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TWO-DIMENSIONAL ELECTRON LIQUID WITH DISORDERIN A WEAK MAGNETIC FIELDI. S. Burmistrov *Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es117940, Mos
ow, RussiaSubmitted 24 January 2002We present the e�e
tive theory for the low-energy dynami
s of two-dimensional intera
ting ele
trons in thepresen
e of a weak short-range disorder and a weak perpendi
ular magneti
 �eld, with the �lling fa
tor � � 1.We investigate the ex
hange enhan
ement of the g fa
tor, the e�e
tive mass, and the de
ay rate of the simplestspin wave ex
itations at � = 2N + 1. We obtain the enhan
ement of the �eld-indu
ed gap in the tunnelingdensity of states and the dependen
e of the tunneling 
ondu
tivity on the applied bias.PACS: 73.43.-f, 73.20.Mf, 73.43.Jn1. INTRODUCTIONA two-dimensional ele
tron gas in the perpendi
ularmagneti
 �eld has attra
ted mu
h attention from boththeoreti
al and experimental standpoints. The e�e
tsin a strong magneti
 �eld when only the lowest Landaulevel is o

upied have been investigated sin
e the dis-
overy of the quantum Hall e�e
t [1℄. Several e�orts [2℄are made in order to involve larger �lling fa
tors � > 1into the problem dis
ussed. However, the existen
e ofa small parameter, the ratio of the Coulomb energy atthe magneti
 �eld length to the 
y
lotron energy, hasbeen assumed. In a weak magneti
 �eld, the Coulombenergy at the magneti
 �eld length a
tually ex
eedsthe 
y
lotron energy and some attempts [3℄ have beenundertaken to investigate the 
ase of the large �llingfa
tor � > 1.Experimental investigations of the tunneling den-sity of states for the system under 
onsideration wereperformed at small (� < 1) [4℄ and large (� > 1) [5℄�lling fa
tors. In the 
ase of a weak magneti
 �eld(� � 1), the gap in the tunneling density of states hasbeen obtained in the framework of the hydrodynami
alapproa
h [6℄. The progress was made by Aleiner andGlazman [7℄ who developed the e�e
tive theory for low-energy ex
itations on a partially �lled Landau level atlarge �lling fa
tors � � 1.Re
ently, after the predi
tion that the unidire
-*E-mail: burmi�itp.a
.ru

tional 
harge-density wave state o

urs at half-�lledhigh Landau levels within the framework of theHartree�Fo
k theory [8℄ and the experimental dis
o-very of 
ompressible states with the anisotropi
 mag-netotransport properties in high-mobility systems nearthe half-�lling of the high Landau levels [9℄, the two-di-mensional ele
tron liquid in a weak magneti
 �eld wasintensely studied [10℄.In this paper, we develop the low-energy e�e
tivetheory for ele
trons at the partially �lled Landau levelwith a large �lling fa
tor in the presen
e of disorder(Se
. 2). As an example, the e�e
t of disorder on theex
hange enhan
ement of the e�e
tive g fa
tor and thesimplest spin-wave ex
itations are dis
ussed in Se
. 4.Ele
tron tunneling into the ele
tron liquid is 
onsideredin Se
. 5. Con
lusions are given in Se
. 6.2. DERIVATION OF THE EFFECTIVE ACTION2.1. Introdu
tionWe 
onsider the system of two-dimensional ele
-trons with the Coulomb intera
tion in the presen
e ofdisorder in a perpendi
ular magneti
 �eld H . The sys-tem possesses a partially �lled high Landau level withthe level index N � 1 equal to the integer part ofhalf the �lling fa
tor �, N = [�=2℄. The presen
e ofa random potential, whi
h is 
onsidered to be short-range, results in a broadening of the Landau levels.150



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional ele
tron liquid with disorder : : :We assume that the elasti
 
ollision time satis�es the
ondition �0 � !�1
 ;where !
 = eH=m is the 
y
lotron frequen
y with theele
tron 
harge e and the ele
tron massm. In this 
ase,the broadening of Landau levels, whi
h is of the orderp!
�0=�0, is mu
h less than the distan
e between them.The 
onventional parameter 
hara
terizing the 
ou-pling strength of the Coulomb intera
tion isrs = p2e2=vF ;where vF is the Fermi velo
ity. We assume that ele
-trons are weakly intera
ting, i.e., rs < 1. In this 
ase,we 
an treat the problem in the random phase approx-imation. We also assume that the number N is suf-�
iently large, and the 
ondition Nrs � 1 is there-fore satis�ed. This means that the 
y
lotron radiusR
 =p�=m!
 is supposed to be mu
h larger than theBohr radius aB = 1=me2,R
 � aB :2.2. The formalismThe system is des
ribed by the grand 
anoni
al par-tition fun
tion in the path-integral representation,Z = Z D[ ;  ℄ Z D[Vdis℄P [Vdis(r)℄ �� exp�S[ ;  ; Vdis℄	 ; (1)S = NrX�=1 1=TZ0 d� ��Z dr h �;�(r; �) (��� + ��H � Vdis(r)) �;�(r; �)�� 12 Z dr1  �;�(r; �) �;�(r; �)U0(r; r1)��  �;�1(r1; �) �;�1 (r1; �)i; (2)where the Grassmann variables  �;� and  �;� are de-�ned on the imaginary time interval � 2 [0; 1=T ℄ withthe antiperiodi
 
ondition  (r; 1=T ) = � (r; 0). Thesymbol T stands for the temperature, � is the 
hem-i
al potential of the system, and �; �1 = �1 are spinindi
es. The HamiltonianH = (�ir� eA)22mdes
ribes the ele
tron with mass m propagating in thetwo-dimensional spa
e in the perpendi
ular magneti
�eld H = �ab�aAb:

