2℄.LetM = 2m and L = 2p. We determine frequeniesof unitary operators within 1=L, where L is the num-ber of appliations of U required for revealing frequen-ies with this auray, whih means that the auray1=M is su�ient to distinguish the eigenvalues of U .For the reognition of eigenvalues, we put p = m + 4,and therefore, L = 16M .We let (0:l)p denote the number from [0; 1) of theform l=L. Let the operator U have the eigenvaluese2�i!k , where the frequenies !0; !1; : : : ; !N 0�1 are dif-ferent real numbers from [0; 1). Let Ek be the spaespanned by all eigenvetors orresponding to !k. Anarbitrary vetor with the length 1 from Ek is denotedby �k. Every state � therefore has the form� = N 0�1Xk=0 xk�k:Let N 0 be some integer and 
 = f~!k;ig be someset of integers from f0; 1; : : : ; L � 1g, 0 � i � M � 1,0 � k � N 0 � 1; "; Æ > 0: We setLk" (
) = fi : j(0:~!k;i)p � !kj � "or j(0:~!k;i)p � !k � 1j � "g.De�nition 1. A transformation W of the formW : j�; 0m+4i �! N 0�1Xk=0 L�1Xi=0 �i;kj�k; ~!k;iiis alled a transformation of type WÆ;" if for all k and�, Xi2Lk" (
) j�i;k j2 � jxkj2(1� 2Æ):388



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :Thus, Æ is the error probability of obtaining the or-ret frequenies !k by observation of the seond registerand " is the preision of the frequeny approximations.De�nition 2. A unitary operator R is alled re-vealing frequenies of U if R belongs to the type W 1K ;KLfor any K 2 f1; 2; : : : ; Lg3).The key here is the quantum version of the Fouriertransform (QFT) de�ned byQFTL : jsi �! 1pL L�1Xl=0 exp (�2�isl=L) jli:We also need the following generalization Useq of theoperator Uond: ULseq jx; ai = jUax; ai:This is the result of a sequential appliations of U to themain register. To implement this operator by means ofUond, we perform the following yle. For an integerounter j ranging from 1 to the maximum value L� 1of a, we apply U i� j � a. One yle then onsistsof Uond with a properly prepared ontroller and theresulting operator is ULseq .We de�ne the operator revealing frequenies byRev = QFTLULseq QFTL;where quantum Fourier transformations are applied tothe seond register4). It was proved in [7℄ that Rev isa transformation revealing frequenies. We now needmore. For a redistribution of amplitudes xk, we alsoneed the transformation Rest leaning the seond reg-ister. The ideal andidate for this role would be Rev�1,but it requires the appliation of U�1, whih is physi-ally unrealizable given only the devie ful�lling U , ex-ept in evident ases where, e.g., U = U�1. We an usethis simplest de�nition of Rest only in the ase wherewe are given a iruit implementing U (e.g., gate array)beause U�1 is then aessible for us as well as U . Butif C is given only as a blak box, the restoring operatormust be de�ned separately.We �nd the operator restoring anilla in the formRest = RevD;where D is some operator of turning. Given some inte-gers ~!Lk of the form q=L, where q is an integer, ~!Lk � !k,we an de�ne the operator D of turning byDj�k; li = exp (�2�i(L� 1)Æk;l) j�k; li;3) In what follows, we use this notion only with K = 16.4) As in [2℄, the �rst QFT an be replaed by the Walsh�Hadamard transform beause it is equivalent to the QFT on zeroanilla.

where Æk;l = ~!Lk � (0:l)m:It was proved in [7℄ thatk(RestRevj�; �0i � j�; �0ik < 7M=L;whih implies that the restoring operator thus de�nedindeed restores zeroes in the seond register after theation of Rev if L is su�iently large. To reate thesegood approximations, we apply a slightly more generalonstrution. We setD = Enh ~D Enh;where the operator Enh alulates an integer funtionh(l) giving a good approximation (0:h(l))p of frequen-ies within 1=L given their rough approximation (0:l)mwithin 1=M and plaes them into anilla, ~D rotateseah eigenvetor by an appropriate angle~Dj�ki = exp [�2�i(M � 1)((0:h(l))p � (0:l)p)℄ j�k;and the last appliation of Enh leans the anilla. Theoperator Enh is aessible given good approximationsof eigenvalues. Our operator Rest therefore restoreszeroes in the anilla within 1=L.We an reah the auray 1=L for all operators oftype Rest that are less than 1=t, where t is the num-ber of all steps in the omputation; this auray anbe guaranteed with logL = p registers. We emphasizethat this di�ulty with the eigenvalue preision arisesonly when U�1 is inaessible, as in the problem ofreognition of eletroni iruits in Se. 3.4, where wemust hoose L�M .The operatorsRev and Rest an be built in the formof a quantum gate array using the universal quantumKlini funtion App, where the ode [C℄ of a iruit gen-erating U is a part of the input. We write the operatorU orresponding to these two operators as the super-sript. 3. RECOGNITION PROBLEMS3.1. Obtaining eigenvetors and reognition ofeigenvaluesOur assumption about a sparse spetrum is nowstated as L = 16M = onst. Beause Rev reveals fre-quenies, it belongs to the type W1=16;1=M . By de�ni-tion of WÆ;", this implies that Rev gives a stateN 0�1Xk=0 M�1Xi=0 �i;kj�k; ~!k;ii;389



