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COLLECTIVE EFFECTS IN DOPED NEMATICLIQUID CRYSTALSS. B. Chernyshuk a*, B. I. Lev a;b, H. Yokoyama ba Department of theoretial physis, Institute of PhysisNational Aademy of Sienes of Ukraine03039, Kyiv, Ukraineb Japan Siene and Tehnology Corporation,Yokoyama Nano-strutured Liquid Crystal ProjetTsukuba Researh Consortium 5-9-9Tokodai,Tsukuba, Ibaraki 300-2635, JapanSubmitted 28 February 2001We study the olletive elasti interation in a system of many maropartiles embedded in a nemati liquidrystal. A theoretial approah to the interation of maropartiles via deformation of the diretor �eld [1℄ isdeveloped. It is found that the diretor �eld distortion indued by many partiles leads to the sreening ofthe elasti pair interation potential. This sreening strongly depends on the shape of the embedded partiles:it exists for anisotropi partiles and is absent for spherial ones. Our results are valid for the homeotropiand the planar anhoring on the partile surfae and for di�erent Frank onstants. We apply our results toylindrial partiles in a nemati liquid rystal. In the system of magneti ylindrial grains suspended in anemati liquid rystal, the external magneti �eld perpendiular to the grain orientation results in inlining thegrains to the diretor and indues an elasti Yukawa-law attration between the grains. The appearane of thiselasti attration an explain the ellular texture in magnetially doped liquid rystals in the presene of themagneti �eld [2℄.PACS: 61.30.Gd, 82.70.Dd, 64.70.Md1. INTRODUCTIONSuspensions in liquids were reently given an inten-sive onsideration in siene and tehnology. Colloidsuspensions of solid partiles oated with a surfatantand dispersions of liquid droplets form a medium haveattrated great interest in di�erent pratial applia-tions inluding mediine [3, 4℄. Small partiles sus-pended in a nemati liquid rystal make a new ompos-ite material with unique physial properties that origi-nate from the orientational ordering of the liquid rys-tal. Mehanial and optial properties of this mediumare primarily determined by the olletive behavior ofthese partiles. Depending on their size and anhor-ing energies, the partiles form hains [5�7℄, anisotropilusters [8�10℄, or periodi strutures [1, 11℄.The origin of the struture formation is the over-lapping distortions of the diretor �eld n aused by*E-mail: hernysh�iop.kiev.ua

single partiles. These distortions interfere and re-sult in a fasinating anisotropi interation betweenpartiles. The diretor deformations greatly dependon the partile sizes and anhoring energy. For thenormal anhoring, the diretor prefers to be normalto the surfae of the partiles; for the planar anhor-ing, the diretor prefers to be parallel to the surfae.For a strong anhoring, the boundary onditions onn are �xed and impose topologial onstrains on thediretor �eld around the partile. Topologial defetsarising in this ase annot be removed from the par-tile. A single spherial partile with a strong nor-mal anhoring indues a point topologial defet alledthe hyperboli hedgehog. The droplet and the defetform a dipole that was theoretially desribed with thehelp of ansatz funtions using the eletrostati anal-ogy [5, 12℄. Suh dipoles play the dominant role in theformation of hains. Terentjev et al. introdued theSaturn-ring on�guration with the quadrupole symme-871



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001try where a �1=2 dislination ring surrounds the spherealong the equator. It was investigated by both ana-lytial and numerial methods [13, 14℄. For a �niteanhoring strength of the moleules at the surfae, aring on�guration ours. In this on�guration, thediretor �eld is smooth everywhere, and a ring of tan-gentially oriented moleules is loated at the equator ofthe sphere [14℄. Using a Monte-Carlo simulation, Ruh-wandl and Terentjev showed that the surfae ring isthe preferred on�guration for a su�iently small an-horing [15℄. Stark showed that the transition from thedipole to the Saturn-ring on�guration an be ahievedby either dereasing the partile size or applying themagneti �eld or dereasing the anhoring [17℄.In all the papers ited above, the behavior of spher-ial droplets in a nemati liquid rystal was studied.However, it was shown that there an be interest-ing properties and new strutures in suspensions ofanisotropi partiles [1℄. In 1970, Brohard and deGennes for the �rst time showed that the doping ofa nemati liquid rystal with ferromagneti ylindrialgrains leads to a marosopi olletive behavior [19℄.This behavior is manifested as a distortion of the uni-form moleular orientation of the entire matrix uponappliation of an external magneti �eld. In otherwords, magneti grains rule over the orientation of theentire nemati liquid rystal matrix. This was exper-imentally on�rmed by Chen and Amer [2, 20℄. Theyfound that the doped nemati exhibits a ellular tex-ture with the ells of the order of tens of mirometers atthe ritial magneti �eld H � 30 G. The magnetiallydoped nemati liquid rystal system (DNLC) in themagneti �eld was theoretially examined by Burylovand Raikher [21, 22℄, but beause the elasti intera-tion between the grains was not taken into aount, theellular texture itself has not found a satisfatory theo-retial explanation. The �rst attempt to �nd the elas-ti interation between ylindrial grains in a nematimatrix was made by Lopatnikov and Namiot [24℄, whofound the pair interation potential for the weak an-horing when the grains lie along the diretor.A new approah to �nding the pair interationpotential between arbitrarily shaped partiles for theweak anhoring was proposed in [1℄. This approahallows �nding the interation potential for any orienta-tion of the partiles with respet to the diretor. Thepair interation potential was found as the result of theoverlapping of distortions of the diretor �eld from twopartiles. The general potential obtained in [1℄ reduesto the results of Ramaswamy et al. [23℄ and Lubenskyet al. [12℄ for spherial partiles and to the result ofLopatnikov and Namiot [24℄ for ylindrial partiles.

