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TWO-DIMENSIONAL ELECTRON LIQUID WITH DISORDERIN A WEAK MAGNETIC FIELDI. S. Burmistrov *Landau Institute for Theoretial Physis, Russian Aademy of Sienes117940, Mosow, RussiaSubmitted 24 January 2002We present the e�etive theory for the low-energy dynamis of two-dimensional interating eletrons in thepresene of a weak short-range disorder and a weak perpendiular magneti �eld, with the �lling fator � � 1.We investigate the exhange enhanement of the g fator, the e�etive mass, and the deay rate of the simplestspin wave exitations at � = 2N + 1. We obtain the enhanement of the �eld-indued gap in the tunnelingdensity of states and the dependene of the tunneling ondutivity on the applied bias.PACS: 73.43.-f, 73.20.Mf, 73.43.Jn1. INTRODUCTIONA two-dimensional eletron gas in the perpendiularmagneti �eld has attrated muh attention from boththeoretial and experimental standpoints. The e�etsin a strong magneti �eld when only the lowest Landaulevel is oupied have been investigated sine the dis-overy of the quantum Hall e�et [1℄. Several e�orts [2℄are made in order to involve larger �lling fators � > 1into the problem disussed. However, the existene ofa small parameter, the ratio of the Coulomb energy atthe magneti �eld length to the ylotron energy, hasbeen assumed. In a weak magneti �eld, the Coulombenergy at the magneti �eld length atually exeedsthe ylotron energy and some attempts [3℄ have beenundertaken to investigate the ase of the large �llingfator � > 1.Experimental investigations of the tunneling den-sity of states for the system under onsideration wereperformed at small (� < 1) [4℄ and large (� > 1) [5℄�lling fators. In the ase of a weak magneti �eld(� � 1), the gap in the tunneling density of states hasbeen obtained in the framework of the hydrodynamialapproah [6℄. The progress was made by Aleiner andGlazman [7℄ who developed the e�etive theory for low-energy exitations on a partially �lled Landau level atlarge �lling fators � � 1.Reently, after the predition that the unidire-*E-mail: burmi�itp.a.ru

tional harge-density wave state ours at half-�lledhigh Landau levels within the framework of theHartree�Fok theory [8℄ and the experimental diso-very of ompressible states with the anisotropi mag-netotransport properties in high-mobility systems nearthe half-�lling of the high Landau levels [9℄, the two-di-mensional eletron liquid in a weak magneti �eld wasintensely studied [10℄.In this paper, we develop the low-energy e�etivetheory for eletrons at the partially �lled Landau levelwith a large �lling fator in the presene of disorder(Se. 2). As an example, the e�et of disorder on theexhange enhanement of the e�etive g fator and thesimplest spin-wave exitations are disussed in Se. 4.Eletron tunneling into the eletron liquid is onsideredin Se. 5. Conlusions are given in Se. 6.2. DERIVATION OF THE EFFECTIVE ACTION2.1. IntrodutionWe onsider the system of two-dimensional ele-trons with the Coulomb interation in the presene ofdisorder in a perpendiular magneti �eld H . The sys-tem possesses a partially �lled high Landau level withthe level index N � 1 equal to the integer part ofhalf the �lling fator �, N = [�=2℄. The presene ofa random potential, whih is onsidered to be short-range, results in a broadening of the Landau levels.150



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional eletron liquid with disorder : : :We assume that the elasti ollision time satis�es theondition �0 � !�1 ;where ! = eH=m is the ylotron frequeny with theeletron harge e and the eletron massm. In this ase,the broadening of Landau levels, whih is of the orderp!�0=�0, is muh less than the distane between them.The onventional parameter haraterizing the ou-pling strength of the Coulomb interation isrs = p2e2=vF ;where vF is the Fermi veloity. We assume that ele-trons are weakly interating, i.e., rs < 1. In this ase,we an treat the problem in the random phase approx-imation. We also assume that the number N is suf-�iently large, and the ondition Nrs � 1 is there-fore satis�ed. This means that the ylotron radiusR =p�=m! is supposed to be muh larger than theBohr radius aB = 1=me2,R � aB :2.2. The formalismThe system is desribed by the grand anonial par-tition funtion in the path-integral representation,Z = Z D[ ;  ℄ Z D[Vdis℄P [Vdis(r)℄ �� exp�S[ ;  ; Vdis℄	 ; (1)S = NrX�=1 1=TZ0 d� ��Z dr h �;�(r; �) (��� + ��H � Vdis(r)) �;�(r; �)�� 12 Z dr1  �;�(r; �) �;�(r; �)U0(r; r1)��  �;�1(r1; �) �;�1 (r1; �)i; (2)where the Grassmann variables  �;� and  �;� are de-�ned on the imaginary time interval � 2 [0; 1=T ℄ withthe antiperiodi ondition  (r; 1=T ) = � (r; 0). Thesymbol T stands for the temperature, � is the hem-ial potential of the system, and �; �1 = �1 are spinindies. The HamiltonianH = (�ir� eA)22mdesribes the eletron with mass m propagating in thetwo-dimensional spae in the perpendiular magneti�eld H = �ab�aAb:

