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DISCLINATION MOTION IN LIQUID CRYSTALLINE FILMSE. I. Kats a;b*, V. V. Lebedev a;
 **, S. V. Malinin a;d ***a Landau Institute for Theoreti
al Physi
s, RAS117940, Mos
ow, Russiab Laue-Langevin Institute, F-38042, Grenoble, Fran
e
 Theoreti
al Division, LANL, Los-Alamos, NM 87545, USAd Fors
hungszentrum Jüli
h, D-52425, Jüli
h, GermanySubmitted 24 May 2002We theoreti
ally study a single dis
lination motion in a thin free-standing liquid 
rystalline �lm. Ba
k-�ow e�e
tsand the own dynami
s of the orientational degree of freedom (bond or dire
tor angle) are taken into a

ount.We �nd the orientation �eld and the hydrodynami
 velo
ity distribution around the moving dis
lination, whi
hallows us to relate the dis
lination velo
ity to the angle gradient far from the dis
lination. Di�erent 
ases areexamined depending on the ratio of the rotational and shear vis
osity 
oe�
ients.PACS: 05.20.-y, 82.65.-i, 68.10.-m, 82.70.-y1. INTRODUCTIONPhysi
s of thin liquid-
rystalline �lms has been are
urrent hot topi
 during the past de
ade be
ause oftheir intriguing physi
al properties and a wide range ofappli
ations in display devi
es, sensors, and for manyother purposes. Hexati
, nemati
, and sme
ti
-C liq-uid 
rystalline �lms belong to two-dimensional sys-tems with a spontaneously broken 
ontinuous rota-tional symmetry. An essential role in the behavior ofthe �lms is therefore played by vortex-like ex
itations(dis
linations). Defe
ts are almost ne
essarily presentin liquid 
rystals, and their dynami
s plays a 
ru
ialrole in the overall pattern organization. Early studiesof defe
ts fo
used on 
lassifying the stati
 properties ofthe defe
ts and their intera
tions [1, 2℄. More re
ently,the fo
us has shifted to examining the dynami
s of de-fe
ts (see, e.g., [3℄ and referen
es therein). We notethat although defe
ts are undesirable in most pra
ti-
al appli
ations of liquid 
rystals, su
h as traditionaldisplay devi
es be
ause they destroy an opti
al adjust-ment, there are novel display designs (bistable, mul-*E-mail: kats�ill.fr**E-mail: lebede�landau.a
.ru***E-mail: malinin�itp.a
.ru

tidomain liquid 
rystalline stru
tures) exploiting defe
tproperties.Although experimental dynami
 studies are likelyto be more fruitful than stati
 ones, theoreti
al re-sear
h of the �lm dynami
s is in a rather primitivestage. This is largely a

ounted for by a 
omplexityof dynami
 phenomena in �lms, and a 
omplete andunifying des
ription of the problem is still unavailable.Moreover, some papers devoted to this problem (dy-nami
s of defe
ts) 
laim 
ontradi
ting results. These
ontradi
tions 
ome mainly from the fa
t that di�erentauthors take di�erent mi
ros
opi
 dissipation me
ha-nisms into a

ount, but partially the sour
e of 
ontro-versy is related to semanti
s, be
ause di�erent de�ni-tions of the for
es a
ting on defe
ts are used (see, e.g.,the dis
ussion in [4℄). We believe that su
h problemsare irrelevant, if the ma
ros
opi
 (phenomenologi
al)approa
h to the �lm dynami
s is used.In this paper, we theoreti
ally examine the dis
lina-tion dynami
s in free-standing liquid 
rystalline �lmsat s
ales that are mu
h larger than the �lm thi
kness,where the �lms 
an be treated as 2D obje
ts. Our in-vestigation is devoted to the �rst (but 
ompulsory) stepof defe
t dynami
s studies: a single point dis
linationin a liquid 
rystalline �lm. A number of theoreti
ale�orts [5�9℄ deal with similar problems. Our justi�
a-824
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lination motion in liquid 
rystalline �lmstion for adding one more paper to the subje
t is thefa
t that in the literature, we did not see a full inves-tigation of the problem with the hydrodynami
 ba
k-�ow e�e
ts taken into a

ount. Evidently, these e�e
ts
an drasti
ally modify the dynami
s of defe
ts. Thegoal of this work is to study the dis
lination motionin free-standing liquid 
rystalline �lms on the basis ofhydrodynami
 equations 
ontaining some phenomeno-logi
al parameters (the elasti
ity modulus and shearand rotational vis
osity 
oe�
ients).In our approa
h, the dis
lination is assumed to bedriven by a large-s
ale inhomogeneity in the bond ordire
tor angle, whi
h leads to a motion of the dis
lina-tion with a nonzero velo
ity relative to the �lm. As aphysi
al realization of su
h a nonuniform angle �eld, asystem of dis
linations distributed with a �nite density
an be imagined. The inhomogeneity in the vi
inity ofa given dis
lination is then produ
ed by �elds of otherdis
linations. We 
an also think about a pair of dis
li-nations of the opposite topologi
al 
harges, in whi
h
ase the inhomogeneity is related to the mutual orien-tational distortion �elds 
reated by ea
h dis
linationat the point of its 
ounterpart. In fa
t, the majorityof experimental and numeri
al studies of dis
linationmotions in liquid 
rystals [10�18℄ is devoted to the in-vestigation of the dynami
s of two oppositely 
hargeddefe
ts. We solve the hydrodynami
 equations and �ndthe bond (dire
tor) angle and the �ow velo
ity distri-butions around the moving dis
lination. The resultsenable us to relate the dis
lination velo
ity and thegradient of the angle far from the dis
lination.An obvious 
ontext where our results 
an be appliedis the �lm dynami
s near the Berezinskii�Kosterlitz�Thouless phase transition. The stati
 properties of the�lms near the transition have been investigated in agreat number of papers starting from the famous papersby Berezinskii [19℄ and Kosterlitz and Thouless [20℄.There are several works dis
ussing the theory of dy-nami
 phenomena asso
iated with vortex-like ex
ita-tions in 
ondensed matter physi
s: vorti
es in type-IIsuper
ondu
tors (see, e.g., [21℄), vorti
es in super�uid4He and 3He (see, e.g., [22, 23℄), dislo
ations in 2D
rystals, and dis
linations (and other topologi
al de-fe
ts) in liquid 
rystals (see [10�14; 24�27℄). But mostof the theoreti
al works on the subje
t start from phe-nomenologi
al equations of motion of the defe
ts, andour aim is to derive the equations and to verify theirvalidity.The stru
ture of our paper is as follows. Se
tion 2
ontains basi
 hydrodynami
 equations for liquid 
rys-talline �lms ne
essary for our investigation. In Se
. 3,we �nd the bond (dire
tor) angle and the �ow velo
-

