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NONLINEARITY EFFECTS IN WAVE PROPAGATION INMULTICOMPONENT BOSE�EINSTEIN CONDENSATESI. E. Mazets a*, E. V. Orlenko b, B. G. Matisov ba Io�e Physis and Tehnology Institute194021, Sankt-Petersburg, Russiab Sankt-Petersburg State Tehnial University195251, Sankt-Petersburg, RussiaSubmitted 22 January 2002We onsider a spinor Bose�Einstein ondensate in its polar ground state. We analyze magnetization waves of a�nite amplitude and show that their nonlinear oupling to density waves dramatially hanges the dependeneof the frequeny on the wavenumber. On the ontrary, the density wave propagation is muh less modi�ed bynonlinearity e�ets. A similar phenomenon in a misible two-omponent ondensate is also studied.PACS: 03.75.FiReent advanes in the experimental reation ofmultiomponent atomi Bose�Einstein ondensates(BEC) [1�3℄ have given rise to the interest in physialproperties of suh systems. There are numerous workson the properties of degenerate Bose gas mixtures inmagneti traps related to both the ground state [4℄and the olletive exitations [5℄. In Ref. [5℄, the earlywork [6℄ related to a homogeneous Bose gas mixturewas generalized to the ase of the external harmonitrap potential. Evidently, the number of branhes ofthe dispersion law is equal to the number of di�erentomponents in the mixed BEC. Beause of a nonzerointeration between them, the normal mode osilla-tions imply a simultaneous mutually oherent motionof the omponents. In the present paper, however, we�rst onsider a multiomponent BEC of another kind,namely, a spinor BEC. Suh a degenerate quantumsystem an be reated in an optial trap, where allthe atoms are on�ned pratially independently ofmf , their momentum projetion to an arbitrary axis.This independene of the on�nement from the spinorientation is a striking feature and a key advantageof optial traps, well justi�ed experimentally [2, 3℄.The spin orientation then beomes a new degree offreedom. The di�erenes and similarities between atwo-omponent BEC with �xed values of mf for both*E-mail: mazets�astro.io�e.rssi.ru

omponents and a spinor BEC in the ontext of ourstudy are disussed at the end of this paper.We note that in all the ited works on olle-tive exitations in multiomponent BECs and in theseminal works on spinor BEC dynamis [7℄, the os-illation amplitudes were assumed to be su�ientlysmall to provide linearization of the set of the oupledtime-dependent Gross�Pitaevskii equations (GPE). Aproper linear transformation then yields equations ofthe harmoni-osillator type for the normal modes. Butthe GPE is essentially nonlinear, and the e�ets of a �-nite amplitude of osillations therefore our. Thereare some approahes to taking the nonlinearity into a-ount. The �rst is to �nd partiular solutions of theGPE in the form of solitons (see, e.g., reent work [8℄and referenes therein). The seond approah is to �ndthe osillating nonlinear solutions that in the ase ofan in�nitesimally small osillation amplitude oinidewith the orresponding eigenfuntions of the linearizedversion of the GPE or of the equivalent set of quan-tum hydrodynamial equations. An elegant formal-ism has been developed for nonlinear osillations of asalar BEC in a harmoni trap in the Thomas�Fermiregime [9℄. It has been found that nonlinear e�ets be-ome important if the fration of mass of the salarBEC involved in the osillatory motion is omparableto unity.258



ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002 Nonlinearity e�ets in wave propagation : : :In the present paper, we investigate the validity ofthe approximation based on the linearization of theGPE by proeeding as follows. We onsider plane wavesin a spatially homogeneous multiomponent BEC. Thisan serve as a WKB approximation for exitations ina trapped BEC if the exitation wavelength is muhsmaller than the atomi loud size. Moreover, this ap-proah allows us to use, in the most diret and straight-forward way, the standard tehnique of expanding asolution into a series in a small parameter, known asthe standard perturbation theory in lassial mehan-is [10℄. The analysis of plane waves in a translationallyinvariant BEC also provides a possibility of ompar-ing the results with the rigorous analyti formulas inRefs. [6, 7℄.The main result of our work is that ertain modesin a multiomponent BEC exhibit a strongly nonlinearbehavior: the anharmoniity e�ets beome signi�anteven for a relatively small wave amplitude. This e�etis absent for the salar BEC.We onsider a spinor BEC omposed of atoms withthe spin f = 1 at zero temperature. In the mean-�eldapproximation, the GPE governing the evolution of theomplex order parameter (the marosopi wave fun-tion)  (r; t) of the BEC is given by [7℄i~ ��t = � ~22Mr2 � � + ~0( ~ � ) ++ ~2( ~ �f̂ ) � (f̂ ); (1)where f̂ is the single-atom angular momentum opera-tor, a vetor whose Cartesian omponents are 3�3 ma-tries,M is the mass of the atom, and � is the hemialpotential. The oupling onstants are de�ned as~0 = g0 + 2g23 ; ~2 = g2 � g03 ; gF = 4�~2aFMand aF is the s-wave sattering length for a pair ofslow atoms with the total angular momentum F equalto 0 or 2, respetively. Pratially, the magnitudes ofthese two sattering lengths are lose eah to other, andhene, j2=0j � 1. The order parameter  has threeomponents orresponding to the momentum proje-tions to the z axis given by mf = 0; �1, = 0B� �1�0��1 1CApn;where n is the total equilibrium density of the BEC. Welet ~ denote the transposed vetor. In other words, the

ground state omponents of the vetor � are normalizedby the ondition 1Xmf=�1 ����(ground)mf ���2 = 1: (2)We assume that the interation of atoms in theBEC, is repulsive, i.e., 0 > 0. For de�niteness, we alsoassume that 2 > 0. It follows from the latter ondi-tion that the ground state of the system is the so-alledpolar state [7℄. This implies that in the mean-�eld pi-ture, all the atoms have zero momentum projetion ona ertain axis. This state is degenerate with respetto the orientation of this axis. We let this axis be thez-axis; in the equilibrium, with the time derivative of in Eq. (1) vanishing, we then have�(ground)�1 = 0; �(ground)0 = 1:The hemial potential of the BEC in the polar stateis � = 0n.Before writing Eq. (1) in the expliit form, we in-trodue the new unknown funtions�� = �1 � ���1p2 ; �p = Re �0 � 1; �i = Im �0:Equation (1) an then be transformed to the set ofequations� ��t�� = � ~2Mr2�+ + 22n�+ ++ 0n(��+�+ + ����� + 2�p + �2p + �2i )�+ + 2n�� [(�+������+��+2�i+2�p�i)��+2(2�p+�2p)�+℄; (3)��t�+ = � ~2Mr2�� + 0n�� (��+�+ + ����� + 2�p + �2p + �2i )�� ++ 2n[(�+��� � ��+�� + 2�i + 2�p�i)�+ + 2�2i ��℄; (4)� ��t�i = � ~2Mr2�p + 20n�p + 0n�� [(��+�+ + ����� + 3�p + �2p + �2i )�p ++ ��+�+ + ����� + �2i ℄ + 2n�� [2��+�+�p + 2��+�+ + (��+�� + �+���)�i℄; (5)��t�p = � ~2Mr2�i + 0n�� (��+�+ + ����� + 2�p + �2p + �2i )�i + 2n�� [2������i + (��+�� + �+���)�p + ��+�� + �+���℄: (6)259 4*



