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We theoretically study a single disclination motion in a thin free-standing liquid crystalline film. Back-flow effects
and the own dynamics of the orientational degree of freedom (bond or director angle) are taken into account.
We find the orientation field and the hydrodynamic velocity distribution around the moving disclination, which
allows us to relate the disclination velocity to the angle gradient far from the disclination. Different cases are
examined depending on the ratio of the rotational and shear viscosity coefficients.
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1. INTRODUCTION

Physics of thin liquid-crystalline films has been a
recurrent hot topic during the past decade because of
their intriguing physical properties and a wide range of
applications in display devices, sensors, and for many
other purposes. Hexatic, nematic, and smectic-C' lig-
uid crystalline films belong to two-dimensional sys-
tems with a spontaneously broken continuous rota-
tional symmetry. An essential role in the behavior of
the films is therefore played by vortex-like excitations
(disclinations). Defects are almost necessarily present
in liquid crystals, and their dynamics plays a crucial
role in the overall pattern organization. Early studies
of defects focused on classifying the static properties of
the defects and their interactions [1, 2]. More recently,
the focus has shifted to examining the dynamics of de-
fects (see, e.g., [3] and references therein). We note
that although defects are undesirable in most practi-
cal applications of liquid crystals, such as traditional
display devices because they destroy an optical adjust-
ment, there are novel display designs (bistable, mul-
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tidomain liquid crystalline structures) exploiting defect
properties.

Although experimental dynamic studies are likely
to be more fruitful than static ones, theoretical re-
search of the film dynamics is in a rather primitive
stage. This is largely accounted for by a complexity
of dynamic phenomena in films, and a complete and
unifying description of the problem is still unavailable.
Moreover, some papers devoted to this problem (dy-
namics of defects) claim contradicting results. These
contradictions come mainly from the fact that different
authors take different microscopic dissipation mecha-
nisms into account, but partially the source of contro-
versy is related to semantics, because different defini-
tions of the forces acting on defects are used (see, e.g.,
the discussion in [4]). We believe that such problems
are irrelevant, if the macroscopic (phenomenological)
approach to the film dynamics is used.

In this paper, we theoretically examine the disclina-
tion dynamics in free-standing liquid crystalline films
at scales that are much larger than the film thickness,
where the films can be treated as 2D objects. Our in-
vestigation is devoted to the first (but compulsory) step
of defect dynamics studies: a single point disclination
in a liquid crystalline film. A number of theoretical
efforts [5-9] deal with similar problems. Our justifica-
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tion for adding one more paper to the subject is the
fact that in the literature, we did not see a full inves-
tigation of the problem with the hydrodynamic back-
flow effects taken into account. Evidently, these effects
can drastically modify the dynamics of defects. The
goal of this work is to study the disclination motion
in free-standing liquid crystalline films on the basis of
hydrodynamic equations containing some phenomeno-
logical parameters (the elasticity modulus and shear
and rotational viscosity coefficients).

In our approach, the disclination is assumed to be
driven by a large-scale inhomogeneity in the bond or
director angle, which leads to a motion of the disclina-
tion with a nonzero velocity relative to the film. As a
physical realization of such a nonuniform angle field, a
system of disclinations distributed with a finite density
can be imagined. The inhomogeneity in the vicinity of
a given disclination is then produced by fields of other
disclinations. We can also think about a pair of discli-
nations of the opposite topological charges, in which
case the inhomogeneity is related to the mutual orien-
tational distortion fields created by each disclination
at the point of its counterpart. In fact, the majority
of experimental and numerical studies of disclination
motions in liquid crystals [10-18] is devoted to the in-
vestigation of the dynamics of two oppositely charged
defects. We solve the hydrodynamic equations and find
the bond (director) angle and the flow velocity distri-
butions around the moving disclination. The results
enable us to relate the disclination velocity and the
gradient of the angle far from the disclination.

An obvious context where our results can be applied
is the film dynamics near the Berezinskii—Kosterlitz—
Thouless phase transition. The static properties of the
films near the transition have been investigated in a
great number of papers starting from the famous papers
by Berezinskii [19] and Kosterlitz and Thouless [20].
There are several works discussing the theory of dy-
namic phenomena associated with vortex-like excita-
tions in condensed matter physics: vortices in type-II
superconductors (see, e.g., [21]), vortices in superfluid
‘He and *He (see, e.g., [22, 23]), dislocations in 2D
crystals, and disclinations (and other topological de-
fects) in liquid crystals (see [10-14,24-27]). But most
of the theoretical works on the subject start from phe-
nomenological equations of motion of the defects, and
our aim is to derive the equations and to verify their
validity.

The structure of our paper is as follows. Section 2
contains basic hydrodynamic equations for liquid crys-
talline films necessary for our investigation. In Sec. 3,
we find the bond (director) angle and the flow veloc-
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ity around the uniformly moving disclination, which
allows us to relate the disclination velocity to the an-
gle gradient far from the disclination. Different cases,
depending on the ratio of the rotational and shear vis-
cosity coefficients, are examined in Sec. 4. Section 5
contains a summary and discussion. The appendices
are devoted to the details of calculations of the velocity
and bond angle fields around the moving disclination.
Those readers who are not very interested in mathe-
matical derivations can skip these Appendices, finding
all the essential physical results in the main text of the

paper.

2. BASIC RELATIONS FOR LIQUID
CRYSTALLINE FILMS

We formulate the basic relations needed to describe
a disclination motion in thin liquid crystalline films.
Here, we investigate freely suspended hexatic, nematic
and smectic-C films that can be pulled from 3D (bulk)
smectics [3]. We examine scales larger than the film
thickness, where the films can be treated as two-
dimensional objects and can be described in terms of a
macroscopic approach containing some phenomenolog-
ical parameters.

Liquid crystalline films with the in-plane orienta-
tional ordering of different types (hexatic, nematic, and
smectic-C') are observed experimentally. In these films,
as in 3D nematic liquid crystals, the rotational sym-
metry is spontaneously broken. The general analysis
of their symmetry can be found in [28]. The smectic-
C films are characterized by the director that is tilted
with respect to the normal to the film, which defines
a preferred direction in the plane of the film. The or-
dering of this type can be described by a vector @,
(the subscripts denoted by Greek letters take two val-
ues, because we treat the films as 2D objects). The
nematic films have higher symmetry Dy, which corre-
sponds to the 2D nematic phase. The order parameter
of the nematic phase is the irreducible (traceless) sym-
metric tensor of the second rank @),s. In the hexatic
films (pulled from smectics-B), molecules are locally ar-
ranged in a triangular lattice, but the lattice is not an
ideal one. The positional order does not extend over
distances larger than several molecular sizes. Never-
theless, the bond order extends over macroscopic dis-
tances. The phase is therefore characterized by the Dgp,
point group symmetry, and hence, the order parameter
for the case is the sixth-rank symmetric irreducible ten-
sor Qap~ysuv. In liquid crystalline films of all the types
enumerated above, the order parameter () has two in-
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dependent components (e.g., Qz» and @, for the 2D
nematics). We note that the order can be readily ob-
served in the smectic-C' or nematic films by looking for
in-plane anisotropies in quantities such as the dielec-
tric permeability tensor. Because of its intrinsic sixfold
rotational symmetry, the hexatic orientational order is
hardly observable. But it can be detected, e.g., as a
sixfold pattern of spots in the in-plane monodomain
X-ray structure factor, proportional to Qagyoun (S€€,
e.g., [3] and references therein).