The random potential Vdis(r) is 
hosen to have theGaussian distribution fun
tionP [Vdis(r)℄ = p��0 exp�����0 Z drV 2dis(r)� ; (3)where � denotes the thermodynami
al density of states.To average lnZ over disorder, Nr repli
ated 
opiesof the system are introdu
ed; we let � = 1; : : : ; Nr bethe repli
a indi
es.The Matsubara representation seems to be more
onvenient for the above problem. We therefore usethe Fourier transform from the imaginary time � to theMatsubara frequen
ies. Be
ause the fermioni
 �elds areantiperiodi
 within the interval [0; 1=T ℄, the frequen
iespermitted for  and  are!n = �T (2n+ 1);where n is an integer. The Fourier-transformed �eldsare de�ned as �(�) = pT 1Xn=�1 �nei!n� ; �(�) = pT 1Xn=�1 �ne�i!n� : (4)In what follows, we omit the limits in the frequen
yand repli
a series for brevity.In the Matsubara representation, a
tion (2) be-
omesS = Z dr��X�;nh �;�n (r) (i!n + ��H � Vdis(r)) �;�n (r) �� T2 Xl;m Z dr1  �;�m (r) �;�m�n(r)U0(r; r1)��  �;�1l (r1) �;�1l+n (r1)i: (5)The Zeeman term in a
tion (2) is negle
ted be
ausethe g fa
tor is small. In fa
t, the 
ondition g � 1 isusually satis�ed. The Zeeman term 
an neverthelessbe in
luded in the e�e
tive a
tion after performing theintegration over fast degrees of freedom. To simplifythe notation, the spin indi
es are asso
iated with therepli
a ones whenever 
onvenient.2.3. The plasmon �eld and the average overdisorderThe Coulomb term entering a
tion (5) is quar-ti
 in the fermioni
 �elds. This quarti
 term 
an be151



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002eliminated by the Hubbard�Stratonovi
h transforma-tion, introdu
ing an extra path integration over bosoni
�elds ��n(r). With the help of the so-
alled plasmon�eld, the Coulomb term 
an be presented asZ D[�℄ exp ��T2 ZZ dr dr1 �y(r)U�10 (r; r1)�(r1)++ iT Z dr y(r)�̂(r) (r)� ; (6)where U�10 stands for the inverse operator to U0. Thematrix notation is used for the 
ombined repli
a andfrequen
y indi
es, y(: : : ) = �;�Xn;m �n(: : : )��nm �m;�y� = �Xn ���n��n: (7)The quantities with the hat are de�ned asẑ =X�;n z�nI�nwith the matrix(I�n )�
kl = Æ��Æ�
Æk�l;n:The matri
es I�n represent the diagonals shifted in thefrequen
y spa
e; they are the generators of the U(1)gauge transformations in general. The measure of thepath integral over the plasmon �eld � is introdu
edsu
h that integral (6) equals unity for the vanishingfermioni
 �elds  y and  .In order to perform the averaging over disorder inpartition fun
tion (1), we must integrate over the ran-dom potential Vdis(r). This leads to the quarti
 term14��� Z dr �;�Xn;m �n(r) �n (r) �m(r) �m(r) (8)in the a
tion. This term 
an be de
oupled by theHubbard�Stratonovi
h transformation. An extra pathintegration over the Hermitian matrix �eld variablesQ��nm(r) 
an be introdu
ed [11, 12℄,Z D[Q℄�� expZ dr �����0 trQ2(r)+i y(r)Q(r) (r)� ; (9)where the symbol �tr� denotes the matrix tra
e overthe Matsubara, repli
a, and spin spa
es. The measure

of the path integral over the matrix �eld Q is de�ned inthe same way as for the plasmon �eld, i.e., integral (9)equals unity for vanishing fermioni
 �elds  y and  .After the above 
al
ulations, the partition fun
tionbe
omesZ = Z D[ ;  ; �;Q℄ exp�S[ ;  ; �;Q℄	 ; (10)S = ����0 Z dr trQ2 �� T2 ZZ dr dr1 �y(r)U�10 (r; r1)�(r1) ++ Z dr y(r)�i! + �� Ĥ+ iT �̂+ iQ� (r); (11)where ! is the unit matrix in the repli
a spa
e, whilein the Matsubara spa
e, it is a matrix 
ontaining thefrequen
ies !n on the diagonal,(!)��nm = !nÆnmÆ�� :2.4. Elimination of the N-th Landau levelThe fermioni
 �elds  y and  refer to all Landaulevels. In order to integrate over all fermioni
 degreesof freedom not belonging to the partially �lled N -thLandau level, we separate the fermioni
 �elds into twokinds. The �rst �eld refers to the N -th Landau level,	(r) =Xk  Nk'Nk(r);	y(r) =Xk  yNk'Nk(r): (12)The se
ond one involves the other levels,�(r) = Xp6=N;k pk'pk(r);�y(r) = Xp6=N;k ypk'pk(r); (13)where 'pk(r) are the eigenfun
tions of the HamiltonianH and p = 0; 1; : : : ; N; : : : labels Landau levels with theenergies �p = !
(p + 1=2). In addition, we introdu
etwo types of the Green's fun
tions. One is for the N -thLandau level,G(r; r1;Q; �) ==Xk;k0 '�Nk(r)GNk;Nk0 (Q; �)'Nk0 (r1); (14)and the other is for the other levels,~G(r; r1;Q; �) == Xp;p0 6=NXk;k0 '�pk(r)Gpk;p0k0(Q; �)'p0k0(r1); (15)152



