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NONLINEARITY EFFECTS IN WAVE PROPAGATION INMULTICOMPONENT BOSE�EINSTEIN CONDENSATESI. E. Mazets a*, E. V. Orlenko b, B. G. Matisov ba Io�e Physi
s and Te
hnology Institute194021, Sankt-Petersburg, Russiab Sankt-Petersburg State Te
hni
al University195251, Sankt-Petersburg, RussiaSubmitted 22 January 2002We 
onsider a spinor Bose�Einstein 
ondensate in its polar ground state. We analyze magnetization waves of a�nite amplitude and show that their nonlinear 
oupling to density waves dramati
ally 
hanges the dependen
eof the frequen
y on the wavenumber. On the 
ontrary, the density wave propagation is mu
h less modi�ed bynonlinearity e�e
ts. A similar phenomenon in a mis
ible two-
omponent 
ondensate is also studied.PACS: 03.75.FiRe
ent advan
es in the experimental 
reation ofmulti
omponent atomi
 Bose�Einstein 
ondensates(BEC) [1�3℄ have given rise to the interest in physi
alproperties of su
h systems. There are numerous workson the properties of degenerate Bose gas mixtures inmagneti
 traps related to both the ground state [4℄and the 
olle
tive ex
itations [5℄. In Ref. [5℄, the earlywork [6℄ related to a homogeneous Bose gas mixturewas generalized to the 
ase of the external harmoni
trap potential. Evidently, the number of bran
hes ofthe dispersion law is equal to the number of di�erent
omponents in the mixed BEC. Be
ause of a nonzerointera
tion between them, the normal mode os
illa-tions imply a simultaneous mutually 
oherent motionof the 
omponents. In the present paper, however, we�rst 
onsider a multi
omponent BEC of another kind,namely, a spinor BEC. Su
h a degenerate quantumsystem 
an be 
reated in an opti
al trap, where allthe atoms are 
on�ned pra
ti
ally independently ofmf , their momentum proje
tion to an arbitrary axis.This independen
e of the 
on�nement from the spinorientation is a striking feature and a key advantageof opti
al traps, well justi�ed experimentally [2, 3℄.The spin orientation then be
omes a new degree offreedom. The di�eren
es and similarities between atwo-
omponent BEC with �xed values of mf for both*E-mail: mazets�astro.io�e.rssi.ru


omponents and a spinor BEC in the 
ontext of ourstudy are dis
ussed at the end of this paper.We note that in all the 
ited works on 
olle
-tive ex
itations in multi
omponent BECs and in theseminal works on spinor BEC dynami
s [7℄, the os-
illation amplitudes were assumed to be su�
ientlysmall to provide linearization of the set of the 
oupledtime-dependent Gross�Pitaevskii equations (GPE). Aproper linear transformation then yields equations ofthe harmoni
-os
illator type for the normal modes. Butthe GPE is essentially nonlinear, and the e�e
ts of a �-nite amplitude of os
illations therefore o

ur. Thereare some approa
hes to taking the nonlinearity into a
-
ount. The �rst is to �nd parti
ular solutions of theGPE in the form of solitons (see, e.g., re
ent work [8℄and referen
es therein). The se
ond approa
h is to �ndthe os
illating nonlinear solutions that in the 
ase ofan in�nitesimally small os
illation amplitude 
oin
idewith the 
orresponding eigenfun
tions of the linearizedversion of the GPE or of the equivalent set of quan-tum hydrodynami
al equations. An elegant formal-ism has been developed for nonlinear os
illations of as
alar BEC in a harmoni
 trap in the Thomas�Fermiregime [9℄. It has been found that nonlinear e�e
ts be-
ome important if the fra
tion of mass of the s
alarBEC involved in the os
illatory motion is 
omparableto unity.258



ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002 Nonlinearity e�e
ts in wave propagation : : :In the present paper, we investigate the validity ofthe approximation based on the linearization of theGPE by pro
eeding as follows. We 
onsider plane wavesin a spatially homogeneous multi
omponent BEC. This
an serve as a WKB approximation for ex
itations ina trapped BEC if the ex
itation wavelength is mu
hsmaller than the atomi
 
loud size. Moreover, this ap-proa
h allows us to use, in the most dire
t and straight-forward way, the standard te
hnique of expanding asolution into a series in a small parameter, known asthe standard perturbation theory in 
lassi
al me
han-i
s [10℄. The analysis of plane waves in a translationallyinvariant BEC also provides a possibility of 
ompar-ing the results with the rigorous analyti
 formulas inRefs. [6, 7℄.The main result of our work is that 
ertain modesin a multi
omponent BEC exhibit a strongly nonlinearbehavior: the anharmoni
ity e�e
ts be
ome signi�
anteven for a relatively small wave amplitude. This e�e
tis absent for the s
alar BEC.We 
onsider a spinor BEC 
omposed of atoms withthe spin f = 1 at zero temperature. In the mean-�eldapproximation, the GPE governing the evolution of the
omplex order parameter (the ma
ros
opi
 wave fun
-tion)  (r; t) of the BEC is given by [7℄i~ ��t = � ~22Mr2 � � + ~
0( ~ � ) ++ ~
2( ~ �f̂ ) � (f̂ ); (1)where f̂ is the single-atom angular momentum opera-tor, a ve
tor whose Cartesian 
omponents are 3�3 ma-tri
es,M is the mass of the atom, and � is the 
hemi
alpotential. The 
oupling 
onstants are de�ned as~
0 = g0 + 2g23 ; ~
2 = g2 � g03 ; gF = 4�~2aFMand aF is the s-wave s
attering length for a pair ofslow atoms with the total angular momentum F equalto 0 or 2, respe
tively. Pra
ti
ally, the magnitudes ofthese two s
attering lengths are 
lose ea
h to other, andhen
e, j
2=
0j � 1. The order parameter  has three
omponents 
orresponding to the momentum proje
-tions to the z axis given by mf = 0; �1, = 0B� �1�0��1 1CApn;where n is the total equilibrium density of the BEC. Welet ~ denote the transposed ve
tor. In other words, the

ground state 
omponents of the ve
tor � are normalizedby the 
ondition 1Xmf=�1 ����(ground)mf ���2 = 1: (2)We assume that the intera
tion of atoms in theBEC, is repulsive, i.e., 
0 > 0. For de�niteness, we alsoassume that 
2 > 0. It follows from the latter 
ondi-tion that the ground state of the system is the so-
alledpolar state [7℄. This implies that in the mean-�eld pi
-ture, all the atoms have zero momentum proje
tion ona 
ertain axis. This state is degenerate with respe
tto the orientation of this axis. We let this axis be thez-axis; in the equilibrium, with the time derivative of in Eq. (1) vanishing, we then have�(ground)�1 = 0; �(ground)0 = 1:The 
hemi
al potential of the BEC in the polar stateis � = 
0n.Before writing Eq. (1) in the expli
it form, we in-trodu
e the new unknown fun
tions�� = �1 � ���1p2 ; �p = Re �0 � 1; �i = Im �0:Equation (1) 
an then be transformed to the set ofequations� ��t�� = � ~2Mr2�+ + 2
2n�+ ++ 
0n(��+�+ + ����� + 2�p + �2p + �2i )�+ + 
2n�� [(�+������+��+2�i+2�p�i)��+2(2�p+�2p)�+℄; (3)��t�+ = � ~2Mr2�� + 
0n�� (��+�+ + ����� + 2�p + �2p + �2i )�� ++ 
2n[(�+��� � ��+�� + 2�i + 2�p�i)�+ + 2�2i ��℄; (4)� ��t�i = � ~2Mr2�p + 2
0n�p + 
0n�� [(��+�+ + ����� + 3�p + �2p + �2i )�p ++ ��+�+ + ����� + �2i ℄ + 
2n�� [2��+�+�p + 2��+�+ + (��+�� + �+���)�i℄; (5)��t�p = � ~2Mr2�i + 
0n�� (��+�+ + ����� + 2�p + �2p + �2i )�i + 
2n�� [2������i + (��+�� + �+���)�p + ��+�� + �+���℄: (6)259 4*



