НЕКОЛЛИНЕАРНЫЕ МАГНИТНЫЕ СОСТОЯНИЯ В МУЛЬТИСЛОЯХ ТИПА ЖЕЛЕЗО–ХРОМ

В. Н. Меньшов^{*}, В. В. Тугушев

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 21 мая 2002 г.

В работе предложена модель неколлинеарного магнитного упорядочения в мультиструктурах типа Fe/Cr, в основе которой лежит идея о перераспределении зарядовой (и, как следствие, спиновой) плотности вблизи границ раздела металлов. Показано, что в определенном температурном интервале возникает особое состояние всей структуры, характеризуемое наличием сильного ближнего антиферромагнитного порядка в прослойке а также значительной зависимостью магнитных характеристик от свойств поверхности раздела между слоями железа и хрома. В рамках разложения Гинзбурга–Ландау для термодинамического потенциала системы найдены неоднородные антиферромагнитные структуры с векторным параметром порядка и рассчитана эффективная обменная связь между моментами соседних слоев железа. На основе полученных результатов обсуждаются экспериментальные данные по рассеянию нейтронов и намагниченности на сверхрешетках Fe/Cr.

PACS: 75.70.Cn, 75.30.Fv

1. ВВЕДЕНИЕ

Возрастающие требования к параметрам слоистых наноструктур, используемых в современных технологиях магнитной записи, вызывают все более значительный интерес к мультислоям (сэндвичам, сверхрешеткам) типа ФМ/АФМ, где ФМ и АФМ соответственно ферро- и антиферромагнитный материалы. Указанные мультислои, получаемые, как правило, методами молекулярно-лучевой эпитаксии путем послойного напыления, являются уникальными объектами фундаментальных исследований, обладающими целым рядом необычных транспортных и магнитных свойств (например, гигантским магнитосопротивлением).

Одними из наиболее популярных среди наноструктур типа ФМ/АФМ являются мультислои на основе переходных металлов, например, с железом и кобальтом в качестве ферромагнетика и с хромом и марганцем в качестве антиферромагнетика. В частности, структурам типа Fe/Cr, о которых пойдет речь в данной работе, посвящено по меньшей мере три недавних обзора [1–3]. Это связано во многом с тем обстоятельством, что мультислои Fe/Cr послужили первым примером магнитных структур с осциллирующим по знаку эффективным обменным потенциалом $J_1(L)$ между ФМ-слоями, разделенными АФМ-прослойкой, зависящим от толщины L последней. Потенциал $J_1(L)$ сложным образом зависит от геометрии структуры (толщины, направления роста), топологии поверхности Ферми в прослойке хрома, а также от качества поверхности раздела Fe/Cr. Зависимость $J_1(L)$ содержит «быструю» и «медленную» осциллирующие с толщиной L составляющие, связанные с различными типами электронных и дырочных участков поверхности Ферми хрома; имеет также место нарушение периодичности («проскальзывание фазы») обменного потенциала, обусловленное особым типом магнитного порядка — волной спиновой плотности (ВСП) в хроме. В различных экспериментах, наряду с параллельной или антипараллельной ориентацией магнитных моментов соседних слоев железа, наблюдалась, причем в состоянии термодинамического равновесия и в отсутствие внешнего магнитного поля, также ориентация этих моментов с отличным от 0 или π углом $\psi(L)$ друг относительно друга. В дальнейшем будем использовать термины «коллинеарное состояние» для ситуации

^{*}E-mail: vvtugushev@mail.ru, sasha@mics.msu.su

с $\psi = (0, \pi)$, а «неколлинеарное состояние» — для $\psi \neq (0, \pi)$, не вкладывая в них никакого более глубокого смысла.

Все существующие теоретические схемы (см. [3]) дают более или менее правдоподобное описание зависимости потенциала $J_1(L)$ от толщины прослойки в структурах с идеально гладкой поверхностью раздела Fe/Cr и предсказывают в этом случае выгодность коллиненарного состояния по сравнению с неколлинеарным. Появление последнего принято связывать с дефектами поверхности раздела Fe/Cr, а именно с шероховатостью (roughness, coгласно [1,2]). Рассмотрение эффективного обмена в случае шероховатой, т.е. неидеально гладкой поверхности раздела Fe/Cr является, однако, крайне сложной задачей с большим числом неизвестных параметров. Дело в том, что на микроскопическом уровне шероховатость связана с наличием моноатомных ступенек, взаимной диффузией компонентов и с другими технологическими неоднородностями реальной поверхности раздела, формирующейся в процессе роста наноструктуры. Это ведет, в свою очередь, к фрустрациям обменных связей Fe и Cr, а также к формированию магнитных доменных стенок по обе стороны от поверхности Fe/Cr. Как оказалось, указанные отклонения от идеальной гладкости поверхности инициируют очень серьезные изменения в макроскопических магнитных свойствах мультислоев и, в частности, могут обусловливать возникновение неколлинеарных состояний [4-6].

Чтобы описать этот эффект, был предложен ряд интересных феноменологических моделей, из которых наиболее удачной оказалась схема биквадратичного обмена [7], которая, судя по всему, наиболее близка к правильной интерпретации экспериментальных результатов в мультислоях Fe/Cr. Данная схема напрямую связывает формирование неколлинеарного упорядочения моментов железа с наличием чередующихся моноступенек и террас на поверхности раздела Fe/Cr, приводящих, с одной стороны, к значительному подавлению коротковолновой составляющей обычного (билинейного) обмена, т. е. потенциала $J_1(L)$, уже упомянутого выше, а с другой стороны, - к специфическому дополнительному (биквадратичному) обменному потенциалу $J_2(L)$, обусловленному частичным нарушением жесткой связи спинов Fe и Cr вблизи моноступенек (см. обсуждение в обзоре [3]).

Микроскопическое обоснование схемы биквадратичного обмена до сих пор не получено, что связано, в первую очередь, с отсутствием адекватного описания сложного воздействия поверхности раздела Fe/Cr на антиферромагнитное упорядочение с ВСП в прослойке хрома, через которую осуществляется связь между слоями железа. Несамосогласованные подходы типа [8] не способны даже качественно объяснить магнитную фазовую диаграмму мультислоев Fe/Cr, не говоря уже о тонких деталях распределения спиновой плотности внутри прослойки, так что решать в рамках этих подходов деликатный вопрос о влиянии несовершенства поверхности раздела на выгодность или невыгодность коллинеарного упорядочения по сравнению с неколлинеарным достаточно бессмысленно.

Недавно предложенная нами модель самосогласованного описания распределения спиновой плотности в мультислоях Fe/Cr [9,10] была использована для анализа коллинеарных состояний и позволила объяснить в терминах ближнего порядка и локального фазового перехода в состояние с ВСП ключевые особенности фазовой диаграммы мультислоев Fe/Cr в переменных температура-толщина прослойки. В настоящей работе мы обобщим указанную модель для рассмотрения неколлинеарных состояний. Будет выяснена микроскопическая причина предпочтительности неколлинеарного состояния перед коллинеарным при наличии моноступенек и террас на поверхности раздела Fe/Cr, связанная с перестройкой ВСП в приповерхностном слое хрома и образованием своеобразной доменной стенки (поворотом фазы ВСП) вблизи моноступеньки на поверхности раздела Fe/Cr. Будет дано микроскопическое обоснование модели биквадратичного обмена и выяснены ограничения ее применимости по толщине прослойки, температуре и степени шероховатости поверхности раздела.

2. МОДЕЛЬ И ПОСТАНОВКА ЗАДАЧИ

Как и ранее в работах [9,10], будем рассматривать модель трехслойной наноструктуры, состоящей из двух ферромагнитных обкладок (Fe), разделенных антиферромагнитной прослойкой (Cr). Технологические границы раздела Fe/Cr считаем находящимися в плоскости ($\mathbf{n}_y, \mathbf{n}_z$), ортогональной направлению роста структуры \mathbf{n}_x вдоль одной из кубических осей [100] (здесь и далее $\mathbf{n}_x, \mathbf{n}_y, \mathbf{n}_z$ — базисные единичные орты). Исследуется область температур T, соответствующих ближнему антиферромагнитному порядку в прослойке хрома, т.е. $T_N < T \ll T_C$, где T_N — температура Нееля в прослойке хрома, T_C температура Кюри в обкладках железа. Толщина ферромагнитных слоев предполагается достаточно большой, так что при $T \ll T_C$ намагниченность **S** внутри ферромагнитных обкладок можно считать однородной и не зависящей от *T* величиной. В то же время толщина антиферромагнитного слоя *L* варьируется в достаточно широких пределах ($L > 2\xi_0$, где ξ_0 — длина когерентности, составляющая порядка десяти монослоев хрома, и в рассматриваемом диапазоне температур намагниченность подрешетки σ внутри антиферромагнитной прослойки может быть весьма неоднородной и сильно зависящей от *T* величиной).