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional ele
tron liquid with disorder : : :where the inverse of the Green's fun
tion for the  pkand  yp0k0 operators is given by(G�1)pk;p0k0 = (i! + �� �p)Æpp0Ækk0 ++ iT �̂pk;p0k0 + iQpk;p0k0 (16)with the matrix elementsfpk;p0k0 = Z dr'�p0k0(r)f(r)'pk(r): (17)The a
tion (11) is bilinear in the fermioni
 �elds  yand  , and obviously, also in the fermioni
 �elds �yand �. We 
an therefore integrate over the fermioni
�elds �y and �; this givesS = � Z tr ln ~G� ���0 Z trQ2 ++ Z 	y hi! + �� Ĥ+ iT �̂+ iQi	�� T2 ZZ �yU�10 �++ZZ h	yQ ~GQ	+2T	y�̂ ~GQ	+T 2	y�̂ ~G�̂	i : (18)Hereafter, the spa
e indi
es are omitted. It should benoted that the last term arises in a
tion (18) due to theintera
tion between ele
trons belonging to the partially�lled N -th Landau level and the other ele
trons.2.5. Integration over the Q �eldThe Q matrix �eld must be divided into thetransverse V and the longitudinal P 
omponents asQ = V �1PV . Here, the longitudinal 
omponent Phas a blo
k-diagonal stru
ture in the Matsubara spa
e,i.e., P��nm / �(nm), where �(x) is the Heaviside stepfun
tion. The transverse 
omponent V 
orresponds toa unitary rotation, see [13; 14℄ for a review.The 
hange of variables from Q to P and V is mo-tivated by the saddle-point stru
ture of a
tion (18) inthe absen
e of the plasmon �eld � and at zero temper-ature, i.e., as !n ! 0. This saddle-point solution 
anbe written as Qsp = V �1PspV;where the matrix Psp obeys the equation2���0Psp = ihG0(r; r) + ~G0(r; r)i (19)that 
oin
ides with the self-
onsistent Born approxima-tion equation [15℄. Here, the Green's fun
tion G0 is aspe
ial 
ase of G, namely,G0(r; r1) = G(r; r1;Psp; 0);

and similarly for ~G0.In the 
ase of small disorder, !
�0 � 1, the solutionof Eq. (19) is given by(Psp)��nm = sgnn2� ÆnmÆ�� ; � = �r �m �0p!
�0 : (20)The presen
e of the plasmon �eld � results in a shiftof the saddle-point value (20) of the P �eld; this shift
an be found by expanding a
tion (18) to the se
ondorder in both � and ÆP = P � Psp. We thus obtainS = S0 + S1[ÆP; �℄ + S2[	;	; ÆP; �℄; (21)S0 = Z �� tr ln ~G0 � ���0 trQ2sp++ 	y hi! + �� Ĥ + iT �̂+ iQspi	� ; (22)S1 = iTZ tr ~G0�̂����0 Z tr(ÆP )2�T2 ZZ �yU�10 �++ 12 ZZ tr hT �̂+ ÆP i�0 hT �̂+ ÆP i ; (23)S2 = ZZ �	y hT �̂+ ÆP i ~G0 hT �̂+ ÆP i	 �� 2 tr hT �̂+ ÆP i ~G0 hT �̂+ ÆP iG0� ; (24)where the bare polarization operator �0 is understoodto be a matrix in a

ordan
e with the ruletrA�0B == �;�Xn;mA��m+n;m(r)�m0 (n; r; r1)B��m;m+n(r1) (25)and is de�ned by�m0 (n; r; r1) = �2� ~Gm+n0 (r; r1) ~Gm0 (r1; r) ++ ~Gm+n0 (r; r1)Gm0 (r1; r) ++Gm+n0 (r; r1) ~Gm0 (r1; r)� : (26)After de
omposing the matrix �eld Q into theblo
k-diagonal Hermitian matrix �eld P and the uni-tary matrix �eld V , the measure of the fun
tional in-tegral in (21) be
omesD[Q℄ = D[V ℄D[ÆP ℄I [ÆP ℄;153



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002where [13℄ln I [ÆP ℄ = � 1(��)2 �� Z �;�Xn;m [1��(nm)℄ ÆP��nn ÆP ��mm: (27)The terms that are quadrati
 in ÆP in the part S1 ofa
tion (21) together with the 
ontribution of measure(27) determine the propagator of the ÆP �elds,hÆP��m1m2(q)ÆP 
Æm3m4(�q)i == Æm1m4Æm2m3Æ�ÆÆ�
�(m1m3)2���01 + �m10 (m3 �m1;q)2���0 �� 2 [1��(m1m3)℄(2�2�2�)2 Æm1m2Æ��1 + �m10 (0;q)2���0 �� Æm3m4ÆÆ
1 + �m30 (0;q)2���0 : (28)We note that the propagator of the longitudinal �u
-tuations (28) proves to be analogous to that previouslyobtained in the problem of the behavior of a free ele
-tron gas in the perpendi
ular magneti
 �eld [13℄.Using expression (28) for the propagator of the ÆP�elds, we 
an integrate a
tion (21) over the longitudi-nal �u
tuations in the quadrati
 approximation. Thisgives S = S0 + S� + S�; (29)where S0 given by Eq. (22) des
ribes the ele
trons atthe partially �lled N -th Landau level 
oupled to theplasmon and Qsp �elds. The term S� 
orresponds tothe s
reening of the Coulomb intera
tion due to the in-�uen
e of ele
trons from the other Landau levels andis given byS� = iT Z dr tr ~G0(r; r)�̂(r) �� T2 Z dq(2�)2 �Xn ���n(q)U�10 (q)"(n; q)��n(�q); (30)where the diele
tri
 fun
tion is given by"(n; q) = 1 + U0(q)�(n; q)

with the polarization operator1)�(n; q) == TXm �m0 (n; q)"1� �(n(n+m))�m0 (n; q)2���01 + �m0 (n; q)2���0 #++ T Æn;0(�2�2�)2 Xk;m [1��(km)℄�m0 (0; q)1 + �m0 (0; q)2���0 �� �k0 (0; q)1 + �k0 (0; q)2���0 : (31)The third term S� in a
tion (29) 
ontains the termsthat a�e
t the 
hemi
al and thermodynami
 potentialsof the system (See Appendix A).It is worthwhile to mention that the saddle-pointapproximation in whi
h the integration over the Q �eldis performed is valid be
ause the 
ondition�� = N!
� � 1is satis�ed.2.6. Integration over the plasmon �eldAs a �nal step of the pro
edure, a
tion (29) mustbe integrated over the plasmon �eld �. The integra-tion 
an be performed in the quadrati
 approximationin the � �elds. The 
orresponding propagator is deter-mined by the se
ond term in Eq. (30). After that, weobtain the e�e
tive a
tion for ele
trons on the partially�lled Landau level,Seff = �
T + Z dr	y(r) hi! + ~�� Ĥ + iQspi��	(r)� ���0 Z dr trQ2sp(r) �� T2 ZZ dr dr1 �Xn;m;k	�;�m (r)	�;�m+n(r)Ueff (r� r1)��	�;�1k (r1)	�;�1k�n(r1) ++ g!
2 Z dr �Xn �	�;�n (r)	�;�n (r); (32)whi
h is the main result of the paper.1) A similar form of the polarization operator but with a dif-ferent bare polarization operator �m0 (n; q) was �rst derived byBaranov and Pruisken [16℄.154



