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The tagged photon events for the measurement of the eTe™ — 777~ total cross-section by the radiative return
method at DA®NE is discussed. The effects caused by the not exactly head-on collision of beams and by the
QED radiative corrections are investigated. The essential part consists of the analysis of the event selection
rules that ensure the rejection of the 3-pion hadronic state and take the main properties of the multiple purpose
KLOE detector into account. The study of the non-head-on effect is performed in the Born approximation by
integrating over the tagged photon angles, whereas the radiative corrections are calculated neglecting this effect.
Together with the quasireal electron approach, this allows us to derive analytical formulas for the correction
to the cross-section of the initial-state radiative process. Some numerical calculations illustrate our analytical

results.

PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.+e

1. INTRODUCTION

The recent measurement of the muon anomalous
magnetic moment a, = (g — 2),/2 performed in the
Brookhaven E861 experiment with the electroweak pre-
cision [1] has boosted the interest in a renewed theoret-
ical calculation of this quantity [2]. The reported new
world average has shown the discrepancy of 2.6 stan-
dard deviations with respect to the theoretical value
based on the Standard Model calculation [3], and this
may open a window into possible new physics beyond
the Standard Model. On the other hand, the conclu-
sion about a significant discrepancy between the re-
ported data and the Standard Model prediction may
be somewhat premature.

Theoretical estimations of @, include several con-
tributions involving the nonperturbative hadronic sec-
tor of the Standard Model: vacuum polarization, light-
by-light scattering, and higher-order electroweak cor-
rections. Hadronic effects in the two-loop electroweak
contribution are small, of the order of the experimental
error, and the associated theoretical uncertainty can be
brought under safe control [4].

The situation with hadronic effects in the light-by-
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light scattering radically changed in recent months (af-
ter the E861 data were reported) due to works cited
in Ref. [5]. In these works, the authors used the de-
scription of the 7%4*4* transition formfactor based on
a large-N¢o expansion and short-distance properties of
QCD to calculate the pseudoscalar channel contribu-
tion (in the y*~* system). The corresponding result
disagrees by only its overall sign with the latest pre-
vious calculations of two different groups [6, 7]. It is
interesting to note that the result in Ref. [5] forced
both these groups to carefully check their programs,
and they recently found their own (different) sources
of the wrong sign for the pseudoscalar channel [8, 9].

The main ingredient of the theoretical prediction of
a,, which is responsible for the bulk of the theoretical
error, is the contribution of the hadron vacuum polar-
ization. The problem is that it cannot be computed
analytically because perturbative QCD loses its pre-
diction power at low and intermediate energies, where
on the other hand, the corresponding effect is maxi-
mum. But this contribution can be calculated from
the data on the total hadronic cross-section o, for the
process eTe” — hadrons using a dispersion relation
[10]. Because the existing data about oj come from
different sources and do not always meet the required
accuracy, they are supplemented with a theoretical in-
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put. Therefore, different estimations give different re-
sults, which either strengthen the difference between
theoretical and experimental values of a, or make it
only marginal [11-14].

The cross-section o, also plays an important role
in the evolution of the running electromagnetic cou-
pling agpp from low to high energies. This means
that the interpretation of measurements at high-energy
electron—positron and electron—proton colliders de-
pends on the precise knowledge of o,, with one percent
accuracy or even better.

The updated hadronic light-by-light contribution
[5, 8, 9] decreases the discrepancy between the theory
and the experiment for a, to 1.5 standard deviations,
and the disagreement between the Standard Model and
the reported experimental value becomes not so sharp.
Nevertheless, when the full set of data at the BNL col-
laboration is analyzed, the experimental error bars are
expected to decrease by the additional factor three at
least, and this challenges a new test of the Standard
Model. The high-precision data about ¢, will play the
key role in this test.

We note that the data recently derived in the direct
scanning of o, by CMD-2 [15] and BES II [16] col-
laborations were included in a new analysis [17]. This
significantly reduces the error in the hadronic contri-
bution to the shift of agrp but does not remove the
discrepancy in a,. Therefore, there exists an eminent
physical reason for new measurements to accumulate
high-precision data about o}, at the total center-of-mass
frame energies below 1 GeV.

The old idea to use the initial-state radiative events
in the electron—positron annihilation process

e (p1) +e*(p2) = (k) + hadrons(q) (1)
for the scanning of the total hadronic cross-section oy,
has become quite attractive recently [18-22]. This ra-
diative return approach allows performing the scanning
measurements at the accelerators running at a fixed
energy, and this circumstance is the main advantage
compared to the traditional direct scanning. The rea-
son is that the most important physical parameters, the
luminosity and the beam energy, remain the same dur-
ing the entire scanning at fixed-energy colliders. They
must therefore be determined only once, which can be
done with a very high accuracy. The drawback is of
course a loss in the event number, and it is obvious
that only high-luminosity accelerators can be competi-
tive when the radiative return method is used.

It is a general opinion that the high-luminosity
DA®NE machine operating in the ® resonance region
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with multiple-purpose detector KLOE is the ideal col-
lider to scan oy,(¢?) with the center-of-mass energy /¢
varying from the threshold to 1 GeV just by radiative
events. It is now well understood that in this energy re-
gion, the total hadronic cross-section is mainly fulfilled
by the contribution of the p resonance. This in turn
implies that the dominant hadronic final state is that
of the charged pion pair 777, and the KLOE detec-
tor allows measuring both the photon energy deposited
in calorimeters and the 3-momenta of pions running
through the drift chamber [20, 23].

Such a wide range of experimental possibilities of
the KLOE detector can provide a realization of two
approaches to scanning the 747~ channel contribution
to o1,(¢?): with tagged photon events [19,20,22] and
without photon tagging [22,24,25]. The last method
has some advantages because it allows including the
events with collinear initial-state radiative photons,
which leads to the increase of the cross-section by the
energy logarithm enhancement factor [26].

On the other hand, the first data about the tradi-
tional tagged photon scanning of o, (¢?) at DA®NE are
reported [26] (we also note that large radiative event
rates were observed by the BaBar Collaboration [27]).
To extract o, (q?) at different squared di-pion invari-
nat masses with one per cent accuracy, one must pre-
cisely analyze the initial-state radiative events and take
the final-state radiative events and the initial-state ra-
diative interference as a background. Moreover, the
radiative corrections must be calculated for all these
contributions [21]. For a realistic experimental event
selection, this task can usually be solved by means of
Monte Carlo event generators. But for some ideal con-
ditions, analytical calculations may be performed with
high accuracy, and this is a very important test of the
required one percent accuracy produced by the Monte
Carlo generators.

