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SHORT OPTICAL PULSE POLARIZATION DYNAMICSIN A NONLINEAR BIREFRINGENT DOPED FIBERS. O. Elyutin *, A. I. MaimistovMosow State Engineering Physis Institute115409, Mosow, RussiaSubmitted 29 May 2001Numerial solutions are obtained of the full self-onsistent system of equations for the ounter-rotating polar-ization omponents of the �eld of a short optial pulse propagating in a birefringent nonlinear �ber and in theensemble of the energy-level degenerate doped resonane atoms implanted in the �ber material. In every ross-setion of the �ber, the elliptiity of the polarized wave experienes a omplex evolution in time aompaniedby rapid hanges of the azimuthal angle due to the interplay of the dispersion and the Kerr nonlinear self- andross-phase modulation. The reiproal e�et of the impurities on the traveling pulse auses osillations of thepulse envelope that an ompletely distort the shape of the input signal, while the resonane absorption andrive the birefringene proess from the nonlinear regime bak to the linear one.PACS: 42.81.Gs, 42.65.Tg, 42.50.Md1. INTRODUCTIONMuh is known about the propagation of short op-tial pulses in nonlinear �bers [1�3℄. In a nonlinear op-tial �ber, the propagation of distortionless pulses anbe realized under onditions where the amplitude self-modulation e�ets ompensate for the linear dispersion.In partiular, for intensities at whih the dieletri po-larizability has a ubi �eld response (the Kerr non-linearity), the envelopes of quasimonohromati pulsesare approximated by optial solitons. In the axisym-metri optial �ber, the fundamental mode onsists oftwo opropagating and perpendiularly polarized lin-ear �elds. Non-axisymmetri imperfetions to the �berdestroy this polarization degeneray and introdue thelinear birefringene � a di�erene in the propagationharateristi between the two polarizations. Further-more, for a nonlinear �ber, the amplitude ouplingauses an additional self-indued birefringene via theross-phase modulation. Ativating the �ber by reso-nane impurities, e.g., rare-earth ions, has given rise toan entire industry of �ber lasers and ampli�ers whosephysis is extensively disussed in the literature (see [4℄and referenes therein).In this paper, our approah is to onsider the phys-*E-mail: elyutin�star.mephi.ru, sergeipe�mtu-net.ru

ial system in two assoiated parts. The �rst is a shortoptial pulse propagating in a nonlinear, dispersive andbirefringent �ber. The seond is an ensemble of two-level resonane atoms immersed in the �ber host ma-terial. The �rst part is modeled by the full �ber equa-tions, broadly in the form of two oupled nonlinearShrödinger (NLS) equations. The seond is governedby a system of Bloh equations oupled to the �berpart by the resonane polarization.Disregarding the linear birefringene, the di�ereneof the group veloities of the polarized modes (i.e., thewalk-o� e�et), and the polarization indued in the res-onant subsystem, the nonlinear equations for the �eldomponents are an example of a ompletely integrablesystem [5; 6℄. Under ertain onditions, a short optialpulse in a resonant medium an in turn evolve into asteady-state solitary wave (a 2�-pulse) [7℄. This meansthat in a model of this type, one ould ideally observethe oexistene of the self-indued transpareny (SIT)and NLS solitons [8�10℄. But this an hardly our fora moderately intense pulse in realisti doped �bers be-ause the disparity in the spatial sales and the pulseenergy for the SIT solitons and optial solitons are verysubstantial in a nonlinear �ber: one 2� SIT pulse or-responds to hundreds of NLS solitons by power.The general problem then apparently redues to twoharateristi ases: (i) the Kerr nonlinearity and bire-846