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Two-dimensional ele
tron liquid with disorder : : :We have in
orporated the Zeeman term into the ef-fe
tive a
tion. The Fourier transform of the e�e
tiveintera
tion potentialUeff (q) = U0(q)"(q)is determined by the stati
 diele
tri
 fun
tion "(q) �� "(0; q). In general, the low-energy properties ofthe system under 
onsideration 
an be des
ribed withthe help of the retarded intera
tion alone (see a
-tion (29)). However, the des
ription within the frame-work of the e�e
tive a
tion with the instantaneous in-tera
tion seems to be a rather good approximation inthis problem [7℄. This is be
ause transitions betweenthe Landau levels have a 
hara
teristi
 time s
ale about!�1
 , while the typi
al energy s
ale in the e�e
tive the-ory is of the order of the ex
hange energy �ex � !
(see Se
. 4).The existen
e of the other Landau levels ex
ept thepartially �lled N -th level a�e
ts both the thermody-nami
 and the 
hemi
al potentials. The thermody-nami
 potential 
 in a
tion (32) 
an be representedas 
 = 
0 +�
; (33)where 
0 = T Z dr tr ln ~G0(r; r) (34)is the thermodynami
 potential of the system of non-intera
ting ele
trons for the 
ompletely �lled Landaulevels in the presen
e of disorder and the quantity �
is analogous to the �rst-order ex
hange and the 
orre-lation 
orre
tion equivalent to the sum of ring diagrams
ontributing to the ground state energy of a 
lean ele
-tron liquid [17℄,�
 = T2 Z drXn Z dq(2�)2 ln "(n;q): (35)The 
hemi
al potential ~� in a
tion (32) 
an be writtenas ~� = �+ Æ�; (36)where the shift of the 
hemi
al potentialÆ� = 2�l2TXn Z dr ~Gn0 (0; r)PN (0; r)Ueff (n; r) (37)involves 
orre
tions similar to the ex
hange and 
orrela-tion ones in a 
lean ele
tron liquid. Here, l = 1=pm!


is the magneti
 �eld length. The quantity Ueff (n; r) isthe Fourier transform of U0(q)="(n;q) andPN (r1; r2) =Xk '�Nk(r2)'Nk(r1) (38)is the proje
tion operator onto the partially �lled N -thLandau level.We note that 
orre
tions to the thermodynami
and 
hemi
al potentials 
ontain additional terms ex-
ept those presented above. They are negle
ted in thelimit of a weak disorder !
� � 1 (see Appendix A).The integration over the plasmon �eld is performedin the Gaussian approximation. This 
an be justi�edif the �u
tuations of the plasmon �eld are small. Thelong- and short-range �u
tuations are di�erent physi-
ally. In the 
ase of a large length s
ale r � R
, onlythe dipole transitions between the adja
ent Landau lev-els are indu
ed. The long-range �u
tuations are smallif the 
ondition Nrs � 1 is satis�ed [7℄. Physi
ally,this 
ondition means that the 
hara
teristi
 length s
aleR2
=aB of the long-range �u
tuations must be mu
hgreater than the 
y
lotron radius R
. The short-range�u
tuations 
orrespond to the 
ase of a small lengths
ale r � R
. Transitions between distant Landau lev-els are possible in this 
ase. The 
ondition rs � 1 ofthe smallness of short-range �u
tuations is just the 
ri-terion of the perturbation theory appli
ability to theCoulomb intera
tion.3. EFFECTIVE INTERACTION, THETHERMODYNAMIC AND CHEMICALPOTENTIALSThe results of the previous se
tion allow us to �nde�e
tive a
tion (32) for the ele
trons on the partially�lled N -th Landau level. The main physi
al quantitythat a�e
ts the dynami
s of the ele
trons is the e�e
-tive ele
tron�ele
tron intera
tion. It is 
ompletely de-termined by the stati
 diele
tri
 fun
tion "(q). Theother two interesting quantities in e�e
tive a
tion (32)are the thermodynami
 and 
hemi
al potentials.3.1. The e�e
tive intera
tionThe most pronoun
ed e�e
t of ele
trons on the
ompletely �lled Landau levels is the s
reening of theele
tron�ele
tron intera
tion on partially �lled Landaulevel. This s
reening is determined by the stati
 diele
-tri
 fun
tion "(q).In a

ordan
e with Eq. (31) for the polarizationoperator �(n; q), the diele
tri
 fun
tion 
an be ob-tained for arbitrary values of the disorder parameter155
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� . However, the situation of a small Landau levelbroadening due to disorder is most interesting from thephysi
al standpoint. In this 
ase, the expression for thestati
 diele
tri
 fun
tion 
an be simpli�ed drasti
ally,"(q) = 1 + 2�e2q TXn �n0 (0; q); !
� � 1: (39)The evaluation of the stati
 diele
tri
 fun
tion is pre-sented in Appendix B. The result 
an be written as"(q) = 1+ 2qaB �1�J 20 (qR
)� �3!
� �(qR
)� ; (40)where the fun
tion �(x) 
an be found analyti
ally onlyin the asymptoti
 regions of small and large values ofx (see Appendix B),�(x) = 8>>><>>>: x24 ; x� 1;ln2(3:57x)�x ; x� 1: (41)Here, J0(x) is the Bessel fun
tion of the �rst kind. Ex-pression (40) for the stati
 diele
tri
 fun
tion is themain result of the paper.It is worthwhile to note that the asymptoti
 ex-pressions (in the qR
 � 1 and qR
 � 1 domains)for the stati
 diele
tri
 fun
tion "(q) in a 
lean sys-tem (��1 = 0) were obtained earlier by Kukushkin,Meshkov, and Timofeev [18℄. The general expressionfor the stati
 diele
tri
 fun
tion in a 
lean system wasderived by Aleiner and Glazman [7℄.We mention that the asymptoti
 expressions for thestati
 diele
tri
 fun
tion in a 
lean system 
an be ob-tained from a 
lear physi
al pi
ture [18, 7℄. The be-havior of the stati
 diele
tri
 fun
tion in the regionqR
 � 1 
an be explained by dipole transitions be-tween the adja
ent Landau levels. The result for thestati
 diele
tri
 fun
tion in the region qR
 � 1 is ex-plained by the standard Thomas�Fermi s
reening. Butthere is no 
lear physi
al pi
ture in the 
ase of a weaklydirty system. We have no other opportunity to obtainthe diele
tri
 fun
tion ex
ept the derivation of the ef-fe
tive a
tion for ele
trons on a partially �lled Landaulevel.It follows from (40) that in the domain qR
 � 1,the stati
 diele
tri
 fun
tion is given by"(q) = 1 +�1� �6!
� � R2
qaB : (42)This shows that the disorder suppresses the e�e
t of thes
reening. We 
an expe
t that the s
reening de
reases