The random potential Vdis(r) is hosen to have theGaussian distribution funtionP [Vdis(r)℄ = p��0 exp�����0 Z drV 2dis(r)� ; (3)where � denotes the thermodynamial density of states.To average lnZ over disorder, Nr repliated opiesof the system are introdued; we let � = 1; : : : ; Nr bethe replia indies.The Matsubara representation seems to be moreonvenient for the above problem. We therefore usethe Fourier transform from the imaginary time � to theMatsubara frequenies. Beause the fermioni �elds areantiperiodi within the interval [0; 1=T ℄, the frequeniespermitted for  and  are!n = �T (2n+ 1);where n is an integer. The Fourier-transformed �eldsare de�ned as �(�) = pT 1Xn=�1 �nei!n� ; �(�) = pT 1Xn=�1 �ne�i!n� : (4)In what follows, we omit the limits in the frequenyand replia series for brevity.In the Matsubara representation, ation (2) be-omesS = Z dr��X�;nh �;�n (r) (i!n + ��H � Vdis(r)) �;�n (r) �� T2 Xl;m Z dr1  �;�m (r) �;�m�n(r)U0(r; r1)��  �;�1l (r1) �;�1l+n (r1)i: (5)The Zeeman term in ation (2) is negleted beausethe g fator is small. In fat, the ondition g � 1 isusually satis�ed. The Zeeman term an neverthelessbe inluded in the e�etive ation after performing theintegration over fast degrees of freedom. To simplifythe notation, the spin indies are assoiated with thereplia ones whenever onvenient.2.3. The plasmon �eld and the average overdisorderThe Coulomb term entering ation (5) is quar-ti in the fermioni �elds. This quarti term an be151



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002eliminated by the Hubbard�Stratonovih transforma-tion, introduing an extra path integration over bosoni�elds ��n(r). With the help of the so-alled plasmon�eld, the Coulomb term an be presented asZ D[�℄ exp ��T2 ZZ dr dr1 �y(r)U�10 (r; r1)�(r1)++ iT Z dr y(r)�̂(r) (r)� ; (6)where U�10 stands for the inverse operator to U0. Thematrix notation is used for the ombined replia andfrequeny indies, y(: : : ) = �;�Xn;m �n(: : : )��nm �m;�y� = �Xn ���n��n: (7)The quantities with the hat are de�ned asẑ =X�;n z�nI�nwith the matrix(I�n )�kl = Æ��Æ�Æk�l;n:The matries I�n represent the diagonals shifted in thefrequeny spae; they are the generators of the U(1)gauge transformations in general. The measure of thepath integral over the plasmon �eld � is introduedsuh that integral (6) equals unity for the vanishingfermioni �elds  y and  .In order to perform the averaging over disorder inpartition funtion (1), we must integrate over the ran-dom potential Vdis(r). This leads to the quarti term14��� Z dr �;�Xn;m �n(r) �n (r) �m(r) �m(r) (8)in the ation. This term an be deoupled by theHubbard�Stratonovih transformation. An extra pathintegration over the Hermitian matrix �eld variablesQ��nm(r) an be introdued [11, 12℄,Z D[Q℄�� expZ dr �����0 trQ2(r)+i y(r)Q(r) (r)� ; (9)where the symbol �tr� denotes the matrix trae overthe Matsubara, replia, and spin spaes. The measure

of the path integral over the matrix �eld Q is de�ned inthe same way as for the plasmon �eld, i.e., integral (9)equals unity for vanishing fermioni �elds  y and  .After the above alulations, the partition funtionbeomesZ = Z D[ ;  ; �;Q℄ exp�S[ ;  ; �;Q℄	 ; (10)S = ����0 Z dr trQ2 �� T2 ZZ dr dr1 �y(r)U�10 (r; r1)�(r1) ++ Z dr y(r)�i! + �� Ĥ+ iT �̂+ iQ� (r); (11)where ! is the unit matrix in the replia spae, whilein the Matsubara spae, it is a matrix ontaining thefrequenies !n on the diagonal,(!)��nm = !nÆnmÆ�� :2.4. Elimination of the N-th Landau levelThe fermioni �elds  y and  refer to all Landaulevels. In order to integrate over all fermioni degreesof freedom not belonging to the partially �lled N -thLandau level, we separate the fermioni �elds into twokinds. The �rst �eld refers to the N -th Landau level,	(r) =Xk  Nk'Nk(r);	y(r) =Xk  yNk'Nk(r): (12)The seond one involves the other levels,�(r) = Xp6=N;k pk'pk(r);�y(r) = Xp6=N;k ypk'pk(r); (13)where 'pk(r) are the eigenfuntions of the HamiltonianH and p = 0; 1; : : : ; N; : : : labels Landau levels with theenergies �p = !(p + 1=2). In addition, we introduetwo types of the Green's funtions. One is for the N -thLandau level,G(r; r1;Q; �) ==Xk;k0 '�Nk(r)GNk;Nk0 (Q; �)'Nk0 (r1); (14)and the other is for the other levels,~G(r; r1;Q; �) == Xp;p0 6=NXk;k0 '�pk(r)Gpk;p0k0(Q; �)'p0k0(r1); (15)152



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional eletron liquid with disorder : : :where the inverse of the Green's funtion for the  pkand  yp0k0 operators is given by(G�1)pk;p0k0 = (i! + �� �p)Æpp0Ækk0 ++ iT �̂pk;p0k0 + iQpk;p0k0 (16)with the matrix elementsfpk;p0k0 = Z dr'�p0k0(r)f(r)'pk(r): (17)The ation (11) is bilinear in the fermioni �elds  yand  , and obviously, also in the fermioni �elds �yand �. We an therefore integrate over the fermioni�elds �y and �; this givesS = � Z tr ln ~G� ���0 Z trQ2 ++ Z 	y hi! + �� Ĥ+ iT �̂+ iQi	�� T2 ZZ �yU�10 �++ZZ h	yQ ~GQ	+2T	y�̂ ~GQ	+T 2	y�̂ ~G�̂	i : (18)Hereafter, the spae indies are omitted. It should benoted that the last term arises in ation (18) due to theinteration between eletrons belonging to the partially�lled N -th Landau level and the other eletrons.2.5. Integration over the Q �eldThe Q matrix �eld must be divided into thetransverse V and the longitudinal P omponents asQ = V �1PV . Here, the longitudinal omponent Phas a blok-diagonal struture in the Matsubara spae,i.e., P��nm / �(nm), where �(x) is the Heaviside stepfuntion. The transverse omponent V orresponds toa unitary rotation, see [13; 14℄ for a review.The hange of variables from Q to P and V is mo-tivated by the saddle-point struture of ation (18) inthe absene of the plasmon �eld � and at zero temper-ature, i.e., as !n ! 0. This saddle-point solution anbe written as Qsp = V �1PspV;where the matrix Psp obeys the equation2���0Psp = ihG0(r; r) + ~G0(r; r)i (19)that oinides with the self-onsistent Born approxima-tion equation [15℄. Here, the Green's funtion G0 is aspeial ase of G, namely,G0(r; r1) = G(r; r1;Psp; 0);