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short optial pulse polarization dynamis : : :fringene e�et on the oherent propagation of shortpulses in a short doped �ber when the dispersion ofgroup veloities and the walk-o� e�et are insigni�ant,(ii) the weak e�et of the resonant absorption and re-fration on the oupled soliton-like pulse propagation ina nonlinear birefringent �ber. In this paper, we onen-trate on the latter ase. Basially, both the �ber e�etsand the two-level medium an a�et the polarizationstate of the propagating light wave. In vetor nonlin-ear wave equations, all the ross terms (linear birefrin-gene, power-dependent ross-phase modulation, andthe group veloity mismath) ontribute to variationsof the polarization states [11℄. At the same time, level-degenerate atoms possess their own polarization prop-erties that have been disussed in numerous papers de-voted, e.g., to polarization features of the photon�ehoe�et [2℄. The eentriity and polarization ellipse ori-entation an alter aross the width of a 2�-pulse indegenerate self-indued transpareny [12; 13℄.In this paper, we onsider a short optial pulsepropagation in a nonlinear birefringent doped �ber bynumerially solving the self-onsistent system of equa-tions for the optial �eld and the degenerate two-levelmedium. In the ourse of disussion, we introdue insuession the onventional �ber attributes (birefrin-gene, dispersion, Kerr nonlinearity, and walk-o� ef-fet) followed by the resonane interation of the lightpulse with the impurity atoms in order to observe boththe separate and the ombined in�uene of these e�etson the dynamis of polarization states and the wave-forms of polarization modes.2. POLARIZED WAVES IN A CUBIC MEDIUMWITH RESONANT IMPURITIESWe onsider the eletromagneti wave propagationin an optial birefringent �ber with the ubi (Kerr)nonlinearity. We let this �ber ontain doped two-levelatoms with the transition energy in resonane with thefrequeny of the arrier. The desription of the solitarywave propagation is onventionally based on the re-dued Maxwell equations [9; 14�16℄ omplemented withthe Bloh equations [5℄ determining the evolution of theresonane subsystem. Hereafter, we follow the works byBoardman and Cooper [9; 14℄, where the propagationof polarized pulses in the Kerr medium was thoroughlyobserved. The resonane ontribution is onsidered inthe same way as in [5℄.We write the eletri �eld vetor of the optial waveas E = Exex + Eyey, where ex and ey are orthogonalvetors in the x and y diretions. The wave propagates

in the z diretion. Using the slowly varying (omplex)envelope approximation (SVEA), we an writeEx = Ex(z; t)	(x; y) exp [i(�xz � !0t)℄ ;Ey = Ey(z; t)	(x; y) exp [i(�yz � !0t)℄ ;where !0 is the arrier frequeny and �x(�y) is the lin-ear propagation onstant of the slow (fast) prinipalaxis of the birefringent �ber [9; 14�16℄.The radial distribution of the eletri �eld in the�ber is desribed by the mode funtion 	(x; y). Weassume that the propagation onstants slightly varyfrom some average value � suh that �x = � + ��and �y = � � ��. The omplex envelopes are ex-pressed in terms of real amplitudes and phases slowlyvarying in spae and time, Ex = Rx exp[i'x℄ andEy = Ry exp[i'y℄. The phases are given by 'x = ~'+ �and 'y = ~'� �, where ~' is the average value. Finally,the