as disorder in
reases. We 
an estimate the disorderthreshold ��, i.e., the point of vanishing s
reening, as!
�� � 1=2�.From Eq. (40), we 
an obtain the expression for thestati
 diele
tri
 fun
tion in the domain qR
 � 1,"(q) = 1 + 2qaB �1� ln2(3:57qR
)3!
�qR
 � : (43)The disorder also suppresses the s
reening in the regionof large wave ve
tors qR
 � 1.Equations (40)�(41) allow us to obtain the asymp-toti
 behavior of the e�e
tive intera
tion Ueff (r) in the
oordinate spa
e. The polarization is insigni�
ant forthe very large length s
ale r � R2
=aB and the e�e
tiveintera
tion 
oin
ides with the bare Coulomb intera
tionUeff (r) = e2r �1� R4
a2Br2 �1� �6!
� �� : (44)At the intermediate s
ale R2
=aB � r � R
, the polar-ization be
omes important and the e�e
tive intera
tionis given byUeff (r) = !
2N �1� 12�!
� � �� ln0BB�1 + R2
 �1� �6!
� �aBr 1CCA : (45)We note that while disorder in
reases, the e�e
tive in-tera
tion tends to the bare Coulomb intera
tion. Forthe small s
ale R
 � r � aB , the Thomas�Fermis
reening o

urs and the e�e
tive intera
tion is given byUeff (r) = e2a2Br3 + �3!
� e2aBrR
 �ln2 1:31R
r + 1� : (46)We emphasize that disorder in the system moststrongly a�e
ts the ele
tron�ele
tron intera
tion withinthe intermediate length s
ale R2
=aB � r � R
. Phys-i
ally, this is the 
ase where the dipole transitions be-tween the adja
ent Landau levels are possible.3.2. The thermodynami
 and 
hemi
alpotentialsThe thermodynami
 and 
hemi
al potentials inEqs. (34)�(37) 
an be evaluated in the leading ordersin 1=N . The detailed 
al
ulations are presented in Ap-pendix C.156
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tron liquid with disorder : : :The thermodynami
 potential for the system ofnonintera
ting ele
trons in the presen
e of disorder forthe 
ompletely �lled Landau levels is given by
0 = LxLy�l2 �N(N�1)2 !
��� ln(2!
�)�1�� � ; (47)where Lx and Ly are the sizes of the system. The�rst-order ex
hange 
orre
tion to the thermodynami
potential is given by�
 = �LxLy�l2 e2�l (2N)3=2 �23 + 2 ln 2�!
� 12N � : (48)The presen
e of disorder 
hanges the dependen
e of�
on the magneti
 �eld, i.e., on N . For the dirty system,the se
ond term in bra
kets in Eq. (48) is proportionalto 1=N . This is in 
ontrast to the 
lean system, wherethe 
orre
tion is mu
h smaller and is proportional to1=N2 [7℄.The shift of the 
hemi
al potential due to the ex-
hange 
orre
tion 
an be written asÆ� = 2e2�l (2N)1=2 �1� lnN8N + 1�!
� 12N � : (49)We note that Æ� 
ontains only the ex
hange 
orre
tionand does not involve the 
orrelation 
orre
tion due tonormal ordering of the 	y and 	 �elds (see Ref. [7℄).4. SPIN EXCITATIONSIn the previous se
tion, we analyzed the renormali-zation of the ele
tron�ele
tron intera
tion on the par-tially �lled N -th Landau level due to the existen
e ofthe other levels. In this se
tion, we investigate the en-han
ement of the g fa
tor and the simplest spin ex
i-tations at the �lling fa
tor � = 2N + 1.The ele
trons on the partially �lled N -th Landaulevel at the �lling fa
tor � = 2N + 1 possess the maxi-mum spin in the ground state, be
ause the ground statedoes not 
ontain skyrmions at large � [19℄. This groundstate is obviously fully spin-polarized and is des
ribedby the wave fun
tionjNel = N�; Sz = N�=2i;where Nel is the number of ele
trons on the partially�lled N -th Landau level andN� = LxLy2�l2 ;is the number of states on the Landau level. The sim-plest ex
itations are des
ribed by the state with the

energy E" with an extra hole and the state with the en-ergy E# with an extra ele
tron. The width of the spingap �s is related to the energies of the ex
ited statesand to the energy E0 of the ground state [20; 21; 7℄ as�s = E" +E# � 2E0:We 
an obtain that the width of the spin gap equals�s = �ex + g!
;where the shift of the 
hemi
al potential �ex due tothe ex
hange intera
tion [21; 22℄ is determined by�ex = 2�l2 Z drUeff (r)PN (0; r)PN (r; 0): (50)Using expression (38) for the proje
tion operator PN ,we 
an evaluate the e�e
tive g fa
tor. It is de�ned asgeff = �s=!
 and is given bygeff = g + rs�p2 ln 2p2rs + Eh!
 ++ rs�!
� ln2(14:28N)4p2�2N ; (51)where the �hydrodynami
� term isEh = !
2N �1� �6!
� � �� ln �1 +p2rsN �1� �6!
� �� : (52)The disorder in the system results in the appearan
eof a strong dependen
e of the e�e
tive g fa
tor on themagnitude of the magneti
 �eld as ln2N=N .We now dis
uss the neutral ex
itations, spinwaves [21; 23℄ at the �lling fa
tor � = 2N + 1. Theyare des
ribed by the wave fun
tionXq exp(ikxql2)	N;q;#	N;q�ky;" ����N�; N�2 � : (53)Following Ref. [21℄, we must take three 
ontribu-tions into a