and similarly for ~G0.In the ase of small disorder, !�0 � 1, the solutionof Eq. (19) is given by(Psp)��nm = sgnn2� ÆnmÆ�� ; � = �r �m �0p!�0 : (20)The presene of the plasmon �eld � results in a shiftof the saddle-point value (20) of the P �eld; this shiftan be found by expanding ation (18) to the seondorder in both � and ÆP = P � Psp. We thus obtainS = S0 + S1[ÆP; �℄ + S2[	;	; ÆP; �℄; (21)S0 = Z �� tr ln ~G0 � ���0 trQ2sp++ 	y hi! + �� Ĥ + iT �̂+ iQspi	� ; (22)S1 = iTZ tr ~G0�̂����0 Z tr(ÆP )2�T2 ZZ �yU�10 �++ 12 ZZ tr hT �̂+ ÆP i�0 hT �̂+ ÆP i ; (23)S2 = ZZ �	y hT �̂+ ÆP i ~G0 hT �̂+ ÆP i	 �� 2 tr hT �̂+ ÆP i ~G0 hT �̂+ ÆP iG0� ; (24)where the bare polarization operator �0 is understoodto be a matrix in aordane with the ruletrA�0B == �;�Xn;mA��m+n;m(r)�m0 (n; r; r1)B��m;m+n(r1) (25)and is de�ned by�m0 (n; r; r1) = �2� ~Gm+n0 (r; r1) ~Gm0 (r1; r) ++ ~Gm+n0 (r; r1)Gm0 (r1; r) ++Gm+n0 (r; r1) ~Gm0 (r1; r)� : (26)After deomposing the matrix �eld Q into theblok-diagonal Hermitian matrix �eld P and the uni-tary matrix �eld V , the measure of the funtional in-tegral in (21) beomesD[Q℄ = D[V ℄D[ÆP ℄I [ÆP ℄;153



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002where [13℄ln I [ÆP ℄ = � 1(��)2 �� Z �;�Xn;m [1��(nm)℄ ÆP��nn ÆP ��mm: (27)The terms that are quadrati in ÆP in the part S1 ofation (21) together with the ontribution of measure(27) determine the propagator of the ÆP �elds,hÆP��m1m2(q)ÆP Æm3m4(�q)i == Æm1m4Æm2m3Æ�ÆÆ��(m1m3)2���01 + �m10 (m3 �m1;q)2���0 �� 2 [1��(m1m3)℄(2�2�2�)2 Æm1m2Æ��1 + �m10 (0;q)2���0 �� Æm3m4ÆÆ1 + �m30 (0;q)2���0 : (28)We note that the propagator of the longitudinal �u-tuations (28) proves to be analogous to that previouslyobtained in the problem of the behavior of a free ele-tron gas in the perpendiular magneti �eld [13℄.Using expression (28) for the propagator of the ÆP�elds, we an integrate ation (21) over the longitudi-nal �utuations in the quadrati approximation. Thisgives S = S0 + S� + S�; (29)where S0 given by Eq. (22) desribes the eletrons atthe partially �lled N -th Landau level oupled to theplasmon and Qsp �elds. The term S� orresponds tothe sreening of the Coulomb interation due to the in-�uene of eletrons from the other Landau levels andis given byS� = iT Z dr tr ~G0(r; r)�̂(r) �� T2 Z dq(2�)2 �Xn ���n(q)U�10 (q)"(n; q)��n(�q); (30)where the dieletri funtion is given by"(n; q) = 1 + U0(q)�(n; q)

with the polarization operator1)�(n; q) == TXm �m0 (n; q)"1� �(n(n+m))�m0 (n; q)2���01 + �m0 (n; q)2���0 #++ T Æn;0(�2�2�)2 Xk;m [1��(km)℄�m0 (0; q)1 + �m0 (0; q)2���0 �� �k0 (0; q)1 + �k0 (0; q)2���0 : (31)The third term S� in ation (29) ontains the termsthat a�et the hemial and thermodynami potentialsof the system (See Appendix A).It is worthwhile to mention that the saddle-pointapproximation in whih the integration over the Q �eldis performed is valid beause the ondition�� = N!� � 1is satis�ed.2.6. Integration over the plasmon �eldAs a �nal step of the proedure, ation (29) mustbe integrated over the plasmon �eld �. The integra-tion an be performed in the quadrati approximationin the � �elds. The orresponding propagator is deter-mined by the seond term in Eq. (30). After that, weobtain the e�etive ation for eletrons on the partially�lled Landau level,Seff = �
T + Z dr	y(r) hi! + ~�� Ĥ + iQspi��	(r)� ���0 Z dr trQ2sp(r) �� T2 ZZ dr dr1 �Xn;m;k	�;�m (r)	�;�m+n(r)Ueff (r� r1)��	�;�1k (r1)	�;�1k�n(r1) ++ g!2 Z dr �Xn �	�;�n (r)	�;�n (r); (32)whih is the main result of the paper.1) A similar form of the polarization operator but with a dif-ferent bare polarization operator �m0 (n; q) was �rst derived byBaranov and Pruisken [16℄.154



