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BOUND STATES OF THE JOSEPHSON DEGREES OF FREEDOMAND TRAP OSCILLATIONSL. A. Manakova *Russian Researh Center �Kurhatov Institute�123182, Mosow, RussiaSubmitted 11 September 2002It is shown that the interation of the Josephson degrees of freedom with states of ondensate motion an pro-due their equilibrium bound states. As a result of the appearane of these states, �rst, the tunneling splittingis signi�antly inreased in double-well trapped ondensates. Seond, the bound states an realize an absoluteminimum of the thermodynami energy for a su�iently strong interation. Transition to the new ground stateis a seond-order phase transition. The existense of the bound state leads to an equilibrium distortion of theondensate shape. This implies that the Josephson states an be deteted by observing the hange in theondensate shape.PACS: 03.75.Fi, 05.30.Jp, 32.80.Pj1. INTRODUCTIONSine the disovery of two-omponent onden-sates [1℄ and ondensates in a double-well potential [2℄,the phenomena aused by phase oherene of two on-densate modes attrat onsiderable attention, both ex-perimental and theoretial (see, e.g., [3℄ and referenestherein). In [2℄, spatial quantum oherene was ob-served by means of an interferene pattern in two over-lapping ondensates. This interferene pattern wason�rmed in [4℄ by numerial simulation of the Gross�Pitaevskii equation. In [5℄, oherent osillations ofthe relative populations were observed in driven two-omponent ondensates with di�erent internal states.As is well known, a lear manifestation of phase o-herene is the Josephson e�et. In numerous studiesdevoted to the Josephson e�et in systems of two on-densates in di�erent internal states [5; 6℄ or in a double-well potential [7; 8℄, oherent Josephson osillations areonsidered for various dynamial regimes aused by theompetition between tunneling and intraondensate in-teration (nonlinearity). In [7℄, the Josephson ouplingenergy is alulated for small-amplitude osillations ina double-well potential. Damping e�ets due to thenormal urrents at a �nite temperature are estimatedthere. In [8℄, it is shown that for a relatively weak*E-mail: manakova�kurm.polyn.kiae.su

interation, the partile number osillations betweenthe ondensates are omplete. They are suppressedwhen the total number of atoms in the ondensatesexeeds a ritial value and the behavior of the systemis governed by nonlinearity. Nonlinear Josephson-typeosillations in the relative osillations of driven two-omponent ondensates are studied in [6℄. Deoherenee�ets and quantum orretions to mean-�eld solutionshave been onsidered in [11; 12℄. In [13℄, the dampinge�ets of the Josephson urrent (even at zero temper-ature) are derived within the funtional integral ap-proah. A detailed treatment of the nonlinear lassialdynami of the ondensates in a double-well potentialwas given in [9; 10℄. In [14℄, the quantum and thermal�utuations of the phase are studed for ondensates inthe double-well potential.We emphasize that experimental observation of theJosephson e�et is di�ult beause the small energysplitting assoiated with the Josephson oupling im-plies that thermal and quantum �utuations destroythe phase oherene between two ondensates even atthe lowest ahievable temperatures [13; 14℄. While theenergy splitting an be inreased, e.g., by lowering thebarrier height, it then beomes omparable with thatof motion states of the ondensates.But the problem of the interation between theJosephson degrees of freedom and states of motion (os-illations) of the trapped ondensate has yet to be ana-283