ount. They are the di�eren
e of the ex-
hange self-energy of an ele
tron in the ex
ited Landaulevel and the self-energy in the level from whi
h theele
tron was removed, the dire
t Coulomb intera
tion,and the ex
hange energy. We then obtain the equationthat determines the spe
trum of the spin wave ex
ita-tions,! = g!
 + Z dq(2�)2 U0(q)"(q; !) �LN �q2l22 ��2 �� exp(�q2l2=2) �1� exp �i(k � q)l2�� ; (54)157
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-tri
 fun
tion "(q; !) 
ontains the imaginary part (seeEq. (B.4)), whi
h is of order 1=!
� . It results in thede
ay rate of the spin wave ex
itations. Physi
ally, thespin wave ex
itations de
ay be
ause of the s
atteringon impurities. We mention that the de
ay rate alsoapperears in the magnetoplasmon spe
trum.The energy of the spin-wave ex
itations is mu
h lessthan !
: !(k) � !
. We 
an therefore 
al
ulate thereal part ESW (k) and the imaginary part �SW (k) ofthe spin-wave energy separately. We set ! = 0 in theright-hand side of Eq. (54). The evaluation of Eq. (54)then leads to a quadrati
 dispersion relation for thesmall wave ve
tors kR
 � 1,ESW (k) = g!
 + rs!
�p2 �� �1+ rsp2 �1� 13!
� ln2(14:28N)4N ���1 (kR
)2: (55)An additional dependen
e of the e�e
tive mass of thespin-wave ex
itations on the magneti
 �eld appears be-
ause of the presen
e of disorder in the system. Thedisorder suppresses the e�e
tive mass of the spin-waveex
itations. For su�
iently large wave ve
tors1� kR
 � R2
=l2;the energy of the spin wave is given byESW (k) = �ex �Eh � rs!
�p2 ��26664ln0BBB�1+ (p2rskR
)�11� 13!
� ln2(7:14N=kR
)2N=kR
 1CCCA++sin 2kR
2kR
 �1+ rsp2 �1� 13!
� ln2(14:28N)4N ��37775 :(56)To obtain the de
ay rate of spin-wave ex
itations,we take into a

ount that the imaginary part "00 of thediele
tri
 fun
tion is small. We then obtain�SW (k) = � Z dq(2�)2 U0(q)"00(q; ESW )"20(q; ESW ) �� �LN �q2l22 ��2 �� exp(�q2l2=2) �1� exp[i(k � q)l2℄� : (57)

The evaluation of Eq. (57) for small wave ve
torskR
 � 1 yields�SW = �ar
tg(2!
�g)6!
� e2aB (kR
)2 �� 1(1 + l2=aBR
)2 2� sin(4N)(4N)2 (58)and for the large wave ve
tors kR
 � 1,�SW = �ar
tg(2!
�geff )�!
� e2aB �� "�aBR
�2 ln R
aB + ar

h(2kR
)2(4N)2 # : (59)We note that the de
ay rate �SW is of the same or-der as the 
orre
rions to the real part of the spin-waveenergy ESW due to the presen
e of disorder.5. ZERO-BIAS ANOMALYIn this se
tion, we 
onsider the ele
tron tunnelinginto a two-dimensional ele
tron liquid with disorder ina weak magneti
 �eld. We investigate suppression ofthe tunnelling 
ondu
tivity near zero bias, the so-
alledzero-bias anomaly. The properties of the ele
tron tun-nelling into an ele
tron system are usually des
ribedby a dependen
e of the tunnelling 
ondu
tivity G(V )on the bias V . Re
ently, the e�e
tive a
tion approa
hto the zero-bias problem was developed by Levitov andShytov [24℄. The e�e
tive a
tion des
ribes spreadingof the tunnelling ele
tron within the ele
tron system inimaginary time �.Following Ref. [24℄, the a
tion of a spreading 
hargefor zero bias V = 0 is determined byS0(�) = 4 +1Z0 d!2� �� +1Z0 q dq2� sin2(!�)! +Dq2 Ueff (q)! +Dq2 + �q2Ueff (q) ; (60)where � and D are the 
ondu
tivity and the di�usive
onstant of the ele
tron system, respe
tively. They arerelated by the Einstein formula � = e2�D.Using asymptoti
 expression (42) for the stati
 di-ele
tri
 fun
tion "(q), we evaluate a
tion (60) in thelarge time limit � � 1 asS0(�) = e28�2�� ln 2��0 ln�2��0 �4�� ; (61)158
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tron liquid with disorder : : :where we introdu
e two dimensionless parameters� = aBp2 lel ; � = �1� �6!
� �� R
p2 lel�2 (62)with the bare elasti
 mean free path lel = R
!
�0. Ina

ordan
e with the inequality aB � R
 � lel, theparameters � and � are small, � � 1 and � � 1.Taking the work done by the voltage sour
e intoa

ount, we obtain the total a
tion of the spreading
harge S(�) = S0(�)� 2eV �:We must then �nd the optimum time �� determined bythe minimum of the a
tion S(�). The optimum time�� plays the role of the 
harge a

