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AMPLIFICATION OF SHORT LASER PULSES BY RAMANBACKSCATTERING IN CAPILLARY PLASMASI. Y. Dodin *, G. M. FraimanInstitute of Applied Physis, Russian Aademy of Sienes603950, Nizhnii Novgorod, RussiaV. M. Malkin, N. J. FishPrineton Plasma Physis Laboratory, Prineton, NJ 08543, USASubmitted 1 April 2002Short laser pulses an be signi�antly ampli�ed in the proess of Raman baksattering in plasma inside anoversized dieletri apillary. A dieletri apillary allows obtaining high intensities of the output radiation bysustaining e�ient ampli�ation on large distanes ompared to the di�ration length. The e�ieny of the in-teration between the pump wave and the ampli�ed pulse is shown to be not ritially sensitive to the transversestruture of the wave �elds. For a quasi-single-mode initial seed pulse and a low pump intensity, the ampli-�ed pulse tends to preserve its transverse struture due to nonlinear ompetition of the apillary eigenmodes.At a high power of the pump wave, multi-mode ampli�ation always takes plae but the growth of the frontpeak of the pulse still follows the one-dimensional model. The Raman-baksattering instability of the pumpwave resulting in the noise ampli�ation an be suppressed in detuned interation by hirping the pump waveor arranging an inhomogeneous plasma density pro�le along the trae of ampli�ation. The e�ieny of thedesired pulse ampli�ation does not signi�antly depend on detuning in the ase of a smooth detuning pro�le.Density inhomogeneities are shown to exert less in�uene on the ampli�ation within a apillary than in theone-dimensional problem. Parameters of a future experiment on the Raman ampli�ation of a short laser pulseinside a apillary are proposed.PACS: 52.35.Mw, 52.38.Bv1. INTRODUCTIONLaser intensities inside onventional ampli�ers arelimited to gigawatts (GW=109 W) per m2, abovewhih a nonlinear modi�ation of the material refra-tion index auses unaeptable distortions of the laserpulses [1℄. The hirp pulse ampli�ation tehnique al-lows inreasing the output intensities by means of thelongitudinal ompression of laser pulses after their am-pli�ation [2℄. The ompression is usually performedby means of metalli di�ration gratings, whih ansurvive intensities not larger than tens of TW=m2(TW=1012 W) [1℄. One of the most promising ways forfurther inreasing the output intensities onsists in us-ing the advantages of plasma tehnology [3℄. Replaingall the major elements of the ampli�ation�ompressionsheme by one element ontaining fully ionized plasma*E-mail: idodin�pppl.gov

apable of ating as the strether, the nonlinear ampli-�ation medium, and the ompressor simultaneously, isheaper and more adequate ompared to the extensivedevelopment of traditional solid-state devies.Currently, signi�ant attention is attrated to theproblem of generating ultraintense laser pulses in plas-mas by means of the Raman baksattering proess [3℄.In this proess, the seed pulse ampli�ation follows theresonant exitation of a plasma wave provided by thebeating of the seed pulse and the ounter-propagatingpump wave. The pump wave energy is primarily inompression of the latter. By means of the resonantmehanism disussed in this paper, the ampli�ed pulseduration an be dereased to the period of Langmuirosillations. In what follows, we term suh pulses asshort, whih orresponds to a femtoseond laser pulseduration for realisti experimental onditions. (Asshown in Ref. [4℄, ampli�ation of even shorter pulses723 4*



I. Y. Dodin, G. M. Fraiman, V. M. Malkin, N. J. Fish ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002is possible via Compton baksattering, whih remainsout of the sope of our study, although represents a pro-ess omplementary to the Raman interation of laserwaves.)Compared to its solid-state analogues or plasmaampli�ers utilizing the interation of o-propagatingpulses, the sheme allows faster ampli�ation, highermaximum output wave intensities, higher thresholdsfor developing plasma instabilities, and better limitsfor the nonlinear pulse ompression. Beause of a rela-tive simpliity of the experimental implementation, theRaman-baksattering pulse ampli�ation in plasmasan suessfully ompete with more ompliated teh-niques of generating femtoseond laser pulses [2℄.Conventionally, the problem of short laser pulseampli�ation in the Raman baksattering proess inplasmas is onsidered in the framework of a one-dimensional (1D) problem, and the transverse stru-ture of the pulse is negleted [1; 3; 5℄. But the transversee�ets an beome important in the experimental im-plementation of the ampli�ation sheme and furtherpratial appliations. The study of the transverse ef-fets was reently started for the pulse interation invauum [6℄, where the ampli�ation e�ieny is sig-ni�antly limited by the transverse di�ration of theampli�ed pulse. An e�ient interation in a boundlessmedium is only possible on distanes small omparedto the di�ration (Rayleigh) length zR � kR2, wherek = 2�=� is a harateristi wavenumber of the seedpulse and R is its harateristi transverse sale. Af-ter the ampli�ed pulse passes the distane z � zR,di�ration inreases the transverse sale of the pulse,and therefore, lowers its intensity, whih results in aderease of the interation e�ieny.In order to maintain high interation e�ieny atlarge spatial sales ompared to zR, additional laserpulse fousing must be applied. Beause of the highintensities of the ampli�ed radiation, onventional di-eletri lenses annot adequately fouse the ampli�edpulse. The problems of the refration index distortionor even the dieletri medium breakdown, whih mightour, an be eliminated using the hannelling proper-ties of a dieletri apillary that plays the role of anoptial waveguide for both the pump wave and the am-pli�ed pulse. (A similar tehnique is often used in otherRaman media for pulse ampli�ation with signi�antlylower wave intensities [7; 8℄.) In oversized (R � �)dieletri apillaries, the �eld amplitude dereases tothe edges of the transverse waveguide ross-setion andalmost equals zero on the inner wall of the tube [9℄.Therefore, it is possible to have a �eld amplitude higherthan ritial (with respet to the breakdown of the di-

