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We present the effective theory for the low-energy dynamics of two-dimensional interacting electrons in the
presence of a weak short-range disorder and a weak perpendicular magnetic field, with the filling factor v > 1.
We investigate the exchange enhancement of the g factor, the effective mass, and the decay rate of the simplest
spin wave excitations at v = 2N + 1. We obtain the enhancement of the field-induced gap in the tunneling
density of states and the dependence of the tunneling conductivity on the applied bias.
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1. INTRODUCTION

A two-dimensional electron gas in the perpendicular
magnetic field has attracted much attention from both
theoretical and experimental standpoints. The effects
in a strong magnetic field when only the lowest Landau
level is occupied have been investigated since the dis-
covery of the quantum Hall effect [1]. Several efforts [2]
are made in order to involve larger filling factors v > 1
into the problem discussed. However, the existence of
a small parameter, the ratio of the Coulomb energy at
the magnetic field length to the cyclotron energy, has
been assumed. In a weak magnetic field, the Coulomb
energy at the magnetic field length actually exceeds
the cyclotron energy and some attempts [3] have been
undertaken to investigate the case of the large filling
factor v > 1.

Experimental investigations of the tunneling den-
sity of states for the system under consideration were
performed at small (v < 1) [4] and large (v > 1) [5]
filling factors. In the case of a weak magnetic field
(v > 1), the gap in the tunneling density of states has
been obtained in the framework of the hydrodynamical
approach [6]. The progress was made by Aleiner and
Glazman [7] who developed the effective theory for low-
energy excitations on a partially filled Landau level at
large filling factors v > 1.

Recently, after the prediction that the unidirec-
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tional charge-density wave state occurs at half-filled
high Landau levels within the framework of the
Hartree-Fock theory [8] and the experimental disco-
very of compressible states with the anisotropic mag-
netotransport properties in high-mobility systems near
the half-filling of the high Landau levels [9], the two-di-
mensional electron liquid in a weak magnetic field was
intensely studied [10].

In this paper, we develop the low-energy effective
theory for electrons at the partially filled Landau level
with a large filling factor in the presence of disorder
(Sec. 2). As an example, the effect of disorder on the
exchange enhancement of the effective g factor and the
simplest spin-wave excitations are discussed in Sec. 4.
Electron tunneling into the electron liquid is considered
in Sec. 5. Conclusions are given in Sec. 6.

2. DERIVATION OF THE EFFECTIVE ACTION

2.1. Introduction

We consider the system of two-dimensional elec-
trons with the Coulomb interaction in the presence of
disorder in a perpendicular magnetic field H. The sys-
tem possesses a partially filled high Landau level with
the level index N > 1 equal to the integer part of
half the filling factor v, N = [v/2]. The presence of
a random potential, which is considered to be short-
range, results in a broadening of the Landau levels.
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We assume that the elastic collision time satisfies the
condition
To > W, 1,

where w, = eH/m is the cyclotron frequency with the
electron charge e and the electron mass m. In this case,
the broadening of Landau levels, which is of the order
\/WeTo /7o, is much less than the distance between them.

The conventional parameter characterizing the cou-
pling strength of the Coulomb interaction is

= \/562/1)1:,

where vp is the Fermi velocity. We assume that elec-
trons are weakly interacting, i.e., rs < 1. In this case,
we can treat the problem in the random phase approx-
imation. We also assume that the number N is suf-
ficiently large, and the condition Nrg > 1 is there-
fore satisfied. This means that the cyclotron radius
R. = \/v/muw, is supposed to be much larger than the
Bohr radius ag = 1/me?,

R. > ag.

2.2. The formalism

The system is described by the grand canonical par-
tition function in the path-integral representation,

7z / DE. ] / DVais] P[Viis (1)] X

X exp {S[Ea 7% Vdis]} ) (]‘)

7) (=0r + = H — Vais(r)) ™7 (r,7)—

— %/drl (2, ) (x, ) Up (r,11) X

X lba i (1'1 3 T)wa’o.l (1‘1 ) T) ) (2)
where the Grassmann variables ¢ and Ea’a are de-
fined on the imaginary time interval 7 € [0,1/T] with
the antiperiodic condition ¢(r,1/T) = —(r,0). The
symbol T stands for the temperature, p is the chem-
ical potential of the system, and o,0; = +1 are spin
indices. The Hamiltonian
2= (—iV —eA)?
2m
describes the electron with mass m propagating in the
two-dimensional space in the perpendicular magnetic
field
H = EabaaAb.
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The random potential Vy;s(r) is chosen to have the
Gaussian distribution function

PVais()] = /575 exp (-ma / dr Vfis(r)> B

where p denotes the thermodynamical density of states.

To average In Z over disorder, N, replicated copies
of the system are introduced; we let a = 1,..., N, be
the replica indices.

The Matsubara representation seems to be more
convenient for the above problem. We therefore use
the Fourier transform from the imaginary time 7 to the
Matsubara frequencies. Because the fermionic fields are
antiperiodic within the interval [0, 1/T7], the frequencies
permitted for ¢ and 1 are

wy =77 (2n + 1),

where n is an integer. The Fourier-transformed fields

are defined as

:\/f i azeiwnr7

. (4)
=T Z nge*i“"T.