The high-precision analysis of the initial-state ra-
diative events is the main attribute of the radiative re-
turn method. The corresponding radiation corrections
were considered in a number of papers by both the
Monte Carlo generators [19, 22] and analytical calcula-
tions [18, 22, 24]. In present paper, we derive analytical
formulas for different contributions to the initial-state
radiative cross-section including the first-order radia-
tive corrections. We use the same rules for the event
selection as given in [24]. These selection rules are max-
imum draw near the experimental ones [20, 23] except
the di-pion angular phase space, for which we use the
entire 47 opening angle. This is not the case with the
realistic measurements at DA®NE because there ex-
ists a so-called blind zone in the KLOE detector with
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the opening angle about 15° along the electron and
positron beam directions. Any particle inside this blind
zone cannot be detected either by the KLOE calorime-
ters or by the KLOE drift chamber.

In Sec. 2, we briefly recall the selection rules used
here and analyze the Born cross-section by numerically
integrating the sufficiently complicated analytical for-
mulas given in [24], which take the non-head-on beam
collision into account. In Sec. 3, the contributions to
radiative corrections due to the virtual and soft pho-
ton emission are obtained by analytically integrating
over the angular phase space of the photon that de-
posits its energy in calorimeters. In Sec. 4, the effect
of an additional hard photon emission inside the blind
zone is investigated and the corresponding contribu-
tion to radiative corrections is derived. To perform
the analytical calculation, we use the quasireal elec-
tron approximation [28] for both the differential cross-
section and underlying kinematics. In Sec. 5, the total
radiative correction is derived and some numerical es-
timates are given. The elimination of the auxiliary in-
frared parameter is demonstrated and the dependence
of the radiative corrections to the initial-state radiative
cross-section on the squared di-pion invariant mass ¢
and physical parameters defining the selection rules is
investigated. We briefly summarize our results in Con-
clusion. In the Appendices, we give some formulas that
are useful in our intermediate calculations.

2. SELECTION RULES AND THE
INITIAL-STATE BORN RADIATIVE
CROSS-SECTION

As mentioned above, the multiple purpose KLOE
detector allows independently measuring the photon
energy with two calorimeters QCAL and EMCAL and
the 3-momenta of the charged pions with the drift
chamber. The selection rules that we consider here
can be formulated as follows: any event is included
if only one hard photon with the energy w > wy,,
wm = 50 MeV, hits the calorimeters and if the dif-
ference between the lost energy 0 and the lost 3-
momentum modulus |K| does not exceed a small value
nE, n < 1, where F is the beam energy. The lost en-
ergy is defined as the difference between the total initial
energy and the sum of the charged pion energies, and
the lost 3-momentum is defined similarly.

The first rule implies that in addition to one hard
photon, only soft photons that cannot be recorded by
the KLOE detector can hit the calorimeters. The ra-
diation of the additional hard photon is allowed inside
the blind zone. The second rule ensures the removal

of the 3-pion hadronic state arising due to possible
® = 7t 710 and w — 7t7 70 decays. The neutral
pion quickly decays into two 7 quanta; one of these has
time to light in the calorimeters, whereas the other can
fly away into the blind zone. It is easy to see that this
rule does not allow the lost invariant mass to be greater
than 2E2n, and the 3-pion state is therefore forbidden
if n < 0.035. Thus, the following event selection cuts
are imposed [20]:

n = 0.02,

W > Wy, @)
wm = 50 MeV.

The first inequality in (2) is important in calculat-
ing the contribution caused by the emission of two hard
photons (one inside the calorimeters and the other in
the blind zone) because it only affects the phase space
of two hard photons. At the Born level (with only one
photon inside the calorimeters), we must therefore take
the second restriction in (2) into account by introduc-
tion the trivial © function. The differential distribution
over the di-pion invariant mass can be written as [24]

(S — ¢*)d cosfdyp

do® ! (¢?) "
g
1 4S(2E — |Pg|sinf cos ¢)?

dg? 22
(S+T1)*+ (54 Ty)?
X T1T2 G)(UJ _wm)7 (3)
S — ¢

YT RE- Pg|sinfcosep)’

where 6§ and ¢(w) are the polar and azimuthal an-
gles (energy) of the photon detected by the KLOE
calorimeters. The approximation used here is valid if
E?02 > m?, where 26, is the opening angle of the
blind zone and m is the electron mass. The cross-
section o(g?) of the process ete™ — 7w+ 7~ is expressed
through the pion electromagnetic formfactor Fi(¢?) as

3/2

ma|Fr(q?)? (| _ 4m2\
3¢° ¢ "

where m, is the pion mass. The invariants entering

Eq. (3) are given by

o(q®) =

T, = —2p1k = —w (2E — 2P, cos§ — |Pg|sinf cos )
P3|
P.=E (1 - )
Ty = —2pok = —w (2E + 2P, cosf — |Pg|sinf cos )
S =2pipr =4E? — |Ps|’>, ¢ =S+ T +To.

3

3

In writing these expressions, we took into account
that at DA®NE, the electron and positron beams ex-
ercise not exactly a head-on collision at the interaction

3*
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Fig.1. The Born cross-section 42/ [2 5 (g”)] of the initial-state radiative process e*e™ — 4 + 77~ at different limiting

angles of the blind zone versus variable z. Figure 1a corresponds to the contribution of the region D > 1 defined by Eq. (4).

The sum of contributions of the regions 1 > D > s and so > D > —1 is shown in Fig. 10 (see Ref. [24], Eqgs. (19)—(21),

for the corresponding analytical formulas). It depends on the minimum energy of the tagged photon w,,, which we choose
as 50 MeV. 6y = 5° (1), 10° (2), 15° (3)

point, but there exists a small crossing angle between
them that is equal to |Pg|/E, where |Pg| = 12.5 MeV.
Because of a nonzero crossing angle, the energy of the
tagged photon becomes dependent on its angular po-
sition, which complicates the exact analytical calcula-
tions. Thus, the question arises as to the magnitude of
the corresponding effect. As shown in [24], there exist
three regions,
D >1,

1> D >sinfy, sinfy>D > —1,

where ) )
4E(E — wp) — ¢ — |Ps|?

D =
2wm|P¢|

and the form of the initial-state radiative cross-section
is different in each region. The analytical expressions
for the distribution over the di-pion invariant mass is
simple in the first two regions, but it seems that only a
numerical integration with respect to the photon polar
angle is possible in the third region. We also note that
in the limiting case as |Pg| — 0, only the first region
can occur with the obvious restriction

AE(E — wm) > ¢2.

The results of our calculations of the Born cross-
section are shown in Figs. 1 and 2. Tt follows from
Fig. 1 that the contribution of the first region (D > 1)
dominates in a wide interval of the di-pion invariant
masses. Within the approximation

4E%(1 = ¢o) > P2,
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Fig. 2. The effect of a non-head-on collision of the elec-

tron and positron beams at DA®NE is shown for the

contribution of the region D > 1 in terms of the ratio

defined by Eq. (6) at different 8y = 5° (1), 10° (2),

15° (3). The approximation 4E*(1 — co) > |Pol” is

used in calculating this ratio. The quantity Ro is given
per cent

the corresponding cross-section can be written as [24]

i =3 2 OB .
Fy = <qu2 _1+52_Sq2> g
ol e (e 1)
N S;q2 o {1+ E);f (3—03)} (@)
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where ¢y = cosfy, sg = sinfy, and the © function de-
fines the maximum possible value of ¢>.