Размеры слоев в направлениях \mathbf{n}_y и \mathbf{n}_z предполагаем намного большими толщины L, так что для случая идеально гладких поверхностей раздела можно использовать упрощенную одномерную модель, в которой величина $\sigma(x)$ зависит лишь от одной пространственной координаты. При наличии протяженных дефектов на поверхности раздела (типа моноступенек, разделяющих плоские террасы) величина ${\pmb \sigma}$ зависит и от координат y,z — в этом случае одномерную модель можно использовать для приближенного описания фрагмента наноструктуры вдали от моноступеньки. Более строгий критерий применимости одномерной модели и роль неоднородности в распределении $\boldsymbol{\sigma}(x,y,z)$ внутри прослойки будут обсуждены в последней части работы, а пока примем эту модель за основу дальнейшего исследования. Далее ограничимся случаем поперечно поляризованной ВСП, когда $\boldsymbol{\sigma}(x) \perp \mathbf{n}_x$ (именно этот случай обсуждается наиболее часто, но подробный анализ причин такой ситуации увел бы нас слишком далеко за рамки данной работы).

Введем имеющий размерность энергии параметр порядка, описывающий огибающую ВСП, $\Delta(x) = U\sigma(x)$, где U — эффективный потенциал, явный вид которого здесь не обсуждается (см., например, обзор [11]). Для поперечно поляризованной одномерной ВСП имеет место соотношение

$$\mathbf{\Delta}(x) = \mathbf{n}_y \Delta_y(x) + \mathbf{n}_z \Delta_z(x), \quad \mathbf{\Delta}(x) \perp \mathbf{n}_x, \qquad (1)$$

где $|x| \leq l, l$ — полуширина прослойки (L = 2l). Предполагая, что $\Delta(x)$ — малая $(|\Delta| \ll \pi T)$ и медленно меняющаяся в пространстве $(|\partial \Delta/\partial x| \ll \pi T/\xi_0)$ величина, запишем термодинамический потенциал $F[\Delta]$ рассматриваемого антиферромагнитного слоя в виде разложения Гинзбурга–Ландау по степеням $\Delta(x)$ и $\partial \Delta(x)/\partial x$. Подробное обоснование такого подхода к решаемой задаче было изложено в [9, 10], поэтому приведем здесь выражение для $F[\Delta]$ без особых комментариев:

$$F = F_V + F_S, \tag{2}$$

$$F_V = \frac{1}{2} \int_{-l}^{l} f_V dx, \qquad (3)$$

$$f_V = c_1 \mathbf{\Delta}^2 + c_2 v_F^2 \mathbf{\Delta}'^2 + c_2 \mathbf{\Delta}^4, \qquad (4)$$

$$F_{S} = \frac{\nu}{4} \left(\boldsymbol{\Delta}^{2}(l) + \boldsymbol{\Delta}^{2}(-l) \right) + \frac{1}{2} \left(\mathbf{A}(l) \boldsymbol{\Delta}(l) + (-1)^{N+1} \mathbf{A}(-l) \boldsymbol{\Delta}(-l) \right).$$
(5)

Величины F_V и F_S имеют смысл объемной и поверхностной частей полного термодинамического потенциала. Коэффициенты c_1, c_2, ν и A приведены в [9,10] и рассчитаны ранее (см., например, [11]), v_F — фермиевская скорость электронов плоских участков поверхности Ферми хрома, ответственных за формирование ВСП, N — число монослоев хрома в прослойке. Всюду далее $c_1, c_2 > 0, \nu < 0$, вектор $\mathbf{A}(\pm l)$ пропорционален намагниченности $\mathbf{S}(\pm l)$ в соответствующей ферромагнитной обкладке.

Разложение (3), (4) справедливо, строго говоря, почти во всей области |x| < l за исключением участков антиферромагнитной прослойки размером порядка ξ_0 вблизи границ раздела, где локальное приближение (2) в функционале F некорректно. Тонкие детали зарядового и спинового перераспределений на таких масштабах нас не интересуют, и они могут считаться уже учтенными в коэффициентах ν и **A**. Линейное по **A** (обменное) слагаемое в (5) прямо связано с обменным взаимодействием между спинами ферромагнитных обкладок и антиферромагнитной прослойки. Квадратичное по Δ (кулоновское) слагаемое в (5) обусловлено перетеканием заряда между слоями различных металлов и появлением в силу этого контактной разности потенциалов между ферромагнитными и антиферромагнитными слоями. Согласно [9,10], кулоновское слагаемое доминирует над обменным в широкой области температур, $T > T_N$, и определяет характерную температуру формирования ближнего антиферромагнитного порядка T_0 , причем ВСП индуцируется из-за увеличения электронной поляризуемости в прослойке вблизи границы ФМ/АФМ. В то же время обменное слагаемое определяет детали пространственной зависимости ВСП и ее ориентацию по отношению к намагниченности $\mathbf{S}(\pm l)$ в ферромагнитных обкладках. Роль данного слагаемого может стать весьма важной в непосредственной близости к точке T_0 , когда величина $\Delta(x)$ резко уменьшается, а ВСП индуцируется в значительной степени из-за перераспределения спиновой плотности в прослойке под влиянием

обменного поля ферромагнитной обкладки. В системе Fe/Cr величины критических температур составляют $T_0 \approx 550$ -600 K, $T_N \approx 311$ K, $T_C \approx 1040$ K ($T_N < T_0 < T_C$); будем считать толщину прослойки L > 25-30 Å.

Формальная постановка задачи состоит в следующем. Ранее в работах [9,10] исследовались термодинамически равновесные состояния функционала (2) только при условии $\mathbf{A}(l) = \pm \mathbf{A}(-l)$, т.е. при коллинеарной ориентации моментов железа. Только одна компонента (Δ_y или Δ_z) векторной функции $\Delta(x)$ предполагалась при этом отличной от нуля и рассчитывалась оптимальная по энергии конфигурация ВСП при заданной (параллельной или антипараллельной) взаимной ориентации векторов $\mathbf{A}(\pm l)$ и фиксированном числе монослоев N (четном или нечетном) в прослойке. Ниже мы анализируем более общую (и, как выяснится, гораздо более сложную для расчета) ситуацию, когда векторы $\mathbf{A}(\pm l)$ взаимно ориентированы под произвольным углом $\psi(0 < \psi < \pi)$, т.е. неколлинеарно. Угол ψ , таким образом, считается на первом этапе рассмотрения заданным внешним параметром, как и число монослоев N, а оптимизация функционала $F[\mathbf{\Delta}]$ (2) проводится путем его условного варьирования по двухкомпонентному ($\Delta_u, \Delta_z \neq 0$) векторному параметру порядка (1). На втором этапе рассмотрения при найденном решении $\Delta(x)$ рассчитывается выражение для $F(\psi, N)$ и определяется наиболее выгодная по энергии конфигурация для намагниченностей $\mathbf{S}(\pm l)$ в слоях железа. Наконец, выясняются границы применимости развитого подхода, удобного, как оказывается, для достаточно грубого моделирования влияния шероховатости поверхности раздела на формирование ВСП в случае очень редких моноступенек, широких террас и не слишком малой толщины прослойки в описываемых системах.

