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We consider a spinor Bose-Einstein condensate in its polar ground state. We analyze magnetization waves of a
finite amplitude and show that their nonlinear coupling to density waves dramatically changes the dependence
of the frequency on the wavenumber. On the contrary, the density wave propagation is much less modified by
nonlinearity effects. A similar phenomenon in a miscible two-component condensate is also studied.

PACS: 03.75.Fi

Recent advances in the experimental creation of
multicomponent atomic Bose-Einstein condensates
(BEC) [1-3] have given rise to the interest in physical
properties of such systems. There are numerous works
on the properties of degenerate Bose gas mixtures in
magnetic traps related to both the ground state [4]
and the collective excitations [5]. In Ref. [5], the early
work [6] related to a homogeneous Bose gas mixture
was generalized to the case of the external harmonic
trap potential. Evidently, the number of branches of
the dispersion law is equal to the number of different
components in the mixed BEC. Because of a nonzero
interaction between them, the normal mode oscilla-
tions imply a simultaneous mutually coherent motion
of the components. In the present paper, however, we
first consider a multicomponent BEC of another kind,
namely, a spinor BEC. Such a degenerate quantum
system can be created in an optical trap, where all
the atoms are confined practically independently of
my, their momentum projection to an arbitrary axis.
This independence of the confinement from the spin
orientation is a striking feature and a key advantage
of optical traps, well justified experimentally [2, 3].
The spin orientation then becomes a new degree of
freedom. The differences and similarities between a
two-component BEC with fixed values of mj for both
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components and a spinor BEC in the context of our
study are discussed at the end of this paper.

We note that in all the cited works on collec-
tive excitations in multicomponent BECs and in the
seminal works on spinor BEC dynamics [7], the os-
cillation amplitudes were assumed to be sufficiently
small to provide linearization of the set of the coupled
time-dependent Gross—Pitaevskii equations (GPE). A
proper linear transformation then yields equations of
the harmonic-oscillator type for the normal modes. But
the GPE is essentially nonlinear, and the effects of a fi-
nite amplitude of oscillations therefore occur. There
are some approaches to taking the nonlinearity into ac-
count. The first is to find particular solutions of the
GPE in the form of solitons (see, e.g., recent work [8]
and references therein). The second approach is to find
the oscillating nonlinear solutions that in the case of
an infinitesimally small oscillation amplitude coincide
with the corresponding eigenfunctions of the linearized
version of the GPE or of the equivalent set of quan-
tum hydrodynamical equations. An elegant formal-
ism has been developed for nonlinear oscillations of a
scalar BEC in a harmonic trap in the Thomas—Fermi
regime [9]. It has been found that nonlinear effects be-
come important if the fraction of mass of the scalar
BEC involved in the oscillatory motion is comparable
to unity.
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In the present paper, we investigate the validity of
the approximation based on the linearization of the
GPE by proceeding as follows. We consider plane waves
in a spatially homogeneous multicomponent BEC. This
can serve as a WKB approximation for excitations in
a trapped BEC if the excitation wavelength is much
smaller than the atomic cloud size. Moreover, this ap-
proach allows us to use, in the most direct and straight-
forward way, the standard technique of expanding a
solution into a series in a small parameter, known as
the standard perturbation theory in classical mechan-
ics [10]. The analysis of plane waves in a translationally
invariant BEC also provides a possibility of compar-
ing the results with the rigorous analytic formulas in
Refs. [6, 7].

The main result of our work is that certain modes
in a multicomponent BEC exhibit a strongly nonlinear
behavior: the anharmonicity effects become significant
even for a relatively small wave amplitude. This effect
is absent for the scalar BEC.