In accordance with the Goldstone theorem, in films
of all types with a broken rotational symmetry, the only
degree of freedom of the order parameter that is rele-
vant at large scales is an angle ¢ (like the phase of the
order parameter for the superfluid *He). In hexatics,
it is the bond angle, whereas in 2D nematics and in
smectic-C' films, it is an angle related to the director.
It is convenient to express a variation of the order pa-
rameter in terms of a variation of the angle ¢. For the
smectic-C' films, the relation is

6Qa = _530601;1qu

where €, is the two-dimensional antisymmetric tensor.
For an orientational order with a higher symmetry, the
relation has a similar form. For example, for hexatic
films,

(2.1)

5Q045’Y5l“’ = —(5(,96,1pr575,“, +..., (2.2)

where the dots represent the sum of all other possi-
ble combinations of the same structure. Therefore, for
films of all types, the order parameter can be character-
ized by its absolute value |@Q| and the phase ¢, which are
traditionally represented as a complex quantity ¥ (see,
e.g., [24]). The quantity is written as ¥ = |Q] exp(6iy)
for hexatic films, as ¥ = |@Q]exp(2ip) for 2D nematic
films, and as ¥ = |Q] exp(ip) for smectic-C' films.

The angle ¢ should be included into the set of the
macroscopic variables of the films. A convenient start-
ing point of the consideration is the energy density (per
unit area) pv?/2 + ¢, where p is the 2D mass density,
v is the film velocity, and ¢ is the internal energy den-
sity. The latter is a function of the mass density p, the
specific entropy o, and the angle . In fact, ¢ depends
on Vo, because any homogeneous shift of the angle ¢
does not affect the energy. For hexatic films, the lead-
ing terms of the energy expansion over gradients of ¢
are

e = 0(p.0) + 5 (Vo) (23

where K is the only (because of the hexagonal symme-
try) orientational elastic module of the film. For low-
symmetry films (2D nematic or smectic-C' films) two
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orientational elastic modules are introduced, the longi-
tudinal and transversal ones with respect to the spe-
cific in-plane direction (characterized by the so-called
c-director). But fluctuations of the director lead to a
renormalization of the modules, and isotropization of
the smectic-C or 2D nematic films [29] occurs at large
scales. The same isotropic expression (2.3) for the elas-
tic energy can therefore be used at large scales.

The complete dynamic equations for the freely sus-
pended liquid crystalline films, valid at the scales larger
than the film thickness, can be found in [30]. We
consider a quasistationary motion of the disclination.
Then hard degrees of freedom are not excited.
other words, we can accept incompressibility and ne-
glect bending deformations (which are suppressed by
the presence of the surface tension in freely suspended
films). Similarly, the thermo-diffusive mode is not ex-
cited for the quasistationary disclination motion, which
implies the isothermal condition. For freely suspended
films, such effects as the substrate friction (relevant,
e.g., for Langmuir films) are absent. In describing the
disclination motion, we can therefore consider the sys-
tem of equations for only the velocity v and the angle
. The equations have to be formulated under the con-
ditions p = const, T' = const (where T is the tempera-
ture), and Vv = 0.

The equation for the velocity follows from the mo-
mentum density j = pv conservation law,

In

Otja = —Vg [TaB - n(Vavg + nga)] ; (2.4)

where Tz is the reactive (nondissipative) stress tensor
and 7 is the 2D shear viscosity coefficient of the film.
For two-dimensional hexatics, the reactive stress tensor
is (see [30], chapter 6)

Top = pvgva — Sdap + KVopVap —
K K

2 2

where ¢ = & — pde/dp is the surface tension. We note
that the ratio Kp/n? is a dimensionless parameter that
can be estimated by substituting 3D quantities instead
of 2D ones (because all the 2D quantities can be es-
timated as the corresponding 3D quantities times the
film thickness, and the latter drops from the ratio). For
all known liquid crystals, the ratio is 1073-10* (see,
e.g., [1-3,31]), and can therefore be treated as a small
parameter of the theory.

The second dynamic equation, the equation for the
bond angle, is

€ar V4V — €8,V Vap, (2.5)

1
Qe =5 (2.6)

K
2€aﬁvavﬁ —vaVap + 7v2995
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where 7 is the so-called 2D rotational viscosity coeffi-
cient. We did not find the values of the coefficient v for
thin liquid crystalline films in the literature. For bulk
liquid crystals (see, e.g., [1-3,31]), the 3D rotational
viscosity coefficient is usually several times larger than
the 3D shear viscosity coefficient. We can therefore ex-
pect that v > 1. But in order to span a wide range of
possibilities, we treat the dimensionless ratio I" = v/n
as an arbitrary parameter in what follows.

If disclinations are present in the film, it is no longer
possible to define a single-valued continuous bond-angle
variable . But the order parameter is a well-defined
function of coordinates that goes to zero at the disclina-
tion position. The gradient of ¢(t,r) is a single-valued
function of r and is analytic everywhere except at an
isolated point, the position of the disclination. The
phase acquires a certain finite increment at each rota-
tion around the disclination,

%dra Vap = 27s, (2.7)

where the integration contour is a closed counterclock-
wise loop around the disclination position and s is the
topological charge of the disclination: s = (1/6)n for
the hexatic ordering, s = (1/2)n for the 2D nematic
symmetry, and s = n for the smectic-C' films, where n
is an integer. We can restrict ourselves to disclinations
with the unitary charge n = +1 only, because disclina-
tions with larger |s| possess a higher energy than the
set of unitary disclinations with the same net topolog-
ical charge, and defects with larger charges are there-
fore unstable with respect to the dissociation to the
unitary ones. Therefore, disclinations with the charges
|n|] > 1 do not play an essential role in the physics of
films [1-3, 31]. To write the expressions given below in
a compact form, we keep the notation s for the topolog-
ical charge, with the respective values |s| = 1,1/2,1/6
for the smectic-C', nematic, and hexatic films.

The static bond angle is determined by the station-
ary condition 6E/d¢ = 0, where

E = /d2r (202—}—5)

is the energy of the film. For the energy density in
Eq. (2.3), the condition is reduced to the Laplace equa-
tion V2 = 0. For an isolated static disclination, there
is a symmetric solution of this equation ¢g that satisfies
Eq. (2.7) and whose gradient is given by

rg — R

(r—R)?’
where R is the position of the disclination. If the origin
of the reference system is placed at this point, we can

Vapo = —8€43 (2.8)

827

write g = sarctg(y/x), where 2 and y are coordinates
of the observation point r. In dynamics, distribution
(2.8) is disturbed as ¢ varies in time. It is also per-
turbed because of the presence of an angle distortion
related to boundaries or other disclinations.