3. СТРУКТУРА БЛИЖНЕГО АНТИФЕРРОМАГНИТНОГО ПОРЯДКА С НЕКОЛЛИНЕАРНОЙ ВОЛНОЙ СПИНОВОЙ ПЛОТНОСТИ

Варьируя функционал $F[\Delta]$ (2) по параметру порядка $\Delta(x)$, получим уравнение самосогласования

$$v_F^2 c_2 \mathbf{\Delta}'' - c_1 \mathbf{\Delta} - 2c_2 \mathbf{\Delta}^3 = 0 \tag{6}$$

с граничными условиями

$$\mathbf{\Delta}'(\pm l) \mp \frac{1}{D} \mathbf{\Delta}(\pm l) + (\pm 1)^N \frac{\mathbf{A}(\pm l)}{2c_2 v_F^2} = 0.$$
(7)

Параметр $D = 2c_2 v_F^2 / |\nu|$ (пространственный масштаб, связанный с перераспределением зарядовой

плотности вблизи границы раздела и получивший название «интерполяционной длины») в рассматриваемой модели слабо зависит от температуры. Вектор **A**(±*l*) задается в виде

$$A_x(\pm l) = 0, \quad A_y(\pm l) = \pm A \sin(\psi/2),$$

$$A_z(\mp l) = A \cos(\psi/2),$$
(8)

где A > 0, что соответствует антиферромагнитному обмену на границе раздела Fe/Cr, ψ — угол между направлениями намагниченностей в ферромагнитных обкладках. Ранее рассматривались только ситуации с $\psi = 0, \pi$, когда лишь одна из компонент вектора $\Delta(x)$ отлична от нуля (Δ_y или Δ_z), и удалось найти точные решения задачи (6), (7) [9, 10]. Эти решения классифицируются на симметричное $\Delta_+(x)$ и два антисимметричных $\Delta_-^{(1,2)}(x)$ относительно замены $x \to -x$ решения, которые имеют свои определенные области существования на фазовой диаграмме (T, L).

Обратимся к векторным решениям задачи (6), (7), заданным в форме (1). В случае нечетного числа монослоев N (при четном N, как легко показать непосредственно из формул (5), (7), (8), все расчеты аналогичны с точностью до замены $\psi \to \psi - \pi$, $\Delta_z \to \Delta_y$ и $\Delta_y \to -\Delta_z$) зададим для $\mathbf{\Delta}(x)$ форму квазигеликоида:

$$\Delta_z(x) = \Delta(x) \cos \Theta(x),$$

$$\Delta_y(x) = \Delta(x) \sin \Theta(x),$$
(9)

где $\Delta(x) > 0$ — модуль, а $\Theta(x)$ — фаза параметра порядка, принимающая в выбранной здесь системе отсчета углов значения $\Theta(\pm l) = \pi \pm \varphi/2$ на границах прослойки. Угол $\varphi = \Theta(+l) - \Theta(-l)$ характеризует скашивание антиферромагнитной структуры в прослойке ($0 < \varphi < \pi$). При $\varphi = \psi$ получаем, таким образом, $\Theta(\pm l) = \pi \pm \psi/2$, что соответствует строго антипараллельной взаимной ориентации векторов σ и S на соответствующих границах Fe/Cr и минимуму поверхностной части термодинамического потенциала F_S при фиксированной амплитуде $\Delta(\pm l)$. Вопрос об оптимальном по полной энергии системы F соотношении между углами φ и ψ не имеет очевидного ответа. Дело в том, что изменения $\Delta(x)$ и $\Theta(x)$ жестко связаны между собой. Эта связь задается системой из двух нелинейных уравнений, получаемых подстановкой выражения (9) в соотношение (6):

$$v_F \frac{d\Theta}{dx} = \frac{B}{\Delta^2} \,, \tag{10}$$

$$\left(v_F \Delta \frac{d\Delta}{dx}\right)^2 = \Delta^6 + \frac{c_1}{c_2} \Delta^4 + C \Delta^2 - B^2, \qquad (11)$$

где C и B — действительные константы интегрирования, определяющие тип решения. Случай B = 0 отвечает скалярной антиферромагнитной структуре, когда $\Theta(x) = \text{const}$, и уравнению (11) удовлетворяют упомянутые выше функции $\Delta_+(x)$ и $\Delta_-^{(1,2)}(x)$ (см. [9,10]). Для векторной антиферромагнитной структуры, когда $B \neq 0$, уравнение (11) допускает при $c_1 > 0$ два различных, ограниченных по величине на отрезке $|x| \leq l$ решения, которые могут быть выражены через эллиптические функции Якоби [12]. В интересующей нас области температур, как показывает анализ, реализуется только одно из них, имеющее следующее пространственное распределение амплитуды и фазы:

$$\Delta(x) = \frac{v_F k'}{\xi} \left[\left(\frac{\lambda \xi}{l} \right)^2 \operatorname{nc}^2 \left(\frac{\lambda x}{l}, k \right) - \beta \right]^{1/2}, \quad (12)$$
$$\lambda = \frac{1}{\xi} \left[\frac{1 - 3\beta k'^2}{1 - 2k'^2} \right]^{1/2},$$

$$\Theta(x) = \frac{B}{v_F} \int_0^x \frac{dx}{\Delta^2(x)} + \pi, \qquad (13)$$

$$B^{2} = \left(\frac{v_{F}k'}{\xi}\right)^{6} \frac{(1+k^{2})(2-k^{2})}{(2k^{2}-1)^{2}}\beta(\beta-\beta_{+})(\beta-\beta_{-}),$$

$$\beta_{+} = \frac{1}{2-k^{2}}, \quad \beta_{-} = \frac{k^{2}}{k'^{2}} \frac{1}{1+k^{2}}.$$

Здесь k — модуль эллиптической функции, $k' = \sqrt{1-k^2}$ — дополнительный модуль, $0 \le k \le 1$. Область допустимых значений параметра β ограничена условиями $\beta \ge \beta_+$ при $k^2 \le 1/2$ либо $\beta_+ \ge \beta \ge 0$ при $k^2 \ge 1/2$, которые связаны с характерными длинами системы и с разностным углом $\psi - \varphi$ через граничные условия (7). Как следует из (7), $B \propto A \sin[(\psi - \varphi)/2]$, т. е. в отсутствие обменной связи на границе раздела (A = 0) возможно только состояние с линейно поляризованной ВСП. При $A \ne 0$ возникновение состояния с векторным параметром порядка типа (9) обязательно должно сопровождаться фрустрацией обменных связей на границах раздела, иначе говоря $\psi - \varphi \ne 0$.

Ограничения (7) для найденного решения (12), (13) могут быть представлены в виде

$$P = \frac{B}{v_F} \operatorname{ctg}\left(\frac{\psi - \varphi}{2}\right),\tag{14}$$

$$P^{2} + \left(\frac{B}{v_{F}}\right)^{2} = \left(\frac{A\lambda k'}{2c_{2}v_{F}l}\right)^{2} \times \left[\operatorname{nc}^{2}(\lambda, k) - \beta\left(\frac{1}{\lambda\xi}\right)^{2}\right], \quad (15)$$

где

$$P = \left(\frac{v_F \lambda k'}{l}\right)^2 \left(\frac{\lambda}{l} \frac{\operatorname{sn}(\lambda, k) \operatorname{dn}(\lambda, k)}{\operatorname{cn}^3(\lambda, k)} - \frac{1}{D} \left[\operatorname{nc}^2(\lambda, k) - \beta \left(\frac{1}{\lambda\xi}\right)^2\right]\right). \quad (16)$$

Эти выражения совместно с соотношением (13) при $x = \pm l$ определяют параметры (k, β, φ) векторной структуры $\Delta(x)$. К сожалению, во всем диапазоне параметров анализ формул (14)–(16) возможен лишь численными методами, однако в ряде важных предельных случаев его удается провести аналитически. Так, вблизи температуры $T_0(l)$, определяющей верхнюю границу существования ближнего порядка с ВСП, индуцированной перетеканием заряда, параметр $k'^2 \ll 1$ [9,10].