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003where the seven eighth of the probability is onen-trated on the pairs i; k suh that (0:!i;k)m is lose to !k.This implies that we an obtain eigenvalues with a highprobability by observing the seond register; the �rstregister then ontains the orresponding eigenvetor.This proedure to obtain eigenvetors was proposed in[2, 8℄. Its �rst disadvantage is irreversibility. Observ-ing a state, we lose the omplete information about it;we annot use this state again, whih is very importantfor building nontrivial quantum algorithms. The se-ond disadvantage is that this proedure gives a randomeigenvetor when it is typially required to obtain theeigenvetor orresponding to a given frequeny.We onsider a good approximation ~!L of some fre-queny ! written as a string of p of its sequential bi-nary digits and let E! = f�!1 ; : : : ;�!l g be a basis ofthe subspae E! of eigenvetors orresponding to allfrequenies !0 � !. We now build the operator State!that onentrates the bulk of the amplitude on somesuperposition of the orresponding eigenvetorslXj=1 �j�!j 2 E!:For this, we apply the GSA. Letj�ai = lXj=1 �j�!j +Xs �s�sbe some randomly hosen vetor from the main spaewith all eigenvetors in the seond sum orrespondingto frequenies !0 6� !. Our target state is the vetorE!(�a) = lXj=1 �j�!j ;where �j = �js lPj=1 j�j j2 :The vetor is therefore of length 1 and is direted alongthe projetion of �a to the subspae E!.Let A be some set of vetors. We let IA denote theoperator that hanges the sign of all vetors in A andleaves all vetors orthogonal to A unhanged. Our aimis to obtain the operator IE! onstrained to the two-di-mensional subspae S(�a; !) spanned by the vetors j�aiand E!(�a).Let Revj and Restj be j-th opies of the respetiveoperators Rev and Rest ating on the orrespondingplaes of the j-th register. We let lj denote the string

ontained in the plae for the frequeny of the j-th reg-ister and set~IE! = vOj Restj Sign! vOj Revj :It follows that Sign! hanges the sign if and only ifj(0:lj)p � (0:~!L)pj � 1=Lfor at least a half of all j5). Applying the argument atthe end of Se. 2.1, we onlude that the ations of IE!and ~IE! restrited to S(a; !) di�er by less than 1=2O(v);this di�erene an therefore be made very small withonly a linear growth of memory. We thus omit the tildefrom our notation.We de�neSt = GenArg�1GenTimeArg�1 ÆÆ (I�aIE!)tGenTimeArg GenArg;where the respetive operators GenArg andGenTimeArg generate the pair �a; [C℄ and thetime instant t, with C being a gate array implementingI�a. Here, the ations of I�a are implemented by theuniversal funtion of appliation App. The result� = Stj�0i of its ation on �0 is then lose to E!(�a).Indeed, jhE!(�a)j�ij = j sin(2t arsinh�ajE!(�a)i)j(see [6℄). The average value of jh�ajE!(�a)ij with theuniformly distributed probability of hoosing �a and tover all spae and the time frame [0; B℄ orrespond-ingly is of the order 1=pN . Therefore, if t is randomlyhosen from the uniform distribution over 1; 2; : : : ; B,then the average value of jhE!(�a)j�ij2 is not less than1=4. Of ourse, it would be muh more onvenientto obtain E!(�a) with the error probability onvergingto zero, whih is possible by the method desribed inSe. 2.1. Namely, we arrange h equal registers forthe states �k; k = 1; 2; : : : ; h, in the main spae, theorresponding h registers for the frequenies, and as-soiate the variable tk with eah k-th register. LetStk be a pattern of the operator St ating on the k-thregister. We reall that the operators GenArgk andGenTimeArgk generate independent distributions fordi�erent k = 1; 2; : : : ; h. We now de�neState! = St1O St2O : : :O Sth: (2)5) We ould hoose any �xed �: 1=8 < � < 7=8 instead of 1=2.Indeed, ~IE! thus de�ned would hange the sign of all �a 2 E!.If �a?E!, the probability to obtain ! in observing the frequenyfrom Rev is less than 1=8.390