I. E. Mazets, E. V. Orlenko, B. G. Matisov ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002If we neglet all the nonlinear terms in Eqs. (3)�(6),we immediately obtain solutions in the form of planemonohromati waves and the orresponding disper-sion laws [7℄. The �rst mode is the density wave; inthe linear approximation, it orresponds to the peri-odi osillations of the mf = 0 omponent of the orderparameter only (i.e., of �p; �i), while �+ and �� remainzero. Density waves in a spinor BEC are the same assound waves in a salar BEC. The dependene of thefrequeny !d0 of density waves on the wavenumber k isof the Bogoliubov type,!2d0(k) = !r(k)[!r(k) + 20n℄;where !r(k) = ~k22Mis the reoil frequeny assoiated with the kineti mo-mentum ~k. Another branh of the exitation spe-trum in a spinor BEC is related to magnetizationwaves. The left and right irularly polarized mag-netization modes are degenerate: in the linear regime,their frequeny is given by!2m0(k) = !r(k)[!r(k) + 22n℄:The quantum mehanial mean values of the atomimagneti momentum operator are proportional to �+and ��+ for the left and right polarization, respetively.We an now determine the e�ets of nonlinearity onthe magnetization wave propagation using the pertur-bation theory of lassial mehanis [10℄. We expandour unknown funtions into series as�+ = 1Xj=0 �(j)+ ;where �(j)+ is proportional to the jth power of a ertainsmall parameter " (in fat, the square of the magne-tization amplitude an be naturally regarded as thisparameter). Similar expansions hold for the remainingthree funtions. The zeroth order approximation analso be taken in the form of a plane wave,�(0)+ = A+ sin(!t� k � r);but with the frequeny ! shifted with respet to thenonperturbed value !m0. The validity of this methodis restrited to the ase where the resulting orretionto the frequeny is small,����! � !m0!m0 ����� 1:

We also take�(0)� = !r(k)�1!A+ os(!t� k � r);�(0)p = 0; �(0)i = 0:The di�erene between ! and !m0 an also be repre-sented as a series in ", beginning with the term of theorder "1.To �nd the orretion to the frequeny of a mag-netization wave, we make the following transformationof our set of GPEs. We add to and substrat from theright-hand side of Eq. (1) the term !2�+=!r(k). Wethen note that our zeroth order approximation satis�esthe set of equations�����t = !2�+!r(k) ; ��+�t = !r(k)��identially. The remaining terms must be regarded asa perturbation leading to the frequeny shift in higherorders of the approximation. Equations (3)�(6) mustbe satis�ed in every order in " separately, and there-fore, all the terms of the order "j in the right-hand sidemust be grouped and set equal to the O("j) part of theleft-hand side of the equation. We restrit our analysisto the linear order in ", where we obtain� ��t�(1)� = !2!r(k)�(1)+ +n!r(k)+22n� !2!r(k)o(1)��A+ sin(!t� k � r) ++ 0n �sin2(!t� k � r) + !2!2r(k) os2 (!t� k � r)���A3+ sin(!t� k � r); (7)��t�(1)+ = !r(k)�(1)� + !!r(k)0n�� �sin2(!t� k � r) + !2!2r(k) os2(!t� k � r)���A3+ os(!t� k � r): (8)Here, the symbol f: : : g(1) means that only the linearontribution in " � A2+ to the expression in the urlybrakets is retained. The amplitude A+ is taken to bereal without losing the generality.Equations (7) and (8) an be easily redued to thedi�erential equation�2�t2 �(1)+ + !2�(1)+ +�!2m0 � !2 + 0n!r(k)4 �� �3 + 4 !2!2r(k) + 3 !4!4r(k)�A2+�(1) ��A+ sin(!t�k � r)+CA3+ sin[3(!t� k � r)℄ = 0; (9)260



ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002 Nonlinearity e�ets in wave propagation : : :where C is a ertain ombination of various frequenyparameters of the problem; its alulation is not neededfor the determination of the lowest-order orretion tothe wave frequeny.Equation (9) is inhomogeneous, and the presene ofthe resonant soure term proportional to sin(!t�k � r)leads to the ourrene of osillations in the solutionfor �(1)+ with the amplitude growing linearly in time.The essene of the method used here [10℄ is to avoidthese nonphysial (seular) solutions proportional tot sin(!t�k �r) by setting the prefator of the resonaneterm to zero. To the lowest order in the square of thewave amplitude, the magnetization wave frequeny istherefore given by!2 = !2m0+0n!r(k)4 �3+4 !2m0!2r(k)+3 !4m0!4r(k)�A2+: (10)In the two limiting ases (of the short and long wave-length), we obtain!2 = !2r(k) + 54u20k2A2+; ~k �Mu2; (11)and!2 = u22k2 + 6u20k2�Mu2~k �4A2+; ~k �Mu2: (12)Here, uF =p~Fn=Mare the propagation veloities of the density (F = 0)and magnetization (F = 2) waves of an in�nitely smallamplitude in the long wavelength limit. We an there-fore onlude that the nonlinearity e�ets are small un-til A2+ � 1; ~k �Mu0; (13)A2+ � � ~kMu0�2 ; Mu2 . ~k .Mu0; (14)A2+ � 20 � ~kMu2�4 ; ~k �Mu2: (15)Interestingly, the ondition that the nonlinearity issmall oinides with the trivial ondition that A2+ issmall ompared to the sum of squares of the abso-lute values of all the three omponents �(ground)mf in theground state, whih is unity in aordane with Eq. (2)only in the short wavelength limit of Eq. (13). In theother ases [Eqs. (14) and (15)℄, even a small but �niteexitation amplitude an result in a signi�ant modi�-ation of the wave propagation.

It is easy to show that in the ase of magnetizationwaves, there are no resonane terms in the right-handsides of Eqs. (5) and (6) in the �rst order in ", and theseequations do not therefore ontribute to the evaluationof the orresponding orretion to the wave frequeny.Density waves an be analyzed similarly, and thelowest-order orretion results in the formula!2 = !2d0 + 340n!r(k)A2p; (16)where Ap is the amplitude of the osillations of �p. Forall momenta k, the orretion is small provided thatAp � 1, i.e., nonlinear e�ets play a less signi�antrole for waves of this type than for the magnetizationwaves. Equation (16) also applies to sound waves in asingle-omponent (salar) BEC.Beause !m0 is independent of 0 but the latterquantity appears in the right-hand side of Eq. (10), weonlude that the nonlinear oupling to density wavesplays a key role in the modi�ation of the magnetiza-tion wave frequeny. On the ontrary, Eq. (16) doesnot ontain 2, and a travelling density wave is there-fore not oupled to magnetization modes.We now brie�y disuss the ase of a mixture of twoBECs, eah of whih has a �xed value of mf , or equiv-alently, of two salar BECs. Here, we �rst must intro-due the oupling onstantsgj0j = 2�~aj0jMj +Mj0MjMj0 ;where Mj is the mass of an atom of the j-th kind andaj0j is the s-wave sattering length for a pair of atomsof the j-th and j0-th kind, j0; j = 1; 2. The dispersionlaws for the two exitation branhes were obtained inthe analyti form in Ref. [6℄ (see also Ref. [5℄). If allthe three relevant sattering lengths are positive, theriterion of stability of a homogeneous BEC mixtureagainst phase separation is simply g12 < pg11g22. Inthis ase, the eigenmode frequenies are positive for allvalues of the momentum k. For simpliity, we here on-sider the ase of equal atomi masses, M1 =M2 �M .The eigenfrequenies are then simply!2� = !r(k)[!r(k) + 2��℄;where�� = [g11n1+g22n2�q(g11n1�g22n2)2+4g212n1n2 ℄=2;n1; n2 are the equilibrium number densities of the om-ponents, and !r(k) is de�ned above.The order parameter perturbation for the j-th om-ponent is given byÆ j = pn1Aj [sin(!t�k � r)+ i!�1r (k)! os(!t�k � r)℄:261