In what follows, we omit the limits in the frequency
and replica series for brevity.

In the Matsubara representation, action (2) be-
comes

S=/dr><

<[
——Z/dmp

) (iwn + p = H — Vais(r)) oy 7 (r) —

() Uo(r,r1) X

—Q,01

X )Py ()] (5)

The Zeeman term in action (2) is neglected because
the g factor is small. In fact, the condition g <« 1 is
usually satisfied. The Zeeman term can nevertheless
be included in the effective action after performing the
integration over fast degrees of freedom. To simplify
the notation, the spin indices are associated with the
replica ones whenever convenient.

2.3. The plasmon field and the average over
disorder

The Coulomb term entering action (5) is quar-
tic in the fermionic fields. This quartic term can be
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eliminated by the Hubbard-Stratonovich transforma-
tion, introducing an extra path integration over bosonic
fields A% (r). With the help of the so-called plasmon
field, the Coulomb term can be presented as

/D[)\] exp [—%// dr dey M (e)UG ! (e, 00) M\ (1) +
4T / dr gt @30 |, (6)

where U, ! stands for the inverse operator to Up. The
matrix notation is used for the combined replica and
frequency indices,

o3
VY=Y (s

M= za: Y2,
n
The quantities with the hat are defined as
g=> aplg
with the matrix
(I2)5) = 0°P8°754_y .

The matrices I} represent the diagonals shifted in the
frequency space; they are the generators of the U(1)
gauge transformations in general. The measure of the
path integral over the plasmon field A is introduced
such that integral (6) equals unity for the vanishing
fermionic fields ¢! and 4.

In order to perform the averaging over disorder in
partition function (1), we must integrate over the ran-
dom potential Vy;s(r). This leads to the quartic term

1
dmpr

a,B
[ S m @ em e ©

in the action. This term can be decoupled by the
Hubbard-Stratonovich transformation. An extra path
integration over the Hermitian matrix field variables
Q%5 (r) can be introduced [11, 12],

JECE

X exp / dr [~mpro tr Q2(e) +itt (0)Q)6 ()] . (9)

where the symbol «tr» denotes the matrix trace over
the Matsubara, replica, and spin spaces. The measure
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of the path integral over the matrix field @ is defined in
the same way as for the plasmon field, i.e., integral (9)
equals unity for vanishing fermionic fields +t and .

After the above calculations, the partition function
becomes

7= / DT, .\ Qlexp (ST 0. AQ1} . (10)

S = —7rp7'0/dr trQ? —
T .1, —1
5 drdrey N'(r)Uy (v, rq)A(ry) +

+/dr¢f(r) (iw+,u—7:l+iT;\+iQ)w(r), (11)

where w is the unit matrix in the replica space, while
in the Matsubara space, it is a matrix containing the
frequencies w, on the diagonal,

(w)%ﬁl = W 0pm 0P,

2.4. Elimination of the N-th Landau level

The fermionic fields ! and ¢ refer to all Landau
levels. In order to integrate over all fermionic degrees
of freedom not belonging to the partially filled N-th
Landau level, we separate the fermionic fields into two
kinds. The first field refers to the N-th Landau level,

T(r) = > nrpni(r),
P

T (12)
Ti(r) =Y vlpeni(r).
k
The second one involves the other levels,
®(r) = Z Vpk Pk (T).
pZ#N,k . (13)
(I)Jr(r) = Z Uy Prk (r),
p#N,k

where ¢, (r) are the eigenfunctions of the Hamiltonian
Handp=0,1,...,N,... labels Landau levels with the
energies €, = w.(p + 1/2). In addition, we introduce
two types of the Green’s functions. One is for the N-th
Landau level,

and the other is for the other levels,
é(ra ryg Q7 A) =
= > D o) Grp i (Q. Ny (r1),  (15)

p.p'#N k&'
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where the inverse of the Green’s function for the v,
and w;,k, operators is given by

(G_l)pkm’k’ = (iw +pu— 5p)6pp’ Orkr +

+iTApk i + iQpiprir (16)

with the matrix elements

foearse = [ e @ f@onte). (17

The action (11) is bilinear in the fermionic fields '
and ¢, and obviously, also in the fermionic fields &t
and ®. We can therefore integrate over the fermionic
fields ®' and ®: this gives

S = —/trlné—ﬂpTg/trQ2+

+/n1ff [iw+u—ﬂ+iTﬁ+iQ]\If—

T
- E//)\*Uo‘l)\-l-

+// [.I,’rQ(N;Q\IJ+2T‘I!";\C~}’Q\II+T2\IIT5\C~;5\‘I!]. (18)

Hereafter, the space indices are omitted. It should be
noted that the last term arises in action (18) due to the
interaction between electrons belonging to the partially
filled N-th Landau level and the other electrons.

2.5. Integration over the Q field

The () matrix field must be divided into the
transverse V' and the longitudinal P components as
Q = V-'PV. Here, the longitudinal component P
has a block-diagonal structure in the Matsubara space,
i.e., P o ©(nm), where O(z) is the Heaviside step
function. The transverse component V' corresponds to
a unitary rotation, see [13,14] for a review.