For spherial partiles, this potential di�ers from thatobtained by Ruhwandl and Terentjev only by the angu-lar dependene of the interating maropartiles withrespet to the diretor.In this paper, we use the approah in [1℄ to on-sistently aount for the interferene of the deforma-tions of the diretor �eld from all partiles embeddedin the liquid rystal. Distortions of the diretor �eldfrom the other partiles a�et the interation potentialbetween two hosen partiles. We show that the ol-letive sreening e�et arises when the onentration ofpartiles is high. This sreening e�et is shown to beessentially depending on the shape and orientation ofthe partiles and on the anhoring strength. For exam-ple, the sreening is absent for spherial partiles andis signi�ant for anisotropi partiles, e.g., ylinders.When the ylinders are plaed at an angle to the di-retor, the sreened Coulomb attration of the Yukawaform arising between them an lead to nontrivial on-sequenes. In this paper, we show that this potentialis responsible for the ellular texture in ferronematisthat was observed by Chen and Amer [2℄. We show thatthe e�etive harge in the sreened Coulomb attra-tion greatly depends on the angle between the grainsand the diretor. It is zero in the equilibrium stateswhen the grains are parallel or perpendiular to thediretor in the ase of the planar or homeotropi an-horing. The external magneti �eld that is not parallelto the initial orientation of the magneti grains takesthem out of the equilibrium state; the e�etive hargethen arises beause of the angle between the grains andthe diretor. We also show that the sreening is notalways exponential but an be trigonometrial undersome onditions. It an our only in the presene ofthe external �eld when the angle between the grainsand the diretor exeeds the ritial threshold.In Se. 2, we formulate the problem of �nding theelasti energy of a doped nemati liquid rystal follow-ing the approah in Ref. [1℄. In Subse. 2.1, we �nd thediretor distribution resulting from the interferene ofthe distortions indued by all partiles. In Subse. 2.2,we onsider the energy of these diretor distortions andextrat the sreened pair interation potentials from it.In Subse. 2.3, we �nd an analytial expression for thepair interation potential in the diagonal approxima-tion. In Se. 3, we �nd the elasti Yukawa attrationof the magneti grains in the liquid rystal in the pres-ene of the external magneti �eld. We onsider thesystem of many partiles attrating in aordane withthe Yukawa law and �nd the onditions for the lump-ing to our in it. This allows us to explain the ellulartexture in ferronematis.872



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Colletive e�ets in doped nemati liquid rystals2. FORMULATION OF THE PROBLEMThe free energy of a nemati liquid rystal isgiven byFb = 12 Z d3r �K11(divn)2 ++K22(n � rotn)2 +K33(n� rotn)2	 ; (1)where Kii are the Frank elasti onstants and n is thediretor. The maropartiles embedded in a liquid rys-tal indue deformations of the diretor �eld. The sur-fae of these partiles an be oated with di�erent sur-fatants that orient the nemati moleules either nor-mally or tangentially to the surfae. The surfae energyan be written asFs =Xp I dsW (s)(�(s) � n(s))2; (2)where �(s) is the unit normal to the surfae at the points on the surfae andW (s) is the anhoring oe�ient atthis point. In the general ase, W (s) > 0 orrespondsto the planar anhoring and W (s) < 0 orresponds tothe normal anhoring. The integral is taken over theentire surfae of partile p. We assume that all parti-les have the same orientation in spae (for example,with the help of the external �eld), but their enters ofmass an move freely under the ation of the resultingelasti potentials in order to minimize the total free en-ergy of the system. The total free energy is the sum ofthe bulk and surfae energies:F = Fb + Fs: (3)We do not onsider the distribution entropy partof the free energy, beause it does not a�et the dire-tor distribution and is irrelevant for �nding the elastiinteration potential between partiles.We onsider the ase of the weak anhoring, whereWr0=K � 1 (we imply the absolute value ofW ), wherer0 is the smallest size of the partile, e.g., the radiusof the sphere or the ylinder. For the homeotropi an-horing and spherial droplets, this orresponds to thesurfae ring on�guration [13, 14℄. In this ase, weassume that the diretor distortion from the homoge-neous state n0 is small everywhere:n(r) = n0 + Æn(r); jÆnj � 1: (4)Under this assumption, the diretor smoothly variesfrom point to point and no topologial defets arise inthe viinity of partiles. This is a onsequene of theweak anhoring strength and of the small partile size