In what follows, we have in mind a case where a
system of a large number of disclinations (with an un-
compensated topological charge) is created. For 3D
nematics, this can be done rather easily [1-3], because
the energies of positive and negative defects are differ-
ent due to the intrinsic elastic anisotropy. We are un-
aware of experimental or theoretical studies of defect
nucleation mechanisms in free-standing films. Hope-
fully, the situation with a finite 2D density of defects
can also be realized for films (for instance, the defects
could even appear spontaneously as a mechanism to
relieve frustrations in chiral smectic or hexatic films,
similarly to the formation of the Abrikosov vortex lat-
tice in superconductors [32]). Examining the motion
of a disclination in this case, we investigate a vicinity
of the disclination of the order of the inter-disclination
distance. Far from the disclination, the bond angle ¢
can then be written as const 4+ ur, where u is much
larger than the inverse inter-disclination distance (be-
cause the number of disclinations is large). Near the
disclination position, the bond angle ¢ can be approx-
imated by expression (2.8). Our main problem is to
establish a general coordinate dependence of ¢ and v,
which in particular allows relating the bond (director)
angle gradient u and the velocity of the disclination.

3. FLOW AND ANGLE FIELDS AROUND A
UNIFORMLY MOVING DISCLINATION

Here, we proceed to the main subject of our study, a
single disclination driven by a large-scale inhomogene-
ity in the bond (director) angle ¢. The disclination
velocity is determined by an interplay of the hydrody-
namic back-flow and the intrinsic dynamics of the an-
gle . To find the disclination velocity, one has to solve
the system of equations (2.4), (2.5), and (2.6) with con-
straint (2.7) ensuring a suitable asymptotic behavior.
As we explained in the previous section, the angle ¢
is supposed to behave as const + ur at large distances
from the disclination. We work in the reference system
where the film as a whole is at rest. This means that
the flow velocity excited by the disclination must tend
to zero far from the disclination.

We consider the situation where the disclination
moves with a constant velocity V. The angle ¢ and
the flow velocity are then functions of r — Vit (where
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R = Vit is the disclination position). Equation (2.4)
for the velocity can then be written as

K
p(Vg — Uﬁ)nga + nv%a + EeaLngVng —
K
— KVapV2¢ +V, {q - E(W)Z’] —0. (3.1)

We can omit the first (inertial) term in the left-hand
side of (3.1), which is small because of the smallness of
the parameter Kp/n>. It then follows from Eqs. (2.4)—
(2.5) that

i

2 _

\Y voz+277

where @ = n~1[¢ — (K/2)(Vy)?]. Under the same con-

ditions, the equation for the angle ¢ following from
Eq. (2.6) is

%
eagvgv%—?vaw?wvaw =0, (3.2)

V2o + ZVaVap = HvaVap — o1

We seek a solution characterized by the asymptotic be-
havior that the velocity v vanishes and V¢ tends to a
constant vector u as r — oo. It is clear from the sym-
metry of the problem that the gradient u of the bond
angle is directed along the Y axis if the velocity is di-
rected along the X axis. Therefore, ¢ — uy as r — oco.
Our problem is to find a relation between V and wu,
that is, between the disclination velocity and the bond
angle gradient far from the disclination. There are two
different regions: the region of large distances r > u™!
and the region near the disclination r < u~'. At large
distances, corrections to the leading behavior ¢ ~ uy
are small and the problem can be treated in the linear
approximation with respect to these corrections. In the
region near the disclination, ¢ is close to static value
(2.8) and the flow velocity v is close to the disclination
velocity 'V (the special case where the ratio v/n is ex-
tremely small is discussed in Sec. 4C). In what follows,
these two regions are examined separately. The rela-
tion between u and V' can be found by matching the
asymptotics at r ~ u~1. As a result, we obtain

eagva’vg. (33)

V= %Cu, (3.4)

where C' is a dimensionless factor depending on the di-
mensionless ratio I = v/n. This factor C' is of the order
of unity if I' ~ 1. We are interested in the asymptotic
behavior of C' at small and large I

A. The region near the disclination

We consider the region 7 < u~!. Here, we can write

¢ =po(r —R) +¢1(r — R), (3.5)
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where R = Vt is the disclination position, ¢y is the
static bond (director) angle with gradient (2.8), and
1 is a small correction to ¢g. The gradients of ¢ are
determined by Eq. (2.8).

Linearizing Eqs. (3.2) and (3.3) with respect to o1,
we obtain

K .
NVva + €asVs Vi1 = KVapo Vi1 +
K
+Va [g - 3(v¢)2] =0, (3.6)
V29Q1 - %Uavaﬁoo + %Qvﬁvavﬁ =
= _%VQVOADO' (37)

Introducing a new variable y = (K/n)V?p; we rewrite
Egs. (3.6), (3.7) as

1
V20, + §ea5V5x — VapoX + Vaw =0, (3.8)

I
X — Mo Vago + Eeagvavg = —I'Voadawo, (3.9)

r v/n, as  above, and

w n~'[c - K/2(Vg)?]. It follows from Eq.
(3.8) and V,v, = 0 that Viw VavoVax. A
solution of the system in Egs. (3.8)—(3.9) can be
written as

where

Vo = Vo + GQ5V5Q, (3.10)
where V, is the obvious (because of the Galilean in-
variance) forced solution and the stream function
describes a zero mode of system (3.8)—(3.9). The sys-
tem is homogeneous in r, and Q is therefore a sum of
contributions that are power-like functions of r.
Taking the curl of Eq. (3.8), we obtain
4 Lo

-ViQ - Ev X — €vaVapoVyx = 0. (3.11)

Substituting y expressed in terms of v from Eq. (3.9)

in Eq. (3.11) and using explicit expressions (2.8) for the
derivatives of pg, we obtain

r 4 2 2 1 2
(”Z)V Q+3F<r—28,9—r—2v 0—

1 1
- sr—28,?9 + Sr_38’9> =0 (3.12)
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in the polar coordinates (7, ¢). Solutions of Eq. (3.12)
are superpositions of the terms o< 7®+! exp(im¢). Sub-
stituting this r, ¢-dependence in Eq. (3.12), we obtain
an equation for a that has the roots

1
a=+t—

V2

+ {(2+2m2—s(1—3)f)2—

24+ 2m? —s(1—s)+

1/2

—4sT'(m® =1+ 5) —4(m* — 1)2}1/2 . (3.13)

where I' = I'(1 + I'/4)~!. Hence, 0 < I" < 4 for any
~ and n. Evidently, all the roots in Eq. (3.13) are real.
We emphasize that there is no solution @ = 0 (corre-
sponding to a logarithmic behavior of the velocity in r)
among the set (3.13). The first angular harmonic with
|m| = 1 is of particular interest because p; = ursin ¢
and Q = —Vrsin¢ far from the disclination. If I" is
small, there is a pair of small solutions among (3.13),

ar = sVT /2,

a = *ay, (3.14)

for m = £1. Otherwise, for any other relevant m,
solutions (3.13) have no special smallness (terms with
m = 0 are forbidden because of the symmetry).

We established that Q is a superposition of the
terms o r®*lexp(im@) with the exponents a deter-
mined by Eq. (3.13). The velocity can then be found
from Eq. (3.10). To avoid a singularity in the velocity
at small r, one should keep contributions with posi-
tive a only. In other words, the velocity field contains
contributions with all powers « given by (3.13), but the
factors at the terms with negative o are formed at r ~ a
(where a is the disclination core radius), and the cor-
responding contributions to the velocity are therefore
negligible at r > a (this statement must be clarified
and refined for small negative exponents —a; in the
limit of small I', see Sec. 4C). We conclude that the
correction to 'V in the flow velocity v related to € in
Eq. (3.10) is negligible at r ~ a. We thus arrive at the
non-slipping condition for the disclination motion: the
disclination velocity V coincides with the flow velocity
v at the disclination position.