The change of variables from @ to P and V is mo-
tivated by the saddle-point structure of action (18) in
the absence of the plasmon field A and at zero temper-
ature, i.e., as w, — 0. This saddle-point solution can
be written as

Qsp = V_lpspva

where the matrix Ps, obeys the equation

21p1oPap = i |Go(r,r) + Go(r, 1) (19)

that coincides with the self-consistent Born approxima-
tion equation [15]. Here, the Green’s function Gy is a
special case of GG, namely,

G()(I'-,I'l) = G(I‘,I‘l; Pspao)-,
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and similarly for Gj.
In the case of small disorder, w.m9 > 1, the solution

of Eq. (19) is given by
58 r=n L
’ m

The presence of the plasmon field A results in a shift
of the saddle-point value (20) of the P field; this shift
can be found by expanding action (18) to the second
order in both A and P = P — P,,. We thus obtain

aB _ sgnn
nm -~

To

)

nm
2T

(Psp) (20)

WeTo .

S:SO"‘Sl[(SP,)\]+SQ[W,‘I’,(SP,)\], (21)

So = / (— trlnGo — TPTo tr Q§p+
+ ot [z’w+,u ~H +iT;\+iQsp] fo) . (22)
S = iT/trégj\—wprg/tr(6P)2—§// MU' A+
+ % //tr [TS\ + 6P} o [T;\ + 5P] . (23)
Sy = // (\Iﬁ [TS\+6P] Go [TX+5P] .

~ 2tr [TX + 6P] Go [TX ¥ 5P] GO) o (24)

where the bare polarization operator mp is understood
to be a matrix in accordance with the rule

tr Aﬂ'oB =

BA

m,m-+n

(r1) (25)

a,B
= AN, ()T (nsr, )
n,m
and is defined by

mi(niery) = =2 (GE (e )G (e m) +
+ ég“'”(r, r1)G{ (ry,r) +
+GE (e )G (r1,0)) - (26)
After decomposing the matrix field @ into the
block-diagonal Hermitian matrix field P and the uni-

tary matrix field V', the measure of the functional in-
tegral in (21) becomes

D[Q] = DIVID[sPI[oP],
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where [13] with the polarization operator?!)
1 =
In I[0P] = ~GoE II(n,q)
P m
5 O(n(n +m)) 0 40)
S aa s pBBs =T Z o (n,q) |1 — 2mpto +
x [ ST —0@mm)]oPsPas,.  (27) = 0 (na |, )
mm 27 pTo
The terms that are quadratic in §P in the part S; of +7T 26"50 . Z [1- G(kn;)]ﬂo (0,9) X
action (21) together with the contribution of measure (m2p?7)? £~ 1 ' (0,9)
(27) determine the propagator of the § P fields, Qﬂ'pﬁ;
0
o (kig) ) (31)
(6P s (@OPY) , (—a)) = 14+ 22
TPT
PP S A0 fcA UL "
_ o 2m3 2mpTo The third term S, in action (29) contains the terms
1+ Tyt (m3 — mi;q) that affect the chemical and thermodynamic potentials
2mpTo of the system (See Appendix A).
_ 2[1 = O(mim;)] Sy ma 0P It is worthwhile to mention that the saddle-point
(272 p27)2 75 (0; q) approximation in which the integration over the @ field
14 —= . . . .-
2mpTy is performed is valid because the condition
Smama 007
X W~ (28) pur = Nwer > 1
+ - - @ 7
27 pTo

We note that the propagator of the longitudinal fluc-
tuations (28) proves to be analogous to that previously
obtained in the problem of the behavior of a free elec-
tron gas in the perpendicular magnetic field [13].

Using expression (28) for the propagator of the § P
fields, we can integrate action (21) over the longitudi-
nal fluctuations in the quadratic approximation. This
gives

S =50+ S\+5,, (29)

where Sy given by Eq. (22) describes the electrons at
the partially filled N-th Landau level coupled to the
plasmon and (s, fields. The term S, corresponds to
the screening of the Coulomb interaction due to the in-
fluence of electrons from the other Landau levels and
is given by

Sy = iT/dr tr Go(r, r)A(r) —

- g / (2qu)2 Zn: A (@)U @)z (n, ) Mg (=a),  (30)

where the dielectric function is given by

e(n,q) =1+ Uo(q)II(n,q)
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is satisfied.

2.6. Integration over the plasmon field

As a final step of the procedure, action (29) must
be integrated over the plasmon field A\. The integra-
tion can be performed in the quadratic approximation
in the A fields. The corresponding propagator is deter-
mined by the second term in Eq. (30). After that, we
obtain the effective action for electrons on the partially
filled Landau level,

Q ~
Sepr = -7+ /dr\I'Jf(r) [iw + i —H+iQsp| X
x U(r) — ﬂ'pTo/dI‘ tr Q?,,(l‘) -

—%//drdrl i T (r)

n,m,k

‘Ija,a

m+n

(0)Uesy (xr — 1) %

0,01

X \I’k, (rl)\I’szlL(rl) +

gWe a —a,0 a,o
+5 /drzn:a\pn (r)T7(r), (32)

which is the main result of the paper.