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003lyzed. The present paper fouses on mehanisms of in-reasing the tunneling splitting in a double-well poten-tial and of formation of the bound states of the Joseph-son degrees of freedom with trap osillations. Themehanisms are generated by a su�iently strong in-teration between the Josephson and osillation states.These mehanisms may be important for experimen-tal detetion of the Josephson states. The onsidera-tion proposed in the present paper is suitable for thedouble-well trapped ondensates and two-omponentondensates in the same trap.The results obtained in this paper are as follows.1. As is well known [3; 7; 14℄, the Gross�Pitaevskiiequations for two ondensates with a weak Joseph-son oupling have stationary solutions orrespondingto the lowest states with the eigenenergies �EJ , whereEJ is the Josephson oupling energy. This impliesthat the double-well ondensates form a marosopitwo-level subsystem with the tunneling energy split-ting 2EJ if the dynamial Josephson osillations of thepartile number are disregarded. In what follows, itis shown that a su�iently strong interation betweenthe marosopi two-level subsystem and the onden-sate osillation results in their equilibrium bound state.Appearane of the bound state generates an essentialinrease of the tunneling splitting of the marosopitwo-level subsystem.2. In Se. 3�5, we onsider the interation betweenanharmoni trap osillations and the Josephson degreesof freedom generated by the partile number transferbetween two ondensates. Nonlinear dynami osilla-tions of the partile number between two ondensateswith the Josephson oupling are onsidered in [9; 10℄.In the present paper, we derive the quantized spetrumof the partile number generated by the Josephson ou-pling in order to formulate the problem of the intera-tion between the Josephson and osillation degrees offreedom in an adequate manner. The states of thisspetrum represent a quantum analogue of the nonli-nar oherent Josephson osillations onsidered in [10℄.In what follows, the states of the quantized spetrumare alled the Josephson states. The spetrum is highlynonequidistant and has a logarithmi singularity in thedensity of states at the energy 2EJ . We show that anyJosephson state an be realized by means of a giveninitial disbalane of the partile number in two on-densates.3. We onsider the interation between trap osil-lations and the exited Josephson states orrespondingto a su�iently large initial disbalane of the partilenumber. We show that this interation is responsiblefor the formation of a bound state of �nm � 1 osil-

lation quanta with the Josephson state orrespondingto the initial disbalane of the partile number. Inthe Thomas�Fermi approximation at � � !0, where� is the hemial potential of the ondensate and !0is the harateristi frequeny of the trap, h = 1 andthe bound state arises in the region of a su�ientlydense osillation spetrum. In this region, the levelseparations are small ompared with the harmoni os-illation frequeny !0. The equilibrium values of theosillation quanta and the initial partile number dis-balane are oupled self-onsistently and an realize anabsolute minimum of the thermodynami energy at asu�iently strong interation. The thermodynami av-erage �nm 6= 0 generates an equilibrium distortion of theondensate shape. This allows deteting the Josephsonstates by observing a hange in the ondensate shape.2. BOUND STATE OF THE MACROSCOPICTWO-LEVEL SYSTEM AND TRAPOSCILLATIONSThe Josephson oupling is realized for onden-sates in a symmetri/asymmetri double-well potentialformed by two di�erent traps with a barrier betweenthem [2℄. The barrier is reated by laser light, and itsheight is diretly proportional to the laser power andan therefore be varied easily. The proposed meh-anism is also suitable for ondensates in di�erent in-ternal states in the same trap. Experimentally, thismay be a superposition of two Rb87 ondensates in thestates [5; 6℄jF = 1;mF = �1i; jF = 2;mF = 1i:For a weak Josephson oupling, the basis states arethe self-onsistent ground states in the two ondensatesseparately. The wave funtion of a ondensate with theJosephson oupling is given by a superposition of thesestates, namely,	(r; t) =  1(r)a1(t) +  2(r)a2(t);where  i(r) are normalized solutions of the Gross�Pitaevskii equation,ai(t) = N1=2i (t)ei�i(t); i = 1; 2;with Ni and �i(t) being the partile numbers andphases of eah ondensate.As is well known [3; 7; 14℄, the Hamiltonian of twoondensates with a weak Josephson oupling is given byHJ �E0 = EC(�N)2 � 2EJ os�; (1)284



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Bound states of the Josephson degrees : : :where �N = N1 �N2; EC = ��=�N;� � �1 = �2 are the hemial potentials, N is the totalpartile number, and � = �1��2 is the relative phase ofthe ondensates. The quantities EC and EJ depend onthe total partile numberN . In (1), the energy origin isthe mean-�eld total energy of the ondensates, namely,E0 � �N . The variables �N and � are anonial. Theequations of motion an be written in the Hamiltonianform, ���t = �HJ�(�N) ; �(�N)�t = ��HJ�� :The lowest stationary solutions of these equations havethe eigenenergies Es;a = �EJ orresponding to sym-metri (�s = 2�n, (�N)s = 0) and antisymmetri(�a = �(2n+ 1), (�N)a = 0) eigenfuntions.Thus, the double-well trapped ondensates form amarosopi two-level system with the tunneling split-ting 2EJ if we disregard the dynamial Josephson os-illations of the partile number.In what follows, we show that a su�iently stronginteration between the marosopi two-level systemand the ondensate osillation is responsible for theformation of their equilibrium bound state. In thisstate, the de�nite equilibrium number of the osillationquanta is oupled to the two-level system.The interation an be realized by the followingmehanisms. First, the interation an be implementedif we allow the Josephson oupling energy to dependon the atom displaement. The latter is generated bythe ondensate osillation. Seond, the interation anbe realized by applying a pair of traveling-wave laserbeams with the same Rabi frequeny 
 and the wave-vetor di�erene q, for instane, in the x diretion. Theone-dimensional ondensate is onsidered for simpliity.The pulse frequenes are hosen to be resonant with thetransition energy between the two stationary Josephsonstates. A similar mehanism is used for the detetionof the motion states of a single trapped two-level atom(see [15℄ and referenes therein) and N two-level atomsin a trap [16℄.In what follows, we assume that the interationgenerates the transition between the states je; n0i andjg; ni. Here, jei and jgi are two Josephson states, n andn0 are the numbers of osillation quanta. The transitionmatrix element an be written asGhe; n0j�+ exp �i�(â+ + â)�++ �� exp ��i�(â+ + â)� jg; ni: (2)