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :Applied to zero initial state, this operator gives astate �1N�2N : : :N�h, and the average value ofjhE!(�k)j�kij2 is lose to some number not less than1=4 with the vanishing probability of error. This alsoimplies that if we then apply the orresponding oper-ators Rev1NRev2N : : :NRevh revealing frequeniesto this state, the main part of the amplitude of the re-sulting state � is onentrated on the basi states forwhih at least 5=32 of all registers for the frequeniesontain numbers l suh that6)j(0:l)m � (0:~!L)pj < 1=L:On the other hand, if ! is not a frequeny, the proba-bility to obtain suh a basi state vanishes beause thedistributions generated by GenTimeArgk and GenArgkare independent for di�erent k.The time omplexity of this algorithm is of the or-der MpNn2. The last fator arises beause of opyingthe registers. We therefore have a solution of the �rstproblem of the reognition of eigenvalues.3.2. Finding thermodynami funtionsGiven the struture of the moleule of a gas, we on-sider the problem of �nding its thermodynami fun-tion (1). Beause the ommon term in this sum rapidlyonverges to zero, it is su�ient to �nd the �rst se-veral summands. It is therefore su�ient to �nd thedegree of degeneray of the subspae orrespondingto the frequenies !0 � ! for any ! = l=M . LetE0 < E1 < : : : < Es be energy levels of the moleule(the eigenvalues of its Hamiltonian H).The evolution operator in time frame t is then givenby U = exp�� iHh t� :Adding the diagonal matrix rI with a onstant r tothe Hamiltonian does not hange the physial piture.Choosing r = �Es; t = h2�Es ;we then obtain a unitary operator U whose frequen-ies belong to the segment [0; 1). Thus, the problem isredued to the ase onsidered above.We assume that M is �xed and we must examineonly several frequenies lose to 0. We an �rst reog-nize all numbers of the form l=M that are frequenieswithin 1=L. Let ! be suh a number. We now show6) We note that in this riterion, 5=32 ould be replaed byany � suh that 0 < � < 1=4 � 7=8 = 7=32.

how to �nd the degeneray degree d of the orrespond-ing subspae. This is the dimension of the subspae E!spanned by the eigenvetors orresponding to frequen-ies !0 � !. Our strategy is as follows. We build theoperator IE! of re�etion along this subspae. Usinga ounting proedure built in [6℄, we then evaluate thetime required for turning an arbitrary initial vetor tothis subspae. This time is about pN=d and we thus�nd d. We �x some � > 0 and show how to obtain thevalue of d within �d.Let the operators GenTimeArgaj generate time in-stants tj from independent uniform distributions on thesegment [0; [a℄℄, where a is a nonnegative number. Fora from 1 to pN , we perform the following three-steploop:1) apply the operatorOj "Ok Revj;k# (I�aIE!)tjGenTimeArgajGenArgj ;2) �nd the �delity of the result, i.e., the number ofall j for whih at least 7=8 � � of all k are suh that!j;k � !; if the �delity of this step is larger than at theprevious step, we proeed the loop, otherwise we stop;3) replae a with 4a=3.If we �nish the omputation at step 2, the urrentvalue of a is taken as a rough approximation of d fromabove. We have 3a=4 � d � a. To �nd d more ex-atly, we divide the segment [3a=4; a℄ into [1=�℄ equalparts by points a0 < a1 < : : : < al and repeat theabove proedure sequentially for all ai. We thus de-termine d within g(�)d, where g is a funtion rapidlyonverging to zero with �. Thus, our algorithm �ndsd and thermodynami funtions with an arbitrary rel-ative error in the time O(pN)M , where the onstantdepends on the admissible error. A more re�ned algo-rithm an be obtained if we apply the method of ount-ing in [9℄. In that work, the quantum Fourier transformis used analogously to the Abrams and Lloyd operatorRev only in order to �nd the time period of the funtionGj�; ti = jGt�; ti, whih is aboutpN=d. Their methodgives the auray of the order pd, whih implies thatthe relative error onverges to zero as d �!1.3.3. Reognition of moleular struturesWe now onsider the problem of reognition ofmoleular strutures. Given the spetrum of amoleule, we must reognize its onstrution. We haveno aess to the devie, but it is su�ient to �nd anarbitrary devie generating this spetrum. To larifythe formulation, we assume the following form of deter-mining the spetrum. Given a set �w = fw1; : : : ; wQg391



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003of numbers from [0; 1) of the form wi = li=M withli 2 f0; 1; : : : ;M � 1g, we let F denote the subspaespanned by vetors of the form jlii; i = 1; : : : ; Q. Aspetrum S is determined by this set �w ifa) for eah ! 2 S, there exists its good approxima-tion wi 2 �w, jwi � !j � 1=L, andb) eah wi 2 �w is a good approximation of some! 2 S.We would obtain a slightly di�erent formulation ofthe problem if we wished to �nd a iruit whose spe-trum only ontains one given set of frequenies and/ordoes not ontain other sets, or if we permit some moregeneral form of a sparse set for �w instead of li=M .These versions of the problem have similar solutions.As above, we �nd the reognizing algorithm in theGSA form (I~0Iir; �w)t; (3)where ~0 is an arbitrarily hosen vetor from the spaespanned by odes of the iruits, t = O(pT ), where Tis the number of all possible iruits, and Iir; �w is there�etion along all odes [C℄ suh that Spetr(UC) isdetermined by �w. It now su�es to build Iir; �w.We hoose Bf = O(pQ) suh that a randomly ho-sen vetor w 2 F satis�esjhwjw1ij > 1=Bfwith probability 0:99. Let GenFreqj andGenTimeFreqj be the respetive operators gener-ating a linear ombination of frequenies ~!j 2 F anda time instant tfreq; j � Bf ; all these objets aretaken from the orresponding uniform distributionsover all possible values and the ode of the gatearray generating the inversion along the orrespondingstate ~!j . These operators generate objets in theorresponding anillary registers. We let !j be thefrequeny ontained in the j-th register (initially, ~!j).We assume that the ode of the iruit generatingU is �xed and de�ne the operator Iir; �w byIir; �w =Oj �GenFreq�1j GenTimeFreq�1j ÆÆ (IBadFreq; �w;jI~!j )tfreq; j �SignGoodFreqOj �(I~!j IBadFreq; �w;j)tfreq; jGenFreqjGenTimeFreqj� ;where IBadFreq; �w;j inverts the sign of states with �badfrequenies� in the j-th register; these are the valuesof !j of the form l=M , l 2 f0; 1; : : : ;M � 1g that ei-ther belong to �w and are not a good approximation of