1) A similar form of the polarization operator but with a dif-
ferent bare polarization operator m{*(n,q) was first derived by
Baranov and Pruisken [16].
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We have incorporated the Zeeman term into the ef-
fective action. The Fourier transform of the effective
interaction potential

Uo(q)
e(q)

is determined by the static dielectric function £(q)
€(0,q). In general, the low-energy properties of
the system under consideration can be described with
the help of the retarded interaction alone (see ac-
tion (29)). However, the description within the frame-
work of the effective action with the instantaneous in-

Uef (Q) =

teraction seems to be a rather good approximation in
this problem [7]. This is because transitions between
the Landau levels have a characteristic time scale about
w1, while the typical energy scale in the effective the-
ory is of the order of the exchange energy A., < w,
(see Sec. 4).

The existence of the other Landau levels except the
partially filled N-th level affects both the thermody-
namic and the chemical potentials. The thermody-
namic potential 2 in action (32) can be represented
as

Q=0+ AQ, (33)

where

Qp = T/dr trln Go(r, ) (34)
is the thermodynamic potential of the system of non-
interacting electrons for the completely filled Landau
levels in the presence of disorder and the quantity AQ
is analogous to the first-order exchange and the corre-
lation correction equivalent to the sum of ring diagrams
contributing to the ground state energy of a clean elec-
tron liquid [17],

AQ = %/dr ;/(;Tqylna(n,q). (35)

The chemical potential f in action (32) can be written
as
ft = p+op, (36)

where the shift of the chemical potential
5= 22T Y / dr G2 (0, 1) Pr (0, 2)Ungy (n 1) (37)
n

involves corrections similar to the exchange and correla-
tion ones in a clean electron liquid. Here, [ = 1//muw.
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is the magnetic field length. The quantity Ugps(n,r) is
the Fourier transform of Uy(q)/e(n,q) and

Py(ri,r2) = ) @i (r2)onn(r1) (38)
k

is the projection operator onto the partially filled N-th
Landau level.

We note that corrections to the thermodynamic
and chemical potentials contain additional terms ex-
cept those presented above. They are neglected in the
limit of a weak disorder w.7 > 1 (see Appendix A).

The integration over the plasmon field is performed
in the Gaussian approximation. This can be justified
if the fluctuations of the plasmon field are small. The
long- and short-range fluctuations are different physi-
cally. In the case of a large length scale r > R, only
the dipole transitions between the adjacent Landau lev-
els are induced. The long-range fluctuations are small
it the condition N7y > 1 is satisfied [7]. Physically,
this condition means that the characteristic length scale
R?/ap of the long-range fluctuations must be much
greater than the cyclotron radius R.. The short-range
fluctuations correspond to the case of a small length
scale r <« R.. Transitions between distant Landau lev-
els are possible in this case. The condition ry < 1 of
the smallness of short-range fluctuations is just the cri-
terion of the perturbation theory applicability to the
Coulomb interaction.

3. EFFECTIVE INTERACTION, THE
THERMODYNAMIC AND CHEMICAL
POTENTIALS

The results of the previous section allow us to find
effective action (32) for the electrons on the partially
filled N-th Landau level. The main physical quantity
that affects the dynamics of the electrons is the effec-
tive electron—electron interaction. It is completely de-
termined by the static dielectric function &(gq). The
other two interesting quantities in effective action (32)
are the thermodynamic and chemical potentials.

3.1. The effective interaction

The most pronounced effect of electrons on the
completely filled Landau levels is the screening of the
electron—electron interaction on partially filled Landau
level. This screening is determined by the static dielec-
tric function (q).

In accordance with Eq. (31) for the polarization
operator II(n,q), the dielectric function can be ob-
tained for arbitrary values of the disorder parameter
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w.7T. However, the situation of a small Landau level
broadening due to disorder is most interesting from the
physical standpoint. In this case, the expression for the
static dielectric function can be simplified drastically,

2me?

1+

e(q)

TY w5 0.0), wer>1  (39)
n

The evaluation of the static dielectric function is pre-
sented in Appendix B. The result can be written as

elq) = aniB <1—»702(ch)—%77(ch)> , (40)

c

where the function 7(z) can be found analytically only
in the asymptotic regions of small and large values of
x (see Appendix B),

2

T
Z', r <L 17
n@=3 " (41)
In2(3.57z)
— 2 e 1

T

Here, Jo(x) is the Bessel function of the first kind. Ex-
pression (40) for the static dielectric function is the
main result of the paper.

It is worthwhile to note that the asymptotic ex-
pressions (in the gR. <« 1 and ¢R. > 1 domains)
for the static dielectric function £(g) in a clean sys-
tem (77! 0) were obtained earlier by Kukushkin,
Meshkov, and Timofeev [18]. The general expression
for the static dielectric function in a clean system was
derived by Aleiner and Glazman [7].

We mention that the asymptotic expressions for the
static dielectric function in a clean system can be ob-
tained from a clear physical picture [18, 7]. The be-
havior of the static dielectric function in the region
qR. < 1 can be explained by dipole transitions be-
tween the adjacent Landau levels. The result for the
static dielectric function in the region ¢R. > 1 is ex-
plained by the standard Thomas—Fermi screening. But
there is no clear physical picture in the case of a weakly
dirty system. We have no other opportunity to obtain
the dielectric function except the derivation of the ef-
fective action for electrons on a partially filled Landau
level.