Считая величину k' столь малой, что $(k' \exp(l/\xi))^2 \ll 1$, ашроксимируем эллиптические функции в (12), (13) гиперболическими [12], в результате чего соотношения (12)–(15) сильно упрощаются, и можно записать

$$\Delta(x) = \frac{v_F k'}{\xi} \left[\operatorname{ch}^2 \left(\frac{x}{\xi} \right) - \beta \right]^{1/2}, \qquad (17)$$

$$\operatorname{tg}\Theta(x) = \sqrt{\frac{\beta}{1-\beta}} \operatorname{th}\left(\frac{x}{\xi}\right).$$
 (18)

Полагая в равенстве (18) $x = \pm l$, находим связь параметра β с углом φ :

$$\frac{1}{\beta} = 1 + \text{th}^2\left(\frac{1}{\xi}\right)\text{ctg}^2\left(\frac{\varphi}{2}\right).$$
(19)

Уравнение (14) в предел
е $k'^2 \ll 1$ дает связь между углами φ и $\psi:$

$$\operatorname{tg}\left(\frac{\varphi}{2}\right) = \operatorname{tg}\left(\frac{\psi}{2}\right) \frac{\operatorname{th}(l/\xi) - \xi/D}{\operatorname{cth}(l/\xi) - \xi/D}.$$
 (20)

Заметим, что условие $\xi/D = \operatorname{th}(l/\xi)$ обращения правой части (20) в нуль определяет температуру $T_0(l)$, выше которой существует лишь решение с малой амплитудой $\Delta(x)$, индуцированное слабым обменным полем $\mathbf{A}(\pm l)$ на границе раздела. Из уравнения (15) путем его упрощения при $T > T_0$ получаем в явном виде значение параметра k':

$$k'^{2} = \frac{\left(\frac{A\xi^{2}}{2c_{2}v_{F}^{3}}\right)^{2} \left[\operatorname{ch}^{2}\left(\frac{l}{\xi}\right) - \beta\right]}{\left(\operatorname{th}\left(\frac{l}{\xi}\right)\operatorname{ch}^{2}\left(\frac{l}{\xi}\right) - \frac{\xi}{D} \left[\operatorname{ch}^{2}\left(\frac{l}{\xi}\right) - \beta\right]\right)^{2} + \beta(1-\beta)}.$$
(21)

Любопытно проследить, как в соотношениях (19)–(21) осуществляется переход к коллинеарным решениям. Если $\psi \to 0$, то $\varphi \to 0$, $\beta \to 0$ и $\Delta(x) \propto \operatorname{ch}(x/\xi)$; если $\psi \to \pi$, то $\varphi \to \pi$, $\beta \to 1$ и $\Delta(x) \propto \operatorname{sh}(x/\xi)$. Амплитуды $\Delta(l)$ для значений $\psi = 0$ и $\psi = \pi$ совпадают с экспоненциальной точностью при условии $l \gg \xi$:

$$\frac{\Delta(l,\psi=\pi)}{\Delta(l,\psi=0)} - 1 \propto \exp\left(-\frac{2l}{\xi}\right)$$
(22)

и сильно различаются при $l\ll\xi$:

$$\frac{\Delta(l,\psi=\pi)}{\Delta(l,\psi=0)} \propto \left(\frac{l}{\xi}\right)^2.$$
(23)

Оценка области применимости используемой нами аппроксимации малой амплитуды ВСП при решении задачи выше температуры $T_0(l)$ дает

$$\left(\frac{A\xi^2}{2c_2v_F^3}\right)^2 \ll \left(\operatorname{th}\left(\frac{l}{\xi}\right) - \frac{\xi}{D}\right)^2.$$
(24)

Дальнейшее приближение к точке $T_0(l)$ требует учета высших по k'^2 слагаемых в разложениях эллиптических функций в формулах (12)–(16), что привело бы к чрезвычайно громоздким вычислениям, невозможным в рамках данной работы.

Обратимся к области температур $T < T_0(l)$, в которой существует решение с амплитудой волны спиновой плотности $\Delta(x)$, индуцированное перетеканием заряда вблизи границы раздела даже в отсутствие на ней обменного взаимодействия, т.е. при A = 0. В качестве «нулевого» приближения по обменному потенциалу естественно использовать линейно поляризованное вдоль оси **n**_z симметричное по x решение $\Delta_0(x) = \mathbf{n}_z \Delta_+(x)$ как энергетически наиболее выгодное во всем диапазоне параметров модели при A = 0 [9,10]. Оно легко получается из формул (12), (14), (15) при $A = \beta = \varphi = 0$, а остающийся при этом единственный неизвестный параметр k' определяется нетривиальным решением уравнения (16) при $P = \beta = 0$. Обозначив этот параметр как $k' = k'_0$ $(k = k_0)$, найдем первую неисчезающую поправку к $\Delta_0(x)$, появляющуюся в меру $A \neq 0$. Как следует из формул (12)–(15), угол φ связан с параметром β следующим образом:

$$\varphi = \frac{2\sqrt{\beta}}{k_0} \frac{l}{\xi} \left(\frac{E(\lambda_0, k_0)}{\lambda_0} - {k'_0}^2 \right), \qquad (25)$$

$$\sqrt{\beta} = \frac{A\xi^2}{2c_2 v_F^3} \frac{\sqrt{1 - 2k_0'^2}}{k_0 k_0'} \operatorname{nc}(\lambda_0, k_0) \sin\left(\frac{\psi}{2}\right), \quad (26)$$

где $E(\lambda, k)$ — неполный эллиптический интеграл второго рода, аргумент $\lambda_0 = \lambda(\beta = 0, k = k_0)$. Изменение параметра k дается выражением

$$\frac{d}{d(k^2)} \left(\lambda \operatorname{sn}(\lambda, k) \operatorname{dc}(\lambda, k)\right)|_{k=k_0, \beta=0} (k^2 - k_0^2) = \\ = \frac{A\xi l}{2c_2 v_F^3} \frac{\sqrt{1-2k_0^2}}{k_0'} \operatorname{cn}(\lambda_0, k_0) \cos\frac{\psi}{2}. \quad (27)$$

В случае тонкой прослойки $(l \ll D, \lambda_0^2 \ll 1)$ эти соотношения заметно упрощаются:

$$\varphi = 2k_0 l \sqrt{\beta} / \xi, \qquad (28)$$

$$\sqrt{\beta} = \frac{A\xi^2}{2c_2 v_F^3} \frac{\sqrt{1 - 2k_0'^2}}{k_0 k_0'} \sin\left(\frac{\psi}{2}\right), \qquad (29)$$

$$k'^{2} - k'_{0}{}^{2} = \frac{AlD^{2}}{4c_{2}v_{F}^{3}\xi} \frac{\sqrt{1 - 2k'_{0}{}^{2}}}{k'_{0}} \cos\left(\frac{\psi}{2}\right), \qquad (30)$$

где

$$k_0'^2 = \frac{1}{2} \left(1 - \frac{lD}{\xi^2} \right).$$

Отсюда вытекает ограничение для области применимости нашего подхода при $T < T_0(l)$ и $l \ll D$:

$$\left(\frac{A\xi^2}{c^2 v_F^3}\right)^2 \ll 1 - \frac{lD}{\xi^2}.$$
(31)

Более сложная процедура разложения по малому параметру $\exp(-2l/\xi)$ приводит к соответствующим формулам в случае толстой прослойки:

$$\varphi = 2\sqrt{\beta} \,, \tag{32}$$

$$\sqrt{\beta} = \frac{A\xi^2}{2c_2 v_F^3} \frac{\sqrt{\xi^2 - D^2}}{Dk_0'^2} \sin\left(\frac{\psi}{2}\right), \qquad (33)$$

$$k^{\prime 2} - k_0^{\prime 2} = \frac{AD^2}{2c_2 v_F^3} \left[1 + \frac{\xi}{4D} \left(\frac{3l}{\xi} + 1 \right) \times \left(1 - \left(\frac{D}{\xi} \right)^2 \right) - \frac{1}{4} \frac{1 + (D/\xi)^2}{1 - (D/\xi)^2} \right]^{-1} \times \frac{\cos(\psi/2)}{\sqrt{1 - (D/\xi)^2}} , \quad (34)$$

где

$$k_0'^2 = 16 \exp\left(-\frac{2l}{\xi}\right) \frac{\xi - D}{\xi + D}.$$

Формулы (32)-(34) справедливы, пока

$$\frac{A\xi^2}{c_2 v_F^3} \ll \exp\left(-\frac{2l}{\xi}\right)$$

Таким образом, мы показали, как через ряд параметров ($\varphi, \sqrt{\beta}, k^2 - k_0^2$) ~ A описать слабую деформацию параметра порядка $\delta(x) = \Delta(x) - \Delta_0(x)$, возникающую из-за взаимодействия на границе раздела ВСП с моментами обкладок.