ity around the uniformly moving dis
lination, whi
hallows us to relate the dis
lination velo
ity to the an-gle gradient far from the dis
lination. Di�erent 
ases,depending on the ratio of the rotational and shear vis-
osity 
oe�
ients, are examined in Se
. 4. Se
tion 5
ontains a summary and dis
ussion. The appendi
esare devoted to the details of 
al
ulations of the velo
ityand bond angle �elds around the moving dis
lination.Those readers who are not very interested in mathe-mati
al derivations 
an skip these Appendi
es, �ndingall the essential physi
al results in the main text of thepaper.2. BASIC RELATIONS FOR LIQUIDCRYSTALLINE FILMSWe formulate the basi
 relations needed to des
ribea dis
lination motion in thin liquid 
rystalline �lms.Here, we investigate freely suspended hexati
, nemati
and sme
ti
-C �lms that 
an be pulled from 3D (bulk)sme
ti
s [3℄. We examine s
ales larger than the �lmthi
kness, where the �lms 
an be treated as two-dimensional obje
ts and 
an be des
ribed in terms of ama
ros
opi
 approa
h 
ontaining some phenomenolog-i
al parameters.Liquid 
rystalline �lms with the in-plane orienta-tional ordering of di�erent types (hexati
, nemati
, andsme
ti
-C) are observed experimentally. In these �lms,as in 3D nemati
 liquid 
rystals, the rotational sym-metry is spontaneously broken. The general analysisof their symmetry 
an be found in [28℄. The sme
ti
-C �lms are 
hara
terized by the dire
tor that is tiltedwith respe
t to the normal to the �lm, whi
h de�nesa preferred dire
tion in the plane of the �lm. The or-dering of this type 
an be des
ribed by a ve
tor Q�(the subs
ripts denoted by Greek letters take two val-ues, be
ause we treat the �lms as 2D obje
ts). Thenemati
 �lms have higher symmetry D2, whi
h 
orre-sponds to the 2D nemati
 phase. The order parameterof the nemati
 phase is the irredu
ible (tra
eless) sym-metri
 tensor of the se
ond rank Q��. In the hexati
�lms (pulled from sme
ti
s-B), mole
ules are lo
ally ar-ranged in a triangular latti
e, but the latti
e is not anideal one. The positional order does not extend overdistan
es larger than several mole
ular sizes. Never-theless, the bond order extends over ma
ros
opi
 dis-tan
es. The phase is therefore 
hara
terized by the D6hpoint group symmetry, and hen
e, the order parameterfor the 
ase is the sixth-rank symmetri
 irredu
ible ten-sor Q��
Æ�� . In liquid 
rystalline �lms of all the typesenumerated above, the order parameter Q has two in-825
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omponents (e.g., Qxx and Qxy for the 2Dnemati
s). We note that the order 
an be readily ob-served in the sme
ti
-C or nemati
 �lms by looking forin-plane anisotropies in quantities su
h as the diele
-tri
 permeability tensor. Be
ause of its intrinsi
 sixfoldrotational symmetry, the hexati
 orientational order ishardly observable. But it 
an be dete
ted, e.g., as asixfold pattern of spots in the in-plane monodomainX-ray stru
ture fa
tor, proportional to Q��
Æ�� (see,e.g., [3℄ and referen
es therein).In a

ordan
e with the Goldstone theorem, in �lmsof all types with a broken rotational symmetry, the onlydegree of freedom of the order parameter that is rele-vant at large s
ales is an angle ' (like the phase of theorder parameter for the super�uid 4He). In hexati
s,it is the bond angle, whereas in 2D nemati
s and insme
ti
-C �lms, it is an angle related to the dire
tor.It is 
onvenient to express a variation of the order pa-rameter in terms of a variation of the angle '. For thesme
ti
-C �lms, the relation isÆQ� = �Æ'���Q�; (2.1)where ��� is the two-dimensional antisymmetri
 tensor.For an orientational order with a higher symmetry, therelation has a similar form. For example, for hexati
�lms, ÆQ��
Æ�� = �Æ'���Q��
Æ�� + : : : ; (2.2)where the dots represent the sum of all other possi-ble 
ombinations of the same stru
ture. Therefore, for�lms of all types, the order parameter 
an be 
hara
ter-ized by its absolute value jQj and the phase ', whi
h aretraditionally represented as a 
omplex quantity 	 (see,e.g., [24℄). The quantity is written as 	 = jQj exp(6i')for hexati
 �lms, as 	 = jQj exp(2i') for 2D nemati
�lms, and as 	 = jQj exp(i') for sme
ti
-C �lms.The angle ' should be in
luded into the set of thema
ros
opi
 variables of the �lms. A 
onvenient start-ing point of the 
onsideration is the energy density (perunit area) �v2=2 + ", where � is the 2D mass density,v is the �lm velo
ity, and " is the internal energy den-sity. The latter is a fun
tion of the mass density �, thespe
i�
 entropy �, and the angle '. In fa
t, " dependson r', be
ause any homogeneous shift of the angle 'does not a�e
t the energy. For hexati
 �lms, the lead-ing terms of the energy expansion over gradients of 'are " = "0(�; �) + K2 (r')2; (2.3)where K is the only (be
ause of the hexagonal symme-try) orientational elasti
 module of the �lm. For low-symmetry �lms (2D nemati
 or sme
ti
-C �lms) two

orientational elasti
 modules are introdu
ed, the longi-tudinal and transversal ones with respe
t to the spe-
i�
 in-plane dire
tion (
hara
terized by the so-
alled
-dire
tor). But �u
tuations of the dire
tor lead to arenormalization of the modules, and isotropization ofthe sme
ti
-C or 2D nemati
 �lms [29℄ o

urs at larges
ales. The same isotropi
 expression (2.3) for the elas-ti
 energy 
an therefore be used at large s
ales.The 
omplete dynami
 equations for the freely sus-pended liquid 
rystalline �lms, valid at the s
ales largerthan the �lm thi
kness, 
an be found in [30℄. We
onsider a quasistationary motion of the dis
lination.Then hard degrees of freedom are not ex
ited. Inother words, we 
an a

ept in
ompressibility and ne-gle
t bending deformations (whi
h are suppressed bythe presen
e of the surfa
e tension in freely suspended�lms). Similarly, the thermo-di�usive mode is not ex-
ited for the quasistationary dis
lination motion, whi
himplies the isothermal 
ondition. For freely suspended�lms, su
h e�e
ts as the substrate fri
tion (relevant,e.g., for Langmuir �lms) are absent. In des
ribing thedis
lination motion, we 
an therefore 
onsider the sys-tem of equations for only the velo
ity v and the angle'. The equations have to be formulated under the 
on-ditions � = 
onst, T = 
onst (where T is the tempera-ture), and rv = 0.The equation for the velo
ity follows from the mo-mentum density j = �v 
onservation law,�tj� = �r� [T�� � �(r�v� +r�v�)℄ ; (2.4)where T�� is the rea
tive (nondissipative) stress tensorand � is the 2D shear vis
osity 
oe�
ient of the �lm.For two-dimensional hexati
s, the rea
tive stress tensoris (see [30℄, 
hapter 6)T�� = �v�v� � &Æ�� +Kr�'r�'�� K2 ��
r
r�'� K2 ��
r
r�'; (2.5)where & = "� ��"=�� is the surfa
e tension. We notethat the ratio K�=�2 is a dimensionless parameter that
an be estimated by substituting 3D quantities insteadof 2D ones (be
ause all the 2D quantities 
an be es-timated as the 
orresponding 3D quantities times the�lm thi
kness, and the latter drops from the ratio). Forall known liquid 
rystals, the ratio is 10�3�10�4 (see,e.g., [1�3; 31℄), and 
an therefore be treated as a smallparameter of the theory.The se
ond dynami
 equation, the equation for thebond angle, is�t' = 12���r�v� � v�r�'+ K
 r2'; (2.6)826



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dis
lination motion in liquid 
rystalline �lmswhere 
 is the so-
alled 2D rotational vis
osity 
oe�-
ient. We did not �nd the values of the 
oe�
ient 
 forthin liquid 
rystalline �lms in the literature. For bulkliquid 
rystals (see, e.g., [1�3; 31℄), the 3D rotationalvis
osity 
oe�
ient is usually several times larger thanthe 3D shear vis
osity 
oe�
ient. We 
an therefore ex-pe
t that 
 > �. But in order to span a wide range ofpossibilities, we treat the dimensionless ratio � = 
=�as an arbitrary parameter in what follows.If dis
linations are present in the �lm, it is no longerpossible to de�ne a single-valued 
ontinuous bond-anglevariable '. But the order parameter is a well-de�nedfun
tion of 
oordinates that goes to zero at the dis
lina-tion position. The gradient of '(t; r) is a single-valuedfun
tion of r and is analyti
 everywhere ex
ept at anisolated point, the position of the dis
lination. Thephase a
quires a 
ertain �nite in
rement at ea
h rota-tion around the dis
lination,I dr�r�' = 2�s; (2.7)where the integration 
ontour is a 
losed 
ounter
lo
k-wise loop around the dis
lination position and s is thetopologi
al 
harge of the dis
lination: s = (1=6)n forthe hexati
 ordering, s = (1=2)n for the 2D nemati
symmetry, and s = n for the sme
ti
-C �lms, where nis an integer. We 
an restri
t ourselves to dis
linationswith the unitary 
harge n = �1 only, be
ause dis
lina-tions with larger jsj possess a higher energy than theset of unitary dis
linations with the same net topolog-i
al 
harge, and defe
ts with larger 
harges are there-fore unstable with respe
t to the disso
iation to theunitary ones. Therefore, dis
linations with the 
hargesjnj > 1 do not play an essential role in the physi
s of�lms [1�3; 31℄. To write the expressions given below ina 
ompa
t form, we keep the notation s for the topolog-i
al 
harge, with the respe
tive values jsj = 1; 1=2; 1=6for the sme
ti
-C, nemati
, and hexati
 �lms.The stati
 bond angle is determined by the station-ary 
ondition ÆE=Æ' = 0, whereE = Z d2r ��2v2 + "�is the energy of the �lm. For the energy density inEq. (2.3), the 
ondition is redu
ed to the Lapla
e equa-tion r2' = 0. For an isolated stati
 dis
lination, thereis a symmetri
 solution of this equation '0 that satis�esEq. (2.7) and whose gradient is given byr�'0 = �s��� r� �R�(r�R)2 ; (2.8)whereR is the position of the dis
lination. If the originof the referen
e system is pla
ed at this point, we 
an