The form of Fy and D in Eq. (4) is valid if all po-
lar angles between 6y and © — 6y are permitted for the
tagged photon. If large-angle photons radiated between
0, and ™ — 6, are not recorded, we must write

(Fo — F1)©(D; — 1), (5)

where F; can be derived from Fj by simply replacing
6y with 6; and

4E(E — wn) — ¢ — |Ps?
2wm|Pq>|8[

D[ = S = sin 9[.
In Sec. 3, we consider this case with #; = 40° and call
it the modified EMCAL setup.

To indicate the effect of nonzero P in the first re-
gion, we show in Fig. 2 the ratio

Fy— F(z,
Rézoiw-, F(z,c0) = Fo(Pp =0) =
F(z,co) (©)
B 1-|-z21 1+co_(1_ ) ¢
B R el 2T ype

For the modified EMCAL setup, the corresponding ra-
tio is given by

_ F(]—E_[F(Z-,CO)_F(Zvcl)].

R
@ F(z,c0) — F(z,q)

(7)
As can be seen from Fig. 2, this effect does not exceed
five per mille at 6y = 5° and decreases as the angle 6
grows.

The contribution of the third region (sinfy >
> D > —1) is negligible everywhere, and the second
region (1 > D > sinfy) contributes only inside a very
narrow interval of the order 2-10~? near the maximum
possible di-pion invariant mass squared (see Fig. 1b).
We therefore conclude that for restrictions (2) consid-
ered here, the effect of non-head-on collisions on the
event selection at DA®NE is about several per mille
in the most important p resonance region and is under
control where it cannot be neglected. In this region,
the corresponding cross-section can therefore be given
by Eq. (4) with the F(z,¢o) instead of Fy with the re-
quired accuracy.

3. VIRTUAL AND SOFT CORRECTIONS

High-precision theoretical predictions are necessary
in order to reach the accuracy of one per cent in the
measurement of the pion contribution to the hadronic
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cross-section at DA®NE by radiative events. These
predictions must at least include the first-order radia-
tive corrections that account for the virtual and real
soft photon contribution in the overall phase space and
an additional contribution due to a hard photon emis-
sion inside the blind zone. In calculating radiative cor-
rections, we neglect Pg at the very beginning and set
s,t1, and ty equal to S, Ty, and Ty at Pg = 0, respec-
tively.

To calculate the virtual and soft corrections, we
start from the corresponding expression derived in
Ref. [24] (Eq. (30)), perform the trivial azimuthal angle
integration, and write the result in the convenient form

do¥+9 a2 5 (1 —=2z)dcosb
= (5n) o)
2 42 2 _ 402
x[p(q 1)>+ (g 2) +T}®(1—xm—z)7 ®
tito
where
979 8¢2 11\q 1 22(¢ 2
+(T12 +T21)(Sq2 — tth):I N s = 4E27
2729
P=4(Ls—1)1nA+3Lq+?—§+
Ay 1+co A, 1+ ¢
4 {In—1 In—=1
+ (nAn . nA1n1—01 ,
S q2 Wm
LSZIHW., Lq:lnw./ xm:f

The above expression for p contains three soft pa-
rameters A, Ay, and A,. The first restricts the soft
photon energy inside the blind zone with the value AE.
It is auxiliary and cancels when the contribution caused
by the hard photon emission is added (see Sec. 5). The
parameters A; and A, are physical. They are defined
by the sensitivity A; E of the QCAL calorimeter that
surrounds the blind zone and covers polar angles of
the detected photon from 6y to #; = 20° with respect
to both the electron and the positron beam directions
(¢c1 = cosfy) and by the sensitivity As E of the EMCAL
calorimeter that covers the photon angles between 6,
and m — 6. The case of a slightly modified geometry of
EMCAL (with the polar angles from 6, = 40° to 7 — 6,
not covered [20]) is considered in Appendix A. The co-
efficients T, and Tj; in the right-hand side of Eq. (5)
are calculated as functions of the invariants s, t1, and
to in Ref. [24] (see also [29,22]).

Our aim is to analytically integrate differential dis-
tribution (8) with respect to the tagged photon polar
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angle. The integration of the term containing p is triv-
ial and yields

de"'V
dg?

pF(2,¢0)0(1 — 2, — 2).

- () 5% ©)

2x/ 2E?

To perform the remaining integrations, it is conve-
nient to represent the quantity 7' as

2s 2s(s — 2¢*%)
_ 72 12
T—Lq—Ls+ _2qu+{w+1 Lq+
2(2¢%—s)s { 452 2gt + 5?) }
+ 7y Lt g |- - +2| +
(4°—s)? v (q2—8)t2 (¢>—s)ts
_tl q +38—1—2(Lq—LS) "
+t2 S+t2
q + 5? 1
1-—
: < < th > 7 - s)} +
(q +357) [6Lgs+3(L;—Lg)+7°] =3(q" —25¢%—57)
6(q?—s)ts
2 2 3 9
_ sq _(q+3) Lq—ﬁ—+
(3 +t1)2 s+t 3
s 1
= t t 10
s+t1+2+(1<_> 2),  (10)

where

. ¢ . 131
qu:L12 1—? 5 quZLIQ 1—q—2 .

The Spence function Lq, has a nonzero imaginary part,
but we must take into account only its real part in our
calculations,

2 t t t
T o2 ) m(1-2) -1 ().
6 7 q 7
We also note that the coefficients T,, and T} contain

the terms involving tf% and tfg [22,24,29], but these
vanish in the quantity 7.

Re qu =

Integrating the piece of cross-section (5) that con-
tains the quantity 7" with respect to the tagged photon
polar angles, we obtain

do.as'j-V
dq? -

—2)Fr(z,¢)0(1 —xm — z),  (11)
where the function Fr(z,¢,,) is given in Appendix A
for arbitrary values of the limiting angle 6,,. Here,
we consider the case where 6,,, = 6y and use the ap-
proximation 1 — ¢y < 1, which is sufficiently good for
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B0 < 10° (precisely this case is suitable for the blind
zone of the KLOE detector),

41n® 2
1—2)F =27
(1 —=2)Fr(z,¢0 — 1) 31—
2(1 2 1-— 1—2)2
( +Z)ln Zln2z—(3—z)ln(7z)lnz+
1—-2 z z
4(1 - 22)

+ Inz4+4(1-2)In(1-2) -

_2{3—2—2(1+z)1n1_’1 Lis(1— 2) +

[Lig(l —2)+ 22;3 <Z7_1>} _

+1—z
2(1 2 1-
_5+2_M1n21n2_60
1—2z
2 2(1 2
+|1-z- - (+Z)><
1—z 1-=z

— Co

x <1n@1nz+2m2(1—2)>} In + (12)

The total virtual and soft correction is the sum of (9)
and (11).