frequenies ! 2 Spetr(V ) or do not belong to �w buthave a lose frequeny! 2 Spetr(V ) : j!j � !j � 1L ;on all other frequenies, this operator ats as identity.Appliation of the sequene preeding SignGoodFreqonentrates the amplitude on bad frequenies. Wenote that I~!j an be implemented by a given ode bymeans of the quantum Klini operator App. The sub-sequent appliation of SignGoodFreq inverts the signof a state depending on whether bad frequenies arepresent. Namely, SignGoodFreq hanges the sign forodes [C℄ without bad frequenies and does nothing forodes [C℄ with bad frequenies. The subsequent oper-ators lean all anilla. Therefore, Iir; �w de�ned thisway inverts the sign of exatly those odes C for whihSpetr(UC) is determined by �w. We need to de�ne twotypes of operators: SignGoodFreq and IBadFreq; �w;j .With eah !j ontained in the j-th register, we as-soiate a family of registers enumerated by two indiesj; k and ontaining the frequenies !j;k.De�nition 3. A family of all !j;k is alled good ifthe following property is satis�ed for at least 1=5 fromall j: for at least 1=10 of all k, !j;k � !j 2 �w.The registers enumerated by di�erent k for a �xed jare designed for the appliation of the j-th opy of theoperator State! de�ned in the previous setion. Here,it is given by State!j . Eah k orresponds to the op-erator Stk in de�nition (2) suh that eah !j;k is thefrequeny obtained from the result of the ation of Stk.We �rst build the operator IBadFreq; �w;j . We setIBadFreq; �w;j =Oj;k h(State!j )�1Restj;ki ÆÆ Sign0Oj;k [Revj;kState!j ℄ ;where the operator Sign0 hanges the sign of only stateswith bad families of frequenies.It was shown in the previous setion that if a fre-queny !j is bad, we an only have !j;k � !j 2 �w forthe vanishing part of all k, and before Sign0, almost allprobability is onentrated on bad families !j;k; there-fore, IBadFreq; �w;j hanges the sign.If !j is good, then it belongs to �w and has a lose!0 2 S. It follows from the previous setion that about7=8 � 1=4 = 7=32 > 1=5 of all k satisfy !j;k � ! 2 �wand almost all probability before Sign0 is onentratedon good families, and the sign is therefore unhanged.Hene, IBadFreq; �w;j is de�ned orretly.392



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :We setSignGoodFreq =Oj;k h(State!j )�1Restj;ki ÆÆ SignOj;k [Revj;kState!j ℄ ;where the operator Sign hanges the sign of only stateswith good families of frequenies. If a frequeny !j isnot bad, then about 7=8 � 1=4 = 7=32 of all k satisfy!j;k � !j 2 �w. If a frequeny !j is bad, we an onlyobtain !j;k � !j 2 �w for the vanishing part of k, asshown in the previous setion. Thus, SignGoodFreqats as required7).We now alulate the omplexity of our algorithm ofreognizing a moleular iruit. The �rst fatorpT im-mediately follows from (3). The next fator pQ followsfrom the de�nition of Iir; �w. Finally, the de�nition ofIBadFreq; �w gives the fator MpN . The resulting om-plexity is of the order MpTNQn2.3.4. Distinguishing eigenvetors of twooperators with the same eigenvalueWe now onsider the most di�ult of our problems,the problem of reognition of eletroni devies. Thedi�ulty is that we are not to �nd a iruit with a givenspetrum, but must simulate the ation of a given ir-uit. We reall that we now assume that frequeniesan be determined within 1=L given their approxima-tion within 1=M , where L�M .As a �rst step, we onsider the following problem:given two operators U and V having the same eigen-value !, to �nd the di�erene between the orrespond-ing eigenvetors. We let LU! and LV! be the subspaesspanned by the eigenvetors of U and V orrespondingto all frequenies !0 � !. (A partiular ase is where! is a frequeny of U but not of V . Here, LV! = ; andour algorithm is appliable in this situation.) We omitthe index ! from the notation. For u 2 LU , kuk = 1,we set�u = minfp1� jhujvij2 j v 2 LV ; kvk = 1g;whih is the sine of the angle between u and the sub-spae LV , or the distane between u and this subspae;we de�ne �v for v 2 LV , kvk = 1, similarly. We set�U = maxu2U �u; �V = maxv2V �v :7) Again, we ould take arbitrary �1: 0 < �1 < 1 instead of1=10 and �2: 0 < �2 < 7=32 instead of 1=5 in the de�nition of agood family.