eletri material of the waveguide walls) in the enterof the apillary without damaging its walls. These andother properties of hannelling laser pulses in the pro-ess of the Raman baksattering ampli�ation withina dieletri apillary are the main subjet of this paper.The paper is organized as follows. In Se. 2, wegive the basi equations desribing Raman baksat-tering in plasmas. In Se. 3, we revise some aspets ofthe 1D Raman ampli�ation problem. We onsider theapillary problem in Se. 4, where we develop a modeapproah allowing quantitative and simple qualitativeunderstanding of some phenomena ouring during thelaser pulse interation inside a apillary. We also gen-eralize the onventional 1D linear theory of pulse am-pli�ation by onsidering the interation between theapillary modes of the ampli�ed pulse and disuss someaspets of seletive mode disrimination in apillaries.Single- and multi-mode ampli�ation regimes are dis-ussed in Se. 5 in detail. In Se. 6, we disuss theproblem of detuned ampli�ation. Some numerial es-timates and the summary of the main ideas are givenin Se. 7. Spei� features of the ylindri dieletriapillary are disussed in the Appendix.2. BASIC EQUATIONSEquations for vetor eletri �elds desribing parax-ial propagation of laser pulses along the z axis an bewritten as (see, e.g., Refs. [10; 11℄)�ta+ �za� i22!ar2?a = !pbf; (1)�tb� �zb� i22!br2?b = �!paf�; (2)�tf + iÆ!f = �!2 by � a; (3)where the vetors a and b represent the slowly hang-ing amplitudes of the respetive eletri �eldsEa = me!ae fia exp(ikaz � i!at) + ..g;Eb = me!be fib exp(ikbz � i!bt) + ..g (4)of the pump and the seed pulse, and f is the normalizedpotential of the plasma wave eletri �eldEf = k(0)f me!pe ff exp(ikf z � i!f t) + ..g; (5)where k(0)f = kf=kf ; kf = z(0)(ka � kb);724



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Ampli�ation of short laser pulses : : :!f = !a � !b = !p � Æ!:Here, !p =s4�nee2meis the plasma frequeny, ne is the eletron density,and e and me are the eletron harge and mass re-spetively. We assume the rare plasma onditions(!p � !a � !b � !) and kf�D � 1, and therefore,ka;b � !a;b= and the dispersion of plasma waves anbe negleted (�k!f � 0). In terms of the dimensionlessamplitude a, the pump intensity isIa = �(me2=e)2jaj2=�2 == 2:736 � 1018jaj2=�2 [�m℄ W/m2;see Ref. [6℄.It is useful to introdue the dimensionless equations��a+ �za� i(1 + �)r2?a = bf; (6)��b� �zb� ir2?b = �af�; (7)��f + iÆ!f = �by � a; (8)where � = !a � !b!b � !p! � 1;the time � is measured in the units t0 = p2=!!p, thelongitudinal oordinate z is measured in the units t0, fis measured in p!=2!p, the transverse oordinate � ismeasured in the units (2!p!3)�1=4, and the detuningÆ! is measured in the units t�10 .For further analysis, it is onvenient to introduethe oordinate � = � + z (in what follows, this hangeof variables is alled the shift to the referene framemoving together with the ampli�ed pulse at the speedof light). To desribe the strongly nonlinear regime ofthe ampli�ation of a ompressed pulse, it su�es tokeep only the �-derivatives of a and f (the so-alledquasistati approximation [1; 3℄); the basi equationsthen beome 2��a� i(1 + �)r2?a = bf; (9)��b� ir2?b = �af�; (10)��f + iÆ!f = �by � a: (11)In the ase of zero detuning, the basi equations areinvariant under the transformationa! Ca; b! Cb;

f ! Cf; � ! �=C; � ! �=C; �! �=pC:Therefore, the spei� value of the pump amplitudea0 = a(z ! �1) is in fat not important in the sensethat the �eld dynamis for another value of a0 an beobtained by a simple resaling.3. THE ONE-DIMENSIONAL PROBLEMFor better understanding of the qualitative phenom-ena to be disussed in relation to the Raman baksat-tering inside a apillary, it is useful to revise the ba-si aspets of the onventional 1D problem �rst (seeRefs. [1; 3℄ for a detailed disussion). During the lin-ear stage of ampli�ation, when the pump depletion isnegligible, a � a0 = onst, the solution of Eqs. (6)�(8)an be obtained by the Laplae transformation and isgiven by [1℄b(�; z) = ��� Z G(� � � 0; z)b(� 0; 0)d� 0;G(�; z) = I0(2p�);� = �a20�z; (12)where we assume zero detuning (a onstant detuningan be removed from the evolution equations; the aseof the linear detuning �zÆ! = onst is onsidered inRefs. [1; 5℄ in detail). We note that the spatial oordi-nate �z plays the role of time in Eqs. (12) measuringthe interval between the initial and the urrent posi-tions of the ampli�ed pulse propagating along the zaxis with a �xed veloity equal to the speed of light.For � � 1, we haveG � exp(2p�)=2q�p�:In the original variables,� = a20!!p(t+ z=)(�z)=2;and the maximum of G is therefore reahed atz = �t=2; it inreases with the peak growth rate = a0p!!p=2 as exp(t).Linear approximation (12) is valid until�(�) = Z b(z; �)dzremains small ompared to unity; a nonlinear solutionis formed for larger �. Beause of the pump depletion,only the front part of the seed pulse is then ampli-�ed, whih leads to the e�etive ompression of thepulse. Eventually, as the pulse beomes su�ientlyshort, the quasistati approximation (Eqs. (9)�(11))725



I. Y. Dodin, G. M. Fraiman, V. M. Malkin, N. J. Fish ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002beomes valid, and for the real onstant pump, the so-lution is therefore given bya = a0 os(U=2);f = �p2a0 sin(U=2);b = ��U=p2; (13)where U satis�es the sine-Gordon equation�2��U = a20 sinU: (14)Equation (14) has a family of self-similar solutions(Fig. 1) U(�; �) = U(�) that satisfy the equations�U�� + U� = sinU; (15)or U�� + U�=� = sinU; � = 2p�; (16)where we equate � with a20�� beause of the quasistatiapproximation. It is onvenient to onsider the solutionof Eq. (16) in the plane (U;U�), whih an approxi-mately be treated as the phase plane of a nonlinearosillator with the e�etive dissipation determined bythe term U�=� (Fig. 1). The absolute maximum of theself-similar solution grows in time asbmax � a20�(1 + ln(4p2�=�0))�1; �0 � �(0)� 1;and the loations of the pulse maxima hange as�max � 1=bmax:The self-similar solution U(�) in Eqs. (15), (16) or-responds to the initial onditionsb(z; � = 0) � b0(z) = �0Æ(z); (17)whih imply thatU(� = 0+) = �0; U 0(� = 0+) = 0;and whih are therefore appliable for all � to the left ofthe initial loation of the seed pulse in the frame mov-ing together with the ampli�ed pulse. We now onsiderwhat happens when the spatial sale of the ampli�edpulse �(�) beomes omparable to its initial spatialsale �0 � �(0) and the delta-approximation for ini-tial onditions (17) therefore beomes invalid. In thisase, �0 = +1Z�1 b0(z0) dz0does not determine the solution, and new initial ondi-tions for a self-similar pro�le must then be applied. The