The operators â+ and â are the reation and annihi-lation operators assoiated with the osillation stateand �+ = jeihgj. Eah of two values N�̂z = �N ,where �z = jeihej � jgihgj, orresponds to one of thetwo stationary Josephson states. The quantity G is de-termined by the spei� mehanism induing the inter-ation. If the interation is realized by applying laserbeams, it follows that in the rotating frame, G = 
and � = q(2MN!0)�1=2 is the Lamb�Dike parameteraused, for example, by the enter-of-mass motion of Natoms in a trap with the harateristi frequeny !0.We onsider the lassial states of motion of theondensate. These states an be desribed in terms ofthe omplex amplitudes a�; a = n1=2e�i'1 , wheren = hajâ+âjai = jaj2is the average number of quanta in the oherent statejai. The variables n and '1 are anonial. By thelassial state of motion, we mean that its number ofquanta is very large, n� 1. It is onvenient to speifythe relation between the amplitudes a; a� and the ope-rators â; â+ as a = N�1=2â. The ommutator of a anda� is then equal to zero with marosopi auray,[a; a�℄ = 1=N ! 0:The Hamiltonian of the motion states an be writtenas N�(n).The Hamiltonian of the interating stationaryJosephson and osillation degrees of freedom thereforebeomeŝH = N�(n) +N "2�z +Hint; " � 2EJN : (3)We are interested in the situation where the resonaneondition k � d�dn = " (4)is satis�ed with an integer k. In this ase, the Hamil-tonian Hint an be represented asHint = N [gk�+ak + g�ka�k��℄;gk = G� ikk!�� q22M!0�k=2 : (5)Dynamial solutions generated by the Hamiltonianof type (3), (5) are studied in numerous papers bothfor a single trapped atom, N = 1, (see, e.g., [15; 17℄,and referenes therein) and for N atoms in a trap [16℄.In the present paper, we fous on the equilibrium prop-erties of the system desribed by Hamiltonian (3), (5).285



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003We note that in order to determine the partitionfuntion Z(N ;T ) in what follows, we must have amarosopi two-level system. The phase transitionswithin the Dike model that orresponds to the asewhere k = 1 in Eqs. (3) and (5) have been disussedin the ontext of superradiane [18℄ and reently, forexiton ondensation [19℄.Substituting Hamiltonian (3), (5) in the expressionZ(N;T ) = Sp e��Ĥ for the partition funtion, we ob-tain in the ase of the lassial osillation degrees offreedom thatZ(N ;T ) = 1Z0 dn e��N�(n) �Sp e��Ĥ��N ;Ĥ� = "2�z + [gk�+ak + g�ka+k��℄; (6)where � = 1=T , T is the temperature. Using theeigenenergiesE1;2 = �"2 �1 + 4jgkj2nk"2 �1=2of the Hamiltonian Ĥ� , we arrive at the following ex-pression for the partition funtion:Z(N ;T ) = 1Z0 dne��N�(n) �e��E1 + e��E2�N == 1Z0 dn exp(N  � �"(n)++ ln"2 h �"2 �1 + 4jgkj2nk"2 �1=2#!) �� 1Z0 dn e�NF (n): (7)The partition funtion in Eq. (7) has a maximum atthe value jaj2m � �nm realizing a minimum of the fun-tion F (n). That is, the value �nm(T ) is determined bythe equation� d�dn�n=�nm = jgkj2k�nk�1m" �1 + 4jgkj2�nkm"2 ��1=2 �� th "� "2 �1 + 4jgkj2�nkm"2 �1=2# (8)and is the number of osillation quanta per atom of thetwo-level system. This quantity plays the part of theorder parameter of the system for T < T, where T isthe transition temperature to the state with �nm 6= 0.