(we onsider partiles with the size less than 1 �m,whih only slightly distort the diretor for the real an-horing strength [15℄). We an use the Fourier repre-sentation for the diretor in the entire spae, therebyonsiderably simplifying the problem.In the Fourier representation, we haveÆn(r) = 1(2�)3 Z d3q exp(�iq � r)Æn(q): (5)Inserting (5) in bulk Frank energy (1), we obtainFb = 12 1(2�)3 Z d3q nK11 jq � Æn(q)j2++ K22 j[n� q℄ � Æn(q)j2 +K33 j(n � q)Æn(q)j2o : (6)To simplify this expression, we hoose the speial basise1 = (q? � n0)q? ; e2 = q?q? ;e3 = n0; q? = n0 � q: (7)We then have q = �q?; 0; qk� and Æn = (Æn1; Æn2; 0),and Eq. (1) therefore redues toFb = 12 1(2�)3 ��Xi Z d3q nKiiq2? +K33q2ko jÆni(q)j2 : (8)Beause we assume that the diretor smoothly variesfrom point to point and relation (4) is true, we an on-sider the diretor to have a given value inside the vol-ume of the partile. This assumption is valid if the to-tal volume of the suspended partiles is muh less thanthe entire volume of the system, i.e., the volume fra-tion of the partiles is small, � � 1; where  = N=Vis the onentration and � is the volume of a partile(the �gas� approximation). For the real system [2℄, = 1010 m�3, � � 10�15 m3, and � � 10�5, andour assumption is therefore true.The diretor on the surfae an therefore be ex-pressed through the diretor at the enter of mass Rpof the partile and its derivatives,Æn(s) = Æn(Rp) + (�r)Æn(Rp) + 12(�r)2Æn(Rp);where � is the vetor drawn from the enter of mass tothe point s on the surfae. The omplete expression forthe diretor on the surfae through the diretor at theenter of mass of the partile is therefore given byn(s) = n0 + Æn(Rp) + (�r)Æn(Rp) ++ 12(�r)2Æn(Rp): (9)873



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001We now �x a oordinate system (x; y; z) where the zaxis is parallel to the undeformed diretor n0 and x andy are perpendiular to it. This system is �rmly �xedin spae. We next substitute diretor �eld (9) in thesalar produt (n(s) ��(s))2 and also inlude the seondpowers of the perpendiular diretor deformations Ænxand Æny: We thus write(�(s) � n(s))2 = (� � n0)2 + 2(� � n0)(� � Æn) ++ 2(� � n0)(� � r)(� � Æn) ++ 2(� � n0)(� � r)2(� � Æn) + (� � Æn)2; (10)where � = �(s); Æn = Æn(Rp):We note that this expression involves two smallness pa-rameters. The �rst is the perpendiular omponent ofthe diretor, jÆnxj ; jÆnyj � "; Æn3 � "2;and the seond is the ratio % = �=ln of the partilesize to the average deformation length ln of the dire-tor. In [1℄, the respetive terms proportional to ", %";and %2" were taken into aount. The expansion in% is equivalent to the multipole expansion in [12℄. Inthis paper, we also take the last term proportional to "2into aount. This term is not essential at the distanesomparable to the average distane between partiles,as we see below, and it an therefore be omitted for thesystems onsidered in [6, 7, 12℄, where the onentra-tion of dispersed partiles is small. It beomes essentialfor dense olloids, where there are too many partilesand where the interferene of the distortions from allpartiles is onsiderable. In [12℄, jÆn�j (with � = x; y)was shown to fall o� as R�2 and R�3; depending of thedipole or quadrupole symmetry. We thus onlude that" � %2 for the third term, whih has the dipole symme-try (and "2 � %" in this ase), and " � %3 ("2 � %2")for the fourth term with the quadrupole symmetry. Inany ase, taking the last term into aount gives onlysmall orretions at the average distanes and for asmall number of partiles. As we see below, this is es-sential in the olletive e�et of the sreening at largedistanes, where the onentration of partiles is high.We spei�ally larify this problem in what follows.For this, we write the salar produts (�(s) � n(s))in the loal basis (k1;k2;k3) assoiated with eah par-tile. For example,�(s) �n(s) = Xl=1;2;3(� �kl)(Æn �kl) = �lÆn�kl�+�lÆn3kl3 ;where �l = (� � kl); ; kl3 = kl � n0;