It follows from (40) that in the domain ¢R, < 1,
the static dielectric function is given by

)

This shows that the disorder suppresses the effect of the
screening. We can expect that the screening decreases

T

RZq

(42)
ap

=1+ (1-

6w.T
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as disorder increases. We can estimate the disorder
threshold 7, i.e., the point of vanishing screening, as
weT* ~ 1/27.

From Eq. (40), we can obtain the expression for the
static dielectric function in the domain ¢R, > 1,

(- )

The disorder also suppresses the screening in the region
of large wave vectors ¢R. > 1.

Equations (40)—(41) allow us to obtain the asymp-
totic behavior of the effective interaction Uess(r) in the
coordinate space. The polarization is insignificant for
the very large length scale r >> R?/ap and the effective
interaction coincides with the bare Coulomb interaction

2
elg)=14+—
qap

In?(3.57¢R,)

43
3w.TqR, (43)

(44)

At the intermediate scale R? /ag > r > R., the polar-
ization becomes important and the effective interaction

is given by
w
Uegs (1) = — %
2N <1 _ )
2TWeT
T
R*[1-
¢ ( Gwcr>
xIn |1+ (45)
apr

We note that while disorder increases, the effective in-
teraction tends to the bare Coulomb interaction. For
the small scale R. > r > ap, the Thomas—Fermi
screening occurs and the effective interaction is given by

2.2

2
e‘ayp T e‘am

[1112 1.31R,

Uegf(r) = + 1} . (46)

r3 3w.r TR,
We emphasize that disorder in the system most
strongly affects the electron—electron interaction within
the intermediate length scale R?/ap > r > R.. Phys-
ically, this is the case where the dipole transitions be-
tween the adjacent Landau levels are possible.

3.2. The thermodynamic and chemical
potentials

The thermodynamic and chemical potentials in
Eqs. (34)—(37) can be evaluated in the leading orders
in 1/N. The detailed calculations are presented in Ap-
pendix C.
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The thermodynamic potential for the system of
noninteracting electrons in the presence of disorder for
the completely filled Landau levels is given by

|

where L, and L, are the sizes of the system. The
first-order exchange correction to the thermodynamic
potential is given by

_ LI,
w2

N(N-1)
2

In(2w.7)—1
T

Qo

We——

| an

L,L, e>
w2 «l

(2N)3/2 F + 2ln2 1

AQ =
TweT 2N

. } . (48)

The presence of disorder changes the dependence of AQ)
on the magnetic field, i.e., on N. For the dirty system,
the second term in brackets in Eq. (48) is proportional
to 1/N. This is in contrast to the clean system, where
the correction is much smaller and is proportional to
1/N2?[7].

The shift of the chemical potential due to the ex-
change correction can be written as
_2e?

InN
8N

1 1

2NY/2 |1 — —_— .
(2N) TweT 2N

) 49
p=— (49)
We note that éu contains only the exchange correction
and does not involve the correlation correction due to

normal ordering of the ¥ and ¥ fields (see Ref. [7]).

4. SPIN EXCITATIONS

In the previous section, we analyzed the renormali-
zation of the electron—electron interaction on the par-
tially filled N-th Landau level due to the existence of
the other levels. In this section, we investigate the en-
hancement of the g factor and the simplest spin exci-
tations at the filling factor v = 2N + 1.

The electrons on the partially filled N-th Landau
level at the filling factor v = 2N + 1 possess the maxi-
mum spin in the ground state, because the ground state
does not contain skyrmions at large v [19]. This ground
state is obviously fully spin-polarized and is described
by the wave function

|Net = No, S: = No /2),

where Ng; is the number of electrons on the partially
filled N-th Landau level and

L,L
Ng = =2
® 272’

is the number of states on the Landau level. The sim-
plest excitations are described by the state with the
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energy Ey with an extra hole and the state with the en-
ergy F| with an extra electron. The width of the spin
gap Ay is related to the energies of the excited states
and to the energy Ey of the ground state [20,21, 7] as

Ay = l;T +—l§¢ — 2Fj,.
We can obtain that the width of the spin gap equals
As = Aem + gwe,

where the shift of the chemical potential A., due to
the exchange interaction [21,22] is determined by

Aep = 27rl2/dr Ues (r) Py (0,7) Py (r, 0). (50)
Using expression (38) for the projection operator Py,

we can evaluate the effective g factor. It is defined as
geff = As/w, and is given by

s 2V/2 E
= 1 —h
Jelf g+m/§n Ty +wc+
s In’(14.28N
rn o (Q428N) )
TWeT  4272N

E, =

X

where the «hydrodynamic» term is
We
2N (1 S

Gwcr>
x In {1 +V2ryN (1

T

) =

The disorder in the system results in the appearance
of a strong dependence of the effective g factor on the
magnitude of the magnetic field as In> N/N.