Then �U = 0 implies that U � V . If the dimensions ofthe spaes LU and LV are equal, then �U = �V ; if theyare not equal, e.g., dimLU > dimLV , then �U = 1. Letd = d(N) be some funtion taking values in (0; 1℄. Weall these subspaes d-distinguishable if one of �U ; �Vis not less than d, or one of the subspaes is empty andthe other is nonempty.We build a proedure that determines whether thesesubspaes are the same provided they an be either d-distinguishable or oinident. The smaller values thefuntion d(N) takes, the more aurate our reognitionis. Let LU \ LV = L0. Then LU = L0LL0U andLV = L0LL0V . We note that if L0U 6= ;, then for allvetors from L0U of length 1, their distanes from LVare exatly �U , and the same is true for LV if L0V isnot empty. Let L0 be the linear subspae spanned byvetors from L0V [ L0U , and ProjAB be the projetionof a subspae B to a subspae A. If dimLU > dimLV ,we have the deomposition into a sum of orthogonalsubspaes, LU = L00UMProjLULV ;where L00U is the subspae in LU onsisting of vetorsorthogonal to LV . Let L00V be de�ned symmetrially.Then either1. LU = LV or2. dim LU = dim LV and L0 6= ;, or3. dim LU > dim LV and L00U 6= ;, or4. dim LU < dim LV and L00V 6= ;.We de�ne the main operator determining the equal-ity of LU and LV byDi�erene = Di�er�1 SignDif Di�er;Di�er = Difsame dimDifLU>LV DifLU<LV ÆÆDifortLU>LV DifortLU<LV ; (4)where SignDif hanges the sign of the main anilla �difi� at least one anilla in the list�� = f�same dim; �LU>LV ; �LU<LV ; �ortLU>LV ; �ortLU<LV gontains 1, and eah operator of the type Dif hangesthe orresponding anilla from �� in the following ases:1. dim LU = dimLV and LU 6= LV ,2. dimLU > dimLV and �V <p2=3,3. dimLU < dimLV and �U <p2=3,4. dimLU > dimLV and �V > p1=3, or LV = ;,dimLU < dimLV and �U >p1=3, or LU = ;;these operators do nothing if LU = LV . In view of thesymmetry, it is su�ient to de�ne the Dif operators inthe �rst, seond, and fourth ases. We note that the�rst ase, dimLU = dimLV , is the only nondegenerate393



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003ase and the orresponding de�nition of Dif is moredi�ult.De�nition of Dif same dim. We suppose thatdimLU = dimLV . Our �rst aim is to build an op-erator Inv that ats as the identity if LU and LV areoinident and ats as IL0 if they are d-distinguishable.We arrange the �rst two anillary qubits �U and �Vthat signal whether a given state has the projetion toLU or orrespondingly to LV of the length at least 1=3.We onsider the operatorChek =Os RestVs AnV Os RevVsOs RestUs AnUOs RevUs ;where An inverts the orresponding anilla if and onlyif at least 9/10 of opies for the respetive frequeniesare equal to ! within 1=M . It oinides with the inverseoperator Chek�1.Let t be some random integer from the segment[0; [2=d℄℄. We de�ne the operatorTurnt = (ILU ILV )t (5)of Grover's type. Two subspaes LU and LV are saidto be almost orthogonal i� p1� �2 � 1=30 for some� 2 f�U ; �V g. If LU and LV are not almost orthog-onal, then given some a 2 L0U (a 2 L0V ), the averagedistane between Turntjai and LU (LV ) is at least 1/2if LU and LV are d-distinguishable and zero if thesesubspaes are oinident. To distinguish the lose lo-ation and almost orthogonality ases, we build twooperators, Distort and Distlosed.We �rst suppose that LU and LV are almost orthog-onal. Then �U = 1 implies that �V = 0. We introduethe notationL(�U ; �V ) = ( LV if �U = 1;LU if �V = 1:Let �a be a vetor from the spae of inputs. We notethat LU 6= LV implies �U = �V for eah �a?L0 beause�a then belongs to the subspae spanned by L0 and theorthogonal subspae to LU [ LV . The �rst operatorDistort does nothing if �U = �V and hanges the signand the speial anilla �ort if the projetion of �a toL(�U ; �V ) is less than 1=30.The seond operator Distlosed ats as the identityif �U = �V and hanges the sign if the following ondi-tions are satis�ed simultaneously: �a 2 L0, LU and LVare distinguishable, and �ort = 0.We set Distort =Oj ResjSi6=!Oj Rej ;