Next, to find ¢, one should solve the equation
(K/n)V2¢p = x, where x is determined from Eq. (3.9).
In addition to the part determined by the velocity, ¢4
can then involve zero modes of the Laplacian. The
most dangerous zero mode is Uy, because it produces
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a nonzero momentum flux to the disclination core (and
the Magnus force associated to it),

%droZ €aplpy ~ KU. (3.15)
But because of the condition a # 0, all the contribu-
tions to the velocity correspond to zero viscous mo-
mentum flux to the origin. Consequently, it is impos-
sible to compensate the Magnus force by other terms.
The above reasoning leads us to the conclusion that
the factor U (and therefore, the Magnus force) must
be zero. Thus, ¢, contains only terms proportional to
r®*t! with @ > 0. This conclusion is related to the
fact that for free-standing liquid crystalline films, any
distortion of the bond angle unavoidably produces hy-
drodynamic back-flow motions (i.e. v # 0). For lig-
uid crystalline films on substrates (Langmuir films), in
contrast to free-standing films, hydrodynamic motions
(back-flows) are strongly suppressed by the substrate,
and the situation where the back-flow is irrelevant for
the disclination motion can be realized.

B. The remote region

Let us consider the region r > u~!, where we can
write ¢ = uy + ¢ and linearize the system of equations
(3.2) and (3.3) with respect to ¢. We then obtain the
system of linear equations for v and ¢,

.
v2va+2— (CQBVBV2¢—QUQV2¢) +Vamw =0,

7 (3.16)
(V2 +2p0,)@ + 57 (€as Vavs — 2uv,) = 0,

where p = Vv /2K . Taking the curl of the first equation
and eliminating the Laplacian, we obtain

-

K
€30V 3la = o [(V? +2ud,) ¢ + @] , (3.17)

where @ is a harmonic function. In terms of ®, system
(3.16) is reduced to

I r
KHZ) Vir2pV0, -0 | § = Tud,@. (31)

Equation (3.18) can be written as

r
(V2 +2k10,)(V? — 2k20,)p = Fud 2,

1 2 '\
ko= m <\/p +I <1+Z> u :i:p) . (3.20)

(3.19)
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The quantities k; and ko have the meaning of char-
acteristic wave vectors. We conclude from Eq. (3.19)
that zero modes of the operator in the left-hand side of
the equation are proportional to

exp(—kir — k1z), exp(—kor + ko),

that is, they are exponentially small everywhere outside
narrow angular regions near the X axis. The behav-
ior of the zero modes inside the regions is power-like
in r. In addition, there is a contribution to ¢ related
to the harmonic function ®. It contains a part that
decays as a power of r (the leading term is oc r~!) at
r > u~'. This solution is examined in more detail in
Appendix A.

4. DIFFERENT REGIMES GOVERNED BY I’

The behavior of the velocity and the bond (director)
angle fields around the moving disclination is sensitive
to the ratio of the rotational and the shear viscosity co-
efficients I' = /7. In this section, we examine different
cases depending on the I value.

A. The case where I' 2 1

We start analyzing different mobility regimes with
the most probable case where I" 2 1. If I" ~ 1, then
the factor C'in Eq. (3.4) is of the order 1 and u ~ p. It
then follows from Eqs. (3.20) that ki, ko ~ w. This is
a manifestation of the fact that there is a unique char-
acteristic scale in this case, given by u~!. We can then
estimate ¢ by matching the solutions in the regions
near the disclination and far from it at 7 ~ u=!. We
conclude that it is a function of the dimensionless pa-
rameter ur; the function is of the order of unity, when
its argument ur is of the order of unity.

For large I', there remains a unique characteris-
tic scale u~!, and consequently, C' ~ 1 in this case.
To prove the statement, we first treat small distances
r < u~!'. As shown in Sec. 3A, the respective correc-
tions ¢ and v to g and V are expanded in the series
over the zero modes characterized by exponents (3.13).
In particular, for m = 1, we can write @1 ~ uy(ur)®. In
the large-I" limit, the exponents a given by (3.13) are
regular because I" — 4. From (3.13), we have a; ~ 1,
and in this case,

~ —uy(ur)**.
X~ y(ur)

Comparing Eqgs. (3.8) and (3.9), we conclude that
for large I', the term involving y can be omitted in
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Eq. (2.9), and the equation therefore becomes a con-
straint imposed on the velocity. Equation (3.8) then
gives

K
vl ~ — o1
[0v] o uy(ur)

The disclination velocity can now be found from the
relation V ~ |dv| at the scale u~!, that is, p ~ I'u, or
C ~ 1. The complete analysis also covers the remote
region. With the condition p ~ I'u, it follows that
k1 ~u~". Using the procedure given in Appendix A,
we can then prove that the solutions in the two regions
can be matched at r ~ u~!, and therefore, there are
no new characteristic scales, indeed. We also note that
the rotational viscosity v drops from the hydrodynamic
equations at large I'. Although this is not true inside
the disclination core (see Appendix D), the boundary
conditions for v and ¢ on the core boundary reveal no
dramatic changes of the behavior. Consequently, it is
the shear viscosity alone that determines the disclina-
tion mobility, which implies that C' ~ 1.

We can therefore say that in the limit as I" — oo,
no additional features appear compared to I" ~ 1. But
this is not the case for small I', because u > p for
I' < 1. We study this case in the next Subsection.

B. Small I

Here, we consider the case where I' < 1. This
limit is physically attained at anomalously large 1, with
Kp/n? still treated as the smallest dimensionless pa-
rameter. This justifies the use of the same equations
(3.2) and (3.3) as in the previous subsections.

For r < u !, the analysis given in Sec. 3 A is cor-
rect. As we noted, the contributions to v and ¢ related
to the modes with negative a should not be taken into
account there. For I' < 1, the leading role is played by
the mode with the smallest exponent (a; = sv/T'/2),
because the presence of modes with positive exponents
a ~ 1 would contradict the condition of smooth match-
ing at » ~ u~!. Strictly speaking, neglecting a small
negative exponent —q; is correct under the condition
aq|In(ua)| > 1, where a is the core radius of the discli-
nation. This is the case considered in this subsection.
The opposite case, which we call the extremely small-I
limit, is analyzed in Sec. 4 C. At r < u~!, we can there-
fore write

K

o1 ~uy(ur)®, V —uv, ~aru—(ur)®, (4.1)
Y

with the coefficient at y(ur)®* determined from match-
ing at r ~ u~!, where Vo ~ 1/r. Similarly, matching
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V—v, ~Vatr~utgives V ~ajuKk/y. The rela-
tion can be rewritten as p ~ aju < u, and we therefore
conclude that C' ~ 1/v/T.

In accordance with Eq.  (3.20), the relation
p ~ VT uleads to k12 ~p < u. In other words, a new
scale p~! (different from u~!) appears in the problem.
A detailed investigation of the remote region r > u !
is therefore needed to establish the r-dependences of
the bond angle ¢ and the velocity field v there. This
investigation can be based on the equations formulated
in Sec. 3 B, which are correct irrespectively of the value
of pr.