write '0 = s ar
tg(y=x), where x and y are 
oordinatesof the observation point r. In dynami
s, distribution(2.8) is disturbed as ' varies in time. It is also per-turbed be
ause of the presen
e of an angle distortionrelated to boundaries or other dis
linations.In what follows, we have in mind a 
ase where asystem of a large number of dis
linations (with an un-
ompensated topologi
al 
harge) is 
reated. For 3Dnemati
s, this 
an be done rather easily [1�3℄, be
ausethe energies of positive and negative defe
ts are di�er-ent due to the intrinsi
 elasti
 anisotropy. We are un-aware of experimental or theoreti
al studies of defe
tnu
leation me
hanisms in free-standing �lms. Hope-fully, the situation with a �nite 2D density of defe
ts
an also be realized for �lms (for instan
e, the defe
ts
ould even appear spontaneously as a me
hanism torelieve frustrations in 
hiral sme
ti
 or hexati
 �lms,similarly to the formation of the Abrikosov vortex lat-ti
e in super
ondu
tors [32℄). Examining the motionof a dis
lination in this 
ase, we investigate a vi
inityof the dis
lination of the order of the inter-dis
linationdistan
e. Far from the dis
lination, the bond angle '
an then be written as 
onst + ur, where u is mu
hlarger than the inverse inter-dis
lination distan
e (be-
ause the number of dis
linations is large). Near thedis
lination position, the bond angle ' 
an be approx-imated by expression (2.8). Our main problem is toestablish a general 
oordinate dependen
e of ' and v,whi
h in parti
ular allows relating the bond (dire
tor)angle gradient u and the velo
ity of the dis
lination.3. FLOW AND ANGLE FIELDS AROUND AUNIFORMLY MOVING DISCLINATIONHere, we pro
eed to the main subje
t of our study, asingle dis
lination driven by a large-s
ale inhomogene-ity in the bond (dire
tor) angle '. The dis
linationvelo
ity is determined by an interplay of the hydrody-nami
 ba
k-�ow and the intrinsi
 dynami
s of the an-gle '. To �nd the dis
lination velo
ity, one has to solvethe system of equations (2.4), (2.5), and (2.6) with 
on-straint (2.7) ensuring a suitable asymptoti
 behavior.As we explained in the previous se
tion, the angle 'is supposed to behave as 
onst+ ur at large distan
esfrom the dis
lination. We work in the referen
e systemwhere the �lm as a whole is at rest. This means thatthe �ow velo
ity ex
ited by the dis
lination must tendto zero far from the dis
lination.We 
onsider the situation where the dis
linationmoves with a 
onstant velo
ity V. The angle ' andthe �ow velo
ity are then fun
tions of r � Vt (where827
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lination position). Equation (2.4)for the velo
ity 
an then be written as�(V� � v�)r�v� + �r2v� + K2 ���r�r2'��Kr�'r2'+r� �& � K2 (r')2� = 0: (3.1)We 
an omit the �rst (inertial) term in the left-handside of (3.1), whi
h is small be
ause of the smallness ofthe parameter K�=�2. It then follows from Eqs. (2.4)�(2.5) thatr2v�+K2� ���r�r2'�K� r�'r2'+r�$ = 0; (3.2)where $ = ��1[& � (K=2)(r')2℄. Under the same 
on-ditions, the equation for the angle ' following fromEq. (2.6) isr2'+ 
K V�r�' = 
K v�r�'� 
2K���r�v� : (3.3)We seek a solution 
hara
terized by the asymptoti
 be-havior that the velo
ity v vanishes and r' tends to a
onstant ve
tor u as r !1. It is 
lear from the sym-metry of the problem that the gradient u of the bondangle is dire
ted along the Y axis if the velo
ity is di-re
ted along the X axis. Therefore, '! uy as r !1.Our problem is to �nd a relation between V and u,that is, between the dis
lination velo
ity and the bondangle gradient far from the dis
lination. There are twodi�erent regions: the region of large distan
es r � u�1and the region near the dis
lination r � u�1. At largedistan
es, 
orre
tions to the leading behavior ' � uyare small and the problem 
an be treated in the linearapproximation with respe
t to these 
orre
tions. In theregion near the dis
lination, ' is 
lose to stati
 value(2.8) and the �ow velo
ity v is 
lose to the dis
linationvelo
ity V (the spe
ial 
ase where the ratio 
=� is ex-tremely small is dis
ussed in Se
. 4C). In what follows,these two regions are examined separately. The rela-tion between u and V 
an be found by mat
hing theasymptoti
s at r � u�1. As a result, we obtainV = K� Cu; (3.4)where C is a dimensionless fa
tor depending on the di-mensionless ratio � = 
=�. This fa
tor C is of the orderof unity if � � 1. We are interested in the asymptoti
behavior of C at small and large � .A. The region near the dis
linationWe 
onsider the region r � u�1. Here, we 
an write' = '0(r�R) + '1(r�R); (3.5)

where R = Vt is the dis
lination position, '0 is thestati
 bond (dire
tor) angle with gradient (2.8), and'1 is a small 
orre
tion to '0. The gradients of '0 aredetermined by Eq. (2.8).Linearizing Eqs. (3.2) and (3.3) with respe
t to '1,we obtain�r2v� + K2 ���r�r2'1 �Kr�'0r2'1 ++r� �& � K2 (r')2� = 0; (3.6)r2'1 � 
K v�r�'0 + 
2K���r�v� == � 
KV�r�'0: (3.7)Introdu
ing a new variable � = (K=�)r2'1 we rewriteEqs. (3.6), (3.7) asr2v� + 12���r���r�'0�+r�$ = 0; (3.8)�� �v�r�'0 + �2 ���r�v� = ��V���'0; (3.9)where � = 
=�, as above, and$ = ��1 �& �K=2(r')2�. It follows from Eq.(3.8) and r�v� = 0 that r2$ = r�'0r��. Asolution of the system in Eqs. (3.8)�(3.9) 
an bewritten as v� = V� + ���r�
; (3.10)where V� is the obvious (be
ause of the Galilean in-varian
e) for
ed solution and the stream fun
tion 
des
ribes a zero mode of system (3.8)�(3.9). The sys-tem is homogeneous in r, and 
 is therefore a sum of
ontributions that are power-like fun
tions of r.Taking the 
url of Eq. (3.8), we obtain�r4
� 12r2�� �
�r�'0r
� = 0: (3.11)Substituting � expressed in terms of v from Eq. (3.9)in Eq. (3.11) and using expli
it expressions (2.8) for thederivatives of '0, we obtain�1 + �4 �r4
+ s� � 2r2 �2r
� 1r2r2
�� s 1r2 �2r
 + s 1r3 �r
� = 0 (3.12)828
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lination motion in liquid 
rystalline �lmsin the polar 
oordinates (r; �). Solutions of Eq. (3.12)are superpositions of the terms / r�+1 exp(im�). Sub-stituting this r; �-dependen
e in Eq. (3.12), we obtainan equation for � that has the roots� = � 1p2"2 + 2m2 � s(1� s) ~� ����2 + 2m2 � s(1� s) ~��2�� 4s ~� (m2 � 1 + s)� 4(m2 � 1)2o1=2#1=2; (3.13)where ~� = � (1 + �=4)�1. Hen
e, 0 < ~� < 4 for any
 and �. Evidently, all the roots in Eq. (3.13) are real.We emphasize that there is no solution � = 0 (
orre-sponding to a logarithmi
 behavior of the velo
ity in r)among the set (3.13). The �rst angular harmoni
 withjmj = 1 is of parti
ular interest be
ause '1 = ur sin�and 
 = �V r sin� far from the dis
lination. If � issmall, there is a pair of small solutions among (3.13),� = ��1; �1 = sp� =2; (3.14)for m = �1. Otherwise, for any other relevant m,solutions (3.13) have no spe
ial smallness (terms withm = 0 are forbidden be
ause of the symmetry).We established that 
 is a superposition of theterms / r�+1 exp(im�) with the exponents � deter-mined by Eq. (3.13). The velo
ity 
an then be foundfrom Eq. (3.10). To avoid a singularity in the velo
ityat small r, one should keep 
ontributions with posi-tive � only. In other words, the velo
ity �eld 
ontains
ontributions with all powers � given by (3.13), but thefa
tors at the terms with negative � are formed at r � a(where a is the dis
lination 
ore radius), and the 
or-responding 
ontributions to the velo
ity are thereforenegligible at r � a (this statement must be 
lari�edand re�ned for small negative exponents ��1 in thelimit of small � , see Se
. 4C). We 
on
lude that the
orre
tion to V in the �ow velo
ity v related to 
 inEq. (3.10) is negligible at r � a. We thus arrive at thenon-slipping 
ondition for the dis
lination motion: thedis
lination velo
ity V 
oin
ides with the �ow velo
ityv at the dis
lination position.Next, to �nd ', one should solve the equation(K=�)r2' = �, where � is determined from Eq. (3.9).In addition to the part determined by the velo
ity, '1
an then involve zero modes of the Lapla
ian. Themost dangerous zero mode is Uy, be
ause it produ
es