front pulse faes the unperturbed pro�le of the pumpwave. Qualitatively, pump depletion beomes signi�-ant (Æa=a0 � 1) starting only with � = ��, where �� isdetermined by the ondition �(��(�)) � 1, with�(�) = �Z�1 b(� 0; �)d� 0: (18)(To make a rough estimate, we an equate �� to theloation of the �rst maximum of b(�; �) at a urrent in-stant � .) Therefore, linear solution (12) remains validfor � < ��. In the ase where the spatial sale of theGreen's funtion G is large ompared to the spatialsale of the initial pulse, Eq. (12) an be written asU = �(�)G(�): (19)On the other hand, beause the self-similar solutionrepresents an attrator, its formation still ours start-ing from the end of the linear stage, where its pro�lean be obtained from linearized Eq. (15) and is given byU = �effG(�); (20)where �eff is some onstant. At the loation where thelinear stage ends and the self-similar solution starts,i.e., at � = ��(�), the two solutions in Eqs. (19) and(20) must math, whih de�nes �eff (�),�eff (�) = �(��(�)): (21)As long as �(�)� �0, we have�eff � �0 = onst:But when the nonlinear ompression makes �(�) om-parable to or less than�0, �eff an beome signi�antlysmaller than �0. If �eff (�) is hanging su�iently slowly,suh that the self-similar pro�le has enough time to setup on the entire length of the pulse, the entire solu-tion remains lose to the self-similar one with the onlyhange that it is now parameterized by time-dependentquantity (21) (Fig. 2). But if �eff (�) is hanging fast,the self-similar solution may not be able to form, andtherefore, does not represent an attrator. Stohastibehavior of the ampli�ed pulse struture is observed inthis ase.In the approximation of geometri optis, when thepulse propagation is onsidered at small distanes om-pared to the Rayleigh length zR � kR2, the di�ration-aused distortion of the transverse struture of laserpulses an be negleted. In this ase, 1D quasi-self-similar solutions are formed on geometri rays onsti-tuting the �eld of the ampli�ed pulse. The spatial pro-�les of the ampli�ed pulse that are then formed have a726
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Fig. 1. Self-similar pro�les of ja(�)j=a0 (dotted deay), jf(�)j=a0 (dotted growth), jb(�)j=�a20 (solid line) for �0 = 0:01 andthe behavior of the self-similar solution on the (U ,U�) plane (dashed line represents the solution without the �frition� termU�=�); � = 2(a20!!p(t+ z=)(�z)=2)1=2
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Fig. 2. The amplitude of the ampli�ed 1D pulsemaximum normalized to the amplitude of the pumpwave (bmax=ja0j) as a funtion of t � ja0j� forb0(z) = �0 exp(�z2=z20)=p�z0: a delta-shaped ini-tial pulse (z0 ! 0, self-similar pro�le with �xed�0 = 1:3 � 10�2, dashed line) and a �nite-width initialpulse (z0 = p5, quasi-self-similar pro�le with �eff (�),solid line)shape similar to nested horseshoes. But for pulse traesz > zR, the di�ration terms in Eqs. (6)�(11) beomesigni�ant and must therefore be taken into aount(see Se. 5).4. THE MODE APPROACH TO THENON-ONE-DIMENSIONAL PROBLEMWe onsider the pump wave a and the ampli�edpulse b given by a series in the normalized eigenmodes s, h mj ni = Æmn,a = RXn an(z; �) n(r?);b = RXm bm(z; �) n(r?); (22)

where R is the radius of the apillary, whih we inludeas a normalization fator to make the amplitudes anand bm dimensionless (see the Appendix for the expliitform of  n for a dieletri apillary). By de�nition, theeigenfuntions  s satisfy the equationr2? s + �2s n = 0; (23)where �s is the transverse wavenumber of the s-theigenmode. From Eqs. (6)�(8), we obtain the equationsfor the amplitudes an and bm,(�� + �z + iÆ
(a)n )an =Xm fnmbm; (24)(�� � �z + iÆ
(b)n )bm = �Xn anf�nm; (25)where Æ
(a)n = �2n(1 + �); Æ
(b)m = �2m(or Æ
(a;b)n = (�n)2=2!a;b in dimensional variables)and fnm = h njf j miare dimensionless transverse moments of the plasmawave pro�le satisfying(�� + iÆ!)fnm = �Xk; l Cnklmalb�k; (26)with onstant dimensionless oe�ients given byCnklm = R2h nj yk �  lj mi == R2 Z d2r?( yn � m)( yk � l): (27)The eigenmode approah an be useful only in thease where the modes are oupled weakly, whih or-responds to the ase of a strong waveguide disper-sion. Otherwise, the number of modes to be taken727