Explicit expressions describing the velocity and the
angle are presented in Appendix A. They contain
three dimensionless functions (;(V/u), ¢1(V/u), and
c2(V/u). At ur > 1, only zero terms of the expan-
sions of these functions in the Taylor series can be kept.
Only one of these three coefficients is independent, see
Eq. (A.10). The general solution can therefore be ex-
pressed in terms of a single parameter, which we choose
as ¢ = (1(0). The procedure corresponds to the follow-
ing construction of the solutions to equations of motion
(3.16) in the region ur > 1. We have to match the
solutions in the outer and the inner regions (far from
and close to the disclination respectively) at ur ~ 1.
Technically, the matching is equivalent to the appro-
priate boundary conditions for the outer problem at
ur & 1, and these boundary conditions can be formally
replaced by the local source terms in the equations,
acting at ur ~ 1. We can expand these sources in the
standard multipolar series. We thus arrive at the ex-
pansion with respect to the gradients of the ¢ function.
The gradients scale as u, and therefore, (, ¢1, and ¢q are
dimensionless functions of the dimensionless ratio V /u.

To find the asymptotic behavior of the angle ¢
and of the velocity v, we first consider the region
u !l < r < pt From Egs. (A.4), (A.5), and (A.10),
we then derive

K(2s— ()
YU

Uy = ]{21]{22 ln(pr), (42)

where we keep only the leading logarithmic contribu-
tion of the zero harmonic in v,. Matching the veloc-
ity derivatives determined by Eqs. (4.1) and (4.2) at
r ~u !, we find that ( ~ 1 (we imply that s ~ 1).
Using Exps. (A.2), (A.5), and (A.10), we obtain

¢ = o + uy + spy In(pr) (4.3)
in the region u=! < r < p~!. We see that there is only
a small correction to the simple expression ¢ + uy in
that region, because p < u.
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In the region pr > 1, the expressions for the an-
gle ¢ and the velocity v are more complicated. Using
Eqs. (A.2), (A.3), (A4), and (A.5), we obtain

61@ = —S\/g |:Cl\/ kl exp(—le - klx) +

+con/ ko exp(—kor + k‘gl‘)] 7'3% - gr% (4.4)
Oy =u — 25\/§ [cl Vki exp(—kir — kix)—
1 T
—Co k2 exp(—kzr + k‘gl‘)] m + gr—z, (45)

vy = £ {25 T {clkm/kl exp(—kir — kjz) —
YU \/ 2
Y Y
—cok1\/ ko exp(—kar + ]{5233)] pEyE) —p(r—2} . (4.6)
vy = K {\/Esl“u2 [ T oex (—kir — kix)+
xr — ")/U 2 \/kl_’[“ p 1 1

+\/Ck‘—27 exp(—kar + k2$)1| +p§%} . (4.7)
where ¢; ~ 1 and ¢; ~ 1 are determined by Eq.
(A.10) (we omitted the argument 0 to simplify the nota-
tion). Expressions (4.4), (4.5), (4.6), and (4.7) contain
terms of two types, isotropic and anisotropic ones. The
anisotropic contributions are essential only in the nar-
row angular regions near the X axis, where they dom-
inate. It is worth noting a very nontrivial structure
of the flow, in which the isotropic flux to the origin is
compensated by the anisotropic terms.

The expressions found in this subsection general-
ize the famous Lamb solution for the hydrodynamic
flow around a hard cylinder, (see, e.g., [33-35]) where
the velocity field is exponentially small everywhere far
from the cylinder except for the wake of the corps,
i.e., in a very narrow angular sector («tail»). Disclina-
tion motion in liquid crystalline films can be regarded
as the motion of a cylinder framed by a «soft» (i.e.,
deformable) orientational field ¢. Because of the ad-
ditional degree of freedom (compared to the classical
Lamb problem), our solution has two tails around the
moving disclination: wake, beyond the disclination,
and precursor in front of it. In fact, both degrees of
freedom (the flow velocity and the bond angle) are rel-
evant.
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C. Extremely small I"

In the above analysis, we implied the condition
a1|In(ua)| > 1 (we recall that a; = sv/T/2 at small
I'), imposing a restriction from below on I at a given u.
If aq| In(ua)| < 1, the terms with both a = +ay deter-
mined by Eq. (3.14) must be taken into account near
the disclination, which leads to a logarithmic behavior
of the correction ¢ to g in that region,

p1 ~ uyln (2 ) | Inau)| 7",

(4.8)

instead of Eq. (4.1).
of expressions (4.3) and (4.8) at r ~ u ! gives
p ~ ulln(au)|~t. In other words, C' ~ [['ln(au)]"*.
This case formally corresponds to the limit 7 — oc in
our equations, where we can drop the back-flow hydro-
dynamic velocity in the equation for the bond angle.
The situation was examined in the works [6-9]. We
present the simple analysis of the case in Appendix B.
We also note that there is no crossover at r ~ u~! in
the bond angle behavior in this situation.

We now clarify the question regarding the Magnus
force in this case. In accordance with Eq. (4.8), the
reactive momentum flux to the disclination core is

%dra €aplpy ~ Kuln (f) | In(au)| ™"
a

Matching the derivatives
—1

The flux is therefore r-dependent, tending to zero as
r — a. This reactive momentum flux is compensated
by the viscous momentum flux (related to derivatives
of the flow velocity v), which is nonzero in this case
because of the logarithmic behaviour of the flow veloc-
ity in 7 near the disclination. The flow velocity can be
found from Eqs. (3.6) and (4.8) as

e o (0]

- Nl In(au

Ku
Va

which is a generalization of the Stokes-Lamb so-
lution [33, 34]. But unlike in the Lamb prob-
lem (a hard cylinder moving in a viscous liquid),
|V —v(r = a)| ~ V in our case, i.e., we have a slipping
on the core of the moving disclination. This slipping
seems natural in the limit of extremely small values
of I', corresponding to the limit  — oo, that is, to
a strongly suppressed hydrodynamic flow. Physically,
this property implies that the disclination cannot be
understood as a hard impenetrable object. It is also
worth noting that the logarithmic behavior found above
is similar to the general feature of two-dimensional hy-
drodynamic motion that comes from the well-known
fact (see, e.g., [33-35]) that nonlinear terms cannot bhe
neglected in a two-dimensional laminar flow even for a
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small Reynolds number; these terms become relevant
for sufficiently large distances. But in our case, these
nonlinear terms do not come from the convective hy-
drodynamic nonlinearity; they come from the terms in
stress tensor (2.4) that are nonlinear in .

An explicit expression for ¢ and its asymptotic
forms corresponding to the considered case are given in
Appendix B. An expression for the flow velocity field
induced by the disclination motion at extremely small
I' is derived in Appendix C.

5. CONCLUSIONS

We now summarize the results of our paper. To un-
derstand physics underlying the freely suspended film
dynamics, we studied the ground case — a single discli-
nation motion in a thin hexatic, smectic-C' or nematic
liquid crystalline film, driven by an inhomogeneity in
the bond (or director) angle. We investigated the uni-
form motion (the one with a constant velocity). In this
case, we derived and solved the equations of motion
and found the bond angle and hydrodynamic velocity
distributions around the disclination. This allows us to
relate the velocity of the disclination V' to the bond an-
gle gradient u = |V¢| in the region far from the discli-
nation. That is why so much effort is needed: the full
set of the equations must be solved every where, not
only locally. We established the proportionality coef-
ficient C' (see Eq. (3.4)) in this nonlocal relationship;
it has the meaning of an effective mobility coefficient.
The coefficient C depends on the dimensionless ratio I’
of rotational (v) and shear viscosity (1) coefficients.