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional eletron liquid with disorder : : :We have inorporated the Zeeman term into the ef-fetive ation. The Fourier transform of the e�etiveinteration potentialUeff (q) = U0(q)"(q)is determined by the stati dieletri funtion "(q) �� "(0; q). In general, the low-energy properties ofthe system under onsideration an be desribed withthe help of the retarded interation alone (see a-tion (29)). However, the desription within the frame-work of the e�etive ation with the instantaneous in-teration seems to be a rather good approximation inthis problem [7℄. This is beause transitions betweenthe Landau levels have a harateristi time sale about!�1 , while the typial energy sale in the e�etive the-ory is of the order of the exhange energy �ex � !(see Se. 4).The existene of the other Landau levels exept thepartially �lled N -th level a�ets both the thermody-nami and the hemial potentials. The thermody-nami potential 
 in ation (32) an be representedas 
 = 
0 +�
; (33)where 
0 = T Z dr tr ln ~G0(r; r) (34)is the thermodynami potential of the system of non-interating eletrons for the ompletely �lled Landaulevels in the presene of disorder and the quantity �
is analogous to the �rst-order exhange and the orre-lation orretion equivalent to the sum of ring diagramsontributing to the ground state energy of a lean ele-tron liquid [17℄,�
 = T2 Z drXn Z dq(2�)2 ln "(n;q): (35)The hemial potential ~� in ation (32) an be writtenas ~� = �+ Æ�; (36)where the shift of the hemial potentialÆ� = 2�l2TXn Z dr ~Gn0 (0; r)PN (0; r)Ueff (n; r) (37)involves orretions similar to the exhange and orrela-tion ones in a lean eletron liquid. Here, l = 1=pm!

is the magneti �eld length. The quantity Ueff (n; r) isthe Fourier transform of U0(q)="(n;q) andPN (r1; r2) =Xk '�Nk(r2)'Nk(r1) (38)is the projetion operator onto the partially �lled N -thLandau level.We note that orretions to the thermodynamiand hemial potentials ontain additional terms ex-ept those presented above. They are negleted in thelimit of a weak disorder !� � 1 (see Appendix A).The integration over the plasmon �eld is performedin the Gaussian approximation. This an be justi�edif the �utuations of the plasmon �eld are small. Thelong- and short-range �utuations are di�erent physi-ally. In the ase of a large length sale r � R, onlythe dipole transitions between the adjaent Landau lev-els are indued. The long-range �utuations are smallif the ondition Nrs � 1 is satis�ed [7℄. Physially,this ondition means that the harateristi length saleR2=aB of the long-range �utuations must be muhgreater than the ylotron radius R. The short-range�utuations orrespond to the ase of a small lengthsale r � R. Transitions between distant Landau lev-els are possible in this ase. The ondition rs � 1 ofthe smallness of short-range �utuations is just the ri-terion of the perturbation theory appliability to theCoulomb interation.3. EFFECTIVE INTERACTION, THETHERMODYNAMIC AND CHEMICALPOTENTIALSThe results of the previous setion allow us to �nde�etive ation (32) for the eletrons on the partially�lled N -th Landau level. The main physial quantitythat a�ets the dynamis of the eletrons is the e�e-tive eletron�eletron interation. It is ompletely de-termined by the stati dieletri funtion "(q). Theother two interesting quantities in e�etive ation (32)are the thermodynami and hemial potentials.3.1. The e�etive interationThe most pronouned e�et of eletrons on theompletely �lled Landau levels is the sreening of theeletron�eletron interation on partially �lled Landaulevel. This sreening is determined by the stati diele-tri funtion "(q).In aordane with Eq. (31) for the polarizationoperator �(n; q), the dieletri funtion an be ob-tained for arbitrary values of the disorder parameter155



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002!� . However, the situation of a small Landau levelbroadening due to disorder is most interesting from thephysial standpoint. In this ase, the expression for thestati dieletri funtion an be simpli�ed drastially,"(q) = 1 + 2�e2q TXn �n0 (0; q); !� � 1: (39)The evaluation of the stati dieletri funtion is pre-sented in Appendix B. The result an be written as"(q) = 1+ 2qaB �1�J 20 (qR)� �3!� �(qR)� ; (40)where the funtion �(x) an be found analytially onlyin the asymptoti regions of small and large values ofx (see Appendix B),�(x) = 8>>><>>>: x24 ; x� 1;ln2(3:57x)�x ; x� 1: (41)Here, J0(x) is the Bessel funtion of the �rst kind. Ex-pression (40) for the stati dieletri funtion is themain result of the paper.It is worthwhile to note that the asymptoti ex-pressions (in the qR � 1 and qR � 1 domains)for the stati dieletri funtion "(q) in a lean sys-tem (��1 = 0) were obtained earlier by Kukushkin,Meshkov, and Timofeev [18℄. The general expressionfor the stati dieletri funtion in a lean system wasderived by Aleiner and Glazman [7℄.We mention that the asymptoti expressions for thestati dieletri funtion in a lean system an be ob-tained from a lear physial piture [18, 7℄. The be-havior of the stati dieletri funtion in the regionqR � 1 an be explained by dipole transitions be-tween the adjaent Landau levels. The result for thestati dieletri funtion in the region qR � 1 is ex-plained by the standard Thomas�Fermi sreening. Butthere is no lear physial piture in the ase of a weaklydirty system. We have no other opportunity to obtainthe dieletri funtion exept the derivation of the ef-fetive ation for eletrons on a partially �lled Landaulevel.It follows from (40) that in the domain qR � 1,the stati dieletri funtion is given by"(q) = 1 +�1� �6!� � R2qaB : (42)This shows that the disorder suppresses the e�et of thesreening. We an expet that the sreening dereases