eletri �eld omponents are given byEx = Ax(z; t)	(x; y) exp [i�z � i!0t℄ ;Ey = Ay(z; t)	(x; y) exp [i�z � i!0t℄ ;where Ax = Rx exp [i ( ~'+ �+��z)℄ ;Ay = Ry exp [i ( ~'� ����z)℄ :The presentation of the phase terms in the aboveform is attributable to the following e�ets: the in-trinsi birefringene (i.e., the birefringene that wouldexist in the linear limit) is represented by ���z andthe self-phase modulation is desribed by ��(t; z). In aweakly nonlinear and weakly birefringent medium, suhas the typial glasses of optial �bres, the nonlinearityis assumed to be instantaneous. Generally speaking,the validity of this assumption depends on the pulserise time. If the optial pulse beomes narrower, theassumption is no longer valid. We ignore this e�et inthis paper. We onsider a Kerr-type nonlinear mediumassuming that (i) the dieletri medium is isotropi, (ii)the third harmoni generation an be negleted, and(iii) the seond-order nonlinear suseptibility is identi-ally zero. Therefore, the slowly varying envelope ofthe nonresonane ubi polarization PKerr(z; t) isPKerr = 2�(3)1122(E � E�) + �(3)1221(E � E)E�;where the spatial and temporal dispersion is assumedto be absent. The above equality written in projetionsbeomesPKerrx = �(a+ b)jAxj2++ fa+ b exp [�4i(�+��z)℄g jAyj2�Ax; (1)847



S. O. Elyutin, A. I. Maimistov ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001PKerry = �(a+ b)jAyj2++ fa+ b exp [4i(�+��z)℄g jAxj2�Ay; (2)where we use the notation 2�(3)1122 = a and �(3)1221 = b.The Maxwell equations with nonlinear terms (1)and (2) and the resonane polarization inluded pro-vide a set of oupled evolutionary equations for theamplitudes Ax and Ay, with the seond-order groupveloity dispersion taken into aount:i�Ax�z + iv�1x �Ax�t � �x �2Ax�t2 +��Ax ++mx �a11jAxj2 + a12jAy j2�Ax + qPx = 0; (3)i�Ay�z + iv�1y �Ay�t � �y �2Ay�t2 ���Ay ++my �a21jAxj2 + a22jAyj2�Ay + qPy = 0: (4)In Eqs. (3) and (4), the e�et of the resonane im-purities is referred to by the slowly varying polariza-tion envelopes Px and Py. The oe�ient is de�nedin Eq. (15) in what follows. Nonresonane losses areignored in (3) and (4) while the terms proportional toPx and Py represent the resonane absorption and re-fration e�ets. In Eqs. (3) and (4), the following oef-�ients are introdued:v�1x;y = d�x;yd! ; �x;y = 12 d2�x;yd!2 ; mx;y = !2022�x;y :The self-modulation e�et is represented by a11 anda22. The fators a12 and a21 are responsible for ross-modulation. The e�etive nonlinear interation param-eter �eff is taken as a fator exlusively depending onthe ratio of the material suseptibility tensor elements,i.e., on �(3)1221=�(3)1122. Thus, we havea11 = a22 = �eff ; a12 = a+ b exp [�4i(�+��z)℄a+ b �eff ;a21 = a+ b exp [4i(�+��z)℄a+ b �eff ;where the e�etive nonlinear interation parameter �effis de�ned as �eff = R �(3)1122(�)j	(�)j4d�R j	(�)j2d� :For the silia optial �ber, the third-order suseptibil-ity mainly ours beause of a nonlinear eletroni re-sponse and beause a = 2b, and therefore,a12 = �eff �23 + 13 exp [�4i(�+��z)℄� ;