I. Y. Dodin, G. M. Fraiman, V. M. Malkin, N. J. Fish ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002into onsideration beomes in�nite. If the harater-isti trae z0 of the pulse evolution is large omparedto the Rayleigh length zR, Eq. (26) an be redued to(�� + iÆ!)fnm = � Cnm1 + Ænm (anb�m + amb�n);Cnm � Cnmnm � 0; (28)where we assume the eigenfuntions to ontain om-plexity in polarization fators at most, but not in thefuntional dependene of the transverse oordinates(for simpliity, below we ignore the fat that Cnm anbe equal to zero for modes of the opposite polarization).Equations (24), (25), and (28) represent a ompletelyde�ned Lagrangian set of equations that an be usedfor obtaining the amplitudes of resonantly interatingmodes of the three waves a, b, and f in the ase ofweak oupling (see below).The important onlusion following from Eqs. (24),(25), and (28) is that for every pair of modes of thepump and the seed, an and bm, the resonant plasmawave harmoni fnm an be generated to provide ou-pling of the two eletromagneti waves. This is a spe-i� feature of light sattering on a old plasma wavefor whih the spatial resonane onditionka = kb + kfis satis�ed automatially beause the wavevetor kf re-mains arbitrary for the given frequeny !f � !p. Forthe sattering on any other low-frequeny wave f forwhih the wavevetor depends on its frequeny !f , themultiple mode interation on the quadrati nonlinear-ity is impossible.The presene of the amb�n term in Eq. (28) is respon-sible for a possible parasiti resonane, whih an be ex-plained as follows. We onsider the interation betweenthe n-th mode of the pump an and the m-th mode ofthe seed pulse bm generating the resonant plasma wavefnm with the longitudinal wavenumberhnm = ka � kb � Æ
(a)n � Æ
(b)m :For very small � � !p=!b (namely, for � . zR=z0,where z0 is the harateristi spatial sale of the pulseevolution), we have hnm � hmn, where hmn is thewavenumber of the plasma wave fmn resonant to thebeating wave of the modes am and bn, whih providesan additional oupling of these two pairs of eletromag-neti waves. For example, in the ase where the pumpontains the modes a1 and a2 and the seed pulse on-tains only b1, the seond seed harmoni b2 = O(a�2a1b1)is generated. This e�et an already beome importantat the linear stage of the interation in a multi-mode

pump, beause it alters the inrements of the linearRaman ampli�ation.We now use the developed mode approah to on-sider the linear stage of the pulse ampli�ation insidea apillary in terms of the equation�� (�� � �z � ir2?)b = a(ay � b) (29)whih diretly follows from Eqs. (7) and (8) with zerodetuning Æ! and with a onstant pump a. The right-hand side of Eq. (29) an be onsidered as the result ofapplying the linear operator bA = aay to the vetor b,and therefore, Eq. (29) an be rewritten ash�� (�� � �z + iÆ
(b)m )� 2mi bm = Xn6=mAmnbn;Amn = h mjbAj ni; (30)where m = pAmm represents the inrement of the lin-ear ampli�ation of the m-th partial waveguide mode.In an arbitrary waveguide, for a single-mode pump,an = Ænsa, the matrix elements Amn are of the orderof a2 for n;m � 1 and Amn = A(jm�nj) for n;m� 1,where the funtion A(k) � a2 for k � 1 and deays asits argument grows.The eigenmodes of the empty waveguide are ou-pled via the pump inhomogeneity. Only for the uniformpump, the matrix Amn is diagonal and the right-handside of Eq. (30) is therefore zero. For a nonuniformpump, whih is only possible inside a apillary, the ef-fet of mode oupling always ours. In the ase ofa weak interation (m � Æ
(b)m ), the eigenwaves ofsystem (30) are lose to its partial waves, and the in-rements of the eigenwaves are approximately given bym, m = 1; 2; : : :1 (here, we neglet the e�et of theparasiti resonane disussed above). For the single-mode pump, an = Ænsa, all the inrements are of theorder of a and are independent of m for m� s. Speif-ially, for pulse ampli�ation on the lowest mode of thepump in a dieletri apillary, s = 1, we havem � 11 < 0:16:Hene, the inrements of ampliation of all the wave-guide modes are lose to eah other at the linear stageof interation.Variations of the pump transverse struture do nothange the interation e�ieny signi�antly. For ex-ample, without the possible parasiti resonane takeninto aount, the ampli�ation inrement of the m-th728



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Ampli�ation of short laser pulses : : :partial mode (equal to the inrement of the m-th eigen-mode in the ase of weak interation) is given bym =sXn Cnmjanj2; (31)whih implies that eah mode of the pump ampli�eseah mode of the seed, beause Cnm > 0 for all n andm. The higher modes of the pump amplify the seedwith approximately the same e�ieny as the lowerones, beauseCnm=Cmm � onst � 1 for n� m:This e�et originates in the fat that the wave intera-tion inside a apillary is not a three-wave but a multi-wave proess, where the e�etive energy exhange be-tween every pair of the pump and the seed modes ispossible.Beause the inrements of the linear ampli�ationare approximately the same for all waveguide modes,the linear stage of pulse ampli�ation annot providesigni�ant enhanement of the signal-to-noise ratio.This is true, however, only if the energy losses (whihhave not been taken into aount yet) are negligible atthe distane of pulse propagation, whih might not bethe ase in real experiments. In an oversized ylindrialdieletri apillary, the energy losses are mostly radia-tive and an be inorporated into the model by intro-duing the spatial derements of individual modes [9℄,�nm � ��m;n2� �2 �2R3 (32)(see the Appendix for the notation). The spatial saleof the exponential deay ��1s dereases with the modenumber s roughly as s�2, and for 1 ' �1, only thelowest mode an be ampli�ed and the ampli�ationof the higher modes is suppressed. This implies thatthe radiative energy losses essentially result in a sele-tive mode disrimination, whih an provide the single-mode operation regime.Additional mode disrimination an our in rel-atively narrow waveguides, where the group veloitysubstantially di�ers from mode to mode. After the am-pli�ed pulse passes the distane z & Lpulse(kR)2, whereLpulse is the length of the pulse, the wave envelope or-responding to the lowest mode leaves the envelopes ofthe higher modes behind. The front envelope then hasa preferential opportunity of absorbing the energy fromthe pump wave. Beause the pump is signi�antly de-pleted by the lowest mode, the higher ones are left withless energy to absorb, whih also maintains the single-mode ampli�ation regime.