There is little experimental knowledge of the values
of the coefficients v and 7 in liquid crystalline films. It
is generally believed that the corresponding values in a
film (normalized by its thickness) and in a bulk material
are not very different [31, 3], in which case we are in the
regime of I' ~ 1, where the coefficient C' is of the order
1. But the case where I' < 1 is not excluded from the
both theoretical and material science standpoints. We
found the coefficient C' ~ 1/\/f in the small-I" limit.
We established a highly nontrivial behavior of the flow
velocity and of the bond angle, which is power-like in r
near the disclination and extremely anisotropic far from
it. Only for extremely small I, I' < 1/In*(ua) (where
a is the disclination core radius), we found a logarith-
mic behavior C' ~ [I'In(ua)]™!. The main message of
our study is that the hydrodynamic motion (that is,
the back-flow), unavoidably accompanying any defect
motion in liquid crystals, plays a significant role in the
disclination mobility. Experimental evidence (see, e.g.,
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the recent publication [36]) shows that this is indeed
the case.

Our analysis can be applied to the motion of a discli-
nation pair with the opposite topological charges. In
this case, the role of the scale u~! is played by the
distance R between the disclinations. In accordance
with Eq. (3.4), we then find that 9;R o« R™' without
a logarithm (provided the rotational viscosity coeffi-
cient v is not anomalously small, see Sec. 4 C for the
quantitative criterion). This conclusion is confirmed by
the results of numerical simulations for 2D nematics
[15-18]. The authors of [15-18] consider the equations
of motion in terms of the tensor order parameter, con-
sistently taking the coupling between the disclination
motion and the hydrodynamic flow into account. They
simulated dynamics of the disclination pair annihilation
and found that the distance R between the disclinations
scales depends on time t as t'/2, without logarithmic
corrections (as this follows from our theoretical analy-
sis) for all values of the parameter I" except extremely
small ones. Unfortunately, we did not find in [16-18]
the magnitudes of the shear viscosity that were used
in the simulations. Lacking sufficient data on the val-
ues of v and 7, we can presently discuss only the gen-
eral features of the disclination dynamics. For instance,
the authors of [18] numerically found an asymmetry of
the disclination dynamics with respect to the sign of
the topological charge (s = £1/2) in the one-constant
approximation. In our approach, the asymmetry nat-
urally appears from nonlinear terms in stress tensor
(2.5) and from the first term in the right-hand side
of Eq. (2.6) responsible for the different couplings of
orientational and hydrodynamic flow patterns for posi-
tive and negative disclinations. This results in the fact
that for each m, the smaller positive exponents in Eq.
(3.13) (corresponding to the minus in the brackets) are
larger for s = 1/2 than for s = —1/2. The disclina-
tion with s = 1/2 therefore exerts a stronger influence
on the flow velocity; this conclusion was qualitatively
obtained in [18].

Although the theory presented in this paper is valid
for free-standing liquid crystalline films, the general
scheme can be applied to the liquid crystalline films
on solid or liquid substrates. Because such a film is
arranged on the substrate surface, any of its hydrody-
namic motions is accompanied by the substrate mo-
tion. For solid substrates, the situation where the hy-
drodynamic back-flow is irrelevant for the disclination
dynamics can therefore be realistic. In Sec. 4 C (also
see Appendix B), we examine this limit and reproduce
the results in [6-9], where the hydrodynamic back-flow
was neglected from the very beginning. The case of the
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films on a liquid substrate requires a special investiga-
tion, but the approach and the main ideas of our paper
could be useful there as well.

Our results can be directly tested by comparing
with the experimental data for smectic-C' or nematic
films. The hexatic order parameter, which has a sixfold
local symmetry, is not coupled to the light in any
simple way (and therefore, ideal hexatic disclinations
are hardly observed in optics). But it is possible to
observe the core splitting of the disclinations in tilted
hexatic smectic films [26]. Indeed, because of disconti-
nuity of the tilt direction (which is locked to the bond
direction), the hexatic order and hexatic disclinations
can be observed indirectly. The second possibility of
detecting the defects of hexatic ordering and verifying
our theoretical results is the classical light scattering
(where the wave vectors are ¢ = 102-10* em~! and
the frequency is w < 10% s71 in typical experiments).
For a reasonably thick film, the power spectrum of
light scattering can have some additional structure
revealing the disclination properties (e.g., defects are
thought to be relevant to the very low-frequency noise
observed in thin films). Experimental studies of this
type are highly desirable.
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INTAS Grant 30-234. SVM thanks the support of this
work by the Deutsche Forschungsgemeinschaft, Grant
KO 1391/4. Fruitful discussions with V. E. Zakharov,
E. A. Kuznetzov, G. E. Volovik, and N. B. Kopnin are
gratefully acknowledged.

APPENDIX A

Distances far from the disclination

Here, we derive some results for the region far from
the disclination. These results are used in the case of
small I" considered in Sec. 4 B.

We examine the harmonic function ® in Eq. (3.17).
Because the function is analytic in the region r > u~1!,
it can be expanded in the derivatives of In r there. Next,
because of the symmetry of the problem, ® is an an-
tisymmetric function of y. At least one derivative 9,
must therefore be present in each term of the expan-
sion, that is,

¢ = uCAlBy Inr, (A1)
where {; = ¢;(V/u) and ¢, (2) is a series in z converging
in a circle with the radius of the order 1. The expan-
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sion coefficients in the series (;(V/u) are determined
by matching with the inner problem at r ~ u~".
Because of the symmetry, the angle ¢ can be rep-

resented as

Opp = 0yB, 0yp=—(H+0,B),

A2
V:B+8,H = 0. (4.2)

The latter equation is the condition €,3V,Vgp = 0.
We note that V2% = —9, H. In the region far from the
disclination, we can use Eqs. (3.16) and (3.17). The in-
compressibility condition V,v, = 0 must also be taken
into account. We thus obtain expressions for the veloc-
ity in terms of B and H,

K .
curl v = 2—69 [—H +2uB + u( ln(pr)} )
Ui

K
vy = —69{ — H +2pB+
Y
I ~
+ 1 [—H +2uB 4+ u(; ln(pr)} } . (A3)
K
Ve = —‘am{—H+2pB +
Y
r N
+Z [—H + 2uB + u@; ln(pr)] } -
_K —H +2uB +ul, In(pr)| . (A.4)
2n
Solutions of Eq. (3.18) imply that
B=s |:61[X’0(k17’)6k1m + éz[&yo(kgr)6k2m:| —
(A.5)

1~
- 5(1 ln(pr).,
H = 2s []{:161[(0(/@17’)6_1“10—kgéz[(o(kz’l‘)ekgx] .

Here, the particular representation in Eq. (A.1) is used
and an arbitrary function of y that can contribute to
H is chosen to be zero because V@ — 0 (and hence,
H — 0)asr — oco. In (A.5) é; and é; are dimensionless
differential operators that can be represented as Taylor
series in V/u, i.e., ¢1(V/u) and c2(V/u). These func-
tions must scale with u because the functions must be
found from matching at r ~ u 1.