where Re (Res) denotesRevV (RestV ) if �U = 1; �V = 0;RevU (RestU ) if �V = 1; �U = 0;and the identity if �U = �V ; Si 6=! hanges the sign andsimultaneously inverts �ort i� at least half the frequen-ies !j are suh that j!j � !j > 1=M and �U 6= �V .If we want to lean the seond anilla after the ationof Distort and keep the sign hange, we an use theoperator Dist�ort =Oj ResjS6=!Oj Rej ;where S ats as Si but without hanging the sign.The seond operator is de�ned byDistlosed = D�11 : : : D�1n S0DnDn�1 : : :D1;Dj = (GenTimeArgj)�1(Turnjtj )�1 ÆÆ"Ok RestUj;k# Sigj6=! "Ok RevUj;k#TurnjtjGenTimeArgj ;j = 1; 2; : : : ; n;where the operator Sigj6=! hanges the orrespondinganilla �j only in one of the two ases:1. �U = 1 and at least a half of !j;k are suh thatj!j;k � !j � 1=M , or2. �U = 0; �V = 1 and at least a half of !j;k aresuh that j!j;k � !j < 1=M .The operator S0 hanges the sign i� one of �U ; �V isnonzero and at least 1=20 of all �j ontain 1.We onsider the ation of Distlosed following Chekon an input vetor �a. We �rst onsider the ase whereLU 6= LV , whih implies that these subspaes are dis-tinguishable.If �a? LU ; LV , then �U = �V = 0 and Distloseddoes nothing.If �a 2 L0, then �U = �V = 1 and all Sigj6=! doesnothing beause for almost all j, about 3=4 of !j;kare lose to !, j!j;k � !j � 1=M , and hene, S0 andDistlosed do nothing.Let �a 2 L0. We prove that Distlosed hanges thesign. We deompose L0 into the sum of orthogonal sub-spaes, L0 = L0ULL0Uort, and let �aj denote the resultof the ation of Turnjtj on �a.If � 2 L0U , then �U = 1 and for more than 1=10of all �aj , the revealed frequenies are not lose to !with the probability about 3=4 � 9=10, and the sign istherefore hanged in aordane with ase 1).394



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :If �a 2 L0Uort, then by the same reason we obtainthe hange of sign in aordane with ase 2). Hene,Distlosed hanges the sign for all �a 2 L0.We an now de�ne Inv asInv = Chek Dist�ortDistlosedDistortChek:For a? LU ; LV , we have Invjai = jai beause Chekgives zero in the anilla �U ; �V , thereby depriving thesubsequent operators of the ability to hange the statevetor. If a 2 L0, then Invjai = jai beause Distortdoes nothing and Distlosed does nothing as well. Thus,Invjai = jai for �a?L0;and Invjai = �jai for a 2 L0:We are now ready to build the operator Difsame diminverting the anilla �same dim i� LU and LV are distin-guishable. Let Gen generate the list y; [Iy℄; [CZ ℄, where[CZ ℄ is the ode of a iruit generating some unitary op-erator Z = Z�1 whose only eigenvalues are 1 and �1(that is, its frequenies are 0 and 1=2) and the spaeorresponding to frequeny 0 is one-dimensional, andy is a basi vetor of this spae. As usual, the indexj means that the orresponding vetors yj are takenfrom the uniform distribution on all possible vetors.We assume that operators of the form Gen�1 are alsoaessible, and setDifsame dim ==Oj hGenTimeArg�1j Gen�1j (Invj Iyj )tjRestZjj i ÆÆChangeOj hRevZjj (Iyj Invj)tjGenjGenTimeArgji ;(6)where eah opy of Inv ats on the register where yj isplaed initially and Change makes the desired hangein the resulting qubit �same dim if at least 5=32 of allfrequenies di�er from 0 by more than 1=M .The group (Iyj Invj)tj of the GSA type turns thevetor yj generated by Genj essentially i� LU and LVare d-distinguishable.If LU = LV , then yj remains unhanged and atleast 7=8 of all frequenies are lose to 0.If LU 6= LV , then at least 7=8 � 1=4 = 7=32 of fre-quenies for the result of the turn of yj are far from 0beause they must be lose8) to 1=2.8) Thus, we ould take any number �: 1=8 < � < 7=32 insteadof 5=32 in the de�nition of Change.

De�nition of DifLU>LV . We suppose thatdimLU > dimLV and �V < p2=3, and reall thedeomposition LU = L00UMProjLULVinto the sum of orthogonal subspaes with L00U 6= ;.We de�ne the operator Dif in muh similarity with theprevious ase,DifLU>LV ==Oj hGenTimeArg�1j Gen�1j (Inv00j;U Iyj )tjRestZjj i ÆÆChangeOj hRevZjj (Iyj Inv00j;U )tjGenjGenTimeArgji ;where the de�nition of Inv00U (whih inverts L00U ) is simi-lar to the de�nition of Distort with L00U playing the roleof L0,Inv00U = Chek"Ok gResVk # ~Si6=! "Ok fReVk #Chek:Here, fReV and gResV at as RevV and RestV only if�U = 1; if �U = 0, they do nothing, the operator eSi 6=!hanges the sign in only one ase, if �U = 1 and at least3=4 of all frequenies !k are far from !: j!k�!j � 1=M .In the operator Dif , we therefore use a set of anillaryregisters enumerated by the pairs of indies j; k.For �aj 2 ProjLULV , in view of the inequality�V < p2=3, the operator eSi 6=! does not hange thesign beause the fration of all frequenies lose to ! isthen 7=8 � 1=3 = 7=24 > 1=4.For �aj?ProjLULV , the operator Inv00U does nothing.De�nition of DifortLU>LV . We suppose thatdimLU > dimLV and �V > p1=3. The de�nition ofDif is similar to the previous ase but with the entiresubspae LU playing the role of L0,DifortLU>LV ==Oj hGenTimeArg�1j Gen�1j (Invj;U Iyj )tjRestZjj i ÆÆChangeOj hRevZjj (Iyj Invj;U )tjGenjGenTimeArgji ;whereInvU = Chek"Ok gResVk # eSiort6=! "Ok fReVk #Chek:Here, eSiort6=! hanges the sign if more than half the fre-quenies are far from !; j!j � !j > 1=M . The ondi-tions required for the operator Dif are satis�ed beause395