Æn3 = �12(Æn2x + Æn2y):The surfae energy is then written asFs = F (0)s + F (1)s + F (2)s ; (11)F (0)s = N I dsW (s)(�(s) � n0)2; (12)F (1)s =Xp I dsW (s)�l�mkl3 �� �2Æn�kl� + 2(�r)Æn�kl� + (�r)2Æn�kl�	 ; (13)F (2)s =Xp I dsW (s)�l�m �� �Æn�Æn�kl�km� � (Æn2x + Æn2y)kl3km3� ; (14)where N is the total number of partiles in the entirevolume V of the liquid rystal matrix and the respetivesurfae terms F (1)s and F (2)s are linear and quadrati inÆn�. Following [1℄, we now de�ne several tensors inthe basis (k1;k2;k3) that haraterize the anhoringenergy,�kl = 2 I dsW (s)�k(s)�l(s);�klm = 2 I dsW (s)�k(s)�l(s)�m(s);klmn = I dsW (s)�k(s)�l(s)�m(s)�n(s): (15)The elasti energy Fel, i.e., the energy of deformationsof the diretor �eld, is then given byFel = Fb + F (1)s + F (2)s ; (16)F (1)s =Xp f�lm + �lms(ks � r)++ lmst(ks � r)(kt � r)g Æn�kl�km3 ; (17)F (2)s = 12 ��Xp �lm �Æn�Æn�kl�km��(Æn2x+Æn2y)kl3km3� : (18)The main di�erene between this paper and [1℄ isin taking term (18) into aount. It is quadrati inthe diretor deformations and an be regarded as theontribution of all partiles to the interferene of distor-tions. Preisely this term leads to the sreening e�ets.874
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Fig. 1. Orientation of a ylindrial partile. The parti-le lies in the xn0 plane at the angle � with the dire-torSome of its features an be onsidered without �ndingthe diretor. For example, it is learly seen that it van-ishes for spherial partiles. Indeed, �lm = �Ælm andkl�kl� = Æ�� for the sphere, and therefore, F (2)s � 0:For any other shape, Eq. (18) does not vanish. Todesribe its e�et analytially, we go to the ontinuumlimit in this expression and replae the summation withthe integration over the entire spae,Xp !  Z dV;where as before,  = N=V is the onentration of par-tiles: F (2)s = 2 Z dV ea��Æn�(x)Æn�(x);ea�� = �lm �kl�km� � kl3km3Æ��� : (19)We thus onsider the interferene of only longwave-lengh distortions of the diretor �eld. In the Fourierrepresentation, we haveF (2)s = 2 (2�)3 Z d3qea��Æn�(q)Æn��(q): (20)The tensor ea�� is here taken in the (x; y; z) oordi-nate system, whih is not onvenient. It is muh moresuitable to write the surfae energy and the bulk energyin Eq. (8) in the same basis (e1; e2; e3). This basis is ro-tated by the angle  (q) with respet to (x; y; z) aroundthe z axis (Fig. 1). In the new basis, the diretor hasthe omponents Æn = (Æn1; Æn2; 0) and Æn� = $�iÆni(with � = x; y and i = 1; 2). The rotation matrix isgiven by $�i = " os  � sin sin  os # :

In the basis (e1; e2; e3), the surfae energy beomesF (1)s =Xp 12 (2�)3 Z d3q �� fexp(�iq � rp)a�m(Æn(q) � km)++ exp(iq � rp)am(Æn�(q) � km)g ; (21)am = (kl � n0) [�lm+i�lms(q � ks)�lmst(q � ks)(q � kt)℄ ;F (2)s = 2 (2�)3 Z d3qaijÆni(q)Æn�j (q); (22)aij = $Ti�ea��$�j : (23)We now add the bulk energy Fb and the surfaeenergy Fs and �nd the total energy of the systemFtotal = F (0)s + Felwith the elasti energyFel = 12 (2�)3 Z d3qVij(q)Æni(q)Æn�j (q) ++ b�i (q)Æni(q) + bi(q)Æn�i (q); (24)Vij(q) = (Kiiq2? +K33q2k)Æij + aij ; (25)bi(q) =Xp exp(iq � rp)amkmi : (26)Here, m = 1; 2; 3, i; j = 1; 2, and Æni(q) and kmi arethe projetions of these vetors on the basis (e1; e2; e3).2.1. Diretor distribution in the dopednemati liquid rystalHaving found the omplete expression for the elastienergy of a liquid rystal with partiles, we an �nd thediretor at any point of the system from the extremumonditionÆÆn�j (q)Fel = Vij(q)Æni(q) + bj(q) = 0;Æni(q) = �V �1ij (q)bj(q): (27)In the matrix form, the last equation beomes Æn1(q)Æn2(q) ! == � 1D " V22 �V12�V12 V11 # � b1(q)b2(q) ! ; (28)875