4. ЭНЕРГИЯ АНТИФЕРРОМАГНИТНОГО УПОРЯДОЧЕНИЯ С НЕКОЛЛИНЕАРНОЙ ВОЛНОЙ СПИНОВОЙ ПЛОТНОСТИ

Подставив в формулы (2)–(5) функцию $\Delta(x)$, отвечающую экстремуму термодинамического потенциала, получим для энергии неколлинеарного состояния (11)–(13) следующее выражение:

$$F(\psi) = F_V(\psi) + F_S(\psi), \qquad (35)$$

$$F_{V}(\psi) = \frac{c_{2}v_{F}^{4}l}{3\xi^{4}(1-2k'^{2})^{2}} \left[k'^{2}(1-3k'^{2}) + 3\beta k'^{4} \times \left(2k'^{2}-\beta(1-k'^{2}+k'^{4})\right) + \frac{2(1-3\beta k'^{2})}{\lambda} \left((2k'^{2}-1) \times \left(E(\lambda,k) - \frac{\operatorname{sn}(\lambda,k)\operatorname{dn}(\lambda,k)}{\operatorname{cn}(\lambda,k)}\right) + k'^{2}(1-3\beta k'^{2})\frac{\operatorname{sn}(\lambda,k)\operatorname{dn}(\lambda,k)}{\operatorname{cn}^{3}(\lambda,k)}\right)\right], \quad (36)$$

$$F_{S}(\psi) = -\frac{c_{2}v_{F}^{4}\lambda^{2}k'^{2}}{Dl^{2}}\left(\operatorname{nc}^{2}(\lambda,k) - \beta\left(\frac{l}{\lambda\xi}\right)^{2}\right) - \frac{A\lambda v_{F}k'}{l}\left(\operatorname{nc}^{2}(\lambda,k) - \beta\left(\frac{l}{\lambda\xi}\right)^{2}\right)^{1/2} \times \cos\left(\frac{\psi-\varphi}{2}\right), \quad (37)$$

справедливое при нечетном числе N монослоев хрома. Параметры (k, β, φ) связаны соотношениями (12) и (14)–(16) с характеристиками наноструктуры (l, D, ξ, A) , а также с углом ψ . Зависимость $F(\psi)$, интересующая нас в наибольшей степени, не может быть выписана в явном виде при произвольных значениях (l, D, ψ, A) , поэтому остановимся лишь на некоторых предельных случаях.

ЖЭТФ, том **122**, вып. 5 (11), 2002

При высокой температуре, $T > T_0(l)$, в области применимости приближения малой амплитуды ВСП (24) проведем разложение по малому параметру $(k' \exp(l/\xi))^2 \ll 1$ в формулах (36), (37), а затем используем связи (19)–(21). После громоздких вычислений получим при нечетном N

$$F(\psi) = F_0 + F_1 \cos \psi + F_2 \cos^2 \psi,$$
 (38)

где в интересующих нас низших по параметру A приближениях $(F_0, F_1) \sim A^2$, $F_2 \sim A^4$, причем $(F_0, F_1) < 0, F_2 > 0$. Необходимость удержания членов порядка A^4 будет ясна чуть ниже. Коэффициенты F_0, F_1, F_2 — сложные функции от длин (l, D, ξ) , которые в общем виде мы здесь не выписываем. Для тонких прослоек, $l \ll \xi$, можно получить

$$F_{0} = F_{1} = -\frac{A^{2}\xi^{2}}{8c_{2}v_{F}^{2}l}\frac{1}{1-\xi^{2}/lD},$$

$$F_{2} = \frac{A^{4}\xi^{8}}{64l^{3}c_{2}^{3}v_{F}^{8}(1-\xi^{2}/lD)^{4}},$$
(39)

а для случая толстых прослоек, $l \gg \xi$, имеем

$$F_{0} = -\frac{A^{2}\xi}{4c_{2}v_{F}^{2}} \frac{1}{1-\xi/D},$$

$$F_{1} = \frac{2F_{0} \exp(-2l/\xi)}{1-\xi/D},$$

$$F_{2} = \frac{A^{4}\xi^{5}}{16c_{2}^{3}v_{F}^{8}} \frac{(1+\xi/D)(5-3\xi/D)}{(1-\xi/D)^{6}} \exp\left(-\frac{4l}{\xi}\right).$$
(40)

Как следует из равенств (38)–(40), эффективный потенциал взаимодействия магнитных моментов $J(\psi) = F(\psi) - F_0$ при $T > T_0(l)$ является величиной второго порядка по A (так как $\Delta(x) \sim k' \sim A$, см. (17), (21)), сильно возрастающей в пределе $T \rightarrow T_0(l)$. Заметим также, что принципиально важное (как будет ясно из дальнейшего) слагаемое порядка $\cos^2 \psi$ в формуле (38) появляется в меру A^4 и всегда положительно. Разумеется, при использовании формул (39) и (40) следует помнить об условиях применимости использованных приближений (см. соотношение (24)), т. е.

$$\frac{A\xi^3}{2c_2v_F^3l} \ll 1 - \frac{\xi^2}{lD} \tag{41}$$

для тонких прослоек и

$$\frac{A\xi^2}{2c_2v_F^3l} \ll 1 - \frac{\xi}{lD} \tag{42}$$

для толстых прослоек. Таким образом, выражение (38) имеет вид эффективной энергии в модели биквадратичного обмена (см. Введение), в которой отношение билинейной и биквадратичной компонент $|F_1/F_2| \gg 1$.

Обратимся теперь к температурной области ниже точки $T_0(l)$, где также можно в ряде случаев получить явное выражение для $F(\psi)$. Так, при выполнении условия (31), воспользовавшись соотношениями (28)–(30), получим в интересующем нас низшем по A приближении следующее выражение для энергии $F(\psi)$ при нечетном N:

$$F(\psi) = F_0 + F_{1/2} \cos\left(\frac{\psi}{2}\right).$$
 (43)

Величины $(F_0, F_{1/2}) < 0$, причем F_0 не зависит от A, но $F_{1/2} \sim A$. Для тонкой прослойки $(l \ll \xi)$ можем записать

$$F_{0} = -\frac{c_{2}v_{F}^{4}l}{4\xi^{4}} \left(1 - \frac{\xi^{2}}{lD}\right)^{2},$$

$$F_{1/2} = -Av_{F} \left(\frac{1 - lD/\xi^{2}}{2lD}\right)^{1/2},$$
(44)

в то время как для толстой прослойки $(l \gg \xi)$ имеем

$$F_0 = -\frac{c_2 v_F^4}{D^3}, \quad F_{1/2} = -\frac{A v_F}{D} \left(1 - \left(\frac{D}{\xi}\right)^2 \right)^{1/2}.$$
(45)

В соотношении (43) не выписаны слагаемые порядка A^2 и более высоких порядков по A (заметим, в частности, что к таковым относятся слагаемые типа $F_1 \cos \psi$, $F_2 \cos^2 \psi$ фигурирующие в формуле (38) для области $T > T_0(l)$, где $F_1 \sim A^2$, $F_2 \sim A^4$), поскольку их вычисление является весьма трудоемким, а наиболее важную роль ниже точки $T_0(l)$ играют члены разложения (43), пропорциональные F_0 и $F_{1/2}$. Соотношения (38) и (43) принципиально отличаются друг от друга присутствием в последнем линейного по А слагаемого (вообще говоря, присутствием нечетных по А степеней разложения), вследствие чего угловые зависимости $F(\psi)$ (38) и (43) имеют совершенно различный характер. Более того, зависимость (43) вообще не сводится к формуле для эффективной энергии в модели биквадратичного обмена, в отличие от (38).

Поясним физический смысл отмеченного различия. При $T > T_0(l)$ ближний антиферромагнитный порядок в прослойке хрома возникает только в меру его обменного индуцирования ферромагнитными моментами железа, а амплитуда ВСП $\Delta(x) \sim A$, следовательно, обменный вклад в энергию начинается с квадратичных по A слагаемых. При условии $T < T_0(l)$ ближний антиферромагнитный порядок в прослойке хрома уже в нулевом порядке по A индуцируется перераспределением зарядовой плотности вблизи поверхности раздела Fe/Cr и возникшая

Неколлинеарные магнитные состояния ...

таким образом ВСП ориентируется в обменном поле, создаваемом ферромагнитными моментами железных обкладок, так что обменный вклад в энергию $F(\psi)$ начинается с линейных по A слагаемых. Формулы (38) и (43) отражают, таким образом, различные аспекты обменного взаимодействия на границе раздела Fe/Cr — индуцирование и ориентацию ВСП соответственно выше и ниже температуры формирования ближнего антиферромагнитного порядка $T_0(l)$.