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 20037=8 � 2=3 = 7=12 > 1=2 and an be heked straightfor-wardly.We �nally estimate the omplexity of the proe-dure onstruted. The operator Turn in (5) requiresthe number of elementary steps of the orderTurnomplexity =Mp1=d:The operator Di�erene in (4) then requires the num-ber of elementary steps of the order TurnomplexitypN ,that is, O(MpN=d ). We note that there exists a simi-lar form of the operator Di�erene that does not at onthe resulting qubit �dif but hanges the sign instead;suh an operator an be onstruted similarly. We letit be denoted by Di�erenesign, and assume that itsinput ontains the frequeny !.3.5. Reognition of eletroni devie iruitsWe are now ready to onsider the reognition of ir-uits. We assume that for every pair of iruits withthe transformations U1 and U2, the subspaes spannedby the orresponding eigenvalues are either oinidentor d-distinguishable. We also assume that our odingproedure gives a one-to-one orrespondene betweeniruits and the T basi states e0; e1; : : : ; eT�1 in thespae Hir. The reognition proedure is denoted byRe and has the GSA form,Re = (I~0IU )t; t = O(pT ): (7)This operator ats on states of the form j�i, where thebasi states for � are odes of iruits. Here, ~0 2 Hiris hosen arbitrarily and IU inverts the sign of everyode whose iruit indues a given operator U . Theimplementation of I~0 is straightforward and all that weneed is to build IU .We de�ne IU asIU =Oj hCon�1freq; jDi�ereneji SignOj [Di�erenejConfreq; j ℄ ;where for every basi state C of the argument, Confreqgenerates some arbitrary distribution of the amplitudeon anillary registers with Q basi states and then on-entrates a substantial part of the amplitude on a fre-queny ! for whih LU and LV are distinguishable (ifsuh a frequeny exists). The operator Di�erenej thenhanges the resulting qubit for the jth opy i� thesesubspaes are distinguishable on this frequeny. Thenext operator Sign hanges the sign i� at least one �fth

of the resulting qubits �dif ontain 1, e.g., i� U and UCare the same operator. The subsequent appliations ofDi�erenej to eah opy of the register then lean theorresponding resulting qubits and the inverse opera-tors to Conj restore the initial state of the anillaryregister. Di�erene was onstruted in the previoussetion and it only remains to build Confreq; j . Thistransformation an be de�ned asConfreq; j = GenTimeFreq�1j GenFreq�1j ÆÆ (Di�erenesignI!j )tj GenFreqj GenTimeFreqj : (8)If U and UC are di�erent, then their subspaes LUand LV are d-distinguishable for some ! by our assump-tion, and Conj onentrates a substantially large partof the amplitude over all j on some ombination of suhvalues !. Thus, we have onstruted the required pro-edure Re that gives the target ode with a substantialprobability as the result of an observation of the reg-ister for the ode C. After the observation, we anverify the �tness of the ode C found by a straightfor-ward proedure. This proedure is similar to IU witha single hange: Sign is to be replaed by a hange in aspeial anilla that an be observed after the proedure;we thus determine whether the ode C �ts.To �nd the omplexity of our proedure Re, wenote that the omplexityMn2pN=d of Di�erenemustbe multiplied by pQ following from (8) and by pT fol-lowing from de�nition (7). The resulting omplexity isMn2pTQN=d.3.6. Advantages of the reognition algorithmsAdvantages of the proposed algorithms are theirhigh speed and small memory. In partiular, the al-gorithm for the moleular struture reognition allowsreognizing moleular iruits using mirosopi mem-ory, whereas lassially this task requires exponentiallylarge memory. We now ompare the proposed algo-rithms with their lassial ounterparts; we omit loga-rithmi multipliers.1. Reognition of eigenvalues and �ndingthermodynami funtions. We �x some value ofM determining the preision of the eigenvalue approx-imation. We �rst onsider the ase where the numberof anillary qubits in a quantum gate array is small.By the diret lassial method, we must then build thematrix of the unitary transform indued by the gatearray. This requires the order N3 steps and at least or-der N2 bits. The known quantum algorithm given byTravaglione and Milburn in [8℄, based on the Abramsand Lloyd operator Rev, ontains repeated measure-ments of frequenies and therefore requires time of the396