The new splitting E1 � E2 = �" of the Josephsonlevels depends on the temperature and is de�ned by theexpression �"(T ) = "�1 + 4jgkj2�nkm"2 �1=2 : (9)At T = 0, Eq. (8) beomes�1 + 4jgkj2�nkm"2 � = �k2jgkj2"2 �2 �n2(k�1)m ; (10)where we used that d�dn = "k :For a simple resonane with k = 1, the solution for�nm(T = 0) is given by�nm = � "2G(ql0)�2 "�G2(ql0)2"2 �2 � 1# ;l20 = 12M!0 : (11)We used that g1 = G(ql0) in aordane with Eq. (5).We note that �d2F (n)dn2 �n=�nm > 0:The solution for �nm exists when the interation is suf-�iently strong, that is,�G" �2 (ql0)2 > 1: (12)This relation implies that the system in question un-dergoes a quantum phase transition at the ritial valueG = "(ql0) of the interation strength.At G(ql0) � ", the tunneling splitting �"(T = 0)and thermodynami energy Em of the system disribedby Hamiltonian (3), (5) are determined by the expres-sions�" � G2(ql0)2" � "; Em � �NG2(ql0)24" : (13)Therefore, �rst, the splitting aused by the interationis muh greater than the �unperturbed� splitting ".Seond, the bound state realizes the absolute minimumof the thermodynami energy within the range g1 � ".It is worth noting that the onsideration proposedabove applies in the ase where qr0 � 1, where r0 isthe (typial) mean interatom spaing. The l0 value is286



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Bound states of the Josephson degrees : : :the harateristi size of the ondensate. As a result,we arrive at the relationql0 & 1:Transition to the state with �nm 6= 0 is seond-orderat k = 1. Imposing that �nm ! 0 at the transition tem-perature T, we obtain from (8) at k = 1 and jg1j � "that T = jg1j22" = G2(ql0)22" = �"(T = 0)2 : (14)It is interesting to disuss the solutions of Eq. (10)for multiple resonanes with k > 1. As an be easilyseen, the harater of the ground state hanges drasti-ally at k 6= 1. Already at k = 2, solutions of Eq. (10)with �nm � 1 are absent.At k � 1, Eq. (10) implies�nkm � 2"2�k2jgkj2 ; �" � "�1 + 4�k2� : (15)We see that �nm � 1 and �" � " at k � 1, and there-fore, the e�et of the interation is negligible, unlikethe solution for a simple resonane with k = 1 obtainedabove.For a one-dimensional ondensate, the appearaneof a state with �nm 6= 0 orresponds to the enter-of-mass osillation ofN atoms with a displaed zero point.The �apture� of osillation quanta by the marosopitwo-level system an therefore be onsidered as a meh-anism of the formation of the equilibrium oherent stateof motion.In the general ase, the existene of a nonzero valueof �nm leads to an equilibrium distortion of the onden-sate shape. The distortion is self-onsistently oupledto the tunneling splitting. In partiular, the stationaryJosephson states an be deteted by observing a hangein the ondensate shape, and vie versa.A remark is in order. The quantities d�=dn � !(n)speify the level separations of the osillation spetrum.They are independent of n for harmoni osillations,where !(n) = !0 and for the states in the region ofa �dense� (semilassial) osillation spetrum. In thisregion, the level separations !(n) are small omparedwith !0 and, in addition, are slowly-varying funtion ofn, !(n) � ! � !0.3. QUANTUM SPECTRUM OF THE PARTICLENUMBERThe quantization of Hamiltonian (1) produes thepartile number spetrum in the Josephson potential