a21 = �eff �23 + 13 exp [4i(�+��z)℄� :If we use the relationsexp [4i(�+��z)℄ = ExE�yE�xEy = AxA�yA�xAy ;exp [�4i(�+��z)℄ = EyE�xE�yEx = AyA�xA�yAx ;the nonlinear terms in Eqs. (3) and (4) beome�a11jAxj2 + a12jAy j2�Ax == �eff �jAxj2Ax + 23 jAyj2Ax + 13A�xA2y� ;�a21jAxj2 + a22jAy j2�Ay == �eff �jAyj2Ay + 23 jAxj2Ax + 13A�yA2x� :The system of equations (3), (4) an now be rewrittenin the �nal formi�Ax�z + iv�1x �Ax�t � �x �2Ax�t2 +��Ax ++mx�eff �jAxj2Ax+23 jAy j2Ax + 13A�xA2y�++ qPx = 0; (5)i�Ay�z + iv�1y �Ay�t � �y �2Ay�t2 ���Ay ++my�eff �jAyj2Ay + 23 jAxj2Ax + 13A�yA2x�++ qPy = 0: (6)Equations (5) and (6) desribe the propagation of a po-larized radiation pulse in the birefringent �ber dopedby resonane impurities. The eletri �eld of the pulseis expressed by the Cartesian omponents. In order toemphasize the irular nature of birefringene, it seemsreasonable to express the evolution equations in termsof the right- and left-hand irularly polarized �eldsE1 = Ex + iEy; E2 = Ex � iEy:The orresponding omplex envelopes an be writtenas A1 = Ax + iAy; A2 = Ax � iAy:It is worth noting thatA2x +A2y = A1A2; jAxj2 + jAy j2 = jA1j2 + jA2j22 :848



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short optial pulse polarization dynamis : : :Hereafter, we set �x = �y = � and mx = my = m. Forthe sake of generality, we also assume that the groupveloities of the di�erent polarization omponents aredi�erent. To proeed to numerial simulations of thenonlinear propagation of polarised pulses, it is onve-nient to introdue the dimensionless quantitiesA1;2 = A0e1;2; z = �L; � = �t� zv� t�10 ;where t0 is the harateristi time sale (whih an beequal to the initial pulse duration tp0), L and A0 are thenormalizing length and amplitude respetively, and theveloity of the time frame v is the veloity of the �enterof gravity� of the optial pulse, v�1 = (v�11 + v�12 )=2.In terms of the new variables, the system of equa-tions (4) beomesi�e1�� + i 1̀g �e2�� � s̀d �2e1��2 + 1̀ e2 ++ 13`k �je1j2 + 2je2j2� e1 +�LqA0�P1 = 0; (7)i�e2�� + i 1̀g �e1�� � s̀d �2e2��2 + 1̀ e1 ++ 13`k �je2j2 + 2je1j2� e2 +�LqA0�P2 = 0; (8)where P1 = Px + iPy and P2 = Px � iPy.In Eqs. (7) and (8), the e�et of resonane impu-rities is represented by the slowly varying polarizationenvelopes P1 and P2. The parameters `g, `, `k, and `dare `�1g = LLg = L2t0 � 1v1 � 1v2� ;`�1 = LL = ��L;`�1k = LLk = L�effA20 !2022� ; (9)s = sign�; `�1d = LLd = Lt20 j�j;where Ld = t20j�j ; L = 1�� ;Lk = 2�2!20�effA20 ; Lg = 2v1v2t0v2 � v1 : (10)The length Ld haraterizes the dispersion of thegroup veloities in eah polarization mode. The quan-tity L stands for the oupling length. The orrespond-ing terms in Eqs. (7) and (8) ouple the right and

left irular omponents of the eletromagneti wave,thereby implying the linear birefringene e�et. Theself- and ross-modulation e�ets reveal at the lengthLk. The di�erene between the group veloities v1 andv2 of the ounter-rotating polarized light waves ausesa spatial divergene of the di�erently polarized ompo-nents of the optial pulse (the walk-o� e�et) over theharateristi length Lg. A simple estimate gives theratio ``g � �4�(tp0) :It follows that in the pioseond pulse range, the termsrelated to the group veloities are small ompared tothe linear oupling terms. However, the walk-o� e�etan be important when we pass to the femto-seondpulse duration domain.Equations (7) and (8) must be supplemented byequations desribing the temporal behavior of the den-sity matrix elements for the ensemble of two-level atomsimmersed in the �ber host material whose levels are de-generate with respet to the projetions of the angularmomenta ja and jb. For de�niteness, we onsider thease where ja = 1 ! jb = 0. The resonane tran-sition is haraterised by the dipole moment elementd13 = d23 = d�31 = d�32 = d. The e�etive matrix ele-ment of the dipole transition is given bydeff = R d(�)j	(�)j2d�R j	(�)j2d� :The vetor � lies in the plane normal to the optial�ber axis.The temporal behavior of the resonant impuritiesis governed by