as disorder inreases. We an estimate the disorderthreshold ��, i.e., the point of vanishing sreening, as!�� � 1=2�.From Eq. (40), we an obtain the expression for thestati dieletri funtion in the domain qR � 1,"(q) = 1 + 2qaB �1� ln2(3:57qR)3!�qR � : (43)The disorder also suppresses the sreening in the regionof large wave vetors qR � 1.Equations (40)�(41) allow us to obtain the asymp-toti behavior of the e�etive interation Ueff (r) in theoordinate spae. The polarization is insigni�ant forthe very large length sale r � R2=aB and the e�etiveinteration oinides with the bare Coulomb interationUeff (r) = e2r �1� R4a2Br2 �1� �6!� �� : (44)At the intermediate sale R2=aB � r � R, the polar-ization beomes important and the e�etive interationis given byUeff (r) = !2N �1� 12�!� � �� ln0BB�1 + R2 �1� �6!� �aBr 1CCA : (45)We note that while disorder inreases, the e�etive in-teration tends to the bare Coulomb interation. Forthe small sale R � r � aB , the Thomas�Fermisreening ours and the e�etive interation is given byUeff (r) = e2a2Br3 + �3!� e2aBrR �ln2 1:31Rr + 1� : (46)We emphasize that disorder in the system moststrongly a�ets the eletron�eletron interation withinthe intermediate length sale R2=aB � r � R. Phys-ially, this is the ase where the dipole transitions be-tween the adjaent Landau levels are possible.3.2. The thermodynami and hemialpotentialsThe thermodynami and hemial potentials inEqs. (34)�(37) an be evaluated in the leading ordersin 1=N . The detailed alulations are presented in Ap-pendix C.156



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional eletron liquid with disorder : : :The thermodynami potential for the system ofnoninterating eletrons in the presene of disorder forthe ompletely �lled Landau levels is given by
0 = LxLy�l2 �N(N�1)2 !��� ln(2!�)�1�� � ; (47)where Lx and Ly are the sizes of the system. The�rst-order exhange orretion to the thermodynamipotential is given by�
 = �LxLy�l2 e2�l (2N)3=2 �23 + 2 ln 2�!� 12N � : (48)The presene of disorder hanges the dependene of�
on the magneti �eld, i.e., on N . For the dirty system,the seond term in brakets in Eq. (48) is proportionalto 1=N . This is in ontrast to the lean system, wherethe orretion is muh smaller and is proportional to1=N2 [7℄.The shift of the hemial potential due to the ex-hange orretion an be written asÆ� = 2e2�l (2N)1=2 �1� lnN8N + 1�!� 12N � : (49)We note that Æ� ontains only the exhange orretionand does not involve the orrelation orretion due tonormal ordering of the 	y and 	 �elds (see Ref. [7℄).4. SPIN EXCITATIONSIn the previous setion, we analyzed the renormali-zation of the eletron�eletron interation on the par-tially �lled N -th Landau level due to the existene ofthe other levels. In this setion, we investigate the en-hanement of the g fator and the simplest spin exi-tations at the �lling fator � = 2N + 1.The eletrons on the partially �lled N -th Landaulevel at the �lling fator � = 2N + 1 possess the maxi-mum spin in the ground state, beause the ground statedoes not ontain skyrmions at large � [19℄. This groundstate is obviously fully spin-polarized and is desribedby the wave funtionjNel = N�; Sz = N�=2i;where Nel is the number of eletrons on the partially�lled N -th Landau level andN� = LxLy2�l2 ;is the number of states on the Landau level. The sim-plest exitations are desribed by the state with the

energy E" with an extra hole and the state with the en-ergy E# with an extra eletron. The width of the spingap �s is related to the energies of the exited statesand to the energy E0 of the ground state [20; 21; 7℄ as�s = E" +E# � 2E0:We an obtain that the width of the spin gap equals�s = �ex + g!;where the shift of the hemial potential �ex due tothe exhange interation [21; 22℄ is determined by�ex = 2�l2 Z drUeff (r)PN (0; r)PN (r; 0): (50)Using expression (38) for the projetion operator PN ,we an evaluate the e�etive g fator. It is de�ned asgeff = �s=! and is given bygeff = g + rs�p2 ln 2p2rs + Eh! ++ rs�!� ln2(14:28N)4p2�2N ; (51)where the �hydrodynami� term isEh = !2N �1� �6!� � �� ln �1 +p2rsN �1� �6!� �� : (52)The disorder in the system results in the appearaneof a strong dependene of the e�etive g fator on themagnitude of the magneti �eld as ln2N=N .We now disuss the neutral exitations, spinwaves [21; 23℄ at the �lling fator � = 2N + 1. Theyare desribed by the wave funtionXq exp(ikxql2)	N;q;#	N;q�ky;" ����N�; N�2 � : (53)Following Ref. [21℄, we must take three ontribu-tions into aount. They are the di�erene of the ex-hange self-energy of an eletron in the exited Landaulevel and the self-energy in the level from whih theeletron was removed, the diret Coulomb interation,and the exhange energy. We then obtain the equationthat determines the spetrum of the spin wave exita-tions,! = g! + Z dq(2�)2 U0(q)"(q; !) �LN �q2l22 ��2 �� exp(�q2l2=2) �1� exp �i(k � q)l2�� ; (54)157