We consider a spinor BEC composed of atoms with
the spin f = 1 at zero temperature. In the mean-field
approximation, the GPE governing the evolution of the
complex order parameter (the macroscopic wave func-
tion) ¢ (r, t) of the BEC is given by [7]
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where f is the single-atom angular momentum opera-
tor, a vector whose Cartesian components are 3 X 3 ma-
trices, M is the mass of the atom, and p is the chemical
potential. The coupling constants are defined as
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and ap is the s-wave scattering length for a pair of
slow atoms with the total angular momentum F' equal
to 0 or 2, respectively. Practically, the magnitudes of
these two scattering lengths are close each to other, and
hence, |ca/co| < 1. The order parameter ) has three
components corresponding to the momentum projec-
tions to the z axis given by my =0, £1,

G
l/) = CO \/Ea
(-1

where n is the total equilibrium density of the BEC. We
let ¢ denote the transposed vector. In other words, the
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ground state components of the vector { are normalized
by the condition

! 2
Z ‘Cr(g;’ound)‘ -1 (2)
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We assume that the interaction of atoms in the
BEC, is repulsive, i.e., ¢g > 0. For definiteness, we also
assume that cs > 0. It follows from the latter condi-
tion that the ground state of the system is the so-called
polar state [7]. This implies that in the mean-field pic-
ture, all the atoms have zero momentum projection on
a certain axis. This state is degenerate with respect
to the orientation of this axis. We let this axis be the
z-axis; in the equilibrium, with the time derivative of
¥ in Eq. (1) vanishing, we then have

Cz(tglround) -0 Céground) -1

)
The chemical potential of the BEC in the polar state
is = con.

Before writing Eq. (1) in the explicit form, we in-
troduce the new unknown functions
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Equation (1) can then be transformed to the set of
equations
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If we neglect all the nonlinear terms in Eqs. (3)—(6),
we immediately obtain solutions in the form of plane
monochromatic waves and the corresponding disper-
sion laws [7]. The first mode is the density wave; in
the linear approximation, it corresponds to the peri-
odic oscillations of the my = 0 component of the order
parameter only (i.e., of 1,, 1;), while {; and {_ remain
zero. Density waves in a spinor BEC are the same as
sound waves in a scalar BEC. The dependence of the
frequency wgo of density waves on the wavenumber £ is
of the Bogoliubov type,

Who(k) = wr (k) o, (k) + 2eon],

where

_ hk?

T 2M

is the recoil frequency associated with the kinetic mo-
mentum Ak. Another branch of the excitation spec-
trum in a spinor BEC is related to magnetization
The left and right circularly polarized mag-
netization modes are degenerate: in the linear regime,
their frequency is given by

o(F)

wr (k)

waves.

2
m

w = wy(k)[wr (k) + 2¢an].
The quantum mechanical mean values of the atomic
magnetic momentum operator are proportional to &
and &7 for the left and right polarization, respectively.
We can now determine the effects of nonlinearity on
the magnetization wave propagation using the pertur-
bation theory of classical mechanics [10]. We expand
our unknown functions into series as

&= &9,
7j=0

where ££Lj) is proportional to the jth power of a certain
small parameter ¢ (in fact, the square of the magne-
tization amplitude can be naturally regarded as this
parameter). Similar expansions hold for the remaining
three functions. The zeroth order approximation can
also be taken in the form of a plane wave,

3

5_(1_0) = A, sin(wt —k-r)

but with the frequency w shifted with respect to the
nonperturbed value wy,g. The validity of this method
is restricted to the case where the resulting correction
to the frequency is small,

W — Wmo

< 1.

Wmo
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We also take
€9 = w, (k) 'wAy cos(wt —k - 1),
) =0, n” =0,
The difference between w and w,,q can also be repre-
sented as a series in ¢, beginning with the term of the
order &',

To find the correction to the frequency of a mag-
netization wave, we make the following transformation
of our set of GPEs. We add to and substract from the
right-hand side of Eq. (1) the term w?¢, /w,(k). We
then note that our zeroth order approximation satisfies
the set of equations

et O
ot we(k) Ot

identically. The remaining terms must be regarded as
a perturbation leading to the frequency shift in higher
orders of the approximation. Equations (3)-(6) must
be satisfied in every order in & separately, and there-
fore, all the terms of the order &7 in the right-hand side
must be grouped and set equal to the O(’) part of the
left-hand side of the equation. We restrict our analysis
to the linear order in &, where we obtain

= wr(k)é-
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Here, the symbol {...}(!) means that only the linear
contribution in € ~ Ai to the expression in the curly
brackets is retained. The amplitude A, is taken to be
real without losing the generality.