We now discuss the neutral excitations, spin
waves [21,23] at the filling factor v = 2N + 1. They
are described by the wave function

> . (53)

Following Ref. [21], we must take three contribu-
tions into account. They are the difference of the ex-
change self-energy of an electron in the excited Landau
level and the self-energy in the level from which the
electron was removed, the direct Coulomb interaction,
and the exchange energy. We then obtain the equation
that determines the spectrum of the spin wave excita-

tions,
o [ o Bl [y (0]

x exp(—q°1*/2) (1 —exp [i(k - q)i*]),

6w.T

Na
2

> exp(iksal®)Un,g U N gk, 1 | N,
q

q2l2

(54)
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where Ly (z) is the Laguerre polynomial. The dielec-
tric function £(¢,w) contains the imaginary part (see
Eq. (B.4)), which is of order 1/w.7. It results in the
decay rate of the spin wave excitations. Physically, the
spin wave excitations decay because of the scattering
on impurities. We mention that the decay rate also
apperears in the magnetoplasmon spectrum.

The energy of the spin-wave excitations is much less
than w.: w(k) < w.. We can therefore calculate the
real part Esw (k) and the imaginary part Tsw (k) of
the spin-wave energy separately. We set w = 0 in the
right-hand side of Eq. (54). The evaluation of Eq. (54)
then leads to a quadratic dispersion relation for the
small wave vectors kR, < 1,

T'sWe %
7r\/§

In*(14.28N)
4N

ng(k) = gWe +

Ts 1
% [1+ﬁ (1_3wcr
An additional dependence of the effective mass of the
spin-wave excitations on the magnetic field appears be-
cause of the presence of disorder in the system. The
disorder suppresses the effective mass of the spin-wave
excitations. For sufficiently large wave vectors

)]_1 (kR.)?.  (55)

1 < kR. < R2JI?,

the energy of the spin wave is given by

Esw (k) = Acs
sw (k) m/_
1
X [In | 1+ (ﬁT;ch)
1 In*(7.14N/kR.)
3w.r  2N/kR.
sin 2k R, s (4 1 In%(14.28N)
2kR. V2 3w 4N

(56)

To obtain the decay rate of spin-wave excitations,
we take into account that the imaginary part &’ of the
dielectric function is small. We then obtain

Towlh) =~ [

dq Us(q)e"(q, Esw)
2m)2  e3(q, Esw)

[ ()]

¢*1?/2) (1 — expli(k - q)I°]) .

x exp(— (57)
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The evaluation of Eq.
kR, < 1 yields

(57

) for small wave vectors

arctg(2w.7g) €2

Lsw = kR.)?
sw 6w, ap (kfe)
1 2 —gin(4N
" sin(4N) (58)
(+P/agR)?  (4N)?
and for the large wave vectors kR. > 1,
2
ey = arctg(2weTgesr) e
TWeT ap
2
ap R.  arcch(2kR.)
— | In—+ ————— 59
<Rc> Yap 204Ny (59)

We note that the decay rate I'gy is of the same or-
der as the correcrions to the real part of the spin-wave
energy Egw due to the presence of disorder.

5. ZERO-BIAS ANOMALY

In this section, we consider the electron tunneling
into a two-dimensional electron liquid with disorder in
a weak magnetic field. We investigate suppression of
the tunnelling conductivity near zero bias, the so-called
zero-bias anomaly. The properties of the electron tun-
nelling into an electron system are usually described
by a dependence of the tunnelling conductivity G(V)
on the bias V. Recently, the effective action approach
to the zero-bias problem was developed by Levitov and
Shytov [24]. The effective action describes spreading
of the tunnelling electron within the electron system in
imaginary time (.

Following Ref. [24], the action of a spreading charge
for zero bias V' = 0 is determined by

+ood
w
SO(C) — 4 % X
/ qdq sin® (w() Uess(9) (60)
21 w+ Dq?> w+ D + 0q?Uet(q)’

0

where ¢ and D are the conductivity and the diffusive
constant of the electron system, respectively. They are
related by the Einstein formula o = e?pD.

Using asymptotic expression (42) for the static di-
electric function £(q), we evaluate action (60) in the

large time limit ¢ > 1 as
In <2<,84n>

62

X

To

So(¢) = In

61
820 (61)
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where we introduce two dimensionless parameters
R.

() (&) e

with the bare elastic mean free path l,; = Rq.w.T9. In
accordance with the inequality ap < R, < lg¢, the
parameters 3 and n are small, § < 1 and n < 1.

Taking the work done by the voltage source into
account, we obtain the total action of the spreading
charge

™

/B:

6w,.T

5(¢) = So(¢) — 2eV¢.

We must then find the optimum time (., determined by
the minimum of the action S(¢). The optimum time
(s« plays the role of the charge accommodation time in
the problem. It can be written as

¢ =To~—=1n Vo
sy T gy
A (63)
=|1- —_—.
eVo < 6wcT> mmR?

The theory must be self-consistent in the hydrodynam-
ical limit, i.e., for (,+ > 79. Therefore, the theory is
applicable for the bias V < V4.

Assuming the contribution from the barrier to be a
constant at a small bias, we can write the tunnelling
conductivity as

G(V) = Goexp[—So(Cs) + 2eV(,]. (64)

After the evaluation, we obtain the dependence of the
tunneling conductivity for a small bias,

> a(V)
2

R (1
- 8n2onp  Vpin'

G(V) =Gy (%

(65)
a(V)

Equation (65) shows that the screening of the
electron—electron interaction results in increasing the
suppression of the tunneling conductivity. We note
that the above result is valid for the bias in the range
V <W.