For the modified form of the EMCAL calorime-
ter, the expressions for p and F(z,¢p) in Eq. (9) and
Fr(z,co) in Eq. (11) must be changed as

1+¢

1-— 017

- F(Zacl)a
FT(Zvcl)a

A
41 In
p—rp+ nAz

F(Z,C(]) — F(Z',CU)
Fr(z,co) = Fr(z,co) —

(13)

where the expression given in Appendix A must be used
for the function Fr(z,¢) at ¢, = .

In calculating the virtual and soft corrections, we
neglected terms of the order A;, i = 1,2 compared to
unity. This accuracy implies the same relation between
the tagged photon energy w and the squared di-pion in-
variant mass ¢> as in the Born approximation,

w=E(l-2) (14)

(provided that P = 0), and it suffices to guarantee
the one per cent precision.

4. HARD PHOTON EMISSION INSIDE THE
BLIND ZONE

Selection rules (2) used here permit the radiation
of an additional invisible photon inside the blind zone.
For the events

e (p

)+ et (p2) = (k1) +v(ka) + 777 (q),  (15)
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one photon with the 4-momentum k- hits the photon
detector and the other photon (with the 4-momentum
k1) is collinear and escapes it. It is obvious that re-
lation (14) between the tagged photon energy and the
squared di-pion invariant mass is violated in this case.

To calculate the corresponding contribution into ra-
diative corrections analytically, we start with using the
quasireal electron approximation for both the form of
the cross-section and the underlying kinematics. Phys-
ically, this implies that we neglect terms of the order
1—cp ~ 0%/2 and m?/E?#? compared to unity. We re-
call that 63 /2 < 0.02 for the KLOE detector. In accor-
dance with the quasireal electron approximation, the
differential cross-section of process (15) can be written
in the same form as for the inclusive (untagged photon)
event selection [25],

H_ o @) o(q*)
do _2(%) T Pl Lo)dr
L[ (@ = 2u)? + (¢* —uo)?
TU1UD
X Wy dwy dea®(we — wp),  (16)
P(acL)—1+x2L 2
YT e T 1=
E?02
Lo=1In 20, coy = cos B,
m
r=1- %, up = —2kapy, us = —2kaps,

where wo(02) is the energy (the polar angle) of the
tagged photon and w; is the energy of the invisible
collinear photon.

The factor («/27w)P(z, Lo)dz describes the radia-
tion probability of the collinear photon by the initial
electron, the factor 2 accounts for the same contribu-
tion caused by the initial positron collinear radiation,
and the rest is in fact the cross-section of process (1)
with the reduced electron 4-momentum (p; — ap;) at
Ps =0.

Our aim is now to derive the differential distribu-
tion over the squared di-pion invariant mass ¢2, and it
is convenient to use the relation between ¢> and ¢ in
order to avoid the integration over ¢y in the right-hand
side of Eq. (16). To disentangle the selection rules and
obtain the integration region, it is also useful to in-
troduce the total photon energy 2 = w; + w» instead
of wo,

¢ = 4E(E — Q) 4+ 2wiws (1 — ¢2),

: (17)
dey — qw  dws = ds.
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Taking into account that in terms of new variables,

420, AE
Uy = ——, Uy = —— w1 (Q—wy)—FEQ,],
1 o 2 wl[ 1( 1) 2] (18)
N, =0-FE(1-2z),
we can rewrite Eq. (16) as
dof a2 o(q?)
d—q2—2<%) 4E2 M(Z,L0,0Jl,Q)X
dwdQ
x Elg O —wi —wy), (19)
where
4(Lg — 1)EQ
M(ZaLOawlaQ):_LO_ ( 0 2) = -
Wi
3 2E?Ly 2z = (14 2)Lo]E N
(E—w1)2 E—wl

2(142%)Lo—42—(1-2)?]E?—(1-2)(Q—2w, ) E
+ wl(Q—wl)—EQz ’

(20)

We note that although the term containing w? in the
denominator can be neglected in the case of the inclu-
sive event selection [25], it is now important and even
contributes to the cancellation of the auxiliary infrared
parameter A.

We now find the integration region for the variables
wy and Q determined by restrictions (2) and by the
inequalities

—Cp < €2 < Gy, EA<w; <Q—Exy, (21)
limiting the possible angles for the tagged noncollinear
photon and the energies of the invisible collinear pho-
ton. Here, we do not require 1—c¢,, to be small, bearing
in mind a further application to the modified EMCAL
setup. The first restriction in (2) defines the maximum
value of 2; the minimum value of {2 can be obtained
from relation (17) at w; = AE and ¢o = ¢y,

Vo = E(1 = 2) (1+g),

Al — (22)
Qin = E(]. —2) <1 + %) .
The condition ¢y > —c¢,, implies that
w <wi < w*,
23
P . PO P o0 (23)
2 Q2(1 + ¢)
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Finally, the inequality ¢y < ¢, can be formulated G = —1n2 (1-2)n — 9 1—-2 y
. p=
as follows: if the values of () are such as 2(1 =z —zm)Tm T
4(1 = 2)ap, . Tm )
1- 1- In — — 4L -
0 <, Qc:E(1_2)<1+M>7 x In 7 12(1_2 +
8 (1-2)1=z—2m)y
—2lgln (28
then 0 me ( )
Wy >wy or w <w_,
1-2
Q 8EN, (24) Gi=rp [2 + <1 + ) In } -
wy=— |14/l ——12 T
2 D2(1 = ¢p)
20-5 ()
The consistent combination of the set of inequalities
(21)—(24) for w; and Q defines the integration region. (22 +2m) <z . ) X
In general, this region depends on the di-pion invariant (1= 2—2m)
mass through z; it is shown in Fig. 3, where we use the X <lo +1In 7”1) —(1+4+2)x
notation ) g
Sn?z—Inzln M
Qp = E(1—2)(1+A), X[an nzin = —In(z +2m) x
(1 —co)rmy) ( 2T m )
O, =FE(1- 14+ — 277 2 x[1—=1p—In—"— ] +Liry(1 -z
(1=2) |1+ = (25) O (1= 2 1=+
=l—-z—-x w2
y m- +Li,y (——) — Lis(z + am) + F} (29)

This region differs from the corresponding region for
the inclusive event selection [25].