I. E. Mazets, E. V. Orlenko, B. G. Matisov ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002After some tedious but straightforward alulations,whih are similar to those desribed above and are validunder the same ondition of smallness of the frequenyorretion, we arrive at the following formula for thewave frequeny shifted due to the nonlinearity e�ets:!2 = !2�+!r(k)g�n12 �3+4 !2�!2r(k)+3 !4�!4r(k)�B2�: (17)Here, the upper sign orresponds to the ase whereB+ 6= 0 and B� = 0, and the lower sign orresponds tothe opposite ase, B+ = 0 and B� 6= 0. The eigenmodeamplitudes are de�ned asB+ = os �g A1 +rn2n1 sin �g A2;B� = � sin �g A1 +rn2n1 os �g A2: (18)By de�nition, we also setg+ = g11 os4 �g+2g12 os2 �g sin2 �g+g22 sin4 �g; (19)g� = g11 sin4 �g + g22 os4 �g ; (20)tg �g == g22n2�g11n1+p(g22n2�g11n1)2+4g212n1n22g12pn1n2 : (21)Equation (17) is similar to Eq. (10) and leads to asimilar restrition on the wave amplitude. If the twoBECs are omposed of atoms aumulated on two dif-ferent magneti or hyper�ne sublevels of the groundinternal state, the di�erene between g12 and pg11g22is relatively small, and the lower-frequeny mode is ex-tremely sensitive to the e�ets of nonlinearity in thelong wavelength limit. We note that both branhes ofthe exitation spetrum of a two-omponent BEC in anexternal magneti �eld are sensitive to nonlinear e�etsfor small k, while the spinor BEC olletive exitationsexhibit a di�erent behavior: the nonlinearity e�ets aremuh more important for magnetization waves than fordensity waves.In summary, we must note that the nonlinearity ef-fets in the wave propagation in a BEC studied hereare related to the Beliaev damping [11℄ (f. the loselyrelated reent publiation [12℄ on an e�ient dampingof the relative motion of two ondensates in a trap bya nonlinear interation). The Beliaev damping is alsodesribed by the ubi nonlinear term in the GPE. It isin fat the deay of a olletive exitation quantum intotwo quata of lower energies, provided that the energy

and momentum are onserved. This proess results inthe ourrene of an imaginary part of the wave fre-queny (the damping onstant). In the present paper,we have alulated the real small addend to the wavefrequeny. While the Beliaev damping beomes less im-portant as k approahes zero, nonlinear orretions tothe magnetization mode in the spinor BEC and to eahof the modes in the usual two-omponent BEC beomemore pronouned.Finally, we present a numeri example. The groundstate of a spinor BEC of sodium atoms with f = 1 issimply a polar (antiferromagneti) state [2℄. We take(a0 + 2a2)=3 � 5 nm, (a2 � a0)=3 � 0:08 nm and setn � 1014 m�3. We let the exitation wavenumber beabout 3:5 � 103 m�1 (the orresponding wavelength isseveral times smaller than the atomi loud size in theexperiment with a large number of atoms in a trap as inRef. [2℄, and therefore, the WKB approximations is stillsatisfatory). As A+ ! 0, the linear theory [7℄ givesthe magnetization wave frequeny !m0 � 300 s�1. Butif A+ � 0:044, in other words, only[1 + !�2r (k)!2℄A2+=2 � 0:005of the total mass of the BEC is involved into themotion, then the frequeny rises by one third ofits primary value and beomes equal to 400 s�1in aordane with Eq. (10). Similarly, a stronglynonlinear behavior of low-lying magnetization modesof the spinor BEC in a �nite-size optial trap an beexpeted beause the trapped BEC spetrum mustreveal the most important qualitative features presentin the translationally invariant ase, as has been shownfor two-omponent BECs in magneti traps [5℄.This work is supported by the NWO, projet NWO-047-009.010, the state program �Universities of Rus-sia� (grant UR.01.01.040), and the Ministry of Edua-tion of Russia (grant E00-3-12).REFERENCES1. C. J. Myatt, E. A. Burt, R. W. Ghirst, E. A. Cornell,and C. E. Wieman, Phys. Rev. Lett. 78, 586, (1997);D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wie-man, and E. A. Cornell, Phys. Rev. Lett. 81, 1539(1998).2. J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Mies-ner, A. P. Chikkatur, andW. Ketterle, Nature 396, 345(1998).3. M. D. Barrett, J. A. Sauer, and M. S. Chapman, Phys.Rev. Lett. 87, 010404 (2001).262
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