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001where D = V11V22 � V 212:We an make some general onlusions from this ex-pression onerning the behavior of the diretor. Dis-tortions derease far from the partile. However, thedenominator D an vanish for some wave vetors q,whih orresponds to the appearane of osillations ofthe diretor �eld. The origin of the diretor osillationsis purely olletive, beause the e�et depends on theonentration V12 � a12. It also depends on the shapeof the partiles and their orientation with respet to theundeformed diretor n0. We assume that these osil-lations an be observed experimentally, beause theymust lead to the sattering of eletromagneti waveswith wave lengths ommensurate to the osillations pe-riod. Equation (28) seems to imply that� �pK=�;where � is the average value of the tensor �lm; fromEq. (15), we have �lm �WS;where W is the anhoring energy and S is the area ofthe partile. The resonane wave length is thereforeroughly estimated as�res �pK=WS: (29)For example, in the experiment with ylindrialgrains [2℄, the parameters are given by  � 1010 m�3,S � 2�RL, the radius of the grain is R � 0:05�m, thelength L � 0:5�m, the elasti onstant K � 10�7 dynand the anhoring energy W � 10�3 dyn/m. Wethen �nd �res � 30�m. Beause it is always possibleto vary the onentration and the anhoring energy,the resonane wave length an be in the range � � 10�100�m. In any ase, this length must be larger thanthe average distane between the partiles, � � hli.For the experiment in [2℄, hli � 4�m and all theassumptions are therefore valid. In the domain withthe size about 30�m, there are approximately 500partiles and their olletive interation an induelong-wavelength osillations of the diretor �eld.2.2. Elasti energy and the pair interationpotential between partilesHaving found the diretor �eld, we insert Eq. (28)in (24) and obtain the elasti energy of the diretordeformations in the DNLC:Fel = � 12 (2�)3 Z d3qV �1ij (q)b�i (q)bj(q) < 0: (30)

The negative sign implies that the total free energyF = F (0)s + Felevaluated for solution (28) is less than the energyF = F (0)s for the undeformed diretor �eld n0. Thetotal energy Fel an be represented as the sum of thepair potentials between two partiles. Indeed, we in-trodue the operator bAm suh thatbAmeiq�r = ameiq�r; (31)bAm = (kl � n0) [�lm + �lms(ks � r)++ lmst(ks � r)(kt � r)℄ : (32)The elasti energy Fel then takes the formFel = 12Xp;p0 Upp0 ; (33)Upp0 = � 1(2�)3 bApm bAp0m0 �� Z d3q exp [iq(rp � rp0)℄V �1ij (q)kmikm0j : (34)The expressionUpp0 has the meaning of the pair intera-tion potential between partiles p and p0 that is ausedby long-range deformations of the diretor �eld. Thesubsript p indiates that we must substituter = ��rpin the operator bApm. This expression is valid for parti-les of the ordinary shape and orientation. It aountsfor sreening e�ets that arise from the interferene ofthe diretor �eld distortions by all partiles.2.3. Pair potential in the diagonalapproximation. Analytial resultsAlthough expression (34) is exat, it is too di�-ult to �nd the results analytially. In the most gen-eral ase, the pair potential U(R;
) depends on all thethree omponents of the radius vetorR = rp�rp0 andon three Euler angles 
 that determine the orientationof partiles in spae (we assume that all partiles areoriented in the same way, and all of them therefore havethe same Euler angles). To take the sreening e�etsinto aount analytially, we onsider partiles with therotational symmetry around one axis. For suh parti-les, the pair potential U(R; �) depends on the angle �876



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Colletive e�ets in doped nemati liquid rystalsbetween this symmetry axis and the diretor. If � = 0;all partiles are parallel to the diretor. In this ase,the entire DNLC has the rotational symmetry aroundthe diretor n0 and the pair potential U(R?; Rk) de-pends on the perpendiular and parallel projetions ofR with respet to n0: But in the ase where � 6= 0, theseond preferential diretion arises in the system, thediretion along whih all the partiles lie. We projetthis diretion on the plane perpendiular to the diretorand let s denote the projetion,s � n0 = 0:We then have the potential U = U(R?; Rk; '; �), where' is the azimuthal angle between R and s.To obtain analytial results, we average over theangle '. For this purpose, we average the tensor aijin Eq. (23) over the angle  and drop the o�-diagonalterms; we all this the diagonal approximation:aij( ; �)! haiji == 12 " ea11 + ea22 00 ea11 + ea22 # = a(�)Æij ; (35)where a(�) = 12(ea11 + ea22):This approximation makes the propagator V �1ij (q) di-agonal and allows us to take all the integrals analyt-ially. The diagonal approximation is exat only for� = 0; when the entire system has the rotational sym-metry in the xy plane. The oe�ient a(�) depends onthe shape of the partiles. For example, for ylinderswith R� L; we havea(�) = �RLW (2� 3 sin2 �);and for �at (panake) partiles with R� h;a(�) = 2�R2W (1� 3 os2 �)(where � is the angle between the normal to the panakeplane and the diretor). In the diagonal approximation,the propagator therefore beomesV �1ij (q) = (Kiiq2? +K33q2k + a(�))�1Æij (36)and the pair potential is given byUpp0 = � 1(2�)3 bApl bAp0l0 [Ill0 (R)℄ ; (37)Ill0 (R) = I1ll0 (R) + I2ll0 (R); (38)