В заключение этого раздела отметим, что для случая четного числа N монослоев в прослойке хрома следует провести в формулах (38) и (43) замену $\psi \to \psi - \pi$, при этом, очевидно, $\cos \psi \to -\cos \psi$ в формуле (38) и $\cos(\psi/2) \to \sin(\psi/2)$ в формуле (43). Следовательно, значение энергии $F(\psi)$ резко меняется при малом (на один монослой) изменении толщины прослойки хрома, что является важной особенностью рассматриваемой системы.

Исходя из формул (38) и (43), можно однозначно заключить, что абсолютному минимуму $F(\psi)$ соответствует значение $\psi = 0$ в случае нечетного N и $\psi = \pi$ в случае четного N. Если угол ψ не задан каким-либо внешним образом, например, магнитным полем, а определяется самосогласованно, то в условиях термодинамического равновесия и при идеально гладких поверхностях раздела, когда число монослоев N одинаково в любом поперечном сечении прослойки, реализуются только коллинеарные состояния, соответствующие либо ферромагнитной, либо антиферромагнитной ориентации моментов Fe в сосседних обкладках. Не столь простой, однако, обещает быть ситуация в структурах с неидеальными границами раздела.

5. ВЛИЯНИЕ ФЛУКТУАЦИЙ ТОЛЩИНЫ ПРОСЛОЙКИ НА ФОРМИРОВАНИЕ НЕКОЛЛИНЕАРНОГО СОСТОЯНИЯ

Задача о взаимодействии ВСП с неидеально гладкой (шероховатой) поверхностью раздела в мультислоях типа Fe/Cr, как уже отмечалось во Введении, чрезвычайно сложна из-за необходимости учета многих факторов, влияющих на это взаимодействие. С одной стороны, имеют место флуктуации зарядового и обменного потенциалов взаимодействия Fe и Cr вблизи границы раздела (как крупно-, так и мелкомасштабные), связанные с взаимной диффузией, фрустрацией межатомных связей и другими дефектами, возникающими в процессе роста структуры. С другой стороны, происходит деформация ВСП как в направлении \mathbf{n}_x роста структуры, так и вдоль поверхности раздела $(\mathbf{n}_u, \mathbf{n}_z)$. Таким образом, с формальной точки зрения исходную модель (2)-(5) необходимо усложнить по крайней мере в двух отношениях — во-первых, считать параметры $\nu(\mathbf{r})$ и $A(\mathbf{r})$ случайными функциями пространственной координаты $\mathbf{r} = (x, y, z)$ и, во-вторых, отказаться от одномерного приближения при расчете $\Delta(\mathbf{r})$. Решение трехмерного нелинейного уравнения самосогласования для параметра порядка $\Delta(\mathbf{r})$ при заданной конфигурации источников (*v*, *A*) с последующим усреднением по этим конфигурациям — дело очень сложное, если не безнадежное. Усреднение по мелкомасштабным (порядка межатомных расстояний) конфигурациям можно, в принципе, провести в рамках стандартной модели взаимодействия ВСП с точечными при-

месями [11], но учет влияния крупномасштабных флуктуаций представляет намного более серьезную проблему, которую в рамках данной работы мы уже не будем обсуждать. Помимо двух указанных выше, существует еще один, «геометрический», фактор, влияющий на взаимодействие ВСП с неидеально гладкой поверхностью раздела. Этот фактор связан с изменением (флуктуацией) толщины прослойки при наличии различных типов неоднородности на поверхности, разделяющей слои хрома и железа. Действительно, поверхностный вклад F_S в полную энергию структуры очень резко меняется при изменении толщины прослойки всего на один монослой, что уже является намеком на возможно важную роль обсуждаемого геометрического фактора. Сильная зависимость энергии $F(\psi, N)$ от четности или нечетности числа монослоев в прослойке наводит на мысль о возможности качественного учета этого эффекта в рамках сравнительно простой модели при анализе формирования неколлинеарной ВСП в структурах с почти идеально гладкой поверхностью раздела.

Рассмотрим поверхность с очень редкими моноступеньками, т.е. линейными дефектами, скачком меняющими число монослоев хрома в прослойке на единицу. Эти моноступеньки разделяют обширные идеально гладкие террасы, между которыми число монослоев в прослойке не меняется. Разобьем всю структуру на фрагменты, содержащие в поперечном к поверхности раздела сечении либо нечетное, либо четное число монослоев в прослойке. Обозначим символом Λ долю фрагментов с нечетным N и, соответственно, символом $(1 - \Lambda)$ — долю фрагментов с четным N; угол ψ между моментами железа на обкладках будем считать одинаковым для всех фраг ментов. Тогда в самом грубом приближении полную энергию системы можно записать просто как парциальную сумму энергий отдельных фрагментов:

$$\langle F(\psi) \rangle = \Lambda F(\psi) + (1 - \Lambda)F(\pi - \psi),$$
 (46)

где $F(\psi)$ дается выражениями (38) или (43). Очевидно, что при записи энергии в форме (46) мы полностью пренебрегли вкладом, связанным с деформацией ВСП в той области прослойки, которая прилегает к границе раздела вблизи моноступеньки. Это связано с естественным предположением, что вдали от моноступеньки величина и форма параметра порядка $\mathbf{\Delta}(\mathbf{r})$ должны мало отличаться от соответствующих характеристик в прослойке с идеально гладкими границами и теми же значениями N и ψ . Конечно, вблизи моноступеньки ВСП перестраивается (например, образуется доменная стенка) на характерной длине ξ_{\perp} вдоль поверхности раздела по направлениям $(\mathbf{n}_y, \mathbf{n}_z)$. Простейшие оценки показывают, что в модели линейного дефекта в системе с ВСП (см., например, [11]) $\xi_{\perp} \ll \xi$, и энергия доменной стенки мала по сравнению с учтенными в (46) вкладами террас при $\xi_{\perp} \ll l_{\perp}$, где l_{\perp} — характерная длина террасы в направлении \mathbf{n}_{y} или \mathbf{n}_{z} . Расчет энергии деформации ВСП связан, вообще говоря, с выходом за рамки одномерного приближения и требует специального исследования, лежащего за пределами данной работы.

Используя формулу (46), оценим влияние флуктуаций толщины прослойки на возможность появления термодинамически равновесного неколлинеарного состояния. При $T > T_0(l)$ выражение (46) переписывается в виде

$$\langle F(\psi) \rangle = F(\pi/2) + J_1 \cos \psi + J_2 \cos^2 \psi, \qquad (47)$$

где $J_1 = (2\Lambda - 1)F_1$, $J_2 = F_2 > 0$, $F(\pi/2) = F_0 < 0$ в соответствии с формулами (38)-(40). Эффективная энергия взаимодействия ферромагнитных обкладок $E = \langle F(\psi) \rangle - F(\pi/2)$ имеет вид, характерный для модели биквадратичного обмена (см. Введение), причем билинейный потенциал J₁ велик по сравнению с биквадратичным потенциалом J_2 ($|J_1| > 2J_2$) почти при всех значениях Λ в интервале $0 \leq \Lambda \leq 1$, кроме узкой области $|\Lambda - 1/2| \ll 1$, где допустимо соотношение $|J_1| \leq 2J_2$. В этих оценках мы использовали следующее из (38)-(40) неравенство $|F_1| \gg F_2$. Если $|J_1| > 2J_2$, то функция $\langle F(\psi) \rangle$ (47) достигает своего минимума либо при $\psi = 0$, либо при $\psi = \pi$; но при выполнении условия $|J_1| \leq 2J_2$ минимуму $\langle F(\psi) \rangle$ соответствует угол $\psi_0 = \arccos(-J_1/2J_2)$, отвечающий неколлинеарному состоянию. При $\Lambda = 1/2$ угол

 $\psi_0 = \pi/2$, т. е. моменты железа в соседних обкладках ориентируются взаимно ортогонально.