a nonzero momentum �ux to the dis
lination 
ore (andthe Magnus for
e asso
iated to it),I dr� ���T�
 � KU: (3.15)But be
ause of the 
ondition � 6= 0, all the 
ontribu-tions to the velo
ity 
orrespond to zero vis
ous mo-mentum �ux to the origin. Consequently, it is impos-sible to 
ompensate the Magnus for
e by other terms.The above reasoning leads us to the 
on
lusion thatthe fa
tor U (and therefore, the Magnus for
e) mustbe zero. Thus, '1 
ontains only terms proportional tor�+1 with � > 0. This 
on
lusion is related to thefa
t that for free-standing liquid 
rystalline �lms, anydistortion of the bond angle unavoidably produ
es hy-drodynami
 ba
k-�ow motions (i.e. v 6= 0). For liq-uid 
rystalline �lms on substrates (Langmuir �lms), in
ontrast to free-standing �lms, hydrodynami
 motions(ba
k-�ows) are strongly suppressed by the substrate,and the situation where the ba
k-�ow is irrelevant forthe dis
lination motion 
an be realized.B. The remote regionLet us 
onsider the region r � u�1, where we 
anwrite ' = uy+ ~' and linearize the system of equations(3.2) and (3.3) with respe
t to ~'. We then obtain thesystem of linear equations for v and ~',r2v�+K2� ����r�r2 ~'�2u�r2 ~'�+r�$ = 0;(r2 + 2p�x) ~'+ 
2K (���r�v� � 2uvy) = 0; (3.16)where p = V 
=2K. Taking the 
url of the �rst equationand eliminating the Lapla
ian, we obtain���r�v� = K2� ��r2 + 2u�x� ~'+�� ; (3.17)where � is a harmoni
 fun
tion. In terms of �, system(3.16) is redu
ed to��1+�4 �r4+2pr2�x��u2�2x� ~' = �2 u�x�: (3.18)Equation (3.18) 
an be written as(r2 + 2k1�x)(r2 � 2k2�x) ~' = ~�2 u�x�; (3.19)k1;2 = 12(1+�=4)  sp2+� �1+�4 �u2�p! : (3.20)829
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har-a
teristi
 wave ve
tors. We 
on
lude from Eq. (3.19)that zero modes of the operator in the left-hand side ofthe equation are proportional toexp(�k1r � k1x); exp(�k2r + k2x);that is, they are exponentially small everywhere outsidenarrow angular regions near the X axis. The behav-ior of the zero modes inside the regions is power-likein r. In addition, there is a 
ontribution to ~' relatedto the harmoni
 fun
tion �. It 
ontains a part thatde
ays as a power of r (the leading term is / r�1) atr � u�1. This solution is examined in more detail inAppendix A.4. DIFFERENT REGIMES GOVERNED BY �The behavior of the velo
ity and the bond (dire
tor)angle �elds around the moving dis
lination is sensitiveto the ratio of the rotational and the shear vis
osity 
o-e�
ients � = 
=�. In this se
tion, we examine di�erent
ases depending on the � value.A. The 
ase where � &&& 1We start analyzing di�erent mobility regimes withthe most probable 
ase where � & 1. If � � 1, thenthe fa
tor C in Eq. (3.4) is of the order 1 and u � p. Itthen follows from Eqs. (3.20) that k1; k2 � u. This isa manifestation of the fa
t that there is a unique 
har-a
teristi
 s
ale in this 
ase, given by u�1. We 
an thenestimate ~' by mat
hing the solutions in the regionsnear the dis
lination and far from it at r � u�1. We
on
lude that it is a fun
tion of the dimensionless pa-rameter ur; the fun
tion is of the order of unity, whenits argument ur is of the order of unity.For large � , there remains a unique 
hara
teris-ti
 s
ale u�1, and 
onsequently, C � 1 in this 
ase.To prove the statement, we �rst treat small distan
esr � u�1. As shown in Se
. 3A, the respe
tive 
orre
-tions '1 and Æv to '0 and V are expanded in the seriesover the zero modes 
hara
terized by exponents (3.13).In parti
ular, form = 1, we 
an write '1 � uy(ur)�. Inthe large-� limit, the exponents � given by (3.13) areregular be
ause ~� ! 4. From (3.13), we have �1 � 1,and in this 
ase, � � K�r2 uy(ur)�1 :Comparing Eqs. (3.8) and (3.9), we 
on
lude thatfor large � , the term involving � 
an be omitted in

Eq. (2.9), and the equation therefore be
omes a 
on-straint imposed on the velo
ity. Equation (3.8) thengives jÆvj � K�ruy(ur)�1 :The dis
lination velo
ity 
an now be found from therelation V � jÆvj at the s
ale u�1, that is, p � �u, orC � 1. The 
omplete analysis also 
overs the remoteregion. With the 
ondition p � �u, it follows thatk1;2 � u�1. Using the pro
edure given in Appendix A,we 
an then prove that the solutions in the two regions
an be mat
hed at r � u�1, and therefore, there areno new 
hara
teristi
 s
ales, indeed. We also note thatthe rotational vis
osity 
 drops from the hydrodynami
equations at large � . Although this is not true insidethe dis
lination 
ore (see Appendix D), the boundary
onditions for v and ' on the 
ore boundary reveal nodramati
 
hanges of the behavior. Consequently, it isthe shear vis
osity alone that determines the dis
lina-tion mobility, whi
h implies that C � 1.We 
an therefore say that in the limit as � ! 1,no additional features appear 
ompared to � � 1. Butthis is not the 
ase for small � , be
ause u � p for� � 1. We study this 
ase in the next Subse
tion.B. Small �Here, we 
onsider the 
ase where � � 1. Thislimit is physi
ally attained at anomalously large �, withK�=�2 still treated as the smallest dimensionless pa-rameter. This justi�es the use of the same equations(3.2) and (3.3) as in the previous subse
tions.For r � u�1, the analysis given in Se
. 3A is 
or-re
t. As we noted, the 
ontributions to v and '1 relatedto the modes with negative � should not be taken intoa

ount there. For � � 1, the leading role is played bythe mode with the smallest exponent (�1 = sp�=2),be
ause the presen
e of modes with positive exponents� � 1 would 
ontradi
t the 
ondition of smooth mat
h-ing at r � u�1. Stri
tly speaking, negle
ting a smallnegative exponent ��1 is 
orre
t under the 
ondition�1j ln(ua)j � 1, where a is the 
ore radius of the dis
li-nation. This is the 
ase 
onsidered in this subse
tion.The opposite 
ase, whi
h we 
all the extremely small-�limit, is analyzed in Se
. 4C. At r � u�1, we 
an there-fore write'1 � uy(ur)�1 ; V � vx � �1uK
 (ur)�1 ; (4.1)with the 
oe�
ient at y(ur)�1 determined from mat
h-ing at r � u�1, where r' � 1=r. Similarly, mat
hing830
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lination motion in liquid 
rystalline �lmsV � vx � V at r � u�1 gives V � �1uK=
. The rela-tion 
an be rewritten as p � �1u� u, and we therefore
on
lude that C � 1=p� .In a