I1ll0 (R) == Z d3qeiq�R (kl � [q? � n0℄) (kl0 � [q? � n0℄)q2? �K11q2? +K33q2k + a(�)� ; (39)I2ll0 (R) == Z d3qeiq�R (kl � q?) (kl0 � q?)q2? �K22q2? +K33q2k + a(�)� : (40)It is easy to integrate over q in Eqs. (39) and (40)using the oordinate system with the basisr1 = R? � n0R? ; r2 = R?R? ;r3 = n0; R? = n0 �R: (41)This basis is rotated with respet to the one in (7) bysome angle ' about the axis n0. The quantities q? andqk are similar in both bases. We therefore haveexp(�iq �R) = exp��i �q?R? os'+ qkRk�	and the denominators of the frations involved in (39)and (40) do not depend on the angle ': Integrating over', we obtainI�ll0 (R) = � 1Z0 dq?q? �� nQ+l;l0J0(q?R?) + (�1)�Q�l;l0J2(q?R?)o�� 1Z�1 dqk exp(�iqkRk)(K��q2? +K33q2k + a(�)) ; (42)where � = 1; 2 andQ(�)l;l0 = (r1 � kl)(r1 � kl0 )� (r2 � kl)(r2 � kl0)and J0 and J2 are the Bessel funtions.In order to alulate these integrals, we must thor-oughly srutinize the funtion a(�): As mentionedabove, a(�) = �RLW (2� 3 sin2 �)for ylindrial grains. The ase where W > 0 orre-sponds to the planar anhoring, and W < 0 orre-sponds to the normal anhoring. For the planar an-horing, the equilibrium state of the grains is � = 0and aplanar(0) = 2�RLW > 0;and for the normal anhoring, the equilibrium state is� = �=2 andanormal(�=2) = ��RLW > 0:877



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001We thus see that a(�) > 0 in the equilibrium stateindependently of the anhoring type. But if the grainshave a magneti moment, the external magneti �eldan lead the grains into the states where a(�) < 0. Thisours if arsinp2=3 < � < �=2for the planar anhoring and if0 < � < arsinp2=3for the homeotropi anhoring. These states exist onlybeause of the magneti �eld. Both ases must there-fore be onsidered. We �rst onsider the ase wherea(�) > 0; whih orresponds to the equilibrium statesor the ase of weak external �elds. We write Iexp�ll0 (R)for I�ll0 (R) in this ase. We introduep� =rK��K33 Rk; s = R?; z� =sa(�)K�� :After the integration over the qk, Iexp�ll0 (R) beomesIexp�ll0 (R) = �2pK��K33 1Z0 dq?q? �� exp��p�qq2? + z2� �qq2? + z2� �� nQ+l;l0J0(sq?) + (�1)�Q�l;l0J2(sq?)o : (43)For the Bessel funtions, we have the relation2�J�(x) = xJ�+1(x) + xJ��1(x);whih for � = 1 givesJ2(x) = 2xJ1(x)� J0(x):The orresponding integrals involving J1(x) and J0(x)are given by1Z0 dq?q? e�p�pq2?+z2�qq2? + z2� J0(sq?) = e�z�pp2�+s2qp2� + s2 ; (44)1Z0 dq? e�p�pq2?+z2�qq2? + z2� J1(sq?) == 1sz� he�p�z� � e�z�pp2�+s2 i : (45)

Using these relations, we �ndIexp�ll0 (R) = �2pK��K33 nhQ+l;l0 + (�1)�+1Q�l;l0i �� exp��z�qp2� + s2 �qp2� + s2 + (�1)�Q�l;l0 2s2z� �� hexp (�p�z�)� exp��z�qp2� + s2 �io : (46)The pair interation potential is then given byUpp0 = � 1(2�)3 �� bApl bAp0l0 [Iexp1ll0 (rp � rp0) + Iexp2ll0 (rp � rp0)℄ : (47)This is the potential of the elasti interation betweenany partiles in the diagonal approximation. It de-pends on the three omponents of the radius-vetorR = rp � rp0 between partiles.In the one-onstant approximation whereK�� = K33 = K, the potential depends only onthe salar of the vetor R,Upp0 = �Q+l;l04�K bApl bAp0l0 �exp(�� jrp � rp0 j)jrp�rp0 j � ; (48)��1 (�) =s Ka(�) : (49)It is learly seen that olletive distortions of thediretor lead to the sreening of the pair interationpotential with the sreening length��1 �pK=WS(where W is the absolute value of the anhoring en-ergy and S is the area of the partile). This sreeningours both for the homeotropi and for the planar an-horing. Beause the onentration is only involved inthe inverse sreening length �, the limit as  �! 0 gives� = 0 and brings us bak to the unsreened result of Levand Tomhuk [1℄, whih is equivalent to the result ofLopatnikov and Namiot [24℄ for asymmetri ylinders.All this is true only if ��1 � hli ; where hli = 1= 3p isthe average distane between partiles. We thus writethe ondition on the anhoring strength under whihour approah is appliable:W � K3pS : (50)878