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum reognition of eigenvalues : : :order NM ; for sparse spetra, it is of the same order asfor the Hams�Raedt algorithm and its only advantageover the latter is exponential memory saving.Our algorithm reognizes an eigenvalue in pNMnsteps. This time for the sparse area of the spetrum isabout the square root of the time of the best known al-gorithms. Here, the memory is of the order g2 qubits (gis the size of the gate array), that is, about the squaredmemory used in [2℄, but still exponentially smaller thanin lassial methods. The proposed algorithm thereforegives an essential speedup over the known methods inthe ase where the number of anillary qubits in a givengate array is small (as in the ase of a moleular stru-ture simulated by the gate array) and an area of thespetrum is sparse. The same advantage is possessed bythe proposed method of �nding thermodynami fun-tions.If the spetra are dense, we assume that M = N ,whih means that eigenvalues di�er by 1=N at least.The time of our algorithm is then O(N).We next onsider the ase where the number a of an-illary qubits involved in the gate array simultaneouslyis greater than the length n of the input. The diretlassial method then requires more than 22a steps andat least 2m bits, whereas our algorithm requires onlyabout g2n steps and gn2 memory and the quantumspeed-up an be more than the square root.2. Reognition of moleular strutures. We�rst assume that the spetra are sparse. To be ableto ompare our method with the evident lassial algo-rithm, we assume that the ode of a moleular iruitof the length n is a string of ones and zeroes of thislength. Therefore, M = N . The next natural assump-tion that an also be presumed for eletroni iruitsis that the sampling of the ode of a iruit from theuniform distribution indues a sampling of all possiblespetra from the uniform distribution. Then the num-ber of all possible hoies of spetrum approximations(or parts of the spetrum subjet to the statement ofthe reognition problem) within 1=L onsisting of fre-quenies of the form l=M is about 2M = N . Thisimplies that M and Q must be logarithmi in N inour assumption. Our method therefore has the timeomplexity O(N). With these assumptions, the timeomplexity of the lassial diret algorithm examiningall odes and alulating the orresponding spetra isabout N3 � N = N4, whereas our algorithm requiresthe time about N and the logarithmi memory. Thequantum time for this problem is therefore about thefourth root of the time of the lassial diret methodand the quantum spae is logarithmi.If the spetra are dense, then Q and M are of the

order N and our method requires the time O(N2:5), tobe ompared with O(N4) of the diret lassial way.3. Reognition of eletroni devies. Thereare no lassial analogues of this problem in the gen-eral ase. We ompare the two algorithms onstrutedabove with their lassial and known quantum ounter-parts. We �rst onsider a single quantum reognitionalgorithm that an easily be dedued from the previ-ously known tehnique. This is the algorithm of reog-nizing a iruit realizing a lassial involutive funtionof the form f : Q �! Q; f = f�1:This task an be redued to the searh of y suhthat the following logi formula is true: 8x A(x; y),where A(x; y) is some prediate. Indeed, if we takeY (x) = U(x) instead of A(x; y), where Y is a funtionwhose ode is y, we obtain the problem of reognitionof the iruit generating U . The algorithm for suh for-mulas given in [4℄ has the time omplexity of the orderpTN . This task is a partiular ase of our algorithmfor involutive devies and it has the same omplexity.In this partiular ase, quantum time is of the ordergiven by the square root of the lassial time. But ifwe onsider a slightly more general but still restritedproblem of the reognition of involutive devies produ-ing linear ombinations of basi states (like quantumsubroutines), the advantage over the lassial methodof reognition inreases. For example, we onsider therestrited problem where we must hoose between twoalternative onstrutions of a tested devie induing anonlassial unitary transformation. The naive methodof observing the results of the ation of the tested de-vie on the di�erent inputs requires the order (1=�)N3of steps to restore the matrix of the operator UC within�. This � must then be less than 1=pN to give a vanish-ing di�erene between operators in the Hilbert spae.Therefore, the time omplexity of the naive method ofreognition is roughly N7=2. On the other hand, themethod proposed in Se. 3.4 requires hoosing d thatonly onverges to zero as N tends to in�nity. The timerequired by our method is therefore slightly more thanpN . We thus have almost the seventh degree speed-upfor the problem of distinguishing eletroni iruits gen-erating transformations with nonlassial matries.4. CONCLUSIONSThe main onlusion is that the moleular stru-ture and physial properties of environment an bequikly reognized on the mirosopi level whereas397



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003the lassial methods require huge time and espeiallymemory. The new algorithms of reognizing eigenval-ues with a �xed preision, reognizing the moleularstruture, and �nding thermodynami funtions givea quadrati speed-up and an exponential memorysaving ompared with the best lassial algorithms.The new method based on quantum omputing wasproposed for fast reognition of eletroni devies.By this method, two devies with the same givenspetrum an be distinguished in the time about theseventh root of the time of diret measurements. Allthese algorithms show essential potential advantagesof mirosopi size quantum devies ompared to theirlassial ounterparts with muh bigger memory. Theadvantages pertain to intelletual tasks like reogni-tion of the struture of other devies and importantproperties of environment. The proposed algorithmsare onstruted from the standard known subroutines;they have a simple struture and are entirely withinthe framework of the onventional quantum omputingparadigm.I am sinerely grateful to Kamil Valiev for reatingthe onditions for investigations in quantum omputingat the Institute of Physis and Tehnology and for hisattention and valuable advies onerning my work.
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