a system of the generalized Bloh equa-tions [13℄. For slowly varying elements of the densitymatrix �̂ desribing the transition between the statesja;mi = jja = 1, m = �1i, and jbi = jjb = 0, m = 0i,we introdue the notation�12 = ha;�1j�̂ja;+1i; �13 = ha;�1j�̂jbi;�23 = ha;+1j�̂jbi; �11 = ha;�1j�̂ja;�1i;�22 = ha;+1j�̂ja;+1i; �33 = hbj�̂jbi;�kl = ��lk ; l; k = 1; 2; 3: (11)The initial onditions are given by�33(0) = 1; �22(0) = �11(0) = 0;�12(0) = �13(0) = �23(0) = 0:The hange of variables �12 = m21, �21 = m12,�11 = m11, �22 = m22, �33 = n, p1 = ��13, p2 = ��236 ÆÝÒÔ, âûï. 4 (10) 849



S. O. Elyutin, A. I. Maimistov ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001allows writing the generalized system of Bloh equa-tions in the ompat form�p��� = i�p� � if  X�0 e�0m�0� � e�n! ; (12)�m��0�� = �if(e��p�0 � e�0p��); (13)�n�� = �ifX� (e�p�� � e��p�); �; �0 = 1; 2: (14)The initial onditions are given by n(0) = 1 for theground level population, p�(0) = 0 for the polariza-tion, and m��0(0) = 0. We also assume that the pulseduration is muh shorter than all the relaxation timesin the resonane subsystem, whih allows us to omit therelaxation terms in Eqs. (12)�(14). The dimensionlessvariables p� entering Eqs. (12)�(14) are related to thepolarization terms in Eqs. (7) and (8) by�LqA0�P� = LLrP� = LLr hp�i = 1̀r hp�i; (15)where q = 2�!0nadeffn(!0) ;Lr = fL(2�)r , na is the onentration of the impurityatoms, and h i denotes the summation over all atomswith the frequeny detunings � = �!t0 from the en-ter of the inhomogeneously broadened line. In (15), theharateristi length of the resonane interation isL(2�)r = n~�d2eff!0nat0 : (16)In the system of equations (12)�(13) and in expression(15), f = deffA0t02~ = A0A2�is the normalized e�etive osillation frequeny of thematerial variables of the resonane subsystem a�etedby the �eld of the amplitude A0 and A2� is the ampli-tude of the SIT 2�-pulse.The oupled system of Maxwell-Bloh equations(7)�(8) and (12)�(14) provides the mathematial ba-sis for numerially simulating the propagation of shortpulses of irularly polarized light in a nonlinear waveg-uide doped by resonane impurities. The solution of�eld equations (7)�(8) was obtained using one of thepopular [17℄ �nite di�erene impliit�expliit Crank�Niolson numerial shemes, where the desired au-ray 0.001 was reahed by iterations. Bloh equations

(12)�(14) oupled to �eld equations (7)�(8) by the reso-nane polarization terms were solved by the preditor�orretor proedure. The preditor�orretor was runat every iteration in the Crank�Niolson algorithm un-til the auray about 0.001 was ahieved for the polar-ization omponents p� in Eqs. (12)�(14). Although theode ould produe the integration over the inhomoge-neously broadened line of the resonane absorption, werestrited it to the homogeneous ase and the exatresonane at this stage of numerial simulation, i.e., to� = 0 in (12). The results of alulations were theabsolute value of the omplex amplitudes e1;2(�; �) ofthe ounter-rotating right- and left-handed oppositelypolarized �elds. Following Winful [18℄, we examinedthe polarization state of the �eld in the optial pulse interms of the azimuthal angle�(�; �) = arg �2and the elliptiity "(�; �) = j�j � 1j�j+ 1 ;where � = e1e�12 is a omplex quantity. The hara-teristi values of " are given by " = 0 for the linearlypolarized light, " = +1 for the purely right-hand ir-ularly polarized light, and " = �1 for the purely left-hand irularly polarized light. The parameter � is theangle between the axis of the