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Colletive e�ets in doped nemati liquid rystals2.3.1. Field-indued trigonometri sreeningIf the grains have the magneti or eletri moment,the external magneti or eletri �eld an hange theangle � between them and the diretor, whih an re-sult in a(�) < 0. To �nd the potential in this ase, wemust replae z� ! �iz�in (46) and take half the sum of the two expressions,Itrig�ll0 (R) = 12 hIexp�ll0 (iz�;R) + Iexp�ll0 (�iz�;R)i ; (51)whih givesItrig�ll0 (R) = �2pK��K33 �hQ+l;l0 + (�1)�+1Q�l;l0i �� os�z�qp2� + s2 �qp2� + s2 + (�1)�+1Q�l;l0 �� 2s2z� hsin(p�z�)� sin(z�qp2� + s2)i� : (52)The pair interation potential then takes the formUpp0 = � 1(2�)3 �� bApl bAp0l0 hItrig1ll0 (rp � rp0 ) + Itrig2ll0 (rp � rp0)i : (53)In the one-onstant approximation, this beomesUpp0 = �Q+l;l04�K bApl bAp0l0 �os(� jrp � rp0 j)jrp � rp0 j � ; (54)where ��1 (�) =s K ja(�)j :The sreening beomes trigonometrial. We have ob-tained this result in the diagonal approximation afteraveraging over the azimuthal angle ': Beyond the di-agonal approximation, the sreening length ��1 ('; �)atually depends on the azimuth, and the exponentialsreening ��1 ('; �) is therefore di�erent in di�erentdiretions. Changing the external �eld hanges the an-gle �; and at a ertain ritial angle �; the sreen-ing length ��1 ('; �) an beome in�nite in some di-retions determined by '; the sreening thus vanishesalong these diretions. Subsequently inreasing the�eld makes the sreening trigonometrial along thesediretions. The sreening is therefore exponential alongertain diretions and is trigonometrial along others,but it is absent on the intersetions.

H1H0
nm �H00 < � < �=2Fig. 2. Aggregation of magneti grains in a ferrone-mati upon appliation of the magneti �eld3. EXPLANATION OF THE CELLULARTEXTURE IN FERRONEMATICSIn 1970, Brohard and de Gennes proposed dop-ing the liquid rystal matrix with ferromagneti grainsto allow the oupling of the liquid rystal moleularorientation to weak external �elds [19℄. The authorstreated suh a system theoretially and predited theFreederiks e�et in weak magneti �elds H � 10 G.The doped matrix therefore exhibits a olletive orien-tational distortion in weak magneti �elds. They alsopredited segregation e�ets, i.e., a smooth hange ofthe grain onentration (R) from point to point inthe magneti �eld. In [2℄, the authors experimentallyobserved the olletive behavior in the MBBA dopedwith magneti grains, whih is exhibited as a long-rangeuniform distortion of the moleular orientation of theentire sample upon appliation of a weak magneti �eldH < 1 G. In that experiment, the grains were oatedwith DMOAP, whih provides homeotropi anhoringon their surfaes, thereby making the magneti grainslie perpendiular to the nemati diretor in the abseneof the magneti �eld.This system was theoretially studied by Burylovand Raikher [21, 22℄. It was shown that under apply-ing the magneti �eld H , there is an angle between thegrain dipole moment diretionm (whih is the unit ve-tor along the grain) and the diretor n0; the angle isdi�erent from �=2 or 0 for a �nite anhoring, as shownin Fig. 2.879



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001To desribe the experimental results on the depen-dene of the �eld-indued birefringene on the strengthof the applied �eld, on the onentration of the mag-neti dopant, and on the thikness of the nemati ell,Burylov and Raikher proposed the free energy densityfuntionalF = 12 �K11(divn)2 +K22(n � rotn)2++ K33[n� rotn℄2���Msf(m �H) + fkbT ln fv � fWA(n �m)2d ; (55)where f = v is the volume fration oupied by thepartiles, v is the partile volume,Ms is the magnetiza-tion inside the grains, d is the diameter, and A � 1 is aonstant. This funtional di�ers from the one proposedby Brohard and de Gennes only by the last term. Thelast term aounts for the weak anhoring under whih0 < � < �=2. Minimization with respet to f (keepingthe number of partiles �xed) leads tof = f0 exp ��(m �H)kbT + WAv(n �m)2dkbT � ; (56)where f0 is found from the total number of grainsf = Nv = Z f(r)dV:It was found that the partiles aumulate in the enterof the ell under applying the magneti �eld (Fig. 2).For weak �elds H < 10 G, the dependene f(z) (wherez is the axis perpendiular to the ell, with z = 0 inthe enter) is given by [21℄f(z) = f �1 + �2D2(1� 12z2=D2)48�2 � (57)where � = � K33v2fkbT �1=2 ;D is the thikness of the ell (D � 100�m),� =MsvH=kbT; Ms � 340 G;and � � 2 � 10�15 m3: At higher �elds, the onentra-tion in the enter is inreased faster, whih was provedby omputer simulations. But on reahing the �eldH � 30 G, experiment shows [2℄ that the uniform ori-entational distortion is replaed by a new �eld-induedellular texture with the ells having dimensions on theorder of tens mirometers. At the ritial onentrationin the enter, magneti partiles lump into aggregates.