В области температур $T < T_0(l)$ выражение (46) принимает вид

$$\langle F(\psi) \rangle = F\left(\frac{\pi}{2}\right) + J_{+}\cos\left(\frac{\psi}{2}\right) + J_{-}\sin\left(\frac{\psi}{2}\right), \quad (48)$$

где $J_+ = \Lambda F_{1/2}, J_- = (1 - \Lambda)F_{1/2}, F(\pi/2) = F_0 < 0,$ $F_{1/2} < 0$ в согласии с формулами (43)–(45). Подчеркнем, что в формуле (48), как и ранее в (43), не приведены слагаемые типа $J_1 \cos \psi$ и $J_2 \cos^2 \psi$, которые всегда малы в используемом нами подходе. Угловая зависимость эффективной энергии обмена $E = \langle F(\psi) \rangle - F(\pi/2)$ принципиально отличается от ее аналога в модели биквадратичного обмена. Минимум достигается при значении угла $\psi_0 = 2 \arccos \left(\Lambda / \sqrt{\Lambda^2 + (1 - \Lambda^2)} \right)$, T. e. $\psi_0 \neq (0, \pi)$ при любых Λ , отличных от 0 и 1. Если же $\Lambda \to 1/2$, то $\psi_0 \to \pi/2$, как в модели биквадратичного обмена. Заметим, что величина ψ_0 зависит только от параметра Λ , характеризующего геометрическое совершенство поверхности раздела Fe/Cr, но не зависит от совокупности характеристик (l, ξ, D, A) . В этом смысле отличие модели (48) при температуре $T < T_0(l)$ от модели (47) при $T > T_0(l)$ очевидно.

Итак, даже качественные оценки в рамках формул (47) и (48) демонстрируют важную роль обусловленных несовершенством поверхности раздела Fe/Cr флуктуаций толщины прослойки в формировании неколлинеарного состояния. Область существования этого состояния по параметру Л мала при $T > T_0(l)$, когда ВСП индуцируется обменным взаимодействием на поверхности раздела Fe/Cr, и резко расширяется при $T < T_0(l)$, когда образование ВСП связано с перераспределением зарядовой плотности вблизи границы раздела. Такое различие в поведении системы выше и ниже точки $T_0(l)$ связано с установлением в прослойке сильного ближнего антиферромагнитного порядка при $T < T_0(l)$, приводящего к «ориентационному» механизму взаимодействия ВСП с магнитными моментами в ферромагнитных обкладках. Этот механизм принципиально отсутствует как в случае парамагнитных прослоек, так и в случае антиферромагнитных прослоек при температурах выше $T_0(l)$ и не может быть воспроизведен в рамках стандартной схемы косвенного обмена типа РККИ.

6. ЗАКЛЮЧЕНИЕ

Механизм формирования и условия реализации неколлинеарных состояний в модели тройного слоя, описываемой функциями (2)–(5), были изложены в предыдущих разделах достаточно подробно. Однако вопрос об использовании этих результатов для интерпретации ряда экспериментальных данных, полученных при исследовании мультислоев типа Fe/Cr, требует некоторых дополнительных уточнений, касающихся прежде всего пределов применимости самой модели (2)–(5).

Естественным ограничением снизу по толщине прослойки L является соотношение $L > 2\xi_0$, позволяющее разделить в термодинамическом потенциале (2) «поверхностный» и «объемный» вклады. Столь же очевидным является и ограничение снизу по температуре: $T > T_N$, где T_N — температура установления дальнего порядка в антиферромагнитной прослойке. Последнее соотношение является, впрочем, только необходимым, но не достаточным условием применимости нашей модели. В действительности ограничением служит требование $T > T_2 \ge T_N$, где T_2 — температура, ниже которой использование плотности объемной составляющей термодинамического потенциала в форме (4) недопустимо и необходим учет слагаемых более высокого порядка по $\Delta(x)$ и $\Delta'(x)$ в разложении Гинзбурга–Ландау (см. подробнее [11]). С достаточной долей уверенности можно утверждать, что при T > 300-350 К и L > 30-40 Å оба указанных выше условия применимости будут выполнены.

Еще одно ограничение связано с не входящим явным образом в формулы (47) и (48), но подразумеваемым требованием однородной намагниченности внутри ферромагнитного слоя, т.е. отсутствием его разбиения на магнитные домены. Это требование, скорее всего, выполняется в достаточно толстых (40-50 Å и более) ферромагнитных слоях, но может нарушаться в более тонких слоях, особенно при наличии моноступенек на границе раздела Fe/Cr. В последнем случае может оказаться более энергетически выгодным возникновение доменной стенки не в прослойке Cr, как предполагалось выше, а в обкладке Fe непосредственно вблизи моноступеньки, разделяющей, таким образом, области с противоположной поляризацией намагниченности в ферромагнитном слое. При этом в обоих разделенных моноступенькой фрагментах антиферромагнитной прослойки с разными по четности N формируется скалярная ВСП с амплитудой $\Delta_+(x)$. По-видимому, именно такая ситуация имеет место в трехслойных структурах Fe/Cr/Fe с клинообразной прослойкой, выращенной на толстом вискере и покрытой тонкой (около 20Å) пленкой железа. Наблюдаемая в экспериментах по сканирующей электронной микроскопии с поляризационным анализом [1] доменная структура тонкой обкладки железа прямо указывает на осцилляции межслоевой обменной связи при монослойном изменении толщины прослойки хрома, а собственно «неколлинеарное состояние» возникает только в узкой области доменной стенки вблизи моноступеньки на границе раздела Fe/Cr. Данная ситуация, соответствующая иной геометрии магнитной структуры, чем рассматриваемая в настоящей работе, требует самостоятельного исследования.

Теперь с учетом сделанных ограничений (толстые ферромагнитные и антиферромагнитные слои, высокая температура) обсудим некоторые экспериментальные данные, прямо или косвенно свидетельствующие в пользу существования неколлинеарных состояний в мультислоях типа Fe/Cr и допускающие истолкование в рамках нашей модели. На основе нейтронографических, транспортных и магнитооптических данных в настоящее время удалось в общих чертах построить магнитную фазовую диаграмму (T, L) изучаемой системы [1-3]. Эта диаграмма содержит высокотемпературную $(T > T_0)$, промежуточную $(T_N < T < T_0)$ и низкотемпературную (T < T_N) области, сильно различающиеся по своим свойствам. В области $T > T_0$ состояние прослойки является парамагнитным, эффективная связь между моментами соседних обкладок очень мала [2] и структура фактически разбивается на независимые ферромагнитные слои, разделенные немагнитной прослойкой. Ниже температуры T_0 (весьма сильно зависящей от толщины L, особенно в случае сравнительно тонкой прослойки: $T_0\approx 500~{\rm K}$ при $L \ge 55$ Å, но $T_0 \approx 600$ К при $L \approx 15$ Å) эффективная связь между моментами соседних обкладок резко усиливается [2] и в промежуточной области температур, $T_N < T < T_0$, возникает совершенно особое магнитное состояние всей структуры как целого. Это состояние, согласно [4, 5], характеризуется наличием сильного ближнего антиферромагнитного порядка и неоднородным распределением спиновой плотности по толщине прослойки, а также значительной зависимостью магнитных характеристик от свойств поверхности раздела между ферромагнитными и антиферромагнитными слоями. Наконец, при $T < T_N$ эффективная магнитная связь между моментами соседних обкладок вновь резко уменьшается [2], в прослойке возникает дальний антиферромагнитный порядок типа несоизмеримой ВСП, подобный тому, что имеет место в объемном хроме, и система представляет собой набор чередующихся ферромагнитных и антиферромагнитных слоев с очень слабым межслоевым взаимодействием.