We note that in the calculation, we controlled our
analytical integration by means of the numerical one.
This allowed us to conclude that in the case where

4n

2<z.=1— ,
c 1—c,,

the contribution of the top region in Fig. 3a is small,
and we excluded it from consideration. Although the
regions in Figs. 3b and ¢ are different, the respective
contributions to cross-section (19) have the same ana-
lytical form.

The list of the integrals that are reguired in both
cases, z < z. and z > z., is given in Appendix B. Using
these integrals, we write the contribution of the addi-
tional hard photon emission inside blind zone to the
radiative corrections as

H 2 2
do _ (g) o(q?) "
dg? 2w/ 2E?

X [GA IDA+P(Z,L0)GP +L[)G1 +G0] .

(26)

If the tagged photon is detected in the angular region
T —0g > 6 > g, the coefficients G;(i = A, p,1,0) are
given by

1
Ga = 4(Lo—1) [1 e

2
lO:| 3 lO:lne_Oa

o)

40

—%2(2—3z)+4(1—z) (1+lng) +

Go

. +1In(z + 2) X

x (1 +ln29£7m +
(=2
+ Liy(1 — 2) + Li (—7"1) - ng(z—l—xm)] +

1
+ 2z [§1n2z—1nzln 193_m

20—z — zp)m

1-2) |In®

* Z){n A-am
1—z. 41— 2z, 1—z—ap,

P e N ) LU VI G201 Y
T n> 2

+ 2L (%) + Liy (2(1 _(12__22)%” . (30)

where we pass to the limit 1 — ¢y < 1 and take into ac-
count that only the regions in Figs. 3b and ¢ contribute
in this limiting case.

To describe the contribution into radiative correc-
tions caused by the double hard photon emission with
the tagged photon in the range 7 — 6g > 6 > 7w — 6y,

6, > 6 > 6y, which corresponds to the modified
EMCAL setup, we must evaluate the difference
do™ do™
—— (0 = 09) — O =06)). 1
T On=00) = T 0u=6). (6D

We have
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~r—+t---10 AE+

E2m  Qumin Q4 Qo Qmas B

Qnin 0aQ Qo

.
Qmae

Fig. 3. The integration region for the contribution of the hard photon emission inside the blind zone in the regions z < z. (3a),
Ze <2<1—=22y, (30),and 1 — 22, < 2 < 1— 2, (3¢). We neglect the contribution of the top piece in Fig. 3a, which is
justified by numerical control

20(q?)

H
ﬁﬁ=(%)7ﬁi

+P(z,Lo)(Gp—GL)+Lo(G1—G)+Go—Gi]

[(Ga — GY)In A+
(32)

where the expressions for the functions G! are given in
Appendix C.

In this case, there also exists an additional region
where the radiation of the hard photon at large angles
can contribute. It covers polar angles from 6; up to
m — ;. We take only one piece of the corresponding
contribution into account (the one that is proportional
to In A) and write it as [24]

dot, _ dalB
dg> — dg®

1+¢

« 1
—41n —1
n nl—cl’

27 A

(33)

where dof /dg® is defined by Eq. (5). The remaining
contribution is small because of restriction (2) and we
expect that it is parameterically equal to —a/2wlg rel-
ative to the Born cross-section.

5. THE TOTAL RADIATIVE CORRECTION

The total radiative correction to the cross-section
of the initial-state radiation process (1) with the 7t 7~
hadronic final sate is defined by the sum of the contri-
butions caused by the virtual and real soft photon emis-
sion and by the radiation of the hard collinear photon
inside the blind zone of the KLOE detector. In calculat-
ing the radiative correction, we suppose that Pg = 0,
because the corresponding effect due to the non-head-
on collision of beams cannot be greater than 1073 at
the radiative correction level. It is easy to see that the
auxiliary infrared cut-off parameter A vanishes for both
forms of the EMCAL calorimeter. If 7 — 6 > 6 > 6y it
enters this sum in the combination

41

() %%

xIn A { [4(Ls—1)+4 In 1_—60} F(z, cO)+GA} . (34)
1-|-C(]

where the expression inside the curly brackets vanishes
in the limiting case where 1 —¢y < 1, which was used in
calculating GaA. We can therefore write the analytical
expression for the derived radiative correction as

dg'RO _ @ RC’7 5RC’ _ g V 7 (35)
dg? dg? 2 F(z,¢9)
. 1
V:pF(Z',CO)-I_E(I_Z)FT(ZacO)-F
+P(Z,L0)GP+L0G1 -|—C7V07 (36)

where doB/dg* is defined by Eq. (4) at Ps = 0, j
is p without the terms containing In A, and the limit
1—¢p < 1 must be taken for the functions F'(z, ¢o) and
Fr(z,c).

For the modified EMCAL calorimeter, the expres-
sion in the curly brackets in (34) is replaced by

B n(l—Co)(1+Cl) B
4““ 1+lﬂ+%ﬂ—@d
—mi*”—m+1hﬂam—F@@» (37)
-

where the terms in the square brackets correspond to
the contribution of the virtual and soft photon emission
and the remaining terms are caused by the large-angle
(larger than ;) and small-angle (smaller than 6y) hard
photon radiation.

The total radiative correction can then be written as
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Fig.4. Trends in the z dependence of the quantity 6% defined by Eq. (35) under the variation of the physical parameters

0o and x,,: a — Bg = 10°, 2y, = 0.098 (1); 6o = 5°, Tm

= 0.098 (2); b— 6o = 7.5°, 2, = 0.039 (1); 6o = 7.5°,

Zm = 0.098 (2). All curves are calculated at n = 0.02, Ay = 0.002, and Ay = 0.01

RC 6RC
_014 T T T T T T T T _012 T T T T T T T T
—0.16 F 1 —014} |
~0.18 f 4 ~016 ]
—0.20 —0.18 1 ]
ol ~0.20 .
—022} §
—0.24 .
—024} §
~0.26 F i
1 1 n 1 1 7026 n 1 n 1 n 1 n 1
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
z z

Fig.5. Influence of the physical parameters n, A1, and As on

the z dependence of %¢. The minimum energy of the tagged

photon is 50 MeV (z,, = 0.098); a — o = 7.5°, n = 0.02, Ay = 0.01, Ay = 0.002 (1) 0.01 (2); b— 6o = 7.5°, n = 0.03,

Az =0.015, A; =0.

(0] VM
21 [F(z,c0) — F(z,0)]

5RC (38)

—Z

1
Vi = pm [F(Z,CO) - F(Z,C[)] +
x [Pr(z,c0) = Fr(z,a)] + P(z, Lo) (G — G),) +
+Lo (G1—GY) +Go—GY,.

X

1—61
1+Cl.

pyv = p+4ln Ay ln (39)

To identify trends in the behavior of the radiative
correction, we study its dependence on the physical pa-
rameters that define event selection rules (2), namely
1 and z,,, and the dependence on the opening angle of

002 (1) 0.015 (2)

the blind zone 6y and the respective sensitiveness A
and A, of the QCAL and EMCAL calorimeters.