Equations (7) and (8) can be easily reduced to the
differential equation

0 (1) 2 +(1) 2 5, conwy(k)
w2 Wl (1)
4— 2
g [“ 2w FPom +} g
x Ay sin(wt—k - v)+CA% sin[3(wt —k 1) =0, (9)
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where C is a certain combination of various frequency
parameters of the problem; its calculation is not needed
for the determination of the lowest-order correction to
the wave frequency.

Equation (9) is inhomogeneous, and the presence of
the resonant source term proportional to sin(wt —k - r)
leads to the occurrence of oscillations in the solution
for 5_(1_1) with the amplitude growing linearly in time.
The essence of the method used here [10] is to avoid
these nonphysical (secular) solutions proportional to
tsin(wt —k-r) by setting the prefactor of the resonance
term to zero. To the lowest order in the square of the
wave amplitude, the magnetization wave frequency is
therefore given by

2 2 conwy (k) W?no W:}no 2
- 344 3 A2, (10
W= emot T Iy P | A (10

In the two limiting cases (of the short and long wave-
length), we obtain

w? = w?(k) + gu%k2Ai, hk > Mus, (11)
and
Mus \*
w? = u3k® + 6ujk? < hk2> A%, hk < Mus. (12)

Here,
up = +/hepn/M

are the propagation velocities of the density (F = 0)
and magnetization (F = 2) waves of an infinitely small
amplitude in the long wavelength limit. We can there-
fore conclude that the nonlinearity effects are small un-
til

A% <1, hk> Mug, (13)
A%« Nk : Mus < hk < Mu (14)
+ Mug ) ~ T D
e [ bk \*
R hik < Mus. 1
+<% <Mu2> ’ < M (15)

Interestingly, the condition that the nonlinearity is
small coincides with the trivial condition that Ai is
small compared to the sum of squares of the abso-
lute values of all the three components Q(#;"o“"d) in the
ground state, which is unity in accordance with Eq. (2)
only in the short wavelength limit of Eq. (13). In the
other cases [Eqs. (14) and (15)], even a small but finite
excitation amplitude can result in a significant modifi-
cation of the wave propagation.
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It is easy to show that in the case of magnetization
waves, there are no resonance terms in the right-hand
sides of Eqs. (5) and (6) in the first order in ¢, and these
equations do not therefore contribute to the evaluation
of the corresponding correction to the wave frequency.

Density waves can be analyzed similarly, and the
lowest-order correction results in the formula

2

w? = wiy + gc(]nwr(k)Af,,

(16)

where A, is the amplitude of the oscillations of 7,. For
all momenta k, the correction is small provided that
A, < 1, i.e., nonlinear effects play a less significant
role for waves of this type than for the magnetization
waves. Equation (16) also applies to sound waves in a
single-component (scalar) BEC.

Because w0 is independent of ¢y but the latter
quantity appears in the right-hand side of Eq. (10), we
conclude that the nonlinear coupling to density waves
plays a key role in the modification of the magnetiza-
tion wave frequency. On the contrary, Eq. (16) does
not contain ¢y, and a travelling density wave is there-
fore not coupled to magnetization modes.

We now briefly discuss the case of a mixture of two
BECs, each of which has a fixed value of m¢, or equiv-
alently, of two scalar BECs. Here, we first must intro-
duce the coupling constants

Mj + Mjr

955 = 2mhajj— =,
777

where M; is the mass of an atom of the j-th kind and
ajj is the s-wave scattering length for a pair of atoms
of the j-th and j'-th kind, j', 7 = 1, 2. The dispersion
laws for the two excitation branches were obtained in
the analytic form in Ref. [6] (see also Ref. [5]). If all
the three relevant scattering lengths are positive, the
criterion of stability of a homogeneous BEC mixture
against phase separation is simply gi2 < \/g11g22. In
this case, the eigenmode frequencies are positive for all
values of the momentum k. For simplicity, we here con-
sider the case of equal atomic masses, M| = My = M.
The eigenfrequencies are then simply

wi = wp(k)wr (k) + 2A4],

where

Ay = [911n1+922n2i\/(911n1—922n2)2+49%2n1n2 1/2,

n1, no are the equilibrium number densities of the com-
ponents, and w, (k) is defined above.