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002where LN (x) is the Laguerre polynomial. The diele-tri funtion "(q; !) ontains the imaginary part (seeEq. (B.4)), whih is of order 1=!� . It results in thedeay rate of the spin wave exitations. Physially, thespin wave exitations deay beause of the satteringon impurities. We mention that the deay rate alsoapperears in the magnetoplasmon spetrum.The energy of the spin-wave exitations is muh lessthan !: !(k) � !. We an therefore alulate thereal part ESW (k) and the imaginary part �SW (k) ofthe spin-wave energy separately. We set ! = 0 in theright-hand side of Eq. (54). The evaluation of Eq. (54)then leads to a quadrati dispersion relation for thesmall wave vetors kR � 1,ESW (k) = g! + rs!�p2 �� �1+ rsp2 �1� 13!� ln2(14:28N)4N ���1 (kR)2: (55)An additional dependene of the e�etive mass of thespin-wave exitations on the magneti �eld appears be-ause of the presene of disorder in the system. Thedisorder suppresses the e�etive mass of the spin-waveexitations. For su�iently large wave vetors1� kR � R2=l2;the energy of the spin wave is given byESW (k) = �ex �Eh � rs!�p2 ��26664ln0BBB�1+ (p2rskR)�11� 13!� ln2(7:14N=kR)2N=kR 1CCCA++sin 2kR2kR �1+ rsp2 �1� 13!� ln2(14:28N)4N ��37775 :(56)To obtain the deay rate of spin-wave exitations,we take into aount that the imaginary part "00 of thedieletri funtion is small. We then obtain�SW (k) = � Z dq(2�)2 U0(q)"00(q; ESW )"20(q; ESW ) �� �LN �q2l22 ��2 �� exp(�q2l2=2) �1� exp[i(k � q)l2℄� : (57)

The evaluation of Eq. (57) for small wave vetorskR � 1 yields�SW = �artg(2!�g)6!� e2aB (kR)2 �� 1(1 + l2=aBR)2 2� sin(4N)(4N)2 (58)and for the large wave vetors kR � 1,�SW = �artg(2!�geff )�!� e2aB �� "�aBR�2 ln RaB + arh(2kR)2(4N)2 # : (59)We note that the deay rate �SW is of the same or-der as the orrerions to the real part of the spin-waveenergy ESW due to the presene of disorder.5. ZERO-BIAS ANOMALYIn this setion, we onsider the eletron tunnelinginto a two-dimensional eletron liquid with disorder ina weak magneti �eld. We investigate suppression ofthe tunnelling ondutivity near zero bias, the so-alledzero-bias anomaly. The properties of the eletron tun-nelling into an eletron system are usually desribedby a dependene of the tunnelling ondutivity G(V )on the bias V . Reently, the e�etive ation approahto the zero-bias problem was developed by Levitov andShytov [24℄. The e�etive ation desribes spreadingof the tunnelling eletron within the eletron system inimaginary time �.Following Ref. [24℄, the ation of a spreading hargefor zero bias V = 0 is determined byS0(�) = 4 +1Z0 d!2� �� +1Z0 q dq2� sin2(!�)! +Dq2 Ueff (q)! +Dq2 + �q2Ueff (q) ; (60)where � and D are the ondutivity and the di�usiveonstant of the eletron system, respetively. They arerelated by the Einstein formula � = e2�D.Using asymptoti expression (42) for the stati di-eletri funtion "(q), we evaluate ation (60) in thelarge time limit � � 1 asS0(�) = e28�2�� ln 2��0 ln�2��0 �4�� ; (61)158



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional eletron liquid with disorder : : :where we introdue two dimensionless parameters� = aBp2 lel ; � = �1� �6!� �� Rp2 lel�2 (62)with the bare elasti mean free path lel = R!�0. Inaordane with the inequality aB � R � lel, theparameters � and � are small, � � 1 and � � 1.Taking the work done by the voltage soure intoaount, we obtain the total ation of the spreadingharge S(�) = S0(�)� 2eV �:We must then �nd the optimum time �� determined bythe minimum of the ation S(�). The optimum time�� plays the role of the harge aommodation time inthe problem. It an be written as�� = �0 V02V ln V0�2�V ;eV0 = �1� �6!� ��1 1�mR2 : (63)The theory must be self-onsistent in the hydrodynam-ial limit, i.e., for �� � �0. Therefore, the theory isappliable for the bias V � V0.Assuming the ontribution from the barrier to be aonstant at a small bias, we an write the tunnellingondutivity asG(V ) = G0 exp[�S0(��) + 2eV ��℄: (64)After the evaluation, we obtain the dependene of thetunneling ondutivity for a small bias,G(V ) = G0 � VV0��(V ) ;�(V ) = e28�2�� ln V0V �4� : (65)Equation (65) shows that the sreening of theeletron�eletron interation results in inreasing thesuppression of the tunneling ondutivity. We notethat the above result is valid for the bias in the rangeV � V0.Expression (65) for the tunneling ondutivity on-tains the energy sale eV0 that oinides with the �hy-drodynami� term Eh in Eq. (52) exept for the loga-rithm. A hydrodynamial model for the low-energy ex-itations of a lean (��1 = 0) eletron liquid in a weakmagneti �eld was onsidered by Aleiner, Baranger,and Glazman [6℄. They showed that the tunneling den-sity of states exhibits the gap 2Eh related to the Fermienergy. Equation (52) desribes the same gap for a