Additionally, there are two conditions for the vari-
ables in the region ur > 1. First, the correct circula-
tion around the origin leads to the effective §-functional
term in Eq. (A.2),

V2B 4 0,H = —27s6(r). (A.6)

The second condition is the absence of the flux to the

origin,
/d¢ v (r, ¢) = 0. (A7)
Relations (A.6) and (A.7) lead to the conditions
c1(0) + ¢2(0) + %f) =1, (A.8)

(1 + g) [k1c1(0) — kaca (0)] — <p + %) X

G1(0)
2s

X [Cl (0) + CQ(O) + :| + %41 (0) =0. (AQ)

At small I', the solution of Eqs. (A.8) and (A.9) is

k1 — Cko/2
ko — Ck1/2s (4.10)
) ===,

We also assumed that ¢ < 1, which is justified in
Sec. 4B.

APPENDIX B

Suppressed Flow

Here, we demonstrate how the disclination velocity
V' can be found if the hydrodynamic velocity v is negli-
gible (e.g., because a substrate friction). We reproduce
the results in [6-9].

In the absence of the hydrodynamic flow, the equa-
tion for the angle ¢ is purely diffusive,

v = KV, (B.1)

as follows from Eq. (2.6) with v.= 0. We assume
that ¢ — uy as r — oo. The disclination motion is
forced by the «external field» u. We seek a solution
o(t,z,y) = p(x — Vit,y). From Eq. (B.1), we then ob-
tain

2000 + V39 =0, where 2p=~V/K. (B.2)

In what follows, we consider the solution corresponding
to a single disclination with the circulation

%dr Vi =27s, (B.3)
where the integral is taken along a contour encompass-

ing the disclination counter anticlockwise. The quan-
tity s in Eq. (B.3) is an arbitrary parameter (which is
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equal to £1/6 for hexatics, £1/2 for nematic, and +1
for smectic-C' ordering). For a suitable solution of Eq.
(B.2) corresponding to Eq. (B.3), we have

d?q 1
Oy =250, | =L~ ‘o1 —
p=s y/ ST exp(iq-r)

= sexp(—pz)0yKo(pr). (B.4)
This derivative tends to zero as r — oo, as it should
be.

Expression (B.4) does not determine ¢ unambigu-
ously because 9, (uy) = 0, and we can therefore obtain
a new solution by adding a term uy to a given solution.
We note that uy is the zero mode of the Eq. (B.2). The
solution can therefore be written as

»=¢+uy,

o) = =s [ de expi-prgyKaor),

where ¢ tends to zero as r — oo. To relate p and u
in Eq. (B.5), we must know the boundary conditions
at r — 0, or in fact, at r ~ a, where a is the core ra-
dius. At small r, the angle ¢ can be written as a series
@ =¢o+ p1 + ..., where ¢ corresponds to the static
disclination and ¢ is the first correction to g related
to the motion. Matching with the inner problem gives
Vi (a) ~ p. (B.6)
because the solution for the order parameter inside the
core is an analytic function of /a and the expansion in
p is a regular expansion in pa (see [7] and Appendix D).
Expanding Eq. (B.4) in p, we obtain
1 X
Lo -4 4 20
s r r
at pr < 1. In accordance with Eq. (B.5), we then
obtain with the logarithmic accuracy (i.e., in the main
approximation in | In(pa)| > 1) that

v1 = spyIn(pr) + uy. (B.7)
Using boundary condition (B.6), we now obtain
1
u=spln <—> (B.8)
pa
with the same logarithmic accuracy. This can be
rewritten as
2Ku
V=—7--—1— B.9
Sy In(1/pa) (B9)

The same answer (B.9) can be found from the en-
ergy dissipation balance. First of all, we can find the
energy E corresponding to solution (B.5),

E= /d2r%(v¢)2 -
e (L ] 2
=K [ dr U +§(V¢) +udyo|, (B.10)

where the first term is the energy of the external field,
the second term represents the energy of the disclina-
tion itself, and the third term is the coupling energy.
Obviously, only the last cross-term depends on time.
For |z — Vit| > p 1,

oo

0
/dy@wﬂ:{ —2ms

— 00

if >Vt
if <Vt

It then follows from Eq. (B.10) that

OE = —2nsKuV. (B.11)

On the other hand, we can use Eq. (B.1) to obtain

K? 2 2 32
Replacing V2 with 2pd, ¢ here in accordance with Eq.

(B.2), we obtain

OhE = —yV? /d2r (Dp0)2.

The main logarithmic contribution to the inte-

gral comes from the region a < r < p~', where

Oz ~ —sy/r?. We thus obtain

HE = —mws’yV?In <i> .

p (B.13)

Comparing the expression with Eq. (B.11), we find the
same answer (B.9).

APPENDIX C

Extremely small I”

Here, we consider the flow velocity induced by the
moving disclination for extremely small I". The velocity
is zero in the zero approximation in I" (this case is con-
sidered in Appendix B), and we therefore examine the
next, first-order approximation in I". We use the same
formalism and the same notation as in Appendix A.

11*
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In accordance with Appendix A, solutions of the
complete set of nonlinear stationary equations can be
represented as

Opp = 0yB, 0yp=—(H+ 0,B), (C.1)
K ,
curl v = o [0y H+2udyB+2usdy Inr+@'], (C.2)
b= -2
x 8,V ™2 =0, H + 2udy B + 2usd, Inr + '], (C.3)
K,
vy = o
x 0,V 2 [=0,H + 2udyB + 2usd,Inr + ®'], (C.4)

where B, H, and ®' are to be found from the equations

r
— 9yH + 2pd,B + Zv”(v2 — 2ud,) x
X [0y H + 2udyB + 2usdylnr + '] =

r
-3 (ayv—Z [—0yH + 2udyB + 2usd, Inr + &'] x

X 8y B + 0, V"2 [0, H + 2udy B + 2usd, Inr + &' x
x (8, B + H)), (C.5)

$' =2V~ *((0,B + H)9,0,H + 0,Bo;H],  (C.6)

3

V2B 4 0,H = —27s6(r). (C.7)

If I is extremely small, s2I" In*(ua) < 1, the solu-
tion of Eqgs. (C.5)—(C.7) can be continued to the vicin-
ity of the core. In the leading approximation, the solu-
tion for ¢ coincides with the solution for the angle @
in the motionless liquid. This case, examined in [6-9],
is described in Appendix B. The functions By, and Hy,
corresponding to ¢ are given by

2pBr, = Hy, = 2spKo(pr) exp(—pz). (C.8)
This solution gives
: —1
@:%%%m<9ﬁﬂli> (c9)
r a

Y

Neglecting the nonlinear right-hand side of Eq. (C.5)
4rs d?q

we can then find
) =177 / (27)
Pa* = (sT'p/4)(¢ + 2iug,) In (min{(qa)*, (pa)'})
(q2 - 2ik1Qm)(q2 + Qikng)

5 exp(iq - ) X

(C.10)
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B(r) can be found similarly. Using B and H in Egs.
(C.3) and (C.4), we calculate the flow velocity v(r) that
vanishes at infinity.