ommodation time inthe problem. It 
an be written as�� = �0 V02V ln V0�2�V ;eV0 = �1� �6!
� ��1 1�mR2
 : (63)The theory must be self-
onsistent in the hydrodynam-i
al limit, i.e., for �� � �0. Therefore, the theory isappli
able for the bias V � V0.Assuming the 
ontribution from the barrier to be a
onstant at a small bias, we 
an write the tunnelling
ondu
tivity asG(V ) = G0 exp[�S0(��) + 2eV ��℄: (64)After the evaluation, we obtain the dependen
e of thetunneling 
ondu
tivity for a small bias,G(V ) = G0 � VV0��(V ) ;�(V ) = e28�2�� ln V0V �4� : (65)Equation (65) shows that the s
reening of theele
tron�ele
tron intera
tion results in in
reasing thesuppression of the tunneling 
ondu
tivity. We notethat the above result is valid for the bias in the rangeV � V0.Expression (65) for the tunneling 
ondu
tivity 
on-tains the energy s
ale eV0 that 
oin
ides with the �hy-drodynami
� term Eh in Eq. (52) ex
ept for the loga-rithm. A hydrodynami
al model for the low-energy ex-
itations of a 
lean (��1 = 0) ele
tron liquid in a weakmagneti
 �eld was 
onsidered by Aleiner, Baranger,and Glazman [6℄. They showed that the tunneling den-sity of states exhibits the gap 2Eh related to the Fermienergy. Equation (52) des
ribes the same gap for a

weak disorder !
� � 1. Apparently, the disorder isresponsible for the fa
t that the gap is about 0:05!
 ina wide range of the applied magneti
 �eld [5℄.As the magneti
 �eld in
reases, the fa
tor � in-
reases and be
omes of the order of unity. The zero-biasanomaly in the tunneling 
ondu
tivity 
rossovers fromweak to strong. Expression (65) shows that the fa
tor� depends on the bias V and the magneti
 �eld. Thisresults in the shift of the 
rossover point V
 along thebias V as the applied magneti
 �eld 
hanges,V
 = V0 exp�� 4��!2
�0� ; (66)where � is the 
hemi
al potential. The 
rossover wasobserved by Ashoori et al. [5℄ in the tunneling 
urrentfrom a normal metal into two-dimensional ele
trons inthe presen
e of a magneti
 �eld. In the experiment,the ohmi
 
ondu
tan
e was measured as a fun
tion ofthe temperature T . For low temperatures, the 
on-du
tan
e 
orresponds to the zero temperature 
ondu
-tan
e taken at V = T=e. The two-dimensional ele
-trons were relatively 
lean, with the elasti
 
ollisiontime �0 � 4 � 10�12 s. The 
hemi
al potential 
al
u-lated from the el
tron density was � = 10 mV. UsingEq. (66), the dependen
e of the 
rossover temperatureon the magneti
 �eld 
an be written asT
 = 2:9 exp � �3:2H �2! ; (67)where the temperature is measured in Kelvin and themagneti
 �eld in Tesla. Equation (67) demonstrates agood agreement with the results reported in Ref. [5℄.6. CONCLUSIONSWe have 
onsidered the system of a two-dimensionalele
tron gas in the presen
e of disorder and theCoulomb intera
tion in a weak perpendi
ular magneti
�eld. The e�e
tive low-energy theory des
ribing ele
-trons at the partially �lled N -th Landau level was de-rived in the 
ase of a weak magneti
 �eld (Nrs � 1)and a weak intera
tion (rs � 1). The modi�edele
tron�ele
tron intera
tion for ele
trons on a partially�lled Landau level involves the s
reening from the otherele
trons on the o

upied Landau levels. We also pre-sented the ex
hange 
orre
tions to the thermodynami
and 
hemi
al potentials in the presen
e of disorder.The theory proposed here allows us to a

ount forthe e�e
ts of disorder in the problems 
onne
ted withthe behavior of a two-dimensional ele
tron gas in a159



I. S. Burmistrov ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002weak magneti
 �eld. It 
an be investigated how dis-order a�e
ts the formation of stripes, bubble phase,tunneling density of states, spin ex
itations, tunneling
ondu
tivity, et
.We dis
ussed the e�e
t of disorder on the ex
hangeenhan
ement of the g fa
tor and the simplest spin ex-
itations on the partially �lled Landau level. We ob-tained an additional dependen
e of the e�e
tive g fa
toras a fun
tion of the magneti
 �eld, the suppression ofthe e�e
tive mass and the de
ay rate of the spin-waveex
itations.We also investigated the ele
tron tunneling into atwo-dimensional ele
tron liquid with a weak disorder ina weak magneti
 �eld. We obtained the enhan
ementof the gap in the tunneling density of states and anonlinear dependen
e of the tunneling 
ondu
tivity onthe applied bias.The author is grateful to M. A. Baranov, A. S. Iose-levi
h, and M. V. Feigel'man for useful dis
ussions. Theauthor thanks M. A. Baranov for some 
riti
al remarksduring the manus
ript preparation.APPENDIX AIn this appendix, we 
al
ulate the term S� in a
tion(29). This term appears after performing the integra-tion over the longitudinal �u
tuations and is given byS� = 12 h�S2[	;	; ÆP; �℄�2iÆP ; (A.1)where h: : : iÆP denotes the average with the propagatorof the ÆP �eld in Eq. (28). We then obtainS� = ÆS1 + ÆS2 + ÆS3; (A.2)whereÆS1 == T 2 ZZ dr1 dr 2 �	y�̂ ~G0�̂	� 2 tr �̂ ~G0�̂G0� ; (A.3)ÆS2 = �T 2 Z dr1 : : : Z dr 4 �� �;�Xk;n;m��m(r1)D��nm(k; r3; r4)�� �n0 (m; r1; r2)L��;��n;n+m(r2; r4); (A.4)ÆS3 = T 22 Z dr1 : : : Z dr 4 �;�;
;ÆXk;l;n;mD��nm(k; r1; r2)��D
Ænm(l; r3; r4)L��;
Æn;n+m(r2; r4): (A.5)