polarization ellipse andthe slow prinipal axis of the birefringent �ber. It anvary within the interval (��=4; �=4).The launhed pulses are assumed to have the sehform, e1;2(0; �) = em1;2 seh� � � �0Æ � ; (17)where Æ = tp0t�10 and �0 is the temporal oordinate ofthe input pulse enter.3. NUMERICAL ESTIMATESWe let the group veloity dispersion D = 4����20of the silia-based monomode �ber host material betypially D = 15 ps�nm�1�km�1 at �0 = 1:55�m andthe nonlinear index n2 � 10�13 esu. It then followsthat � = 12 ����d2�d!2 ���� � 10�28 s2 � m�1:The e�etive nonlinear interation parameter is�eff � n2n2� � 2:3 � 10�14 esu:850



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short optial pulse polarization dynamis : : :We adopt the value d � 5 � 10�21 esu (the tran-sition 4I5=2 ! 4I5=2 in Er3+ ions) and the impu-rity onentration na � 1018 m�3 that orrespondsto realisti samples [19℄. With the input pulse du-ration tp0 = t0 = 0:1 ps, the dispersion length isLd = t20��1 � 102 m. The polarization mode ou-pling e�et ours over the distaneL = 1�� � �02��n � 25 m:Here, we set �n � 10�6 [20℄. The e�et of the groupveloity mismath beomes notieable at the harater-isti distaneLg = 2v1v2v2 � v1 t0 � 2t0�n � 6 � 104 m:The spatial sale of the Kerr self- and ross-modulationproess Lk depends on the �eld amplitude A0 asLk � n�0��effA20 :The balane between the �ber group veloity disper-sion and the nonlinear pulse ompression ours whenLk = Ld. This gives the value of the one-soliton solu-tion amplitude of a single nonlinear Shrödinger equa-tion ANLS =s �n�0�t20�eff � 0:5 � 104 esufor the 0.1 ps pulse duration. The orresponding lengthsale is L(NLS)k � 70 m. The nonlinear Shrödingerone-soliton peak intensity an be estimated asINLS = (ANLS)28� � 4 � 109 W/m2:For omparison, the amplitude of a 0.1 ps 2�-pulse isA2� = 2~d�1t�10 � 4 � 106 esu. The peak intensity ofthe pulse reahes the magnitude I2� � 2 � 1015 W/m2.Another balane equality Lk = L yields the eletri�eld strength A = (2n�n��1eff )1=2 known as the har-ateristi light wave �eld for a ontinuous wave (w) ofa nonlinear diretional oupler [21℄, A � 104 esu, theintensity I � 1:5 � 1010 W/m2. This broadly meansthat for the input �eld amplitude values higher thanA, the nonlinear birefringene initiated by Kerr pro-esses begins to have a notieable e�et.The quantityL(2�)r = n~�02�2nad2t0 � 5 � 102 mis the distane in the sample over whih the reip-roal reation of the medium in the form of polar-ization and population di�erenes develops to pro-due oherent transients, e.g., the self-indued trans-pareny [13℄, photon ehoes [22; 23℄, optial nutations,

breather waves [24℄, et. For signals with a small pulsearea � [24℄, � = d~�1 1Z�1 R(z; t)dt;the parameter L(2�)r serves as the absorptionlength. The pulse area of the NLS soliton �NLS == �d~�1t0ANLS = 3 � 10�3� is extremely small inomparison with �SIT = 2�.4. EVOLUTION OF POLARIZATION STATESIN A FIBER. NUMERICAL ANALYSISWe an now proeed to examine typial numerialresults. We fous on the diagnosti of the temporal pro-�le of the �eld amplitude and polarization parameters" and � at every ross-setion of the nonlinear birefrin-gent �ber. We assume the light wave to be in exatresonane with the homogeneously broadened atomitransition, i.e., � = 0. In order not to overompliatethe problem, we also ignore the walk-o� e�et in thispaper, although we observed some of its obvious resultsin our preliminary omputations. In the numerial sim-ulations demonstrated in Figs. 1�5 below, amplitudes(11) of the input pulses