5. SINGLE- AND MULTI-MODEAMPLIFICATIONThe ondition of a weak interation (or the ondi-tion of a strong waveguide dispersion) � Æ
(b);a� arit; arit =q2=!!p(�)2=2!; � = �=R;an be treated as follows. The inrement of the pulseampli�ation  � ap!!p determines the spread of theampli�ed pulse spetrum Æh � =. As long as Æh re-mains small ompared to the spetral gap between theindividual modes,�h � Æ
(b)= � 1=kR2;the waveguide eigenmodes do not overlap, and hene,represent a good basis for developing the mode ap-proah in the linear theory. In this ase, the eigen-modes of oupled system (30) remain lose to the par-tial waves of the empty waveguide. This implies thatan initially single-mode seed pulse remains single-modeon the entire duration of the linear stage.The next question is what happens after the linearstage, when nonlinear ompression omes into play pro-viding its own spetrum broadening. We onsider thesingle-mode initial onditions for the seed pulse, e.g.,b(0)m = b(0)1 Æm1. Until the end of the linear stage, thehigher mode amplitudes remain small ompared to b1.Then, it is the mode b1 that passes from the linear tothe nonlinear regime �rst, beause its amplitude is thelargest. (Here, by the nonlinear regime of an individ-ual mode, we mean the ability of this partiular modeto deplete the pump, whih might have already beendistorted by other modes at the moment.) In the labo-ratory frame, the maximum of the wave envelope movesapproximately with the speed of light in the nonlinearregime, but in the linear one, the e�etive pulse velo-ity is su�iently lower. For example, as follows fromthe linear theory of pulse propagation in a onstantpump (Se. 3), the maximum travels with the speedequal to half the speed of light. The higher mode en-velopes (remaining in the linear regime) are thereforeleft behind the envelope of the �rst mode. The e�e-tive amplitude of the pump aeff < a0 determining theinrements of the higher modes is dereased by the �rstmode. Beause the �rst mode suppresses the growth ofthe higher modes, the waveguide dispersion e�etivelyresults in a nonlinear ompetition of the modes tend-ing to sustain the single-mode operation. We all thise�et the mode elastiity, beause the strongest mode729



I. Y. Dodin, G. M. Fraiman, V. M. Malkin, N. J. Fish ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002
0

0.1

0.08

0.04

0.02

0.06

γt = 0|b1|/|a0|

|b3|/|a0|

|a0|ζ
1086420

0

1

2

3

4

|a0|ζ
1086420

|b1|/|a0|

|b3|/|a0|

γt = 16

0

0.1

0.2

0.3

0.4

0.5

0.6

|a0|ζ
1086420

γt = 6|b1|/|a0|

|b3|/|a0|

0

2

4

6

8

10

|a0|ζ
1086420

|b1|/|a0|

|b3|/|a0|

γt = 50

Fig. 3. Evolution of jb1(�)j=ja0j (solid line) and jb3(�)j=ja0j (dotted line); the planar-waveguide salar problem;b(0)m = 0:1a0Æm1, a(0)n = a0Æn1, R = �=pa0; b2 � 0 beause of symmetry; the shots orrespond to t � ja0j� = 0; 5; 15; 50.Strong waveguide dispersion provides nonlinear ompetition of the modes in the nonlinear regime of ampli�ation. Althoughthe small amplitude b3 appears at the linear stage, it is left behind the wave envelope b1 later. Ampli�ation of b3 is thenslowed down by the pump depletion provided by b1tends to dominate in the nonlinear stage of ampli�a-tion, thereby preserving the transverse struture of thepulse.The evolution of the two lowest modes having thehighest amplitudes is shown in Fig. 3. (To show the ro-bustness of the mode ompetition mehanism, numeri-al alulations demonstrating the single-mode ampli-�ation were performed for a � arit.) In this ase, thesingle-mode ampli�ation also ontinues in the nonlin-ear regime, ensuring that the problem remains essen-tially one-dimensional. We an see the formation ofthe self-similar pro�le, whih represents the attratorof the single-mode operation, similarly to the 1D prob-lem. The energy distribution inside the ampli�ed pulse(whih determines the e�etive pulse length) averagedover the apillary ross-setion is given in Fig. 4.The qualitative arguments given above lead to theonlusion that the formation of the single-mode opera-tion regime in the ase of a strong waveguide dispersionis stable with respet to �utuations of the seed pulse.Neither the �utuations of the pump transverse stru-ture an in�uene the single-mode operation beauseall the modes of the pump wave provide approximatelyequal e�ienies of the energy transfer into the ampli-�ed pulse, as disussed in Se. 4.The nonlinear ompetition of the modes onstitut-
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ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Ampli�ation of short laser pulses : : :

Fig. 5. Charateristi spatial pro�les of the ampli�edpulse jb(�; �)j in the ase of a strong waveguide dis-persion (planar waveguide). At the �rst stage of thenonlinear ampli�ation, the waveguide dispersion leadsto the ompetition of modes, whih supports the single-mode ampli�ation. Later, the higher modes also enterthe nonlinear regime, ath up with the wave envelopeof the �rst mode, and ruin the struture of its tail. Thefront of the pulse always remains single-mode, however,beause it always stays in the linear regime, where thegrowth of the higher modes is suppressed by a strongwaveguide dispersionIn the other limiting ase, where the interationbetween the pump and the ampli�ed pulse is strong( � Æ
(b), or a� arit), the pulse is signi�antly am-pli�ed on a small distane ompared to zR, i.e., beforethe di�ration e�ets ome into play. The waveguidewalls annot then in�uene the formation of the pulsestruture at the �rst stage of ampli�ation, and a so-lution lose to those formed in boundless vauum isprodued. Vauum solutions [6℄ are shaped as nestedhorseshoe strutures resulting from the transverse in-

Fig. 6. Quasi-vauum (horseshoe) nonlinear solu-tions for jb(�; �)j in the ase of the strong pump(a � arit); the planar-waveguide salar prob-lem: upper � R = 10�, a0(�) = sin(��=R),b0(�; �) = 0:1 sin(��=R) exp(�(� � 4)2=0:5), � = 20;lower � R = 100�, a0(�) = 2 sin(��=R),b0(�; �) = 0:1 sin(2��=R) exp(�(� � 4)2=0:5),� = 10homogeneity of the pulse and the pump (Fig. 6). Onevery geometri ray, a self-similar pro�le is formed withits own �0(�) (or �eff (�)), whih determines the longi-tudinal spatial struture of the pulse at given �. At theedges of the ampli�ed pulse, the amplitudes of both aand b are smaller than in the enter of the system, andthe longitudinal spatial sales are larger orrespond-ingly.In the frame moving together with the front of theampli�ed pulse (at the speed of light), the longitudi-nal loations of the pulse maxima �max(�) are boundedby the position of the front of the seed pulse �0. Onthe other hand, the nonlinear ompression provided bythe preferential ampli�ation of the front of the pulse�pushes� the tail of the pulse from behind to � = �0,whih implies that �0 represents the limit of �max(�)for all �. The front of the horseshoe struture therefore731
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Fig. 7. Deterioration of the horseshoe solution jb(�; �)jas � ! 1 and �attening of the front of theampli�ed pulse (the planar-waveguide salar prob-lem, R = 10�=pa0, a0(�) = a0 sin(��=R),b0(�; �) = 0:1a0 sin(��=R) exp(�(� � 4)2=0:5)):t � a0� = 20, 90 orrespondingly; dark regions or-respond to larger jbjtends to �atten as � !1.Although stable on small distanes ompared to zRand robust with respet to the struture of the seed (seealso Ref. [6℄), the horseshoe solution deteriorates insidethe waveguide at z & zR, where the di�ration be-omes signi�ant (Fig. 7). The very front of the horse-shoe, however, always remains in the linear regime, andtherefore maintains its regular shape. In the enter ofthe waveguide, the front peak of the ampli�ed pulsegrows similarly to the self-similar solution of 1D prob-lem (16) (Fig. 8), whih allows using the 1D modelfor estimating the maximum amplitude of the ampli-�ed pulse. The energy distribution inside the ampli�edpulse (whih determines the e�etive pulse length) av-eraged over the apillary ross-setion is given in Fig. 9.At large t, the averaged energy longitudinal distribu-tion beomes a smooth funtion (f. Fig. 4), and it istherefore di�ult to distinguish the individual peaks ofthe ampli�ed pulse. On average, the energy beomesdistributed over a length that is signi�antly largerthan the length of the �rst peak.