The order parameter perturbation for the j-th com-
ponent is given by

6 = /niAjfsin(wt —k-r) +iw, ! (k)w cos(wt —k - 1)].
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After some tedious but straightforward calculations,
which are similar to those described above and are valid
under the same condition of smallness of the frequency
correction, we arrive at the following formula for the
wave frequency shifted due to the nonlinearity effects:

wi

2

wy (k)

r

wi
4

wy (k)

T

wr(k)gﬂ:nl
2

2

w? = wi+ 3+4 +3 Bi. (17)

Here, the upper sign corresponds to the case where
B, # 0 and B_ = 0, and the lower sign corresponds to
the opposite case, By = 0 and B_ # 0. The eigenmode
amplitudes are defined as

B, =cosf, A1 + \ /% sinf, As,
. (18)
B_ =

—sinf, A4 +,/Ecosﬁg As.
ny

By definition, we also set

g+ = g11 cos” ,4+2g12 cos® B, sin® B, +gao sin? 6, (19)
(20)

9— = g11 sin* 0y + 922 cos* g,

tgl, =

_ gaona—guini++/(ga2na—giini)>+4gininy

2g12+/Mn1n2

Equation (17) is similar to Eq. (10) and leads to a
similar restriction on the wave amplitude. If the two
BECs are composed of atoms accumulated on two dif-
ferent magnetic or hyperfine sublevels of the ground
internal state, the difference between gio and |/g11g22
is relatively small, and the lower-frequency mode is ex-
tremely sensitive to the effects of nonlinearity in the
long wavelength limit. We note that both branches of
the excitation spectrum of a two-component BEC in an
external magnetic field are sensitive to nonlinear effects
for small &, while the spinor BEC collective excitations
exhibit a different behavior: the nonlinearity effects are
much more important for magnetization waves than for
density waves.

In summary, we must note that the nonlinearity ef-
fects in the wave propagation in a BEC studied here
are related to the Beliaev damping [11] (cf. the closely
related recent publication [12] on an efficient damping
of the relative motion of two condensates in a trap by
a nonlinear interaction). The Beliaev damping is also
described by the cubic nonlinear term in the GPE. It is
in fact the decay of a collective excitation quantum into
two quata of lower energies, provided that the energy

(21)
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and momentum are conserved. This process results in
the occurrence of an imaginary part of the wave fre-
quency (the damping constant). In the present paper,
we have calculated the real small addend to the wave
frequency. While the Beliaev damping becomes less im-
portant as k& approaches zero, nonlinear corrections to
the magnetization mode in the spinor BEC and to each
of the modes in the usual two-component BEC become
more pronounced.

Finally, we present a numeric example. The ground
state of a spinor BEC of sodium atoms with f = 1 is
simply a polar (antiferromagnetic) state [2]. We take
(ap + 2a2)/3 =~ 5 nm, (as — ag)/3 ~ 0.08 nm and set
n ~ 10 cm~>. We let the excitation wavenumber be
about 3.5 -10% em ™! (the corresponding wavelength is
several times smaller than the atomic cloud size in the
experiment with a large number of atoms in a trap as in
Ref. [2], and therefore, the WKB approximations is still
satisfactory). As A, — 0, the linear theory [7] gives
the magnetization wave frequency wpm,o ~ 300 s~!. But
if AL ~0.044, in other words, only

[1+w, ?(k)w?|A% /2 ~ 0.005

of the total mass of the BEC is involved into the
motion, then the frequency rises by one third of
its primary value and becomes equal to 400 s~ !
in accordance with Eq. (10). Similarly, a strongly
nonlinear behavior of low-lying magnetization modes
of the spinor BEC in a finite-size optical trap can be
expected because the trapped BEC spectrum must
reveal the most important qualitative features present
in the translationally invariant case, as has been shown
for two-component BECs in magnetic traps [5].
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