Here,D��nm(k; r1; r2) == �	�k (r1)	�n+m(r2)�2Æk;n+mÆ�;�Gn+m0 (r2; r1)�����n�k(r1) ~Gn0 (r1; r2) ++ �	�n(r1)	�k (r2)� 2Æk;nÆ�;�Gn0 (r2; r1)��� ��k�n�m(r1) ~Gn+m0 (r1; r2); (A.6)and L��;
Æm1;m2 is the propagator of longitudinal �u
tua-tions in Eq. (28).Integrating over the plasmon �eld, we obtain fromthe S� termS� ! �
1 +�
2 +�
3T + (Æ�1 + Æ�2 + Æ�3)�� Z dr	y(r)	(r); (A.7)where se
ond-order 
orre
tions to the thermodynami
potential are given by�
1LxLy = �T 2 ��Xn;mZ drGn0 (0; r) ~Gm0 (r; 0)Ueff (m� n; r);�
2LxLy = 2T 2Xn;m Z dr dr1 dr2 ���Gn0 (0; r) ~Gn+m0 (r; 0)++ ~Gn0 (r; 0)Gn+m0 (0; r)��� Ueff (m; r1)�n0 (m; r1 � r2)L��;��n;n+m(r2 � r);�
3LxLy = 2T 2Xn;m Z dr dr1 dr2 �� �Gn0 (0; r) ~Gn+m0 (r; 0)++ Gn+m0 (0; r) ~Gn0 (r; 0)��� �Gn0 (0; r1) ~Gn+m0 (r1; 0)++ Gn+m0 (0; r1) ~Gn0 (r1; 0)��� Ueff (m; r2)L��;��n;n+m(r� r1 + r2):

(A.8)

The above 
orre
tions are negligible in the parame-ter N�1 
ompared to the 
orre
tion determined by160
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tron liquid with disorder : : :Eq. (35). The 
orre
tions to the 
hemi
al potentialare given byÆ�12�l2 = TXm Z drPN (0; r) ~Gm0 (r; 0)Ueff (m; r);Æ�22�l2 == �4TXm Z dr dr1 dr2 PN (0; r) ~Gm0 (r; 0)�� Ueff (m; r1)�00(m; r1 � r2)L��;��0;m (r2 � r);Æ�32�l2 == �8T 2Xm Z dr dr1 dr2 PN (0; r) ~Gm0 (r; 0)�� Ueff (m; r1)L��;��0;m (r � r1 + r2)�� �G00(0; r1) ~Gm0 (r1; 0) +Gm0 (0; r1) ~G00(r1; 0)� :
(A.9)

The se
ond and third 
orre
tions are negligible in theparameter N�1 
ompared to the �rst term. The shiftof the 
hemi
al potential Æ� is therefore mainly deter-mined by the �rst 
orre
tion Æ�1.APPENDIX BIn this appendix, we evaluate the polarization op-erator �(!n; q). The 
ondition !
� � 1 is assumed tohold. Then �(!n; q) = TXm �m(!n; q): (B.1)The 
al
ulation of the polarization operator �(!n; q) isanalogous to that given in Ref. [7℄. The wave ve
torsq � R
=l2 are 
onsidered.Using Eq. (31), we immediately obtain�(�n; Q) == m� 241� +1Xj=�1 J 2j (Q)j2+�2n ��2n+ �3�!
Lj(�n)�35 ; (B.2)

whereLj(�n) = �(jjj � 2)�� jjj�1Xn=1 � jjjn �12 j2��2nj2+�2n ln �2n+n2n2 + 2jjj�n(j2+�2n)2 ar
tg �nn �++�(jjj � 1)266412 + �njjj ar
tg �njjjj2 + �2n + 14 j2 � �2nj2 + �2n �� ln� �2n + j2j2 (1 + 2�!
�n)2�3775 : (B.3)Two parameters �n = !=!
 (with ! = 2�Tn) andQ = qR
 are introdu
ed here. The transformation ofseries (B.2) into the integral form yields the asymp-toti
 form of the polarization operator in the di�erentregimes. In the stati
 limit �n � 1,�(�n; Q) = m� �1�J 20 (Q)� �3!
� �(Q)++ ln(1 + 2!
��n)2�!
� �(Q)+O(�2)� ; (B.4)where the fun
tion �(x) is de�ned as�(x) = 12� �Z0 dy� J0 �2x sin y2��� �ln2 �2 sin y2�� �212� ; (B.5)and its asymptoti
 form is given in Eq. (41). The fun
-tion �(x) is de�ned as�(x) = �Z0 dy� J0 �2x sin y2��(y � �)2 � �23 � ; (B.6)and its asymptoti
 form is given by�(x) =8><>: x2; x� 1;�3x (2� sin 2x); x� 1: (B.7)In the hydrodynami
 limit qR
 � 1, we obtain�(�n; Q) = m2� Q21 + �2n �� �1� �6�!
 + 12��!
 1� �2n1 + �2n �� ln �(1 + �2n)(1 + 2�!
�n)2� �� �3�!
 �n ar
tg �n1 + �2n � : (B.8)11 ÆÝÒÔ, âûï. 1 (7) 161
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orre
tions to thethermodynami
 and 
hemi
al potentials.C.1. Corre
tion to the thermodynami
potentialUsing Eq. (35), we 
an split the 
orre
tion to thethermodynami
 potential into the ex
hange and 
orre-lation ones as �
 = �
ex +�

; (C.1)�
exLxLy = T2 Xn Z dq(2�)2U0(q)�(n; q); (C.2)�

LxLy = �T2 Xn Z dq(2�)2 �� 1Z0 d� �U20 (q)�2(n; q)1 + �U0(q)�(n; q) : (C.3)The ex
hange 
orre
tion gives the leading 
ontribu-tion [7℄ and 
an be written as�
exLxLy = � e22�l3 Xm6=N 1Z0 dx e�x2=2L1N �x22 ��� Lm�x22 ���(N �m) + 1�!
� 1m�N � ; (C.4)where Lmn stands for the Laguerre polynomials. Theabove equation goes into Eq. (48) in the 
ase whereN � 1.C.2. Corre
tion to the 
hemi
al potentialUsing Eq. (37), we 
an split the 
orre
tion to the
hemi
al potential into the ex
hange and 
orrelationones, Æ� = Æ�ex + Æ�
; (C.5)Æ�ex = 2�l2TXn Z drU0(r)PN (0; r) ~Gn0 (r; 0); (C.6)Æ�
 = �2�l2TXn Z d2q(2�)2PN (q) ~Gn0 (q)�� U20 (q)�(n; q)1 + U0(q)�(n; q) : (C.7)

The ex
hange 
orre
tion gives the leading 
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