ordan
e with Eq. (3.20), the relationp � p� u leads to k1;2 � p� u. In other words, a news
ale p�1 (di�erent from u�1) appears in the problem.A detailed investigation of the remote region r � u�1is therefore needed to establish the r-dependen
es ofthe bond angle ' and the velo
ity �eld v there. Thisinvestigation 
an be based on the equations formulatedin Se
. 3B, whi
h are 
orre
t irrespe
tively of the valueof pr.Expli
it expressions des
ribing the velo
ity and theangle are presented in Appendix A. They 
ontainthree dimensionless fun
tions �1(r=u), 
1(r=u), and
2(r=u). At ur � 1, only zero terms of the expan-sions of these fun
tions in the Taylor series 
an be kept.Only one of these three 
oe�
ients is independent, seeEq. (A.10). The general solution 
an therefore be ex-pressed in terms of a single parameter, whi
h we 
hooseas � � �1(0). The pro
edure 
orresponds to the follow-ing 
onstru
tion of the solutions to equations of motion(3.16) in the region ur � 1. We have to mat
h thesolutions in the outer and the inner regions (far fromand 
lose to the dis
lination respe
tively) at ur � 1.Te
hni
ally, the mat
hing is equivalent to the appro-priate boundary 
onditions for the outer problem atur � 1, and these boundary 
onditions 
an be formallyrepla
ed by the lo
al sour
e terms in the equations,a
ting at ur � 1. We 
an expand these sour
es in thestandard multipolar series. We thus arrive at the ex-pansion with respe
t to the gradients of the Æ fun
tion.The gradients s
ale as u, and therefore, �, 
1, and 
2 aredimensionless fun
tions of the dimensionless ratior=u.To �nd the asymptoti
 behavior of the angle 'and of the velo
ity v, we �rst 
onsider the regionu�1 � r � p�1. From Eqs. (A.4), (A.5), and (A.10),we then derivevx = K(2s� �)
u k1k2 ln(pr); (4.2)where we keep only the leading logarithmi
 
ontribu-tion of the zero harmoni
 in vx. Mat
hing the velo
-ity derivatives determined by Eqs. (4.1) and (4.2) atr � u�1, we �nd that � � 1 (we imply that s � 1).Using Exps. (A.2), (A.5), and (A.10), we obtain' = '0 + uy + spy ln(pr) (4.3)in the region u�1 � r � p�1. We see that there is onlya small 
orre
tion to the simple expression '0 + uy inthat region, be
ause p� u.

In the region pr � 1, the expressions for the an-gle ' and the velo
ity v are more 
ompli
ated. UsingEqs. (A.2), (A.3), (A.4), and (A.5), we obtain�x' = �sr�2 h
1pk1 exp(�k1r � k1x) ++
2pk2 exp(�k2r + k2x)i yr3=2 � �2 yr2 ; (4.4)�y' = u� 2sr�2 h
1pk1 exp(�k1r � k1x)��
2pk2 exp(�k2r + k2x)i 1r1=2 + �2 xr2 ; (4.5)vy = K
u �2sr�2 h
1k2pk1 exp(�k1r � k1x) ��
2k1pk2 exp(�k2r + k2x)i yr3=2 � p� yr2o ; (4.6)vx = �K
u �r�2 s�u2 � 
1pk1r exp(�k1r � k1x)++ 
2pk2r exp(�k2r + k2x)�+ p� xr2� ; (4.7)where 
1 � 1 and 
2 � 1 are determined by Eq.(A.10) (we omitted the argument 0 to simplify the nota-tion). Expressions (4.4), (4.5), (4.6), and (4.7) 
ontainterms of two types, isotropi
 and anisotropi
 ones. Theanisotropi
 
ontributions are essential only in the nar-row angular regions near the X axis, where they dom-inate. It is worth noting a very nontrivial stru
tureof the �ow, in whi
h the isotropi
 �ux to the origin is
ompensated by the anisotropi
 terms.The expressions found in this subse
tion general-ize the famous Lamb solution for the hydrodynami
�ow around a hard 
ylinder, (see, e.g., [33�35℄) wherethe velo
ity �eld is exponentially small everywhere farfrom the 
ylinder ex
ept for the wake of the 
orps,i.e., in a very narrow angular se
tor (�tail�). Dis
lina-tion motion in liquid 
rystalline �lms 
an be regardedas the motion of a 
ylinder framed by a �soft� (i.e.,deformable) orientational �eld '. Be
ause of the ad-ditional degree of freedom (
ompared to the 
lassi
alLamb problem), our solution has two tails around themoving dis
lination: wake, beyond the dis
lination,and pre
ursor in front of it. In fa
t, both degrees offreedom (the �ow velo
ity and the bond angle) are rel-evant.831
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ondition�1j ln(ua)j � 1 (we re
all that �1 = sp�=2 at small� ), imposing a restri
tion from below on � at a given u.If �1j ln(ua)j � 1, the terms with both � = ��1 deter-mined by Eq. (3.14) must be taken into a

ount nearthe dis
lination, whi
h leads to a logarithmi
 behaviorof the 
orre
tion '1 to '0 in that region,'1 � uy ln�ra� j ln(au)j�1; (4.8)instead of Eq. (4.1). Mat
hing the derivativesof expressions (4.3) and (4.8) at r � u�1 givesp � uj ln(au)j�1. In other words, C � [� ln(au)℄�1.This 
ase formally 
orresponds to the limit � ! 1 inour equations, where we 
an drop the ba
k-�ow hydro-dynami
 velo
ity in the equation for the bond angle.The situation was examined in the works [6�9℄. Wepresent the simple analysis of the 
ase in Appendix B.We also note that there is no 
rossover at r � u�1 inthe bond angle behavior in this situation.We now 
larify the question regarding the Magnusfor
e in this 
ase. In a

ordan
e with Eq. (4.8), therea
tive momentum �ux to the dis
lination 
ore isI dr� ���T�
 � Ku ln� ra� j ln(au)j�1:The �ux is therefore r-dependent, tending to zero asr ! a. This rea
tive momentum �ux is 
ompensatedby the vis
ous momentum �ux (related to derivativesof the �ow velo
ity v), whi
h is nonzero in this 
asebe
ause of the logarithmi
 behaviour of the �ow velo
-ity in r near the dis
lination. The �ow velo
ity 
an befound from Eqs. (3.6) and (4.8) asv� � Ku�j ln(au)j ���r� hy ln2 �ra�i ;whi
h is a generalization of the Stokes�Lamb so-lution [33, 34℄. But unlike in the Lamb prob-lem (a hard 
ylinder moving in a vis
ous liquid),jV � v(r = a)j � V in our 
ase, i.e., we have a slippingon the 
ore of the moving dis
lination. This slippingseems natural in the limit of extremely small valuesof � , 
orresponding to the limit � ! 1, that is, toa strongly suppressed hydrodynami
 �ow. Physi
ally,this property implies that the dis
lination 
annot beunderstood as a hard impenetrable obje
t. It is alsoworth noting that the logarithmi
 behavior found aboveis similar to the general feature of two-dimensional hy-drodynami
 motion that 
omes from the well-knownfa
t (see, e.g., [33�35℄) that nonlinear terms 
annot benegle
ted in a two-dimensional laminar �ow even for a