The results for 6% given by Eq. (35) are shown in
Figs. 4 and 5. As was expected, the radiative correction
is large and negative because the positive contribution
caused by the real photon radiation cannot compen-
sate the negative one-loop correction. This effect in-
tensifies because the first inequality in (2) decreases
the phase space of the additional invisible real photon.
The absolute value of radiative correction depends on z
and changes from 14 % near the 777~ pair production
threshold to 25 % at the maximum possible squared di-
pion invariant mass. In the more interesting region of
the p resonance (0.5 < z < 0.7), it amounts to about

42
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Fig.6. The = dependence of 67 defined by Eq. (38) at different values of 6y and z,,: a — 6, = 40°, z,, = 0.098,
0o =10° (1), 5° (2); b — 60 =7.5°, 6; =40°, x,, = 0.039, (1), 0.098 (2)

14-20 %.

The main peculiarities in the behaviour of the ra-
diative correction are related to the change of the pos-
itive contribution caused by the radiation of an addi-
tional invisible hard photon. If the limiting angle 6
decreases, the absolute value increases because the in-
visible photon angular phase space is then compressed.
Conversely, the decrease of the minimal energy of the
tagged photon leads to an expansion of the energy
phase space of the invisible photon at a fixed value of
) (see Fig. 3), and therefore, to a decrease of the abso-
lute value. A similar effect occurs as the parameter n
grows. But the total energy  of both the tagged and
the invisible photons then increases, and the absolute
value decreases as in the previous case.

The change of the parameters A; and A, affects
the energy phase space of an additional real invisible
soft photon inside the KLOE calorimeters. If these pa-
rameters are increased, the corresponding phase space
expands and the absolute value decreases.

The total first-order radiative correction /¢ for the
modified EMCAL setup is shown in Fig. 6. Near the
threshold, it is somewhat smaller than 6% in the abso-
lute value, but it grows more rapidly with the increase
of z.

Our calculations are restricted by considering only
the first-order correction to the Born cross-section. But
a large value of the absolute value requires evaluating
the effects of higher-order QED corrections to clarify
the question of whether our approximation suffices to
provide the one per cent accuracy even in the region
of the p resonance. We hope to calculate these effects
elsewhere.

43

6. CONCLUSIONS

The radiative return method with tagged photons
offers a unique opportunity for a measurement of the
total hadronic cross-section o(eTe™ — hadrons) over a
wide range of energies. The decrease of the event num-
ber is easily compensated by a high luminosity of the
new electron—positron colliders. Of a particular inter-
est are the experimental efforts at low and intermediate
energies because they are mandatory for the future of
the electroweak precision physics.

Success of the precision studies of the hadronic
cross-section through the measurement of radiative
events relies on the matching level of reliability of the
theoretical expectation. The principal problem is the
analysis of radiative corrections to the initial-state ra-
diative cross-section at realistic conditions as regards
the event selection. In the present work, we have de-
veloped the approach proposed in Ref. [24] for a high-
precision analytical calculation of the eTe™ — nt7™
channel contribution to the hadronic cross-section.
This channel dominates in the range below 1 GeV be-
cause of the radiative return on the p resonance and
the corresponding contribution can be measured with
a high-precision at the DA®NE accelerator with the
multiple-purpose KLOE detector [26].

Our calculations include the analysis of the effects
related to non-head-on collision of beams and the first-
order radiative correction. We have demonstrated that
at the Born level, the non-head-on effects do not exceed
several per mille. To derive the radiative correction,
we neglected this effects and also applied the quasi-real
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electron method [28] to describe events with two hard
photons, one tagged by the KLOE calorimeters and the
other invisible inside the blind zone. This approach has
allowed us to analytically disentangle realistic restric-
tions related to the event selection rules and the KLOE
detector geometry. The first-order QED radiative cor-
rection obtained in this way is negative and large in the
absolute value. We investigated the main trends in its

APPENDIX A

Here, we give the exact result of the analytical an-
gular integration of the quantity T' (see Eq. (8)) with
respect to the tagged photon polar angles at arbitrary
values of the limiting angle 6,,, and the squared di-pion
invariant mass,

Cm

behaviour at the variation of the physical parameters Tde = 2Fp(z, cm), (A1)
that define experimental restrictions on event selection; -
we conclude that the higher-order corrections must be "
evaluated in order to ensure the one per cent accuracy
required for the theoretical predictions.
1 2 ]. — Cm - Cm
(1 =2)Fr(z,cm) = =2 1+ ~ Inzln? ¢ +Ti(z,¢m) In 20 + To(z, cm),
-z
where
=5 (1—2)-4zlnz+ ((1-¢2)(1—2%) +82)In(1 — 2)]
To(z,m) = 97— In’ 2 + 2¢,,, K
0(z:om) = gy It e+ 2e { 2 [+ cm + (1= cm)2][1 = cm + (1 + cm)7]
3—6 2 1 1- 1-
ﬂlnz +22—cp(l=2)]|(1+1n *m In I—M +
1—z 2 2
14+em)(1—
+ Lis <—(+CQM>} — 22+ (1 — 2)] %
z
x [m <1— (1 + cm)(1 _2)> In 1% 4 L <——(1_C’”)(1_2)>} +
2 2z
_ 2 _
+4(1—z)cmLig<—1 Z>+4(1+2)ln1 ©
z 1—-2 z
« iy (=)l =2) i (T4 em)(1=2) N
2z 2z
1-— 1-
+L{21nzLi2< cm>+ln i X
1-2z 2 z
% L12 (]_—Cm)(]._z) _L12 (1+Cm)(1_z) _
2 2
1—cp)(1— ) 1+4em)(1—
B A e (e A e A
2z 2z
) 1—cm . (1—=cm)z (1 =en)(1=2) (T +en)(1—2)
Lig (| ——— Lig{ ————— ) —Lig (| ——— Lig { ———————=
13( (1+cm)z>+ 13( . ) 13( 9 + Lig 9 +
+5+Z2lnzln21+cm 2 ln1+cm><
2 1—2z 2
142z —22
X {—2221n22— B-—2z)(1-2)lnz+ % +2(14 2?) x
1 1-—
X [lnzln(l —z)—Liy (—w>} +
2z
(=)l =2) - 1-2 ) 34+ cm+ (1 —cm)z
4Ly | ——m———~ 2(1 — 2°)Lis | — 1- 1 . (A2
+ 12( 5 +2(1 — 2°)Liy . + ( Z)(+cm)1+cm+(1—cm)z . (A2)
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2
Ti(z,em) = 1 {2221n2 z+(3=2)(1-2) x

xlnz—%—?(l—l—z% X
x [lnzln(l —2) —Liy <_w>} -

—4Li, <W> —2(1—22)Lis <—1 - Z) -

—(1=2)24¢pn(l=2)]n <1_ W) B

2
(1= 2)2(1 - cm)i’ - Z: I 8 I Z:;z} . (A3)

We here use the standard notation for the Spence func-
tions

Lis(2z) = —/1 dt
0

If we assume that ¢,, = ¢g, 1 — ¢g < 1, the result in
Eq. (12) is recovered.