This lumping had no explanation, beause the mag-neti dipole�dipole interation is muh smaller than theinteration with the external magneti �eld. Indeed,the magneti moment � =Msv indues the interationEdd = �2=R3;where R is the average distane between partiles,R�3 �  � 1010 m3, and therefore, Edd � 4�10�15 erg.The energy of the interation with the external mag-neti �eld H � 10 G is EH = �H � 3 � 10�12 erg, andhene, EH � Edd.We explain this �eld-indued ellular texture by thelumping of the grains aused by elasti deformationsof the diretor, i.e., by the elasti interation betweenpartiles. In the one-onstant approximation, this po-tential is given by Eq. (48). In the operators bApl in (32),we keep only the �rst termbAl = �lm (kl � n0) ;beause the other terms give higher powers in 1=R. Forthe ylinder, the tensor�lm = 2 I dsW (s)�l(s)�m(s)has the omponents�11 = �22 = dL�W; �33 = d2�W;and �lm = 0 for the others. Hene,�33=�11 = d=L � 0:1;and we an neglet �33. We thus obtainUyl(R) = ��211 sin2 � os2 �4�K exp(�� (�)R)R : (58)Cylindrial grains therefore attrat eah other in a-ordane with the Yukawa law if � 6= 0; �=2, whih ispossible in the inlined external �eld. In the abseneof the �eld, the equilibrium orientations are � = 0; �=2(dependening on the planar or normal anhoring [25℄)and the potential beomes that obtained by Lopatnikovand Namiot [24℄, whih is proportional to 1=R3. We sete = �211 sin2 � os2 �4�K :We next onsider the system of partiles with theonentration  and the interation lawU(r) = �eexp(��r)r :880



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Colletive e�ets in doped nemati liquid rystalsThe free energy density of this system is written asF = kTv Z f(R) ln f(R)dV ++ 12v2 Z f(R)f(R+ r)U(r)dRdr: (59)We must �nd the ondition for the loss of stabil-ity in this system of attrating partiles. We write theonentration as f(R) = f0 + Æf(R);where f0 is the ground volume fration. Expandingf(R+ r) � f(R) + (r � r)f(R) + 12(r � r)2f(R);we obtainF � F0 = 12 Z NÆf2(R) +M (rÆf)2 ; (60)N = 2kTv + 1v2 1Zr0 U(r)dr;
M = � 12v2 1Zr0 U(r)r2dr;where r0 is the size of the partile. Inasmuh as U < 0,a phase transition ours for N < 0. In our ase,�r0 � 1 and we an therefore writeN � 2kTf0v � 4�e�2v2 ;M � 12�e�4v2 :Below the ritial point,N � 4�e�2v2 :The length of the �rst instability islinst =r2MN � 1� : (61)As disussed above, linst � 30�m, whih is in a goodagreement with the experimental size of the ells [2℄.

4. CONCLUSIONSWe have derived the potential interation for parti-les of the ordinary shape doped in the nemati liquidrystal. We have taken the olletive sreening e�etsinto aount, whih is essential for the real olloid sys-tems. It is found that the shape of the partiles es-sentially in�uenes the sreening e�ets, whih existfor both the homeotropi and the planar anhoring.Sreening is absent for spherial partiles. Anisotropipartiles (e.g., ylinders) with the magneti or eletrimoment in the presene of the inlined external mag-neti or eletri �eld indue osillations in the diretordistribution with the period about � � 10�100�m de-pending on the anhoring, the onentration, and themagnitude of the external �eld. In this ase, seletivesattering of the eletromagneti waves on these osil-lations may be observed for eletromagneti waves inthis range.It is found that ylindrial grains inlined to the di-retor attrat via the Yukawa law. This explains theellular texture in ferronematis. Appliation of theexternal magneti �eld hanges the orientation of themagneti grains with respet to the diretor, whih anlead to essentially hanging the sreening e�ets. Inpartiular, this an lead to the trigonometri sreeningof the pair interation.Colletive e�ets in doped nemati liquid rystalsstrongly depend on the anhoring strength, on thepartile shape and onentration, and on external�elds and make DNLC a marvellous medium for afurther experimental and theoretial exploration of thedi�erent strutures originating from deformations ofthe diretor �eld.We thank P. M. Tomhuk for very helpful disus-sions and H. Stark for sending us his results before pub-liation. One of us (B. I. L.) gratefully aknowledgesthe �nanial support by the UNTC through Grant� 637. REFERENCES1. B. I. Lev and P. M. Tomhuk, Phys. Rev. E 59, 591(1999).2. S. H. Chen and N. M. Amer, Phys. Rev. Lett. 51, 2298(1983).3. D. A. Soville, W. B. Russel, and W. R. Showaiter, Col-loidal Dispersions, Cambridge University Press, Cam-bridge (1989).8 ÆÝÒÔ, âûï. 4 (10) 881
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