EJ os�. As is shown in what follows, any Josephsonstate an be realized by means of a given initial disbal-ane of the partile number. It is therefore interestingto obtain the omplete spetrum generated by Hamil-tonian (1) and to represent it as a funtion of the initialdisbalane.The Shrödinger equation for Hamiltonian (1) is de-rived by the quantization rule(�N)! �i�=��:As a result, we obtain the Mathieu equation��EC d2d�2 � 2EJ os�r�	 = "	;" � HJ �E0: (16)For " > 2EJ , this equation has a ontinuum spe-trum. The states of this spetrum orrespond tolassial states with an unlimited phase hange,�1 < � < +1; they are alled the self-trappingstates in [9; 10℄. In the region �2EJ < " < 2EJ ,Eq. (16) has a disrete spetrum. It orresponds tothe �nite-motion region of Hamiltonian (1), where therelative phase hanges within� aros("=2EJ) < � < aros("=2EJ)for eah ". In the Josephson regime [3℄ at EJ � EC ,the number of levels in a well is large and the disretespetrum is determined by the Bohr�Sommerfeld for-mula�("�) = I d�r� �N(�r; "�) == I d�r� � 1EC ("� + 2EJ os�)�1=2 == �hE(�)� (1� �2)K(�)i; (17)where� = 8� �EJEC�1=2 ; �2 = "� + 2EJ4EJ ; � � 1; (18)andK(�) and E(�) are the omplete ellipti integrals ofthe �rst and seond kind. The density of states �d("�)follows from Eq. (17) and is equal to�d("�) = 12� d�d"� = K(�)�2!m : (19)The level separations in (17) are given by!("�) = d"d� = �!m2K(�) ; !m = 2(ECEJ )1=2: (20)287



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003At (EJ=EC)1=2 � 1, we have the relation !m � 2EJ .The quantity !m determines the maximum splitting ofthe levels in the Josephson well. In what follows, thestates with � < � are alled the �libration� states.In the region � � �, the �(") dependene and den-sity of states are determined by�(") = 4�2 �EJEC�1=2 �E(��1);�(") = 12�2 ��1K(��1)!m : (21)States (21) with � > � are alled the self-trappingstates.Equations (17) and (21) imply that"(�) � �2EJ + !m�; 1� � � �;"(�) � 4�2EC�2; � � �: (22)At the same time, it is easy to show thatd2"(�)d�2 < 0 for � < �and d2"(�)d�2 > 0 for � > �:At � = �, the urve "(�) has an in�etion point.Beause the energy is onserved, the state with agiven value of � an be realized by de�ning the initialvalues of (�N)0 and �(0) as"(�) = EC(�N)20 � 2EJ os�(0):Supposing that �(0) = 0, we obtain the following rela-tion between � and (�N)0:"(�) = �2EJ +EC(�N)20: (23)Using Eqs. (22) and (23), we arrive at the expressions� = 12� j(�N)0jfor the self-trapping (sf) states and� = �EC!m� (�N)20for the �libration� (l) states: (24)Combining (19) and (21), we obtain the dependene�d;(") / !�1m ln ����1� "2EJ �����1 ; "! 2E�J : (25)Therefore, a new logarithmi singularity appears atthe boundary separating the libration and self-trappingspetra.

4. INTERACTION OF THE EXCITEDJOSEPHSON STATES AND ANHARMONICCONDENSATE OSCILLATIONSIn this and the next setions, we show that the spe-trum of the system an hange drastially due to theinteration between exited Josephson states (22)�(24)with su�iently large values of � and osillations of theondensate.As in Se. 2, two mehanisms an be proposed forthe realization of the interation. First, the interationan be produed by a dependene of EC in Eq. (23) onthe atom displaements. The latter are generated bythe ondensate osillation. Seond, the interation anbe realized by applying a two-photon traveling-wavelaser pulse with the Rabi frequeny 
. The pulse re-ates the ondensates with di�erent partile numbersand indues the interation of atom displaements withthe exited Josephson states orresponding to the par-tile number disbalane reated by the pulse. The gen-eral desription proposed in what follows is indepen-dent of the spei� mehanism produing the intera-tion.The states of motion of the ondensate are lassi-al. These states are de�ned in Se. 2. For semilassialJosephson states with � � 1, the � ; �� amplitudes anbe written as � = �1=2ei'2 :It is onvenient to rewrite "(�) and � in terms of thevariable x = j(�N)0jN1=2 � 1:Combining this inequality with the requirement thatx = j(�N)0jN � 1;we arrive at the onditions for the x values,1� x� N1=2: (26)Using Eqs. (22) and (23), we �nd that� = �(x);"(�) = N(�EJ=N +ECx2):In the general ase, the �(x) dependene is impliit.It is determined by Eqs. (17), (21), and (23). But inthe partiular ases of the �libration� ("(�)� EJ ) andself-trapping ("(�)� EJ) states, the relations between� and (�N)0 an be represented in a simple form, asan be seen from (24). Using Eqs. (23) and (24), wearrive at the following expressions:H0 � N"0(n; x) = N ��EJN + �(n) +ECx2� ; (27)288