APPENDIX B

In the case where z > z., the integration region for
the double hard photon emission is shown in Figs. 3b
and ¢ and the corresponding differential cross-section
is defined by Eq. (19). The list of the necessary in-
tegrals is defined by expansion (20) of the quantity
M (z, Ly, w1,) and is given by

[ dwd :y[Q—lny(l_cm)

1=

EQ., 7
_xm1n1—27 (B.1)
Tm
yzl—z—xm,
dwy dY T 1,
L= [ 2 T
2 /(E—wl)QZ ¢ Fam ATt
(1 —cm)tm —z
+In(z4+a,)In————+Inzln +
(1l — 2) T
+ Liy (—7) + Lip(1 — 2) — Lia(z + 2), (B.2)
I—/ E dw.dQ _ Tm lnl—z_
57 ) (E = w )20, 2(z + ) T
14z Y (1—cm)y
— 1 — 1 B.3
e +am) - Lol ny)

45

1
dt
In(1—zt), Lig(x /? Intln(1—=xt).
0

I _/ (Q—le)dwldﬂ
‘T [wl(Q—wl)—EQ 1.
_ L —l s 1+cm
6 2
l—cm Tmyn
e e - A

22y i, <1—cm> B
2

S22 (-2
e (U2), m

B (1-2)E dundQ
I5 = / w1 (Q—w) — EQ.Q.

+1n1_cm 2A%z,, B 22y
L+em  y(l—2)n n
1 1-—
- 3 In2 i + In In l
2 Tm Tm 222,

dw dQ (1 —2)
Iﬁ :/ w% = 5 X

1+ cp,
n

(1) <1ny + %ﬂ . (B.6)

In calculating these integrals, we neglected terms of
the order 22, and (1 — ¢,,,),,, compared to unity; these
terms are of the same order as the parameter 7.

In the cases where

X {2(1 —cpInA) = (14 ¢y)In

we must integrate over the region shown in Fig. 3a. As
mentioned above, the contribution of the top piece of
this region, where

Q—Ez, >w >wh,

is small (about 1-2%) compared to the bottom
one and can be neglected. This approximation is suf-
ficient to provide the one per cent accuracy of radiative
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correction. We use the notation J;, similarly to I;, to " 2(1+ em) 2(L+cm + (1 —em)K)
label separate integrals over this region, 1—cm (I+cm)(l4+cm+(1—cm)Ky)
S ) i (0 enlis)
1+c,
1 4n - -
Ke=-[1+,J1—-—L | . (1 —cm) K . (1—cm)K_
: 2( \/ <1—cm><1—z>> COR (‘W L U
K. (1= o) K
Lig =In—, g, [ At
k=l Lis < . > . (B.11)

Jo = Iy—In 2Lc+Liy((1—2) K_)—=Liy ((1—=2) K 4 )—

~ Li, <_(1_%> + Ly (_ (1- Z)K+> . (BS) Jo = Is + (1—2)(1—cp) <1n (1=2)1—=cm)

z 2 n

Tm, - - -
J—I-|—1_ZL _1+zlnz+(1—z)K+ (B.9) —1_2—21nlx+—2(lx+—lx)>. (B-12)
P z K z 2+ (1—z)K_ "
1—Cm 1_cm 1 1_cm
=I+1 1 —=1 , (B.1
Jy = I1+1In 5 <n 5 2n1+cm>, (B.10)
APPENDIX C
]- — Cmpy 772 . - >
Js =21In Tre InA + Y 2Liy(K ) — 4K + In this Appendix, we give the analytical form of the
" functions G! for arbitrary values of the limiting tagged
n 11n2 L—cm 2In(1—z)In L—cm photon angle ;. The only condition on ; used in Ap-
2 1+ecn 1+enm pendix B is that
_ 11n2 (1 B Cm)n _
27 2(1+4em)(1—2) (1—¢)zm < 1.
1 1+ cm)? . .
——In ( m) 7 Lrx+InK_InK_ + This restricts 6, by the values about 45°. With the ex-

2 41 —cp)(1 -
(1=em)d = 2) ception of G'y, the functions G! are different for z > 2,

and z < z.. In the first case, we have

1+ 22 1—¢
! Q) =4(Ly—1 1- 1 InA, 1
Ga(z > zc) (Lo — 1) | Z)+1—z nl_l_q}n : (C.1)
1—¢ ., (1—2)yn TmM 1—2, (1=2)an, 8y
l _ L 12 _ 2 _ _
Gz > z) = 21n1+qln 5o In 30—y 21n - In " +7 T
_4(1+cl)1n (1—|—c[)[(1—cl)(l—z)—l—xm(l—cl)]_4Li2 Tm oLk, (L—ca)y)
1—¢ 2[2(1 = 2) — 2 (1 — )] 1-2) 2(1—2z)
(A =c)zm . (I-c)em . (1—-¢a)y
—2L —_ 2L - | — 2L _— |, 2
12( 21—z ) T T2 P\iraa-o) @2
. l+z42y,, 1—2 1+ ¢
Gi(z>z)=am (22—¢q) + In +21—-2)|(1=c)Iny—(1+¢)In -3 +
Z+ Tm Tm
+y(22+xm)1n(1_cl)y+(1+z) [lnl_zlnz_l—xm+1n(2+xm)<1—1n1_cl>+
zZ+Tm n Tm z n
. -1 . —4dm . 2
+L12<ZZ >—L12< j >+L12(2+xm)—%}, (C.3)
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1-— 1—
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. l—C[ . Tm
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et () o (G 25) -2 (o) -2 (i )+
i (iaits) s (e ey )] e

In the case where 2 < z., the corresponding functions G are given by

2

m - U l—c, n(l-2) -
Gé(z<zc)=§—81s_—1n2 2(1_2)—21n1+c[1n S T2 Ky InK_ —
2 _ - . -
I (1+¢)%n N 41+ ¢) N 2[1+ ¢ + (1 Cl)k_], 4oL <(1 cl)I£_> B
41 —¢)(1 = 2) 1—¢ (I+e)l+ca+(1—c)Ky] 2

_ . -y . (]. —C[)IX’+ . _(1 —C[)]X’+ B . _(1 —C[)]X’,
4Liy (K ) — 2Liy <72 + 2Liy i 2Liy Tia ) (C.5)