Таким образом, область температур $T_N < T <$ $< T_0$ наиболее интересна для изучения, но информация о магнитной структуре системы в этой области весьма противоречива. В уже упоминавшейся работе [5] по дифракции нейтронов на эпитаксиальных мультислоях Fe/Cr переход между промежуточной и низкотемпературной областями оказался сильно размытым (почти на 100 К) и интерпретировался авторами как плавная смена фаз с соизмеримой и несоизмеримой ВСП в прослойке хрома. С другой стороны, в близкой по методике работе [13], где исследовались мультислои Fe/Cr, выращенные по иной технологии, чем в [5], вообще не была выявлена заметная разница в магнитной структуре прослойки для низкотемпературной и промежуточной областей, и, согласно заключению авторов, имелся лишь один переход при температуре T_N из фазы с несоизмеримой ВСП непосредственно в парамагнитную фазу. Такое рассогласование результатов обычно связывают с сильным влиянием качества границ раздела (в первую очередь, на наш взгляд, обусловленным рассеянием электронов на мелкомасштабных флуктуациях поверхностного потенциала) на формирование ВСП в прослойке хрома. С точки зрения возможности возникновения неколлинеарных состояний именно промежуточная область, $T_N < T < T_0$, с ближним антиферромагнитным порядком в прослойке Cr наиболее привлекательна, поскольку именно здесь наблюдается сильная магнитная связь между соседними ферромагнитными слоями Fe. Результаты нашего рассмотрения (см. разд. 5), предсказывая значительное увеличение межслоевой связи при $T_N < T < T_0$ по сравнению со случаем $T > T_0$, в определенном смысле подтверждаются экспериментами [5] по рассеянию нейтронов на большие углы в сверхрешетках Fe/Cr с толщиной прослойки L = 42 Å. Эти эксперименты очень важны для прямого определения типа магнитной структуры в интересующей нас температурной области, а их результаты четко показывают неколлинеарный характер упорядочения магнитных моментов ферромагнитных слоев и наличие геликоноподобных компонент ВСП в антиферромагнитных прослойках. Поскольку однозначно восстановить форму ВСП по нейтронограмме с многокомпонентной интенсивностью, приведенной в работе [5], не представляется возможным, авторы воспользовались так называемой торсионной феноменологической моделью [7] для обработки своих результатов в духе геликоидального магнитного порядка с ВСП. Предварительный анализ показал, что предложенная выше микроскопическая модель неколлинеарного состояния также вполне адекватно согласуется с результатами [5] и объясняет обнаруженную «трехпиковую» зависимость интенсивности рассеяния нейтронов от волнового вектора k в направлении роста структуры.

Косвенным подтверждением существования неколлинеарного состояния при $T_N < T < T_0$ следует считать результаты работ по бриллюэновскому рассеянию и магнитометрии [1-4, 14], а также по намагниченности и магнитосопротивлению [1-3, 15]. Измеряемая в этих работах остаточная намагниченность $\mathbf{M}(\mathbf{H} \to 0)$ во внешнем поле \mathbf{H} , по величине приблизительно равная половине намагниченности насыщения, интерпретируется авторами как следствие почти ортогональной взаимной ориентации соседних ферромагнитных слоев, а быстрое насыщение зависимости **M**(**H**) укладывается в схему биквадратичного обмена. Мы пока не проводили исследования нашей модели во внешнем магнитном поле, так как эта задача не столь тривиальна, как может показаться на первый взгляд. В случае сравнительно толстых прослоек в достаточно сильном поле Н может происходить смена типа ВСП с симметричного на антисимметричный и соответствующее решение уравнения самосогласования $\Delta_{-}(x)$ (см. [10]) может оказаться выгоднее по энергии, чем решение $\Delta_+(x)$, фигурирующее в данной работе в отсутствие внешнего магнитного поля. В результате может возникнуть структура с амплитудной доменной стенкой ВСП внутри прослойки или даже на границе раздела. Ясно, что расчет всех указанных вариантов выходит далеко за рамки нашей статьи, тем не менее он в перспективе необходим.

Особое место в обсуждаемой проблеме существования неколлинеарных состояний занимает работа [6], существенно расширяющая класс слоистых структур с антиферромагнитным упорядочением типа ВСП в прослойках между ферромагнитными обкладками. В указанной работе проводилось изучение магнитных и транспортных характеристик сверхрешеток состава Fe/Cr_{1-x}Fe_x, где x = 0.06. Не имея возможности подробно остановиться на этих интересных исследованиях, укажем только основные достижения. Было установлено наличие двух температур антиферромагнитного упорядочения, T_N и T_0 , для сравнительно толстых (L > 36 Å) прослоек. Низкотемпературная ($T < T_N$) антиферромагнитная фаза однозначно со-

ответствует состоянию с соизмеримой ВСП, которое имеет место в объемном сплаве $Cr_{1-x}Fe_x$ при x > 0.024. Высокотемпературная $(T > T_0)$ фаза является парамагнитной, а в температурном интервале $T_N < T < T_0$, ширина которого составляет около 150 К, реализуется сложное неоднородное антиферромагнитное состояние с неясной структурой. Как и в сверхрешетках Fe/Cr, эффективная связь соседних слоев железа через прослойку крайне мала при $T > T_0$ и $T < T_N$, но резко усиливается в области $T_N < T < T_0$. Температуры T_N и T_0 интерпретировались в [6] соответственно как точки перехода между двумя антиферромагнитными состояниями и между антиферромагнитным и парамагнитным состояниями. Более того, особенности гистерезиса намагниченности и магнитосопротивления позволили авторам [6] предположить, что магнитное состояние в области температур $T_N < T < T_0$ является неколлинеарным, и они попытались описать его в рамках схемы биквадратичного обмена. На наш взгляд, глубокое изучение результатов работы [6] позволяет обнаружить ряд интересных следствий. Одно из них, кстати, очевидно: температура T_N вовсе не является точкой перехода между антиферромагнитными состояниями с соизмеримой и несоизмеримой ВСП, как утверждается в подавляющем числе работ (в том числе в обзорах [1-3]), но в соответствии с нашей моделью — точкой перехода между антиферромагнитными состояниями с ближним и дальним порядками, которые различаются как природой происхождения, так и структурой ВСП.

Последнее, что хотелось бы упомянуть - это работа [16] по исследованию ферромагнитного резонанса в сверхрешетках Fe/Cr. Полученные здесь результаты свидетельствуют о реализации неколлинеарного состояния и интерпретируются в рамках феноменологической схемы биквадратичного обмена. К сожалению, малые толщины антиферромагнитных слоев (от 7.6 до 10 Å), используемых в системах [16], делают невозможным непосредственное применение нашей модели для анализа полученных экспериментальных результатов. Тем не менее можно надеяться, что в основном механизм формирования неколлинеарных состояний понят нами правильно, и предложенный выше последовательный теоретический подход дает качественно верное описание экспериментальной ситуации в мультислоях типа Fe/Cr даже за пределами своей формальной применимости.

Один из авторов (В. В. Т.) выражает глубокую благодарность Н. М. Крейнес за обсуждение пробле-

мы неколлинеарных состояний в мультислоях Fe/Cr и ознакомление с результатами экспериментов по ферромагнитному резонансу, в том числе неопубликованными.

Работа выполнена при частичной поддержке РФФИ (проект 01-02-16175).

ЛИТЕРАТУРА

- D. T. Pierce, J. Unguris, R. J. Celotta, and M. D. Stiles, J. Magn. Magn. Mat. 200, 290 (1999).
- 2. H. Zabel, J. Phys.: Condens. Matter 11, 9303 (1999).
- R. S. Fishman, J. Phys.: Condens. Matter 13, R235 (2001).
- A. Schreyer, J. F. Anker, Th. Zeidler et al., Phys. Rev. B 52, 16066 (1995).
- A. Schreyer, C. F. Majkrzak, Th. Zeidler et al., Phys. Rev. Lett. 79, 4914 (1997).
- E. E. Fullerton, C. H. Sowers, and S. D. Bader, Phys. Rev. B 56, 5468 (1997).
- J. C. Slonczewski, J. Magn. Magn. Mat. 150, 13 (1995).

- ЖЭТФ, том **122**, вып. 5 (11), 2002
- R. S. Fishman and Z. P. Shi, Phys. Rev. B 59, 13849 (1999); R. S. Fishman, Phys. Rev. Lett. 78, 1351 (1997).
- M. Avignon, V. Men'shov, and V. Tugushev, Europhys. Lett. 56, 132 (2001).
- **10**. В. Н. Меньшов, В. В. Тугушев, ЖЭТФ **120**, 899 (2001).
- V. V. Tugushev, in *Electronic Phase Transitions*, ed. by W. Hanke and Yu. V. Kopaev, Modern Problems in Condensed Matter Sciences, Vol. 32, North Holland, Amsterdam (1992), p. 239.
- Справочник по специальным функциям, под. ред. М. Абрамовица и И. Стиган, Наука, Москва (1979).
- E. E. Fullerton, S. D. Bader, and J. L. Robertson, Phys. Rev. Lett. 77, 1382 (1996).
- 14. P. Vavassori, M. Grimsditch, and E. Fullerton, J. Magn. Magn. Mat. 223, 284 (2001).
- E. E. Fullerton, K. T. Riggs, C. H. Sowers, and S. D. Bader, Phys. Rev. Lett. **75**, 330 (1995).
- **16**. А. Б. Дровосеков, О. В. Жотикова, Н. М. Крейнес и др., ЖЭТФ **116**, 1817 (1999).