0 20 40 60 80

2

4

6

8

10

12

γt

|b(ζ, ρ)|max/|a0|

Fig. 8. The maximum amplitude of a horseshoe-typepulse normalized one the amplitude of the pump wave(jb(�; �)jmax=ja0j) as a funtion of time t � ja0j�(solid line). The dotted line represents a 1D solutionwith �eff (�) for b0(�; R=2) (the same initial onditionsas in Fig. 7). The front peak of the ampli�ed pulsegrows similarly to the one of the 1D self-similar pro�lewith dereasing �eff
1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

< E >

|a0|ζFig. 9. The normalized energy integral distributionwithin a horseshoe-type ampli�ed pulse (averaged overthe apillary ross-setion): t � ja0j� = 20 (solidline) and t = 90 (dashed line); the same parametersas in Fig. 7. For larger t, the averaged energy distri-bution beomes a smooth funtion (f. Fig. 4), and itis therefore di�ult to distinguish the individual peaksof the ampli�ed pulse. On average, the energy is dis-tributed over a length that is signi�antly larger thanthe length of the �rst peak6. SUPPRESSING NOISE AMPLIFICATION INDETUNED INTERACTIONBeause of the extreme e�ieny of the Ramanbaksattering, whih makes the fast ompression pos-sible, delivering the pump wave energy to the seed pulsethrough the amplifying plasma layer represents a signif-732



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Ampli�ation of short laser pulses : : :iant hallenge. As the pump traverses the plasma layertowards the seed pulse, the fast Raman baksatteringof the pump by thermal Langmuir waves or eletromag-neti �utuations existing inside the plasma layer oroming from outside an lead to a premature pump de-pletion. The problem is aggravated by the fat that thelinear Raman baksattering instability of the pump(responsible for the unwanted noise ampli�ation) hasa larger growth rate than its nonlinear ounterpart (re-sponsible for the useful ampli�ation of the seed laserpulse).To see how signi�antly the thermal �utuationsan limit the maximum ampli�ation gain of the seedpulse, we onsider the ampli�ation at the identiallyzero detuning of the three-wave interation. After aertain period of time tm, the ampli�ation gainDm � eGm ; Gm = tm;beomes su�ient for thermal �utuations to depletethe pump wave substantially, and further ampli�ationof the seed pulse is then suppressed. The dimensionlessquantity Gm depends on the plasma temperature anddoes not depend on the amplitude of the pump wave.The maximum ampli�ation of the desired signal withrespet to a0 is then given bybmaxa0 � 2Gmp21 + ln� 4�0p2�� (33)and is independent of the amplitude of the pump. ForGm � 20, the eletromagneti wavelength � = 1�m,the initial pulse duration 50 fs, and the initial pulsepower density P = 1013 W/m2, we obtain that themaximum ampli�ation that an be ahieved in a pumpof an arbitrary intensity before the noise is ampli�ed tothe level of suppressing the pump is bmax=a0 � 6.Nevertheless, through a nonlinear �ltering meha-nism identi�ed in Ref. [5℄, it is possible to suppress theunwanted instability of the pump wave without sup-pressing the desirable seed pulse ampli�ation. The�ltering e�et ours beause the pumped pulse dura-tion dereases inversely proportional to the pulse am-plitude in the nonlinear regime. The pulse frequenybandwidth inreases with the pulse amplitude, andthe growing nonlinear instability an therefore toleratelarger and larger external detuning from the baksat-tering resonane. Beause the linear instability, i.e.,the exponential growth of thermal �utuations, has anarrower bandwidth, �ltering the desired signal an beahieved by arranging for an appropriate ombinationof the detuning and nonlinear e�ets. A slight fre-queny detuning an be equivalently provided either by