For r >> p~—! this solution coincides with expressions

(A.5), (A.8), and (A.9) with
m( )

For pr <« 1, expression (C.10) is reduced to (C.8) and
this region produces the main contribution to @’ in
(C.9). The following expressions are obtained in the
inner region (pr < 1) from the solution in Egs. (C.1)-
(C.10):

1

pa

22
<1(0)=28+ > P

1
= <u—sp1n—> y + spyIn z, (C.11)
pa a
K 2
curl v = L plnz%. (C.12)
ar

A relation between p and w is fixed by condition (B.6),
leading to u = spIn[1/(pa)], which is equivalent to Eq.
(B.9). The flow velocity at pr < 1 and In(r/a) > 1 is

2T

_ 5t 2 (!
Va =g VeasVg [y In (a)] ) (C.13)
which corresponds to the stream function
Ks’p 57
Q=-Vy— . yln (5) . (C.14)

The expansion with respect to I' near the disclination
is regular and can be derived from Eqs. (3.8) and (3.9)
with the condition Vi(a) ~ p: @1, + uy is the zero
term of the series for ¢, and expression (C.14) repre-
sents the zero and the first terms for (.

We note that in accordance with Eq. (C.13) in the
limit as I" — 0, the flow velocity tends to zero near the
disclination core, v(a)/V = O(I"), despite the fact that
the disclination itself moves with the finite velocity V;
thus, there is a slipping on the disclination core in this
limit.

APPENDIX D

Solution with the complete order parameter

Here, we consider the dynamic equations for the
coupled velocity field v and the complete order param-
eter U = @ exp(igp/|s|) describing the 2D orientational
order in liquid crystalline films. These equations are
needed to examine the velocity field close to the discli-
nation position. We assume that the core size a is larger
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than characteristic molecular scales and work in the
framework of the mean field theory.

Formally, the equations can be derived using the
Poisson bracket method [30, 37]. In the mean field
approximation, the energy associated with the order
parameter is

1

2a?

Ks?

Ho = — d’r (V\If|2+

(1-ep)*).

its density becomes the K-contribution in Eq. (2.3) at
large scales r > a. The only nontrivial Poisson bracket
that must be added to the standard expressions is [28]

{Jalr1), ¥(ra)} = =Va¥é(r1 —r2) +

n i
2ls|

\Il(rg)ea5V55(r1 - ’I’Q).
To be specific we use the expressions for the energy and
the Poisson bracket for hexatics films. The dynamic
equations are given by

2[(

2
X {va\p* <v2w+ i?w (1- \1/2)> +
a

POtV + pvgVav, = nV3vg — X

+Va ¥ <v2\1f* + a%w (1- |\I/|2)> } —

4

T + vy Ve ¥ =

€V { V2T — UV2T*} 4 V8,
i
mweaﬁvavﬁ +
N Ks?
27s

<v2x11 + G—IQ\IJ (1- |\If|2)> , (D.1)
the relation 5 = s%v/2 ensures the reduction to Eq.
(2.6) in the limit |¥| = 1, and the kinetic coefficients
are believed to be independent of @) (otherwise, we can
assume, for example, the dependence v; = s2v|¥|?/2).
The slow dynamics of a 2D liquid crystalline system
with disclinations can be described by Eqs. (D.1) with
the additional incompressibility condition Vv = 0 that
allows excluding the passive variable ¢.

If the distance from the disclination to a bound-
ary or other disclinations is much larger than a
(i.e., the perturbation of the static solution ¥y
= Qo exp(ipg/|s|) for a single defect is small), we can

linearize Eqs. (D.1) with respect to the perturbation

837

expressed in terms of the respective corrections )1 and
¢1 to Qo and o,

1
1900 =2 { ¥0Qu(t = V3)950n + 5 Q3%ag0

x <(v6 — Vs)Vapo — 56%%%) } +2%5 58V X
1
x |:Q% <(Uu - VM)V,MSDO - ifuuvuvy>:| +
+V.i=0, (D.2)
Ks? V)2 2V o1 Va
5 <v2Q1 _ ( 9920) Ql _ 9912 $o Q0+
Vs S S
1
b (1-308) Q1) = (12 = Va) Vo, (D3
K s> 9 _1
2,)/ Vv 901_'_2@0 (anlva@O"'anOva@l) =

5 (D.4)

EQBVQ’UB + (UB - VB)VBSDO~
In terms of the dimensionless quantities L = nQ/ K,
R =r/a, and I' = 275/(s*n), Eq. (D.2) becomes (as

previously, we consider a disclination with the unitary
topological charge |s| or —|s|)

2
{—432 72 8;L + <V% + EsaR> X

X (Qg <v§, - 2—;8R> L)} =0, (D.5)

1 1
where V% = 9% + EaR + ﬁad% and (Qq is found from

r

4

1 1
(312% + EaR - ﬁ) Qo+ Qo(1-Q7) =0,

Q0(0) =0, Qo(c0) = 1.
If ' > 1, as it follows from Eq. (D.5), a new scale

R~ 1/\/f < 1 appears inside the core, the first term
in Eq. (D.5) can be neglected at larger scales, and there
is no crossover at R ~ 1.

If Qo = 1, Eq. (D.5) is reduced to Eq. (3.12). If
R« 1, Q¢ = AR (A ~ 0.58) and Eq. (D.5) can be
rewritten as

AT
v {V%L + T(R?v%2 - 452)L} =0.

The solution of the equation is a superposition of the
terms A(R)sin(m¢) with different m. After imposing
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the condition A(R) = 0, two constants remain in the
general solution of the ordinary differential equation
for A(R); two partial solutions that are regular near
R =0 are given by

Im| — vm? + 452
2 b

R‘m‘ and R‘m‘gFl <

A’T'R?
4

|m| + vVm? + 4s2
5 , 1+ |m

o)
where o F] the  hypergeometric  function
(2 Fi(a,b, e, 2) 1+ abz/ec+ ...). Two constants
(e.g., the derivatives A(I™D(0) and AI™I+2)(0)) are
chosen to ensure the slowest possible growth at R > 1
in order to eliminate the largest exponent among « in
Eq. (3.13).

If ' > 1, it is possible to derive a better approxi-
mation in the core region. We can expand Qo(R) in a
series, seek a series solution A(R), and extract the terms
of the highest order in I'. For example, for m = 1, the
series for A\(R) begins with I; R + I3R3, which fixes two
constants in the partial solution,

is

1 s2A2'R?

“R)—llR{”m <‘ T8
1—v144s2 14++/1+452 A2T'R?

+ 2F1 ) 3 27 - +
2 2 1
1—+V1+4s2
Tt |71 (f
1+V1+4s2 ) A2FR2>
2 Ty

The solutions of Eqs. (D.3) and (D.4) are given by
Q1 = V(R)0g sin(me), ¢1 = o(R)sin(me),

where ¥ and ¢ must be found from the equations

1 1—|—m2 QQO
" - /_ _ =Y
Y +R19 e Y SR20'+
1
+(1-3Q)v = FEaRQO/\,
1 m? 2 sm?
o, Lo M Bl (L ) _
a-I-Ra R20+Q0< 2 +8RQ00>
(., 1-2s., m?
_2<)\ =N -2,

that generalize the expressions given in Ref. [7].

838

The dynamic equations with the complex order pa-
rameter demonstrate that for all I", the boundary con-
ditions for Eqs. (2.4)—(2.6) experience no significant
changes on the core. The peculiarity of extremely small
I'" leading to the nonslipping condition consists in a slow
growth of VQ far from the disclination.
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