weak disorder !� � 1. Apparently, the disorder isresponsible for the fat that the gap is about 0:05! ina wide range of the applied magneti �eld [5℄.As the magneti �eld inreases, the fator � in-reases and beomes of the order of unity. The zero-biasanomaly in the tunneling ondutivity rossovers fromweak to strong. Expression (65) shows that the fator� depends on the bias V and the magneti �eld. Thisresults in the shift of the rossover point V along thebias V as the applied magneti �eld hanges,V = V0 exp�� 4��!2�0� ; (66)where � is the hemial potential. The rossover wasobserved by Ashoori et al. [5℄ in the tunneling urrentfrom a normal metal into two-dimensional eletrons inthe presene of a magneti �eld. In the experiment,the ohmi ondutane was measured as a funtion ofthe temperature T . For low temperatures, the on-dutane orresponds to the zero temperature ondu-tane taken at V = T=e. The two-dimensional ele-trons were relatively lean, with the elasti ollisiontime �0 � 4 � 10�12 s. The hemial potential alu-lated from the eltron density was � = 10 mV. UsingEq. (66), the dependene of the rossover temperatureon the magneti �eld an be written asT = 2:9 exp � �3:2H �2! ; (67)where the temperature is measured in Kelvin and themagneti �eld in Tesla. Equation (67) demonstrates agood agreement with the results reported in Ref. [5℄.6. CONCLUSIONSWe have onsidered the system of a two-dimensionaleletron gas in the presene of disorder and theCoulomb interation in a weak perpendiular magneti�eld. The e�etive low-energy theory desribing ele-trons at the partially �lled N -th Landau level was de-rived in the ase of a weak magneti �eld (Nrs � 1)and a weak interation (rs � 1). The modi�edeletron�eletron interation for eletrons on a partially�lled Landau level involves the sreening from the othereletrons on the oupied Landau levels. We also pre-sented the exhange orretions to the thermodynamiand hemial potentials in the presene of disorder.The theory proposed here allows us to aount forthe e�ets of disorder in the problems onneted withthe behavior of a two-dimensional eletron gas in a159



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002weak magneti �eld. It an be investigated how dis-order a�ets the formation of stripes, bubble phase,tunneling density of states, spin exitations, tunnelingondutivity, et.We disussed the e�et of disorder on the exhangeenhanement of the g fator and the simplest spin ex-itations on the partially �lled Landau level. We ob-tained an additional dependene of the e�etive g fatoras a funtion of the magneti �eld, the suppression ofthe e�etive mass and the deay rate of the spin-waveexitations.We also investigated the eletron tunneling into atwo-dimensional eletron liquid with a weak disorder ina weak magneti �eld. We obtained the enhanementof the gap in the tunneling density of states and anonlinear dependene of the tunneling ondutivity onthe applied bias.The author is grateful to M. A. Baranov, A. S. Iose-levih, and M. V. Feigel'man for useful disussions. Theauthor thanks M. A. Baranov for some ritial remarksduring the manusript preparation.APPENDIX AIn this appendix, we alulate the term S� in ation(29). This term appears after performing the integra-tion over the longitudinal �utuations and is given byS� = 12 h�S2[	;	; ÆP; �℄�2iÆP ; (A.1)where h: : : iÆP denotes the average with the propagatorof the ÆP �eld in Eq. (28). We then obtainS� = ÆS1 + ÆS2 + ÆS3; (A.2)whereÆS1 == T 2 ZZ dr1 dr 2 �	y�̂ ~G0�̂	� 2 tr �̂ ~G0�̂G0� ; (A.3)ÆS2 = �T 2 Z dr1 : : : Z dr 4 �� �;�Xk;n;m��m(r1)D��nm(k; r3; r4)�� �n0 (m; r1; r2)L��;��n;n+m(r2; r4); (A.4)ÆS3 = T 22 Z dr1 : : : Z dr 4 �;�;;ÆXk;l;n;mD��nm(k; r1; r2)��DÆnm(l; r3; r4)L��;Æn;n+m(r2; r4): (A.5)

Here,D��nm(k; r1; r2) == �	�k (r1)	�n+m(r2)�2Æk;n+mÆ�;�Gn+m0 (r2; r1)�����n�k(r1) ~Gn0 (r1; r2) ++ �	�n(r1)	�k (r2)� 2Æk;nÆ�;�Gn0 (r2; r1)��� ��k�n�m(r1) ~Gn+m0 (r1; r2); (A.6)and L��;Æm1;m2 is the propagator of longitudinal �utua-tions in Eq. (28).Integrating over the plasmon �eld, we obtain fromthe S� termS� ! �
1 +�
2 +�
3T + (Æ�1 + Æ�2 + Æ�3)�� Z dr	y(r)	(r); (A.7)where seond-order orretions to the thermodynamipotential are given by�
1LxLy = �T 2 ��Xn;mZ drGn0 (0; r) ~Gm0 (r; 0)Ueff (m� n; r);�
2LxLy = 2T 2Xn;m Z dr dr1 dr2 ���Gn0 (0; r) ~Gn+m0 (r; 0)++ ~Gn0 (r; 0)Gn+m0 (0; r)��� Ueff (m; r1)�n0 (m; r1 � r2)L��;��n;n+m(r2 � r);�
3LxLy = 2T 2Xn;m Z dr dr1 dr2 �� �Gn0 (0; r) ~Gn+m0 (r; 0)++ Gn+m0 (0; r) ~Gn0 (r; 0)��� �Gn0 (0; r1) ~Gn+m0 (r1; 0)++ Gn+m0 (0; r1) ~Gn0 (r1; 0)��� Ueff (m; r2)L��;��n;n+m(r� r1 + r2):

(A.8)

The above orretions are negligible in the parame-ter N�1 ompared to the orretion determined by160



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional eletron liquid with disorder : : :Eq. (35). The orretions to the hemial potentialare given byÆ�12�l2 = TXm Z drPN (0; r) ~Gm0 (r; 0)Ueff (m; r);Æ�22�l2 == �4TXm Z dr dr1 dr2 PN (0; r) ~Gm0 (r; 0)�� Ueff (m; r1)�00(m; r1 � r2)L��;��0;m (r2 � r);Æ�32�l2 == �8T 2Xm Z dr dr1 dr2 PN (0; r) ~Gm0 (r; 0)�� Ueff (m; r1)L��;��0;m (r � r1 + r2)�� �G00(0; r1) ~Gm0 (r1; 0) +Gm0 (0; r1) ~G00(r1; 0)� :
(A.9)