Expression (65) for the tunneling conductivity con-
tains the energy scale eV} that coincides with the «hy-
drodynamic» term Ej, in Eq. (52) except for the loga-
rithm. A hydrodynamical model for the low-energy ex-
citations of a clean (77! = 0) electron liquid in a weak
magnetic field was considered by Aleiner, Baranger,
and Glazman [6]. They showed that the tunneling den-
sity of states exhibits the gap 2E}, related to the Fermi
energy. Equation (52) describes the same gap for a
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weak disorder w.r7 > 1. Apparently, the disorder is
responsible for the fact that the gap is about 0.05w, in
a wide range of the applied magnetic field [5].

Ag the magnetic field increases, the factor a in-
creases and becomes of the order of unity. The zero-bias
anomaly in the tunneling conductivity crossovers from
weak to strong. Expression (65) shows that the factor
a depends on the bias V' and the magnetic field. This
results in the shift of the crossover point V. along the
bias V as the applied magnetic field changes,

).

where p is the chemical potential. The crossover was
observed by Ashoori et al. [5] in the tunneling current
from a normal metal into two-dimensional electrons in
the presence of a magnetic field. In the experiment,
the ohmic conductance was measured as a function of
the temperature 7. For low temperatures, the con-
ductance corresponds to the zero temperature conduc-
tance taken at V' = T/e. The two-dimensional elec-
trons were relatively clean, with the elastic collision
time 79 ~ 4 - 1072 s. The chemical potential calcu-
lated from the elctron density was g = 10 mV. Using
Eq. (66), the dependence of the crossover temperature
on the magnetic field can be written as

)

where the temperature is measured in Kelvin and the
magnetic field in Tesla. Equation (67) demonstrates a
good agreement with the results reported in Ref. [5].

AT
2
Wz To

Ve = Voexp <— (66)

2

T.=29exp (— {3

17 (67)

6. CONCLUSIONS

We have considered the system of a two-dimensional
electron gas in the presence of disorder and the
Coulomb interaction in a weak perpendicular magnetic
field. The effective low-energy theory describing elec-
trons at the partially filled N-th Landau level was de-
rived in the case of a weak magnetic field (Nrs > 1)
and a weak interaction (rs <« 1). The modified
electron—electron interaction for electrons on a partially
filled Landau level involves the screening from the other
electrons on the occupied Landau levels. We also pre-
sented the exchange corrections to the thermodynamic
and chemical potentials in the presence of disorder.

The theory proposed here allows us to account for
the effects of disorder in the problems connected with
the behavior of a two-dimensional electron gas in a
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weak magnetic field. It can be investigated how dis-
order affects the formation of stripes, bubble phase,
tunneling density of states, spin excitations, tunneling
conductivity, etc.

We discussed the effect of disorder on the exchange
enhancement of the g factor and the simplest spin ex-
citations on the partially filled Landau level. We ob-
tained an additional dependence of the effective g factor
as a function of the magnetic field, the suppression of
the effective mass and the decay rate of the spin-wave
excitations.

We also investigated the electron tunneling into a
two-dimensional electron liquid with a weak disorder in
a weak magnetic field. We obtained the enhancement
of the gap in the tunneling density of states and a
nonlinear dependence of the tunneling conductivity on
the applied bias.

The author is grateful to M. A. Baranov, A. S. Tose-
levich, and M. V. Feigel’'man for useful discussions. The
author thanks M. A. Baranov for some critical remarks
during the manuscript preparation.

APPENDIX A

In this appendix, we calculate the term S, in action
(29). This term appears after performing the integra-
tion over the longitudinal fluctuations and is given by

S, = %<(s2@,w,5p, N)%Ysp, (A.1)

where (...)sp denotes the average with the propagator
of the JP field in Eq. (28). We then obtain

Sy =051 4052 +0Ss, (A.2)
where

(581 =
_ 72 // dry dr » (QT;\GOS\\IJ —2tr S\GO/A\GO) , (A3)

582=—T2/dr1.../dr4 X
X Z )\5 (r1)Dys (k;rg,ry) X
k,n,m
><m’}(m;rl,rg)Lﬁﬁni%(rz,m% (A.4)
a,3,7,6
0S5 = /dr1 /dr4 Dgf;(k;rl,rg) X
k,l,n,m

x DYS (s, ra) L5770 (ra2,14).  (AL5)

n,n+m

Here,

D25 (ksry,1y) =
= (TR )W) (02) =20 6P G (13, 11) )
XAg_ 4 (r1) G (r1,12) +
¥ (Eﬁ(rl)w(m) - 25,6,”5%%3@2,“)) X

x Ay (r1)Ggt™ (x1, 1),

k—n—m

(A.6)

and L3710 is the propagator of longitudinal fluctua-
tions in Eq. (28).
Integrating over the plasmon field, we obtain from

the S, term

AQ; + AQy + AQ,
T

Su = + (81 + Opz + Spz) x

x/dr\IlT(r)\I/(r), (A7)

where second-order corrections to the thermodynamic
potential are given by

AQ,
LoL,

xz/

AQ
LZLQy =277 Z/drdrl drsy X

= -T2 x

—n,r),

deGR(0,v)GE (v, 0)Uess (m

x (Gg(o,r)ég+m(r,0)+

+ ég(r,O)Gg+m(o,r)) X

x Ueff (m7 rl)ﬂ-g(mv ry — 1‘2)Lg%i% (1'2 - I')./

AQ
LzL?;, =277 Z/drdrl drsy X

(A.8)

x (Gg(o,r)ég+M(r,0)+
+ Gg+m(o,r)ég(r,0)) x
x (Gg(o,rl)ég+m(r1,0)+
+ Gg+m(o.,r1)(;g(r1,0)) X

X Uepr(m, o)Ly 500 (v —

n,n+m

r +I‘2).