2- 1-— 1—
Gl1(z<2c)=2xm(3—2cl)+1_z [azmln - Z+y1ny( _ cz)} n

m
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1-z 24+ (1-2)Ky
lpn2 - — =~/ 4
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—2(1-¢)lny —2(1 1 | —21 1 +In
(1-¢)iny —2(1+¢)In +1In”° — n1+cln2yazm )
1 (14 ¢a)’n . . (1-2)%. 2(14¢)(1-2)
2(1 - —In—— | Lg—InK;yInK_ -1 1 —
(200 -+ g S ) B e G2 2R
- C((1—e)K_ C((1-e)Ky ( (l—e)Kk_ [ (1—e)Ky
—2Lix(K_) - L - Lip | ——— L ———— | —Lig | —————
ip(K-) 12( 5 + L1y 5 + L1 +a) 1) Tta +
(1—¢ [ (1=2)n 21+4¢a), A+e)l+eag+(1—c¢)K4]
L L |
* 12( >+ 12( dym ) 1-a ' tat(l-ak] |
2 1-— 1-—
+ 2z 7T—+lnwln(z-l-acm)—lnz L —1n i +
6 (1-2)n Tm

+ Lis (—%’”) — Li <z - 1) — Lis(2 + &) + Lin((1 — 2)K_) — Liy((1 — 2)K4) +

Z o (EEE (D)

47



M.

1. Konchatnij, N. P. Merenkov

MKIT®, Tom 122, Boin. 1(7), 2002

10.

11.

12.

13.

REFERENCES

. R. M. Carey et al., (g-2) Collaboration, Phys. Rev.
Lett. 82, 1632 (1999); H. M. Brown et al., (g-2) Col-
laboration, Phys. Rev. D 62, 0901101 (2000); Phys.
Rev. Lett. 86, 2227 (2000); B. Lee Roberts et al., (g-2)
Collaboration, E-print archives hep-ex/0111046.

A. H. Hécker, E-print archives hep-ph/0111243,;
J. F. de Troconiz and F. J. Yndurain, E-print archives
hep-ph/0111258.

V. M. Hugles and T. Kinoshita, Rev. Mod. Phys. 71,
133 (1999).

S. Peris, M. Perrottet and E. de Rafael, Phys. Lett.
B 355, 523 (1995); A. Czarneski, B. Krause, and
W. J. Marciano, Phys. Rev. D 52, R2619 (1995);
E. A. Kuraev, T. V. Kuchto, and A. Shiller, Yad.
Fiz. 51, 1631 (1990); E. A. Kuraev, T. V. Kuchto,
Z. K. Silagadze, and A. Shiller, Preprint, INP 90-66,
Novosibirsk (1990).

M. Knecht and A. Nyffeler, E-print archives
hep-ph/0111058; M. Knecht, A. Nyffeler, M. Perrottet,
and E. de Rafael, E-print archives hep-ph/0111059.

J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett.
75, 3784 (1995), Nucl. Phys. B 474, 379 (1996).

M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys.
Rev. Lett. 75, 790 (1995), Phys. Rev. D 54, 3137
(1996); M. Hayakawa and T. Kinoshita, Phys. Rev.
D 57, 465 (1998).

J. Bijnens, E. Pallante, and J. Prades, Preprint LUTP
01-37, E-print archives hep-ph/0112255.

M. Hayakawa and T. Kinoshita, Preprint
KEK-TH-993, E-print archives hep-ph/0112102.

N. Cabibbo and R. Gatto, Phys. Rev. 124, 1577
(1961); M. Gourdin and E. de Rafael, Nucl. Phys. B
10, 667 (1967).

A. Charnecki and W. J. Marciano, E-print archives
hep-ph/0102122; W. J. Marchiano and B. L. Roberts,
E-print archives hep-ph/0105056; K. Melnikov,
SLUC-PUB-8844, E-print archives hep-ph/0105267;
F. J. Yndurain, E-print archives hep-ph/0103212;
F. Jegerlehner, E-print archives hep-ph/0001386.

M. Davier and H. Hécker, Phys. Lett. B 419, 419
(1998), 435, 427 (1998).

S. Narison, Phys. Lett. B 513, 53 (2001); V. Cirigliano,
G. Ecker, and H. Neufeld, Phys. Lett. B 513, 361
(2001).

48

14

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

. J. F. Trocéniz and F. J. Yndurain, E-print archives
hep-ph/0106025; J. Prades, E-print archives hep-
ph/0108192.

R. R. Akhmetshin et al., E-print archives
hep-ex/9904027; Nucl. Phys. A 675, 424 (2000);
Phys. Lett. B 475, 190 (2000).

D. Kong, E-print archives hep-ph/9903521: J. Z. Bai
et al., BES Collaboration, Phys. Rev. Lett. 84, 594
(2000); E-print archives hep-ph/0102003.

F. Jegerlehner, E-print archives hep-ph/0104304,
E-print archives hep-ph/0105283.

A. B. Arbuzov et al., JHEP 12 (1998) 009; M. Konchat-
nij and N. P. Merenkov, JETP Lett. 69, 811 (1999).

S. Binner, J. H. Kihn, and K. Melnikov, Phys. Lett.
B 459, 279 (1999); K. Melnikov et al., Phys. Lett. B
477, 114 (2000); H. Czyz and J. H. Kiihn, Eur. Phys.
J. C 18, 497 (2001).

S. Spagnolo, Eur. Phys. J. C 6, 637 (1999); G. Cataldi
et al., KLOE MEMO 195, August 13, 1999.

A. Hoefer, J. Gluza, F. Jegerlehner, E-print archives
hep-ph /0107154

G. Rodrigo et al.,, Eur. Phys. J. C 22, 81 (2001),
E-print archives hep-ph/0106132; G. Rodrigo, E-print
archives hep-ph/0111151; G. Rodrigo et al., E-print
archives hep-ph/0112184.

G. Cataldi et al., Physics and Detectors at DA®NE,
569 (1999).

V. A. Khoze et al., Eur. Phys. J. C 18, 481 (2001).

N. P. Merenkov and O. N. Shekhovtsova, Pis’'ma Zh.
Exs. Teor. Fiz. 74, 69 (2001); V. A. Khoze et al,,
E-print archives hep-ph/0202021 (submitted to Eur.
Phys. J. C).

M. Adinolfi et al., KLOE Collaboration, E-print
archives hep-ex/0006036; A. Aloisio et al., KLOE Col-
laboration, E-print archives hep-ex/0107023; A. Denig
(on behalf of KLOE Collaboration), E-print archives
hep-ex/0106100.

E. P. Solodov (BABAR Collaboration),
archives hep-ex/0107027.

E-print

V. N. Baier, V. S. Fadin, and V. A. Khoze, Nucl. Phys.
B 65, 381 (1973).

E. A. Kuraev, N. P. Merenkov, and V. S. Fadin, Sov.
J. Nucl. Phys. 45, 486 (1987).