small Reynolds number; these terms be
ome relevantfor su�
iently large distan
es. But in our 
ase, thesenonlinear terms do not 
ome from the 
onve
tive hy-drodynami
 nonlinearity; they 
ome from the terms instress tensor (2.4) that are nonlinear in '.An expli
it expression for ' and its asymptoti
forms 
orresponding to the 
onsidered 
ase are given inAppendix B. An expression for the �ow velo
ity �eldindu
ed by the dis
lination motion at extremely small� is derived in Appendix C.5. CONCLUSIONSWe now summarize the results of our paper. To un-derstand physi
s underlying the freely suspended �lmdynami
s, we studied the ground 
ase � a single dis
li-nation motion in a thin hexati
, sme
ti
-C or nemati
liquid 
rystalline �lm, driven by an inhomogeneity inthe bond (or dire
tor) angle. We investigated the uni-form motion (the one with a 
onstant velo
ity). In this
ase, we derived and solved the equations of motionand found the bond angle and hydrodynami
 velo
itydistributions around the dis
lination. This allows us torelate the velo
ity of the dis
lination V to the bond an-gle gradient u = jr'j in the region far from the dis
li-nation. That is why so mu
h e�ort is needed: the fullset of the equations must be solved every where, notonly lo
ally. We established the proportionality 
oef-�
ient C (see Eq. (3.4)) in this nonlo
al relationship;it has the meaning of an e�e
tive mobility 
oe�
ient.The 
oe�
ient C depends on the dimensionless ratio �of rotational (
) and shear vis
osity (�) 
oe�
ients.There is little experimental knowledge of the valuesof the 
oe�
ients 
 and � in liquid 
rystalline �lms. Itis generally believed that the 
orresponding values in a�lm (normalized by its thi
kness) and in a bulk materialare not very di�erent [31, 3℄, in whi
h 
ase we are in theregime of � � 1, where the 
oe�
ient C is of the order1. But the 
ase where � � 1 is not ex
luded from theboth theoreti
al and material s
ien
e standpoints. Wefound the 
oe�
ient C � 1=p� in the small-� limit.We established a highly nontrivial behavior of the �owvelo
ity and of the bond angle, whi
h is power-like in rnear the dis
lination and extremely anisotropi
 far fromit. Only for extremely small � , � � 1= ln2(ua) (wherea is the dis
lination 
ore radius), we found a logarith-mi
 behavior C � [� ln(ua)℄�1. The main message ofour study is that the hydrodynami
 motion (that is,the ba
k-�ow), unavoidably a

ompanying any defe
tmotion in liquid 
rystals, plays a signi�
ant role in thedis
lination mobility. Experimental eviden
e (see, e.g.,832
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lination motion in liquid 
rystalline �lmsthe re
ent publi
ation [36℄) shows that this is indeedthe 
ase.Our analysis 
an be applied to the motion of a dis
li-nation pair with the opposite topologi
al 
harges. Inthis 
ase, the role of the s
ale u�1 is played by thedistan
e R between the dis
linations. In a

ordan
ewith Eq. (3.4), we then �nd that �tR / R�1 withouta logarithm (provided the rotational vis
osity 
oe�-
ient 
 is not anomalously small, see Se
. 4C for thequantitative 
riterion). This 
on
lusion is 
on�rmed bythe results of numeri
al simulations for 2D nemati
s[15�18℄. The authors of [15�18℄ 
onsider the equationsof motion in terms of the tensor order parameter, 
on-sistently taking the 
oupling between the dis
linationmotion and the hydrodynami
 �ow into a

ount. Theysimulated dynami
s of the dis
lination pair annihilationand found that the distan
eR between the dis
linationss
ales depends on time t as t1=2, without logarithmi

orre
tions (as this follows from our theoreti
al analy-sis) for all values of the parameter � ex
ept extremelysmall ones. Unfortunately, we did not �nd in [16�18℄the magnitudes of the shear vis
osity that were usedin the simulations. La
king su�
ient data on the val-ues of 
 and �, we 
an presently dis
uss only the gen-eral features of the dis
lination dynami
s. For instan
e,the authors of [18℄ numeri
ally found an asymmetry ofthe dis
lination dynami
s with respe
t to the sign ofthe topologi
al 
harge (s = �1=2) in the one-
onstantapproximation. In our approa
h, the asymmetry nat-urally appears from nonlinear terms in stress tensor(2.5) and from the �rst term in the right-hand sideof Eq. (2.6) responsible for the di�erent 
ouplings oforientational and hydrodynami
 �ow patterns for posi-tive and negative dis
linations. This results in the fa
tthat for ea
h m, the smaller positive exponents in Eq.(3.13) (
orresponding to the minus in the bra
kets) arelarger for s = 1=2 than for s = �1=2. The dis
lina-tion with s = 1=2 therefore exerts a stronger in�uen
eon the �ow velo
ity; this 
on
lusion was qualitativelyobtained in [18℄.Although the theory presented in this paper is validfor free-standing liquid 
rystalline �lms, the generals
heme 
an be applied to the liquid 
rystalline �lmson solid or liquid substrates. Be
ause su
h a �lm isarranged on the substrate surfa
e, any of its hydrody-nami
 motions is a

ompanied by the substrate mo-tion. For solid substrates, the situation where the hy-drodynami
 ba
k-�ow is irrelevant for the dis
linationdynami
s 
an therefore be realisti
. In Se
. 4C (alsosee Appendix B), we examine this limit and reprodu
ethe results in [6�9℄, where the hydrodynami
 ba
k-�owwas negle
ted from the very beginning. The 
ase of the

�lms on a liquid substrate requires a spe
ial investiga-tion, but the approa
h and the main ideas of our paper
ould be useful there as well.Our results 
an be dire
tly tested by 
omparingwith the experimental data for sme
ti
-C or nemati
�lms. The hexati
 order parameter, whi
h has a sixfoldlo
al symmetry, is not 
oupled to the light in anysimple way (and therefore, ideal hexati
 dis
linationsare hardly observed in opti
s). But it is possible toobserve the 
ore splitting of the dis
linations in tiltedhexati
 sme
ti
 �lms [26℄. Indeed, be
ause of dis
onti-nuity of the tilt dire
tion (whi
h is lo
ked to the bonddire
tion), the hexati
 order and hexati
 dis
linations
an be observed indire
tly. The se
ond possibility ofdete
ting the defe
ts of hexati
 ordering and verifyingour theoreti
al results is the 
lassi
al light s
attering(where the wave ve
tors are q = 102�104 
m�1 andthe frequen
y is ! . 108 s�1 in typi
al experiments).For a reasonably thi
k �lm, the power spe
trum oflight s
attering 
an have some additional stru
turerevealing the dis
lination properties (e.g., defe
ts arethought to be relevant to the very low-frequen
y noiseobserved in thin �lms). Experimental studies of thistype are highly desirable.The resear
h des
ribed in this publi
ation was madepossible in part by the RFFR Grant 00-02-17785 andINTAS Grant 30-234. SVM thanks the support of thiswork by the Deuts
he Fors
hungsgemeins
haft, GrantKO 1391/4. Fruitful dis
ussions with V. E. Zakharov,E. A. Kuznetzov, G. E. Volovik, and N. B. Kopnin aregratefully a
knowledged.APPENDIX ADistan
es far from the dis
linationHere, we derive some results for the region far fromthe dis
lination. These results are used in the 
ase ofsmall � 
onsidered in Se
. 4B.We examine the harmoni
 fun
tion � in Eq. (3.17).Be
ause the fun
tion is analyti
 in the region r > u�1,it 
an be expanded in the derivatives of ln r there. Next,be
ause of the symmetry of the problem, � is an an-tisymmetri
 fun
tion of y. At least one derivative �ymust therefore be present in ea
h term of the expan-sion, that is, � = u�̂1�y ln r; (A.1)where �̂1 = �1(r=u) and �1(z) is a series in z 
onvergingin a 
ir
le with the radius of the order 1. The expan-11 ÆÝÒÔ, âûï. 4 (10) 833
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oe�
ients in the series �1(r=u) are determinedby mat
hing with the inner problem at r � u�1.Be
ause of the symmetry, the angle ~' 
an be rep-resented as�x ~' = �yB; �y ~' = �(H + �xB);r2B + �xH = 0: (A.2)The latter equation is the 
ondition ���r�r� ~' = 0.We note that r2 ~' = ��yH . In the region far from thedis
lination, we 
an use Eqs. (3.16) and (3.17). The in-
ompressibility 
ondition r�v� = 0 must also be takeninto a

ount. We thus obtain expressions for the velo
-ity in terms of B and H ,
url v = K2� �y h�H + 2uB + u�̂1 ln(pr)i ;vy = K
u�y ��H + 2pB++ �4 h�H + 2uB + u�̂1 ln(pr)i� ; (A.3)vx = K
u�x��H + 2pB ++�4 h�H + 2uB + u�̂1 ln(pr)i��� K2� h�H + 2uB + u�̂1 ln(pr)i : (A.4)Solutions of Eq. (3.18) imply thatB = s�
̂1K0(k1r)e�k1x + 
̂2K0(k2r)ek2x��� 12 �̂1 ln(pr);H = 2s �k1
̂1K0(k1r)e�k1x�k2
̂2K0(k2r)ek2x� : (A.5)Here, the parti
ular representation in Eq. (A.1) is usedand an arbitrary fun
tion of y that 
an 
ontribute toH is 
hosen to be zero be
ause r ~' ! 0 (and hen
e,H ! 0) as r !1. In (A.5) 
̂1 and 
̂2 are dimensionlessdi�erential operators that 
an be represented as Taylorseries in r=u, i.e., 
1(r=u) and 
2(r=u). These fun
-tions must s
ale with u be
ause the fun
tions must befound from mat
hing at r � u�1.Additionally, there are two 
onditions for the vari-ables in the region ur � 1. First, the 
orre
t 
ir
ula-tion around the origin leads to the e�e
tive Æ-fun
tionalterm in Eq. (A.2),r2B + �xH = �2�sÆ(r): (A.6)