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Bound states of the Josephson degrees : : :(sf)� = N1=4x1=2ei'2 � N1=4(sf)x ;(l)� = N �EC!m�1=2xei'2 � N �EC!m�1=2(l)x : (28)For any mehanism produing the interation be-tween two subsystems, the interation Hamiltonian anbe written in the form of a multiple Fourier series in'1, '2,Hint = N Xk1k2 �gk1k2(N)a�k1k2� + ..� == N Xk1;k2 hg(sf;l)k1k2 (N)nk1=2x�k2 �� exp (i(k1'1 � k2'2)) + ..i ; (29)where �sf = 1=2, �l = 1, and k1 and k2 are integers.For simpliity, we disregard the phase-independent in-teration. Using Eq. (28), we obtaing(sf)k1k2(N) = gN�1+k2=4;g(l)k1k2(N) = gN�1+k2 �EC!m�k2=2 : (30)The onstant g is determined by the spei� mehanismproduing the interation.We now assume that the term with the phase�rk = k1r'1 � k2r'2;whih varies anomalously slowly with time, an bedropped in sum (29). This an be done under twoonditions. The �rst ondition isk1r �d�(n)dn � = k2r �d"J(x)dx � ; (31)or equivalently,xm = k1r"0n2k2rEC ; �0n � �d�(n)dn � :The seond ondition is�d2H0dx2 �x=xm (�x)max � �dHintdx �x=xm : (32)In writing this equation, we took into aount that H0and Hint are funtions of a single dynami variable,e.g., x. The quantity �0n de�nes the level separations ofthe osillation spetrum.As is shown in what follows, ondition (31) is equiv-alent to the ondition of the minimum of the funtion"0(n; x) with respet to x. When the minimum exists,it an provide the leading ontribution into the ther-modynami funtions.

In addition, ondition (31) implies that the phase�rk is an approximate integral of motion if the depen-dene on x near xm is ignored,d�rkdt � k1r �H0�n � k2r �H0�x � 0:Inequality (32) implies that the width of the near-minimum region is large at the harateristi intera-tion variation sale. From Eqs. (31) and (32), we anobtain that time hanging the �rk phase is proportionalto (d2H0=dx2)m�x, where�x is the variation of x nearthe xm value. The maximum value (�x)max spei�esthe width of the near-minimum region suh thatd�rkdt � �x:The estimate for (�x)max is given in what follows.Thus, the leading term in sum (29) is given byH(r)int = Ng(sf;l)k (N ;n; x) os�k;�k = k1r'1 � k2r'2: (33)All the remaining terms in this sum are rapidly osil-lating perturbations and are disregarded in this work.Here and below, the index k in gk and �k denotes theset k1r; k2r.It an be easily shown that in addition to the energyH = N ["0(n; x) + gk(N ;n; x) os�k ℄;the system in question has the integral of motionn0 = nk1r + xk2r ; dn0dt = 0:Owing to this, ondition (31) is equivalent to that ofthe minimum of "0(n0; x) at xm for a given value of n0,as mentioned above.Using Eqs. (31)�(33), it is straightforward to writethe Hamiltonian Hm = H0 +H(r)intnear the minimum to the �rst nonvanishing orderin �x,Hm = N �"0(nm;xm)++ �d2"0dx2 �m (�x)2�gkm os�k� ; (34)where nm = n0 � k1rxmk2r ;7 ÆÝÒÔ, âûï. 2 289



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003�d2"0dx2 �m = 2E; gkm = g(sf;l)k (N ;nm; xm):The terms with the derivatives of Hint are absent fromEq. (34) beause of ondition (32).Using that EC � !0(a=a0)2=5N�3=5in the Thomas�Fermi approximation [20℄ (where a anda0 are the sattering and osillator lengths, respe-tively), we an represent the range 1 � xm � N1=2as1N �Naa0 �2=5 � k1rk2r � �0n!0�� 1N1=2 �Naa0 �2=5 : (35)As is known [20℄, the relation (Na=a0) � 1 isvalid in the Thomas�Fermi approximation. ButN�1=2(Na=a0)2=5 � 1, and therefore, ondition (35)(or equivalently, ondition (31)) spei�es the region ofthe dense osillation spetrum, where �0n � !0. Hereand in what follows, we suppose that k1r = k2r = 1 forsimpliity.From Eq. (34), the value of (�x)max an be esti-mated as (�x)max � �gkmEC �1=2 :Hene, ondition (32) beomesjxm � nmjxmnm � � ECgkm(N)�1=2 : (36)In what follows (see Eq. (49)) we show that the relation(36) is satis�ed with marosopi auray.5. THE GROUND STATEAt a �xed value of n0, the leading ontributionto the partition funtion omes from the neighbor-hood of the minimum at x = xm. The expression forZ(n0;xm;T ) isZ(n0;xm;T ) = onst 1Z�1 d�x �Z�� d�k �� exp (��Hm(n0;�x; �k)) = onst(�NEC)1=2 �� exp [��N"0(N ;nm;xm) + ln I0(�Ngkm)℄ ; (37)where I0(x) is the modi�ed Bessel funtion. Equa-tion (37) implies that the free energy of the systemis given byF = N"0(nm;xm) + 12T ln(�NEC)�� T ln I0(�Ngkm); (38)