the pump hirping or by inhomogeneity of the plasmadensity along the trae of the pulse ampli�ation re-sulting in variations of the plasma frequeny involvedin the three-wave resonane ondition.While the exat solution for a delta-pulse ampli�-ation problem obtained in Ref. [5℄ preisely deals withthe linear pro�le of frequeny detuning, we use an ap-proximate analysis in this setion to desribe how thepulse ampli�ation develops in the ase of an arbitrarydetuning pro�le. For this, we �rst onsider the linearstage of ampli�ation of a weak pulse b governed by theequation (�� � iÆ!)(�� � �z)b = ja0j2b (34)(without the loss of generality, we temporarily negletthe transverse struture and the polarization of theampli�ed pulse for qualitative onlusions). Using thequasistati approximation and assuming the detuningto hange slowly along the trae of the pulse propaga-tion, we an treat Æ! as a slow funtion of time � [5℄.We perform the Fourier transformation of Eq. (34),b = Z b�k exp(i�kz)d�k;and takeb�k(�) =  (�) exp0�i �Z0 Æ!(� 0) + �k2 d� 01A ; (35)to transform the equation for the amplitude of the pulsespatial harmoni  to the form� d2d�2 + w2(�)� = 0;w2 = i
� +
2 � ja0j2; 
 = (Æ! ��k)=2: (36)In aordane with the assumption of a smooth de-tuning pro�le, we takeq(�) = Æ!�ja0j2 � 1:Outside the regions where 
2 is lose to ja0j2, the ef-fetive �frequeny� w an be estimated asw =p
2 � ja0j2 + i
�2p
2 � ja0j2 ; (37)and the ampli�ation gain is given byD � eG; G � Z Imw d�733
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2 > ja0j2, G dependson the length of the trae of the pulse propagation loga-rithmially, and the ampli�ation gain is therefore neg-ligible in the adopted approximation. Thus, the totalampli�ation gain is given byG � Z
2<ja0j2 pja0j2 �
2(�) d�: (38)For the detuning monotonially hanging along thetrae of the pulse propagation, Eq. (38) an be writ-ten asG � 2ja0j Z
2<ja0j2 s1� 
2ja0j2 d
jq(
)j � �jqminj ; (39)where jqminj stands for the minimum rate of the de-tuning evolution on the trae of ampli�ation. As anbe seen from Eq. (39), the upper limit of the total am-pli�ation gain on the entire trae of the pulse prop-agation is independent of �k (inluded in the de�ni-tion of 
 over whih the integration is performed). Forq = onst, we have D � exp(�=jqj);as obtained in Ref. [5℄, and therefore, D itself is inde-pendent of �k.We an also generalize Eqs. (38), (39) to the ase ofoblique propagation of the pulses, desribing the ampli-�ation of the eletromagneti noise oming from out-side the system. The only di�erene is then that thegroup veloity of the ampli�ed harmoni di�ers fromthe speed of light, whih results only in a rede�nitionof �k and does not a�et the form of the �nal result inEqs. (38) and (39) if q(�) is alulated relative to theatual trajetory of the ampli�ed pulse.Equations (38) and (39) predit that eah harmoniof a given frequeny and a wavenumber is ampli�edonly inside the region where the three-wave resonaneonditions are satis�ed in the sense that 
2 < ja0j2 (or,in dimensional variables, (Æ! � �k)2=4 < 2). Theidea of the approah given here is similar to the oneproposed by Rosenbluth and Pilia (see, e.g., Ref. [12℄),who estimated the total linear ampli�ation gain forstationary waves in an inhomogeneous medium withthe wavenumber detuning but with the temporal res-onane ondition satis�ed exatly. The di�erene be-tween the two ases is that instead of the wavenumberdetuning, the frequeny detuning is important for theRaman pulse ampli�ation in inhomogeneous plasmas.For the Raman baksattering in a old plasma, thewavenumber resonane ondition is satis�ed automati-

ally, beause a plasma wave is allowed to have an ar-bitrary wavenumber, although it osillates at a ertainfrequeny !p.The onlusion that follows from the obtained resultis that the detuning pro�le along the pulse ampli�a-tion trae an be hosen suh that the noise ampli�a-tion is suppressed above a ertain level determined byEq. (38). Monotonially hanging the detuning allowsa stronger suppression, beause there exists only oneregion for a given harmoni where the ampli�ation o-urs. In this ase, the requirement for the harateristijqj to ensure that the noise is not ampli�ed up to thetransition to the nonlinear stage but the desired signalis (R b(z)dz & 1, see Refs. [1; 3℄) an be formulated as�Gm � jqj � �ln 1�0 ; (40)q = 2 � Æ!�z � 1014LÆ�P ;1LÆ = 1!p �!p�z + 12!p �!a�t ; (41)where the harateristi spatial sale LÆ of the detun-ing evolution due to the plasma inhomogeneity (the�rst term in Eq. (41)) and the pump hirping (the se-ond term) is measured in m, the wavelength � is mea-sured in mirons, and the pump power is measured inW=m2.The next problem is how the frequeny detuningin�uenes the desired signal ampli�ation in the non-linear regime. We now show that it does not as long asthese variations remain su�iently smooth. To provethis, we onsider the hange of variablesa = ~a;b = ~b exp(iÆ!(� + z));f = ~f exp(�iÆ!(� + z)); (42)leading to the following 1D form of Eqs. (6)�(8):��~a+ �z~a = ~b ~f;��~b� �z~b� i(� + z)qa20~b = �~a ~f�;�� ~f = �~a~b�: (43)These equations are equivalent to Eqs. (6)�(8) with zerodetuning if q = 0. The physial meaning of the formalhange of variables (42) is as follows. The arrier fre-quenies of the seed pulse and the plasma wave arehosen suh that the three-wave resonane ondition issatis�ed loally, ~!a � ~!b(z) = ~!f (z); (44)734
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dereases in the region where the detuning evolves rel-atively fast, while at small q (e.g., for q = 0:22), theampli�ation proeeds exatly as in the ase of zero de-tuning for all � , exatly as predited by the qualitativearguments given above.The obtained results imply that for short pulses,ampli�ation an be e�ient on the entire trae of theinteration with the pump wave. The integral varia-tion of Æ! (or the maximum frequeny detuning am-plitude experiened by the pulse on its trae of ampli-�ation) does not signi�antly in�uene the ampli�a-tion e�ieny if the detuning evolves smoothly alongthe trae of ampli�ation. Condition (46) only requiresthe bandwidth of the wave envelope�!b to grow due tothe nonlinear ompression su�iently fast for the loal-resonane frequeny !a�!p(z) to lie within the ampli-�ation line. For growing jqj that approahes unity, theinteration beomes nonresonant, and the pulse ampli-�ation eases. If q dereases, the pulse ampli�ationdevelops similarly to the solution with a onstant de-tuning. The degenerate ase where q = onst andthe ampli�ation e�ieny depends on the amplitudeof the initial pulse logarithmially is disussed in detailin Refs. [1; 5℄.In a real experiment, transverse plasma inhomo-geneities must be taken into aount in addition to thedetuning provided by pump hirping and longitudinalvariations of the plasma density. It is important thatthe dependene of Æ! on the transverse loation low-ers the sensitivity of the interation e�ieny to theaverage detuning (over the ross-setion). In the 1Dproblem, as shown above, the pulse ampli�ation anbe entirely suppressed by large gradients of the plasmadensity. But in the ase where the plasma density alsohanges in the transverse diretion, a radial position�� suh that Æ!(��) = 0 exists at every ross-setion ofthe pulse trajetory. The pulse an extrat energy fromthe pump wave in the viinity of � = ��, although theinteration remains ine�ient far from this point. Thisloal pulse ampli�ation annot be entirely suppressedby large detuning that might exist at other radial posi-tions. This fat determines a higher robustness of thepulse ampli�ation in inhomogeneous plasmas in 2Dor 3D systems than in the 1D ase. In the ase wherethe ampli�ation ours inside a apillary, the pulseenergy is mixed in the transverse diretion beause ofthe re�etion of eletromagneti waves from the wallsof the waveguide, whih eventually results in a nonloalampli�ation of the waveguide eigenmodes, i.e., in theampli�ation of the entire pulse.735