The se
ond 
ondition is the absen
e of the �ux to theorigin, Z d� vr(r; �) = 0: (A.7)Relations (A.6) and (A.7) lead to the 
onditions
1(0) + 
2(0) + �1(0)2s = 1; (A.8)�1 + �4 � [k1
1(0)� k2
2(0)℄��p+ �u4 ��� �
1(0) + 
2(0) + �1(0)2s �+ �u8s �1(0) = 0: (A.9)At small � , the solution of Eqs. (A.8) and (A.9) is�1(0) = �; 
1(0) = k1 � �k2=2sk1 + k2 ;
2(0) = k2 � �k1=2sk1 + k2 : (A.10)We also assumed that � . 1, whi
h is justi�ed inSe
. 4B. APPENDIX BSuppressed FlowHere, we demonstrate how the dis
lination velo
ityV 
an be found if the hydrodynami
 velo
ity v is negli-gible (e.g., be
ause a substrate fri
tion). We reprodu
ethe results in [6�9℄.In the absen
e of the hydrodynami
 �ow, the equa-tion for the angle ' is purely di�usive,
�t' = Kr2'; (B.1)as follows from Eq. (2.6) with v = 0. We assumethat ' ! uy as r ! 1. The dis
lination motion isfor
ed by the �external �eld� u. We seek a solution'(t; x; y) = '(x � V t; y). From Eq. (B.1), we then ob-tain2p�x'+r2' = 0; where 2p = 
V=K: (B.2)In what follows, we 
onsider the solution 
orrespondingto a single dis
lination with the 
ir
ulationI drr' = 2�s; (B.3)where the integral is taken along a 
ontour en
ompass-ing the dis
lination 
ounter anti
lo
kwise. The quan-tity s in Eq. (B.3) is an arbitrary parameter (whi
h is834
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lination motion in liquid 
rystalline �lmsequal to �1=6 for hexati
s, �1=2 for nemati
, and �1for sme
ti
-C ordering). For a suitable solution of Eq.(B.2) 
orresponding to Eq. (B.3), we have�x' = s�y Z d2q2� 1q2 � 2ipqx exp(iq � r) == s exp(�px)�yK0(pr): (B.4)This derivative tends to zero as r ! 1, as it shouldbe. Expression (B.4) does not determine ' unambigu-ously be
ause �x(uy) = 0, and we 
an therefore obtaina new solution by adding a term uy to a given solution.We note that uy is the zero mode of the Eq. (B.2). Thesolution 
an therefore be written as' = �+ uy;�(x0; y) = �s 1Zx0 dx exp(�px)�yK0(pr); (B.5)where � tends to zero as r ! 1. To relate p and uin Eq. (B.5), we must know the boundary 
onditionsat r ! 0, or in fa
t, at r � a, where a is the 
ore ra-dius. At small r, the angle ' 
an be written as a series' = '0 + '1 + : : : , where '0 
orresponds to the stati
dis
lination and '1 is the �rst 
orre
tion to '0 relatedto the motion. Mat
hing with the inner problem givesr'1(a) � p; (B.6)be
ause the solution for the order parameter inside the
ore is an analyti
 fun
tion of r=a and the expansion inp is a regular expansion in pa (see [7℄ and Appendix D).Expanding Eq. (B.4) in p, we obtain1s�x' � � yr2 + pxyr2at pr � 1. In a

ordan
e with Eq. (B.5), we thenobtain with the logarithmi
 a

ura
y (i.e., in the mainapproximation in j ln(pa)j � 1) that'1 = spy ln(pr) + uy: (B.7)Using boundary 
ondition (B.6), we now obtainu = sp ln� 1pa� (B.8)with the same logarithmi
 a

ura
y. This 
an berewritten as V = 2Kus
 ln(1=pa) : (B.9)

The same answer (B.9) 
an be found from the en-ergy dissipation balan
e. First of all, we 
an �nd theenergy E 
orresponding to solution (B.5),E = Z d2r K2 (r')2 == K Z d2r �12u2 + 12(r�)2 + u�y�� ; (B.10)where the �rst term is the energy of the external �eld,the se
ond term represents the energy of the dis
lina-tion itself, and the third term is the 
oupling energy.Obviously, only the last 
ross-term depends on time.For jx� V tj � p�1,1Z�1 dy �y� = ( 0 if x > V t;�2�s if x < V t:It then follows from Eq. (B.10) that�tE = �2�sKuV: (B.11)On the other hand, we 
an use Eq. (B.1) to obtain�tE = �K2
 Z d2r (r2')2: (B.12)Repla
ing r2' with 2p�x' here in a

ordan
e with Eq.(B.2), we obtain�tE = �
V 2 Z d2r (�x')2:The main logarithmi
 
ontribution to the inte-gral 
omes from the region a < r < p�1, where�x' � �sy=r2. We thus obtain�tE = ��s2
V 2 ln� 1pa� : (B.13)Comparing the expression with Eq. (B.11), we �nd thesame answer (B.9).APPENDIX CExtremely small �Here, we 
onsider the �ow velo
ity indu
ed by themoving dis
lination for extremely small � . The velo
ityis zero in the zero approximation in � (this 
ase is 
on-sidered in Appendix B), and we therefore examine thenext, �rst-order approximation in � . We use the sameformalism and the same notation as in Appendix A.835 11*



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002In a

ordan
e with Appendix A, solutions of the
omplete set of nonlinear stationary equations 
an berepresented as�x ~' = �yB; �y ~' = �(H + �xB); (C.1)
url v = K2� [��yH+2u�yB+2us�y ln r+�0℄ ; (C.2)vx = �K2� �� �yr�2 [��yH + 2u�yB + 2us�y ln r +�0℄ ; (C.3)vy = K2� �� �xr�2 [��yH + 2u�yB + 2us�y ln r +�0℄ ; (C.4)where B, H , and �0 are to be found from the equations� �yH + 2p�yB + �4r�2(r2 � 2u�x)�� [��yH + 2u�yB + 2us�y ln r +�0℄ == ��2 ��yr�2 [��yH + 2u�yB + 2us�y ln r + �0℄�� �yB + �xr�2 [��yH + 2u�yB + 2us�y ln r +�0℄�� (�xB +H)�; (C.5)�0 = 2r�2[(�xB +H)�x�yH + �yB�2yH ℄; (C.6)r2B + �xH = �2�sÆ(r): (C.7)If � is extremely small, s2� ln2(ua) � 1, the solu-tion of Eqs. (C.5)�(C.7) 
an be 
ontinued to the vi
in-ity of the 
ore. In the leading approximation, the solu-tion for ' 
oin
ides with the solution for the angle ~'Lin the motionless liquid. This 
ase, examined in [6�9℄,is des
ribed in Appendix B. The fun
tions BL and HL
orresponding to ~'L are given by2pBL = HL = 2spK0(pr) exp(�px): (C.8)This solution gives�0 = 2s2p yr2 ln�minfr; p�1ga � : (C.9)Negle
ting the nonlinear right-hand side of Eq. (C.5),we 
an then �ndH(r) = 4�s1 + �=4 Z d2q(2�)2 exp(iq � r)��pq2 � (s�p=4)(q2 + 2iuqx) ln �minf(qa)�1; (pa)�1g�(q2 � 2ik1qx)(q2 + 2ik2qx) :(C.10)