The seond and third orretions are negligible in theparameter N�1 ompared to the �rst term. The shiftof the hemial potential Æ� is therefore mainly deter-mined by the �rst orretion Æ�1.APPENDIX BIn this appendix, we evaluate the polarization op-erator �(!n; q). The ondition !� � 1 is assumed tohold. Then �(!n; q) = TXm �m(!n; q): (B.1)The alulation of the polarization operator �(!n; q) isanalogous to that given in Ref. [7℄. The wave vetorsq � R=l2 are onsidered.Using Eq. (31), we immediately obtain�(�n; Q) == m� 241� +1Xj=�1 J 2j (Q)j2+�2n ��2n+ �3�!Lj(�n)�35 ; (B.2)

whereLj(�n) = �(jjj � 2)�� jjj�1Xn=1 � jjjn �12 j2��2nj2+�2n ln �2n+n2n2 + 2jjj�n(j2+�2n)2 artg �nn �++�(jjj � 1)266412 + �njjj artg �njjjj2 + �2n + 14 j2 � �2nj2 + �2n �� ln� �2n + j2j2 (1 + 2�!�n)2�3775 : (B.3)Two parameters �n = !=! (with ! = 2�Tn) andQ = qR are introdued here. The transformation ofseries (B.2) into the integral form yields the asymp-toti form of the polarization operator in the di�erentregimes. In the stati limit �n � 1,�(�n; Q) = m� �1�J 20 (Q)� �3!� �(Q)++ ln(1 + 2!��n)2�!� �(Q)+O(�2)� ; (B.4)where the funtion �(x) is de�ned as�(x) = 12� �Z0 dy� J0 �2x sin y2��� �ln2 �2 sin y2�� �212� ; (B.5)and its asymptoti form is given in Eq. (41). The fun-tion �(x) is de�ned as�(x) = �Z0 dy� J0 �2x sin y2��(y � �)2 � �23 � ; (B.6)and its asymptoti form is given by�(x) =8><>: x2; x� 1;�3x (2� sin 2x); x� 1: (B.7)In the hydrodynami limit qR � 1, we obtain�(�n; Q) = m2� Q21 + �2n �� �1� �6�! + 12��! 1� �2n1 + �2n �� ln �(1 + �2n)(1 + 2�!�n)2� �� �3�! �n artg �n1 + �2n � : (B.8)11 ÆÝÒÔ, âûï. 1 (7) 161



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002APPENDIX CIn this appendix, we evaluate the orretions to thethermodynami and hemial potentials.C.1. Corretion to the thermodynamipotentialUsing Eq. (35), we an split the orretion to thethermodynami potential into the exhange and orre-lation ones as �
 = �
ex +�
; (C.1)�
exLxLy = T2 Xn Z dq(2�)2U0(q)�(n; q); (C.2)�
LxLy = �T2 Xn Z dq(2�)2 �� 1Z0 d� �U20 (q)�2(n; q)1 + �U0(q)�(n; q) : (C.3)The exhange orretion gives the leading ontribu-tion [7℄ and an be written as�
exLxLy = � e22�l3 Xm6=N 1Z0 dx e�x2=2L1N �x22 ��� Lm�x22 ���(N �m) + 1�!� 1m�N � ; (C.4)where Lmn stands for the Laguerre polynomials. Theabove equation goes into Eq. (48) in the ase whereN � 1.C.2. Corretion to the hemial potentialUsing Eq. (37), we an split the orretion to thehemial potential into the exhange and orrelationones, Æ� = Æ�ex + Æ�; (C.5)Æ�ex = 2�l2TXn Z drU0(r)PN (0; r) ~Gn0 (r; 0); (C.6)Æ� = �2�l2TXn Z d2q(2�)2PN (q) ~Gn0 (q)�� U20 (q)�(n; q)1 + U0(q)�(n; q) : (C.7)

The exhange orretion gives the leading ontribu-tion [7℄ and an be written asÆ�ex = �e2l Xm6=N 1Z0 dx e�x2=2LN �x22 �Lm�x22 �����(N �m) + 12�!� 1m�N � : (C.8)For N � 1, the above equation leads toÆ�ex = 2e2�l2 (2N)1=2 241� lnN8N + 14�!� 12N ��0� 1Z1 dtt ln(1� e�t)++ 1Z0 dtt ln 1� e�tt � �23 1A35 : (C.9)REFERENCES1. For a review, see The Quantum Hall E�et, ed. byR. E. Prange and S. M. Girvin, Springer-Verlag, Berlin(1987).2. A. H. MaDonald and S. M. Girvin, Phys. Rev. B 33,4009 (1986); R. Morf and N. d'Ambrumenil, E-printarhives ond-mat/9409008; L. Belkhir and J. Jain,E-print arhives ond-mat/9409020.3. A. P. Smith, A. H. MaDonald, and G. Gumbs, Phys.Rev. B 45, 8829 (1992).4. J. P. Eisenstein, L. N. Pfei�er, and K. W. West, Phys.Rev. Lett. 69, 3804 (1992).5. R. C. Ashoori, J. A. Lebens, N. P. Bigelow et al.,Phys. Rev. Lett. 64, 681 (1990); Phys. Rev. B 48,4616 (1993).6. I. L. Aleiner, H. U. Baranger, and L. I. Glazman, Phys.Rev. Lett. 74, 3435 (1995).7. I. L. Aleiner and L. I. Glazman, E-print arhivesond-mat/9505026.8. A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii,Phys. Rev. Lett. 76, 499 (1996), Phys. Rev. B. 54,1853 (1996); R. Moessner and J. T. Chalker, Phys.Rev. B 54, 5006 (1996).9. M. P. Lilly, K. B. Cooper, J. P. Eisenstein et al., Phys.Rev. Lett. 82, 394 (1999).10. For a review, see M. M. Fogler, E-print arhivesond-mat/0111001.162
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