The above corrections are negligible in the parame-
ter N~! compared to the correction determined by

160
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Eq. (35). The corrections to the chemical potential
are given by
Opn TZ/drPN(O r)GM(r,0) Uy (m, r)
2nl? — 0 T
dpta
2ml?

_—4TZ/drdr1dr2PN( r)GT(r,0) x

X Uegp(m,r1)mg(m, 11 — I‘Q)La(:naa(l‘g —r), (A.9)
dps3 _
2ml2

= —87? Z/dr dry dry Py (0,7)GT(r,0) x

X Uepr (m, 1) LG 5" (r — 11 + 12) X

(G (0,£1)G (r1,0) + G (0,11)GO (x1, )).

The second and third corrections are negligible in the
parameter N~! compared to the first term. The shift
of the chemical potential §u is therefore mainly deter-
mined by the first correction ;.

APPENDIX B

In this appendix, we evaluate the polarization op-
erator II(w,, ¢). The condition w.7 > 1 is assumed to
hold. Then

TZﬂ' Wy q)-

(wn, q) (B.1)

The calculation of the polarization operator II(wy,, q) is
analogous to that given in Ref. [7]. The wave vectors
q < R./I? are considered.

Using Eq. (31), we immediately obtain

H(Cna Q)=
X THQ)

11 ZK3T®, Bem. 1(7)
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where
L;(Cn) = O(|j] = 2) %
lil=1 . 2 9 2.2 ;
1= A 26 Cn
X 0 n 2" +— 5 arctg =—
Cn
Cnljl arctg = 2 _ 2
, 1 gl 147 =¢
o(jl=1) |5 +— + <5 X
=113 P +G 477+ QG
2, 2
ot
x In (C ~J (1+2mcqn)2> (B.3)
Two parameters (¢, = w/w. (with w = 277Tn) and

() = qR. are introduced here. The transformation of
series (B.2) into the integral form yields the asymp-
totic form of the polarization operator in the different
regimes. In the static limit (, < 1,

116 @) = 2 (1-T (@)~ 0@+

P2l Qho@)) . ()

where the function n(x) is defined as

/7T —7 (293 sin %) X
0
X {ln2 (2 sin

and its asymptotic form is given in Eq. (4
tion &(z) is defined as

1

n(z) = oy

y 2

3)- %} » (B)

1). The func-

Tl'

2
£(z) = / %JO <2x sin %) {(y — )% - —} ., (B.6)
0
and its asymptotic form is given by
2, r < 1,
=4 . (B.7)
5(2 —sin2x), x> 1.

In the hydrodynamic limit ¢R. < 1, we obtain

m Q3 y
2 14+ ¢2

T

H(Cna Q)=

11—
6Tw. 277w, 1+ 2
x In (14 G (1 + 21wetn)?) =

(narctg ¢y
1+

X

X

T

(B.8)

3TWe
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APPENDIX C

In this appendix, we evaluate the corrections to the
thermodynamic and chemical potentials.

C.1. Correction to the thermodynamic
potential

Using Eq. (35), we can split the correction to the
thermodynamic potential into the exchange and corre-
lation ones as

AQ = AQ,, + AQ,, (C.1)
AQe, T dq
m =3 ;/ WUU(Q)H(WQ)a (0-2)
AQ. T dq
L.L, _Ezn:/ 22~
[ U@ (n.q)
aUyq n,q
. / T alo@ti(ng (&P

0

The exchange correction gives the leading contribu-
tion [7] and can be written as

() (ov-m+ 2

TweT m — N

) . (C.4)

where L] stands for the Laguerre polynomials. The
above equation goes into Eq. (48) in the case where
N> 1.

C.2. Correction to the chemical potential

Using Eq. (37), we can split the correction to the
chemical potential into the exchange and correlation
ones,

Op = Oftes + Opte, (C.5)

Ofles = QWZQTZ/dI' Uo(r)Pn (0,£)GE(r,0), (C.6)

opte = —27r12TZ/ ((;T?ZPN(Q)GS(Q) X

Ug ()T (n, q)

14 Uo(q)T(n,q) ()

The exchange correction gives the leading contribu-
tion [7] and can be written as

62 2 33‘2 33‘2
§ z</2
(5/1695 = ] /daze LN (—2 > Lm (—2 > X

m#N |
1 1
2w, m — N

X <@(N —m)+ > . (C.8)

For N > 1, the above equation leads to

|- In N 1 1

2¢2
l— —— %
[ 8N ' drw.r 2N

w2

Oplez = (2N)1/2

o0

/ %ln(l —e H+

1
1
/dt 1—et 7?2 -|
+/ —In -—— 1.
t
0

t 3 J
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