B(r) 
an be found similarly. Using B and H in Eqs.(C.3) and (C.4), we 
al
ulate the �ow velo
ity v(r) thatvanishes at in�nity.For r � p�1 this solution 
oin
ides with expressions(A.5), (A.8), and (A.9) with�1(0) = 2s+ 2s2pu ln� 1pa� :For pr � 1, expression (C.10) is redu
ed to (C.8) andthis region produ
es the main 
ontribution to �0 in(C.9). The following expressions are obtained in theinner region (pr � 1) from the solution in Eqs. (C.1)�(C.10):'1 = �u� sp ln 1pa� y + spy ln ra ; (C.11)
url v = Ks2p� ln ra yr2 : (C.12)A relation between p and u is �xed by 
ondition (B.6),leading to u = sp ln[1=(pa)℄, whi
h is equivalent to Eq.(B.9). The �ow velo
ity at pr � 1 and ln(r=a)� 1 isv� = �s2�8 V ���r� hy ln2 � ra�i ; (C.13)whi
h 
orresponds to the stream fun
tion
 = �V y � Ks2p4� y ln2 � ra� : (C.14)The expansion with respe
t to � near the dis
linationis regular and 
an be derived from Eqs. (3.8) and (3.9)with the 
ondition r'1(a) � p: ~'L + uy is the zeroterm of the series for ', and expression (C.14) repre-sents the zero and the �rst terms for 
.We note that in a

ordan
e with Eq. (C.13) in thelimit as � ! 0, the �ow velo
ity tends to zero near thedis
lination 
ore, v(a)=V = O(� ), despite the fa
t thatthe dis
lination itself moves with the �nite velo
ity V ;thus, there is a slipping on the dis
lination 
ore in thislimit. APPENDIX DSolution with the 
omplete order parameterHere, we 
onsider the dynami
 equations for the
oupled velo
ity �eld v and the 
omplete order param-eter 	 = Q exp(i'=jsj) des
ribing the 2D orientationalorder in liquid 
rystalline �lms. These equations areneeded to examine the velo
ity �eld 
lose to the dis
li-nation position. We assume that the 
ore size a is larger836
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lination motion in liquid 
rystalline �lmsthan 
hara
teristi
 mole
ular s
ales and work in theframework of the mean �eld theory.Formally, the equations 
an be derived using thePoisson bra
ket method [30, 37℄. In the mean �eldapproximation, the energy asso
iated with the orderparameter isH	 = Ks22 Z d2r�jr	j2 + 12a2 �1� j	j2�2� ;its density be
omes the K-
ontribution in Eq. (2.3) atlarge s
ales r � a. The only nontrivial Poisson bra
ketthat must be added to the standard expressions is [28℄fj�(r1);	(r2)g = �r�	Æ(r1 � r2) ++ i2jsj	(r2)���r�Æ(r1 � r2):To be spe
i�
 we use the expressions for the energy andthe Poisson bra
ket for hexati
s �lms. The dynami
equations are given by��tv� + �v�r�v� = �r2v� � s2K2 ���r�	��r2	+ 1a2	 �1� j	j2�� ++r�	�r2	� + 1a2	� �1� j	j2����� ijsjK4 ���r� �	�r2	�	r2	�	+r�~&;�t	+ v�r�	 = i2jsj	���r�v� ++ Ks22
s �r2	+ 1a2	 �1� j	j2�� ; (D.1)the relation 
s = s2
=2 ensures the redu
tion to Eq.(2.6) in the limit j	j = 1, and the kineti
 
oe�
ientsare believed to be independent of Q (otherwise, we 
anassume, for example, the dependen
e 
s = s2
j	j2=2).The slow dynami
s of a 2D liquid 
rystalline systemwith dis
linations 
an be des
ribed by Eqs. (D.1) withthe additional in
ompressibility 
ondition rv = 0 thatallows ex
luding the passive variable ~& .If the distan
e from the dis
lination to a bound-ary or other dis
linations is mu
h larger than a(i.e., the perturbation of the stati
 solution 	0 == Q0 exp(i'0=jsj) for a single defe
t is small), we 
anlinearize Eqs. (D.1) with respe
t to the perturbation

expressed in terms of the respe
tive 
orre
tions Q1 and'1 to Q0 and '0,�r2v��2
s�r�Q0(v� � V�)r�Q0 + 1s2Q20r�'0 �� �(v� � V�)r�'0 � 12��
r�v
��+2
s 12s2 ���r����Q20�(v� � V�)r�'0 � 12���r�v���++r�~& = 0; (D.2)Ks22
s �r2Q1 � (r'0)2s2 Q1 � 2r�'1r�'0s2 Q0++ 1a2s �1� 3Q20�Q1� = (v� � V�)r�Q0; (D.3)Ks22
s �r2'1+2Q�10 (r�Q1r�'0+r�Q0r�'1)� == �12���r�v� + (v� � V�)r�'0: (D.4)In terms of the dimensionless quantities L = �
=K,R = r=a, and � = 2
s=(s2�), Eq. (D.2) be
omes (aspreviously, we 
onsider a dis
lination with the unitarytopologi
al 
harge jsj or �jsj)r4RL+ �4 ��4s2 (�RQ0)2R2 �2�L+�r2R + 2sR �R� �� �Q20�r2R � 2sR �R�L�� = 0; (D.5)where r2R � �2R + 1R�R + 1R2 �2� and Q0 is found from��2R + 1R�R � 1R2�Q0 +Q0(1�Q20) = 0;Q0(0) = 0; Q0(1) = 1:If � � 1, as it follows from Eq. (D.5), a new s
aleR � 1=p� � 1 appears inside the 
ore, the �rst termin Eq. (D.5) 
an be negle
ted at larger s
ales, and thereis no 
rossover at R � 1.If Q0 � 1, Eq. (D.5) is redu
ed to Eq. (3.12). IfR � 1, Q0 = AR (A � 0:58) and Eq. (D.5) 
an berewritten asr2R �r2RL+ A�4 (R2r2R � 4s2)L� = 0:The solution of the equation is a superposition of theterms �(R) sin(m�) with di�erent m. After imposing837
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ondition �(R) = 0, two 
onstants remain in thegeneral solution of the ordinary di�erential equationfor �(R); two partial solutions that are regular nearR = 0 are given byRjmj and Rjmj 2F1 jmj � pm2 + 4s22 ;jmj+pm2 + 4s22 ; 1 + jmj; �A2�R24 ! ;where 2F1 is the hypergeometri
 fun
tion(2F1(a; b; 
; z) = 1 + abz=
 + : : : ). Two 
onstants(e.g., the derivatives �(jmj)(0) and �(jmj+2)(0)) are
hosen to ensure the slowest possible growth at R� 1in order to eliminate the largest exponent among � inEq. (3.13).If � � 1, it is possible to derive a better approxi-mation in the 
ore region. We 
an expand Q0(R) in aseries, seek a series solution �(R), and extra
t the termsof the highest order in � . For example, for m = 1, theseries for �(R) begins with l1R+ l3R3, whi
h �xes two
onstants in the partial solution,�(R) = l1R �1 + 1A2�s(2� s2) ��1� s2A2�R28 ++ 2F1 1�p1+4s22 ; 1+p1+4s22 ; 2; �A2�R24 !!#++ l3 8A2�s2R "�1 + 2F1 1�p1 + 4s22 ;1 +p1 + 4s22 ; 2; �A2�R24 !# :The solutions of Eqs. (D.3) and (D.4) are given byQ1 = #(R)�� sin(m�); '1 = �(R) sin(m�);where # and � must be found from the equations#00 + 1R#0 � 1 +m2R2 #� 2Q0sR2 � ++ (1� 3Q20)# = � 1R�RQ0�;�00 + 1R�0 � m2R2 � + 2Q0 ��sm2R2 #+ �RQ0�0� == �2 ��00 + 1� 2sR �0 � m2R2 �� ;that generalize the expressions given in Ref. [7℄.

The dynami
 equations with the 
omplex order pa-rameter demonstrate that for all � , the boundary 
on-ditions for Eqs. (2.4)�(2.6) experien
e no signi�
ant
hanges on the 
ore. The pe
uliarity of extremely small� leading to the nonslipping 
ondition 
onsists in a slowgrowth of r
 far from the dis
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