I. E. Mazets, E. V. Orlenko, B. G. Matisov ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002If we negle
t all the nonlinear terms in Eqs. (3)�(6),we immediately obtain solutions in the form of planemono
hromati
 waves and the 
orresponding disper-sion laws [7℄. The �rst mode is the density wave; inthe linear approximation, it 
orresponds to the peri-odi
 os
illations of the mf = 0 
omponent of the orderparameter only (i.e., of �p; �i), while �+ and �� remainzero. Density waves in a spinor BEC are the same assound waves in a s
alar BEC. The dependen
e of thefrequen
y !d0 of density waves on the wavenumber k isof the Bogoliubov type,!2d0(k) = !r(k)[!r(k) + 2
0n℄;where !r(k) = ~k22Mis the re
oil frequen
y asso
iated with the kineti
 mo-mentum ~k. Another bran
h of the ex
itation spe
-trum in a spinor BEC is related to magnetizationwaves. The left and right 
ir
ularly polarized mag-netization modes are degenerate: in the linear regime,their frequen
y is given by!2m0(k) = !r(k)[!r(k) + 2
2n℄:The quantum me
hani
al mean values of the atomi
magneti
 momentum operator are proportional to �+and ��+ for the left and right polarization, respe
tively.We 
an now determine the e�e
ts of nonlinearity onthe magnetization wave propagation using the pertur-bation theory of 
lassi
al me
hani
s [10℄. We expandour unknown fun
tions into series as�+ = 1Xj=0 �(j)+ ;where �(j)+ is proportional to the jth power of a 
ertainsmall parameter " (in fa
t, the square of the magne-tization amplitude 
an be naturally regarded as thisparameter). Similar expansions hold for the remainingthree fun
tions. The zeroth order approximation 
analso be taken in the form of a plane wave,�(0)+ = A+ sin(!t� k � r);but with the frequen
y ! shifted with respe
t to thenonperturbed value !m0. The validity of this methodis restri
ted to the 
ase where the resulting 
orre
tionto the frequen
y is small,����! � !m0!m0 ����� 1:

We also take�(0)� = !r(k)�1!A+ 
os(!t� k � r);�(0)p = 0; �(0)i = 0:The di�eren
e between ! and !m0 
an also be repre-sented as a series in ", beginning with the term of theorder "1.To �nd the 
orre
tion to the frequen
y of a mag-netization wave, we make the following transformationof our set of GPEs. We add to and substra
t from theright-hand side of Eq. (1) the term !2�+=!r(k). Wethen note that our zeroth order approximation satis�esthe set of equations�����t = !2�+!r(k) ; ��+�t = !r(k)��identi
ally. The remaining terms must be regarded asa perturbation leading to the frequen
y shift in higherorders of the approximation. Equations (3)�(6) mustbe satis�ed in every order in " separately, and there-fore, all the terms of the order "j in the right-hand sidemust be grouped and set equal to the O("j) part of theleft-hand side of the equation. We restri
t our analysisto the linear order in ", where we obtain� ��t�(1)� = !2!r(k)�(1)+ +n!r(k)+2
2n� !2!r(k)o(1)��A+ sin(!t� k � r) ++ 
0n �sin2(!t� k � r) + !2!2r(k) 
os2 (!t� k � r)���A3+ sin(!t� k � r); (7)��t�(1)+ = !r(k)�(1)� + !!r(k)
0n�� �sin2(!t� k � r) + !2!2r(k) 
os2(!t� k � r)���A3+ 
os(!t� k � r): (8)Here, the symbol f: : : g(1) means that only the linear
ontribution in " � A2+ to the expression in the 
urlybra
kets is retained. The amplitude A+ is taken to bereal without losing the generality.Equations (7) and (8) 
an be easily redu
ed to thedi�erential equation�2�t2 �(1)+ + !2�(1)+ +�!2m0 � !2 + 
0n!r(k)4 �� �3 + 4 !2!2r(k) + 3 !4!4r(k)�A2+�(1) ��A+ sin(!t�k � r)+CA3+ sin[3(!t� k � r)℄ = 0; (9)260



ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002 Nonlinearity e�e
ts in wave propagation : : :where C is a 
ertain 
ombination of various frequen
yparameters of the problem; its 
al
ulation is not neededfor the determination of the lowest-order 
orre
tion tothe wave frequen
y.Equation (9) is inhomogeneous, and the presen
e ofthe resonant sour
e term proportional to sin(!t�k � r)leads to the o

urren
e of os
illations in the solutionfor �(1)+ with the amplitude growing linearly in time.The essen
e of the method used here [10℄ is to avoidthese nonphysi
al (se
ular) solutions proportional tot sin(!t�k �r) by setting the prefa
tor of the resonan
eterm to zero. To the lowest order in the square of thewave amplitude, the magnetization wave frequen
y istherefore given by!2 = !2m0+
0n!r(k)4 �3+4 !2m0!2r(k)+3 !4m0!4r(k)�A2+: (10)In the two limiting 
ases (of the short and long wave-length), we obtain!2 = !2r(k) + 54u20k2A2+; ~k �Mu2; (11)and!2 = u22k2 + 6u20k2�Mu2~k �4A2+; ~k �Mu2: (12)Here, uF =p~
Fn=Mare the propagation velo
ities of the density (F = 0)and magnetization (F = 2) waves of an in�nitely smallamplitude in the long wavelength limit. We 
an there-fore 
on
lude that the nonlinearity e�e
ts are small un-til A2+ � 1; ~k �Mu0; (13)A2+ � � ~kMu0�2 ; Mu2 . ~k .Mu0; (14)A2+ � 
2
0 � ~kMu2�4 ; ~k �Mu2: (15)Interestingly, the 
ondition that the nonlinearity issmall 
oin
ides with the trivial 
ondition that A2+ issmall 
ompared to the sum of squares of the abso-lute values of all the three 
omponents �(ground)mf in theground state, whi
h is unity in a

ordan
e with Eq. (2)only in the short wavelength limit of Eq. (13). In theother 
ases [Eqs. (14) and (15)℄, even a small but �niteex
itation amplitude 
an result in a signi�
ant modi�-
ation of the wave propagation.

It is easy to show that in the 
ase of magnetizationwaves, there are no resonan
e terms in the right-handsides of Eqs. (5) and (6) in the �rst order in ", and theseequations do not therefore 
ontribute to the evaluationof the 
orresponding 
orre
tion to the wave frequen
y.Density waves 
an be analyzed similarly, and thelowest-order 
orre
tion results in the formula!2 = !2d0 + 34
0n!r(k)A2p; (16)where Ap is the amplitude of the os
illations of �p. Forall momenta k, the 
orre
tion is small provided thatAp � 1, i.e., nonlinear e�e
ts play a less signi�
antrole for waves of this type than for the magnetizationwaves. Equation (16) also applies to sound waves in asingle-
omponent (s
alar) BEC.Be
ause !m0 is independent of 
0 but the latterquantity appears in the right-hand side of Eq. (10), we
on
lude that the nonlinear 
oupling to density wavesplays a key role in the modi�
ation of the magnetiza-tion wave frequen
y. On the 
ontrary, Eq. (16) doesnot 
ontain 
2, and a travelling density wave is there-fore not 
oupled to magnetization modes.We now brie�y dis
uss the 
ase of a mixture of twoBECs, ea
h of whi
h has a �xed value of mf , or equiv-alently, of two s
alar BECs. Here, we �rst must intro-du
e the 
oupling 
onstantsgj0j = 2�~aj0jMj +Mj0MjMj0 ;where Mj is the mass of an atom of the j-th kind andaj0j is the s-wave s
attering length for a pair of atomsof the j-th and j0-th kind, j0; j = 1; 2. The dispersionlaws for the two ex
itation bran
hes were obtained inthe analyti
 form in Ref. [6℄ (see also Ref. [5℄). If allthe three relevant s
attering lengths are positive, the
riterion of stability of a homogeneous BEC mixtureagainst phase separation is simply g12 < pg11g22. Inthis 
ase, the eigenmode frequen
ies are positive for allvalues of the momentum k. For simpli
ity, we here 
on-sider the 
ase of equal atomi
 masses, M1 =M2 �M .The eigenfrequen
ies are then simply!2� = !r(k)[!r(k) + 2��℄;where�� = [g11n1+g22n2�q(g11n1�g22n2)2+4g212n1n2 ℄=2;n1; n2 are the equilibrium number densities of the 
om-ponents, and !r(k) is de�ned above.The order parameter perturbation for the j-th 
om-ponent is given byÆ j = pn1Aj [sin(!t�k � r)+ i!�1r (k)! 
os(!t�k � r)℄:261