I. Y. Dodin, G. M. Fraiman, V. M. Malkin, N. J. Fish ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002Sample parameters for the Raman ampli�ation insidean oversize dieletri apillaryWavelength � 1 �mEletron density ne 1019 m�3!=!p 10Radius of apillary R 50�Di�ration length zR 0.16 mInverse deay rates ��1nm 60/40 mTrae of ampli�ation 1.2 mPulse duration 40 psa0 0:006Pump intensity 1014 W/m2Pump power 4 � 109 WAmpli�ation length = 0.12 mmSeed pulse duration 100 fsSeed pulse intensity 1014 W/m2�0 0:25Ampli�ation fator bmax=a0 20Ampli�ed pulse intensity 3:5 � 1016 W/m2Ampli�ed pulse power 1:4 � 1012 WThe refration index of apillary walls is taken n = 1:5;the pump wave intensity orresponding to a = arit is1:4 � 1011 W/m2, and the ampli�ed pulse is therefore ofthe horseshoe type; the inverse spatial deay rates ��1nm arealulated for the two most slowly deaying modes.7. DISCUSSIONCharateristi parameters of the proposed Raman-baksattering pulse ampli�ation experiment are givenin the Table. For the wavelength � � 1�m and the ra-dius of the apillary su�iently large for the radiationenergy losses to be negligible, the single-mode oper-ation an only be provided by low pump intensities,whih do not allow signi�ant ampli�ation on a rea-sonable (entimeter size) interation length. At pumpintensities higher than the ritial one, multi-mode so-lutions are formed.The parameters given in the Table orrespond tothe maximum possible ampli�ation gain at the givenwavelength and the eletron density limited by suh ef-

fet as the Langmuir wave breaking and the forwardRaman sattering instability [1; 3℄, whih remained outof the sope of our study and represent the �eld offurther researh in the ontext of the 3D Raman sat-tering problem. As regards the modulation instability,it is expeted to be suppressed for the proposed pa-rameters beause the ritial power of the ampli�edpulse self-fousing Prit = 17(!=!p)2 GW [3℄ is equalto 1:7 � 1012 W, whih is less than the power of theampli�ed pulse.In summary, using a dieletri apillary for han-neling laser radiation in a Raman ampli�er provides asigni�ant advantage as regards maintaining high in-teration e�ieny at distanes larger than the di�ra-tion length, whih allows obtaining higher intensities ofthe output radiation. In addition, various mehanismsof seletive mode disrimination and nonlinear ompe-tition of apillary modes are provided by the trans-verse waveguide dispersion, but annot be ahieved inboundless vauum. Although the presene of the ap-illary walls an in�uene the struture of the pulse, itdoes not alter the ampli�ation of the front peak of thepulse, whih arries a signi�ant amount of the totalenergy of the pulse.We �nd that depending on the intensity of thepump, two possible regimes of operation an be real-ized within a apillary, namely, the single-mode andthe multi-mode pulse ampli�ation. For a low pumpwave intensity, when the single-mode operation is pos-sible, the problem admits the resonant mode approahthat we develop in this paper. We also develop the lin-ear theory of pulse ampli�ation inside a apillary bygeneralizing the 1D linear problem. Contrary to theintuitive expetations, we show that the pulse ampli�-ation e�ieny is not ritially sensitive to the trans-verse struture of the pump wave, and therefore, bothlower and higher modes of the pump provide approxi-mately the same ampli�ation rates of the seed pulse.We generalize the mehanism of avoiding the pumpwave instability (resulting in the noise ampli�ation)by hirping the pump wave or inhomogeneous plasmapro�le along the trae of the pulse propagation [5℄ inthe ase of an arbitrary smooth detuning pro�le. Weshow that as the noise ampli�ation an be suppressedby detuning, the latter does not alter the ampli�-ation of the desired pulse as long as the detuningpro�le remains su�iently smooth. We onlude thatguiding laser pulses through the apillary provides anadditional robustness of the interation e�ieny withrespet to transverse inhomogeneities of the plasmadensity.736



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Ampli�ation of short laser pulses : : :The authors thank A. A. Balakin for help in per-forming numerial simulations and A. N. Stepanov andV. A. Mironov for fruitful disussions. The work wassupported by the Russian Foundation for Basi Re-searh (grants 01-02-17388, 02-02-06258).APPENDIXWaveguide modes of a dieletri apillaryThe waves hannelled by a dieletri apillary anbe separated into the surfae and the waveguide-typewaves [13℄. A slow surfae wave propagates withoutdissipation inside the dieletri walls of the tube withthe wavenumber h =p�k2 + �2� ;where � is the dieletri permittivity, �� � 1=d is thewave transverse wavenumber, and d is the width ofthe apillary wall. Outside the dieletri, the �eld ofthe surfae wave deays exponentially with the spatialderement�0 =ph2 � k2 =p(�� 1)k2 � �2� � kfor kd� 1. Therefore, at the distane of several wave-lengths from the wall, the surfae wave �eld essentiallyequals zero, and as regards the interation of pulses in-side the apillary, the impat of the surfae wave �eldan be negleted.Waveguide-type waves propagate inside the ap-illary, with the hanneling provided by re�etion ofwaves from the inner surfae of the apillary dieletriwall. For paraxial propagation (k � 1=R), the re�e-tion oe�ients of most of the waveguide-type wavesare lose to unity. The only exeption is given by sev-eral waves with transverse wavenumbers lose to theresonant ones, for whih the dieletri walls of the givenwidth are transparent. Unless the apillary transversesizes are maintained with high preision, whih is notusually the ase for the appliations similar to the Ra-man ampli�er, these resonanes disappear beause ofthe random orrugation of the wall surfae. In this ase,all the waveguide-type waves an therefore be treatedas slowly deaying ones.In the �rst-order approximation, the boundary on-ditions for the eletri and magneti �elds on the innerwall of the dieletri apillary (under the assumptionof the negligible deay rate) are given byEr(R) = Hr(R) = 0(see [13℄). The transverse struture of the eletri �eldis then given by
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