Using Eq. (38), we obtain the equation for the �nmvalue realizing the minimum of the free energy,�d"0mdnm �nm=�nm = �dgkmdnm �nm=�nm I1(�Ngkm)I0(�Ngkm) ; (39)where I1(x) = I 00(x). In addition to �nm, the ther-modynami average of os�k an be determined fromEqs. (37) or (38). This average is equal tohos�kiT = � � lnZ�(�Ngkm) == �FT�(�Ngkm) = I1(�Ngkm)I0(�Ngkm) : (40)The order parameters �nm and hos�kiT desribe thenew oherent state. There is a bound state of the �nmosillation quanta and the Josephson state generatedby the initial disbalane of the partile number thatorresponds to the xm value. In addition, this statehas the equilibrium phase oherene fator hos�kiT .The �nm 6= 0 value provides the equilibrium distortionof the ondensate shape. The above equations implythat the shape distortion is self-onsistently oupled tothe xm value de�ning the equilibrium initial disbalaneof the partile number.At T = 0, the �nm value realizes the minimum of thethermodynami energyEm = N ["0(N ;nm; xm)� gkm(N ;nm; xm)℄: (41)To determine �nm(T = 0), it is suitable to use the fol-lowing onsideration. It is well known that the levelseparations �0n are slowly varying funtions of n withinthe dense (semilassial) spetrum. We an thereforesuppose that �0n � onst � !b � !0. Under this as-sumption, the xm value is independent of nm and �nmis equal to�n1=2m = g(sf;l)(N)x�m2!b ; �sf;l = 12 ; 1: (42)(It is worth noting that (�2Em=�n2m) > 0.) Here andin what follows, the notation g(sf;l)k=1 (N) � g(sf;l)(N) isused. Taking Eq. (42) into aount, we readily obtain�g(sf)1m = g(sf)2(N)xm2!b ; �g(l)1m = g(l)2(N)x2m2!b ;E(sf)mN = �EJN � g(sf)2(N)8EC �1� 8E2Cx2mg(sf)2(N)� ;E(l)mN = �EJN � g(l)2(N)xm16EC �1� 16E2Cxmg(l)2(N) � : (43)290



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Bound states of the Josephson degrees : : :The expressions for the energies imply, �rst, thatwe obtain the minimum in the region of a su�ientlydense osillation spetrum that satis�es ondition (35).The minimum orresponds to the formation of a boundstate for the �nm; xm values. Seond, as an be seenfrom Eq. (43), the absolute minimum of Em an berealized within the ranges1� xm < g(sf)(N)8EC ; 1� xm < g(l)2(N)16E2C : (44)These onditions are satis�ed when the interationmatrix elaments g(sf;l)(N) are su�iently large. Weestimate the ondensate parameters that are re-quired for the existene of the absolute minimum.In the Thomas�Fermi approximation, the inequalityg(sf)(N) � EC is valid if the total partile number isnot very large, namely,N � g!0 �a0a �8=3 : (45)In turn, the relation g(l)2(N)� E2C is valid within therange N0:1 g2
1=2!3=20 �a0a �0:6 � 1; (46)where we use that EJ = 
N . Condition (46) is satis-�ed for all admissible parameters ifg2
1=2!3=20 � 1:We emphasize that the right-hand side inequalitiesin Eq. (44) are muh stronger than the onditionxm � N1=2.The transition to the state with �nm 6= 0 andhos�kiT 6= 0 is seond-order. Requiring that �nm ! 0at the transition temperature, we obtain from Eq. (39)that T (sf;l) = g(sf;l)2(N)x�m!b N: (47)The dependenes of transition temperatures (47) on thetotal partile number are given byT (sf) � N�0:2; T (l) � N0:8: (48)The transition temperature T (sf) therefore has themarosopi smallness in omparison with the T (l) tem-perature. Along with onditions (45) and (46), thisfat implies that the libration Josephson state forms abound state with the ondensate osillation rather thana self-trapping state.