I. E. Mazets, E. V. Orlenko, B. G. Matisov ÆÝÒÔ, òîì 122, âûï. 2 (8), 2002After some tedious but straightforward 
al
ulations,whi
h are similar to those des
ribed above and are validunder the same 
ondition of smallness of the frequen
y
orre
tion, we arrive at the following formula for thewave frequen
y shifted due to the nonlinearity e�e
ts:!2 = !2�+!r(k)g�n12 �3+4 !2�!2r(k)+3 !4�!4r(k)�B2�: (17)Here, the upper sign 
orresponds to the 
ase whereB+ 6= 0 and B� = 0, and the lower sign 
orresponds tothe opposite 
ase, B+ = 0 and B� 6= 0. The eigenmodeamplitudes are de�ned asB+ = 
os �g A1 +rn2n1 sin �g A2;B� = � sin �g A1 +rn2n1 
os �g A2: (18)By de�nition, we also setg+ = g11 
os4 �g+2g12 
os2 �g sin2 �g+g22 sin4 �g; (19)g� = g11 sin4 �g + g22 
os4 �g ; (20)tg �g == g22n2�g11n1+p(g22n2�g11n1)2+4g212n1n22g12pn1n2 : (21)Equation (17) is similar to Eq. (10) and leads to asimilar restri
tion on the wave amplitude. If the twoBECs are 
omposed of atoms a

umulated on two dif-ferent magneti
 or hyper�ne sublevels of the groundinternal state, the di�eren
e between g12 and pg11g22is relatively small, and the lower-frequen
y mode is ex-tremely sensitive to the e�e
ts of nonlinearity in thelong wavelength limit. We note that both bran
hes ofthe ex
itation spe
trum of a two-
omponent BEC in anexternal magneti
 �eld are sensitive to nonlinear e�e
tsfor small k, while the spinor BEC 
olle
tive ex
itationsexhibit a di�erent behavior: the nonlinearity e�e
ts aremu
h more important for magnetization waves than fordensity waves.In summary, we must note that the nonlinearity ef-fe
ts in the wave propagation in a BEC studied hereare related to the Beliaev damping [11℄ (
f. the 
loselyrelated re
ent publi
ation [12℄ on an e�
ient dampingof the relative motion of two 
ondensates in a trap bya nonlinear intera
tion). The Beliaev damping is alsodes
ribed by the 
ubi
 nonlinear term in the GPE. It isin fa
t the de
ay of a 
olle
tive ex
itation quantum intotwo quata of lower energies, provided that the energy

and momentum are 
onserved. This pro
ess results inthe o

urren
e of an imaginary part of the wave fre-quen
y (the damping 
onstant). In the present paper,we have 
al
ulated the real small addend to the wavefrequen
y. While the Beliaev damping be
omes less im-portant as k approa
hes zero, nonlinear 
orre
tions tothe magnetization mode in the spinor BEC and to ea
hof the modes in the usual two-
omponent BEC be
omemore pronoun
ed.Finally, we present a numeri
 example. The groundstate of a spinor BEC of sodium atoms with f = 1 issimply a polar (antiferromagneti
) state [2℄. We take(a0 + 2a2)=3 � 5 nm, (a2 � a0)=3 � 0:08 nm and setn � 1014 
m�3. We let the ex
itation wavenumber beabout 3:5 � 103 
m�1 (the 
orresponding wavelength isseveral times smaller than the atomi
 
loud size in theexperiment with a large number of atoms in a trap as inRef. [2℄, and therefore, the WKB approximations is stillsatisfa
tory). As A+ ! 0, the linear theory [7℄ givesthe magnetization wave frequen
y !m0 � 300 s�1. Butif A+ � 0:044, in other words, only[1 + !�2r (k)!2℄A2+=2 � 0:005of the total mass of the BEC is involved into themotion, then the frequen
y rises by one third ofits primary value and be
omes equal to 400 s�1in a

ordan
e with Eq. (10). Similarly, a stronglynonlinear behavior of low-lying magnetization modesof the spinor BEC in a �nite-size opti
al trap 
an beexpe
ted be
ause the trapped BEC spe
trum mustreveal the most important qualitative features presentin the translationally invariant 
ase, as has been shownfor two-
omponent BECs in magneti
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