6. CONCLUDING REMARKSWe have found that the interation between theJosephson and osillation states results in a new oher-ent ground state of the double-well trapped ondensate.There is a bound state of the �nm osillation quanta andthe Josephson states. The latter are either two sta-tionary states forming the marosopi two-level sub-system or the exited Josephson states generated by ade�nite initial disbalane of the partile number. Boththe xm value de�ning the disbalane and the tunnel-ing splitting N" of the stationary Josephson states areself-onsistently oupled to the number of the osilla-tion quanta entering the bound state.We emphasize that the bound states arise near theextremum points of the �unperturbed� spetrum of thesystem. For a two-level Josephson subsystem, there isa resonane between the �initial� tunneling splitting "and the osillation frequeny.For the exited Josephson states in Ses. 3 and 4, anew oherent state is formed in the neighbourhood ofthe minimum of the energy "0(n0;x) if onditions (31),(32) are satis�ed.The resonane and the minimum onditions speifythe type of the interation between the Josephson andosillation states.In addition, minimum ondition (31) imposes es-sential restritions on the spetrum of the osillationstates that an e�etively interat with the Joseph-son degrees of freedom. This ondition implies thatthe exited Josephson states an interat only with theosillation states having a su�iently large density ofstates (suh that inequalities (35) are satis�ed). Forinstane, in an asymmetri double-well potential, theenergy "(n) of its lassial osillation states has threebranhes. Two branhes have energies "1;2(n) � Vb,where Vb is the barrier height. There is a maximumat "1;2(nmax) = Vb. The third branh has the en-ergy "3(n) � Vb and the minimum at the energy"3(nmin) = Vb. Therefore, the region of the dense os-illation spetrum exists in the neighbourhood of thebarrier top.A similar situation an our for the stationaryJosephson states in Se. 2. In the Thomas�Fermi ap-proximation, resonane ondition (4) an be satis�edwithin the range of the dense spetrum lose to thebarrier top.We emphasize that in both ases, the bound statesof the highly exited osillation state and Josephson de-grees of freedom are formed. These states an realizethe absolute minimum of the thermodynami energy,as shown in Eqs. (13) and (43).291 7*



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003As shown in Se. 4, ondition (32) is realized withinrange (36). Substituting the expressions for �nm and�g1m obtained above in (36), we �nd that this equationbeomes jxm � nmj(sf;l) �  g(sf;l)1m (N)EC !1=2 ; (49)and is therefore satis�ed with marosopi auray.The bound states exist at a su�iently strong inter-ation determined by onditions (12) and (44). Theseonditions are experimentally ontrolled by means ofeither the interation matrix elements G, g or the par-tile number N (see Eqs. (12), (45), and (46)).For the stationary Josephson states in Se. 2, themehanism proposed above provides an essential in-rease of the tunneling splitting that turns out to de-pend on temperature. It is de�ned by (11). For theexited Josephson states interating with the anhar-moni osillation, two order parameters desribe thenew ground state. These are the number �nm of the os-illation quanta entering the bound state and the phaseoherene fator in Eq. (40).The seond-order phase transitions to states with�nm 6= 0 an be observed at T = T, where the tran-sition temperatures T are de�ned by Eqs. (14), (47),and (48).We �nally note that the appearane of bound statesgenerates an equilibrium distortion of the ondensateshape spei�ed by the �nm values in Eqs. (11) and (42).This mehanism an provide an experimental detetionof the Josephson states. The latter an be observed byhanging the ondensate shape.I am grateful to Yu. M. Kagan and L. A. Maksimovfor helpful disussions. This work was supported bythe RFBR (grant 01-02-16513).REFERENCES1. C. J. Myatt, E. A. Burt, R. W. Christ, E. A. Cornell,and C. E. Wiemann, Phys. Rev. Lett. 78, 586 (1997).2. M. R. Andrews, C. G. Townsend, H.-J. Meisner,D. S. Durfee, D. M. Kurn, and W. Ketterle, Siene275, 637 (1997).
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