were hosen as em1 = p3 =2and em2 = 1=2, while the respetive initial phases were0 and �. We also set f = 0:0015, thus assuming thatthe resonane interation proess is not a strong per-turbation to the �ber e�ets.The propagation of a light pulse in a birefrin-gent �ber is aompanied by the two-way ouplingbetween the orthogonal ounter-rotating polarizationmodes with the spatial beat period 2����1. No dis-persion is involved in the numerial simulation at thisstage. For the linear undoped �ber (i.e., when the on-tribution of the Kerr self- and ross-modulation e�etan be negleted) the solution of Eqs. (7) and (8) isquite simple (Fig. 1a, b). The period of the partial en-ergy transfer between the modes is `b = �`. It is seenfrom the 3D plot of the azimuth � and the elliptiity "(Fig. 1, d) that both funtions are uniform aross thepulse and osillate in the ourse of propagation insidethe �ber [18℄. It is worth to note that if the launhedpulse amplitudes were em1 = 1, em2 = 0, the azimuthangle � would hange from ��=4 to �=4 and the polar-ization state would hange from the linear polarization(" = 0) to a irular polarization of the opposite dire-tion (" = �1).When both polarizations are exited in an asym-metri manner, the elliptiity osillates between the el-liptial lokwise and elliptial antilokwise polariza-851 6*
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Fig. 1. a, b � normalized �eld strengths in ounter-rotating polarization modes in birefringent (` = 0:25), linear (`k =1),and dispersionless (`d =1) �ber; , d� spae�time evolution of the azimuthal angle � and the elliptiity "; e, f� gray salesurfaes of the funtions �(�; �) and "(�; �); g � phase trajetories of � vs " taken at � = �0 for a di�erent � = (em1e�1m2)2ratio (see in text)852



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short optial pulse polarization dynamis : : :tions. This is learly seen from the gray sale modularsurfae of �(�; �) and "(�; �) (Figs. 1e and 1f). The darkgray up to blak orresponds to the maxima of the plot-ted funtion, while the light gray down to white to theminima. The phase trajetories on the " vs � plane(with " and � alulated at the moments of peak inten-sity of the pulse) parameterized by � are losed irles(Fig. 1g). In this piture, eah trajetory is assoiatedwith a di�erent � = (em1e�1m2)2 ratio. The outer urvepertains to � = 999. The subsequent yles orrespondto � = 99, 9, 3, 1.5, 1.22. The biggest irle is theultimate trajetory related to a nearly net irularlyright-hand polarized light and small irles orrespondto a nearly linearly polarized light. The irle in opendots orresponds to the ase that was numerially in-vestigated: em1 = p3 =2 and em2 = 1=2. This numeri-al piture is in good agreement with the one presentedin [18℄ for the w-waves.With the Kerr and walk-o� e�ets ignored, the om-bined ation of the linear birefringene (` = 0:25) anddispersion (`d = 1:0) provides a well interpretable ef-fet of the intensity hump spreading (Fig. 2a, b) in thedepth of the �ber, as is learly seen in the gray salemap (Fig. 2, d). In this ase, the polarization proper-ties of the travelling �eld (Fig. 2e, f) are quite similar tothose in Fig. 1. The spikes on both sides of the entralarea in Fig. 2e, f are the result of numerial �utuationsprovoking random swithovers of the elliptiity " andthe azimuth � on the wings of the propagating pulse,where the �eld is extremely weak in both polarizations.In Fig. 2g, we display the phase plane (" vs �) for theoupling + dispersion ase for the parameters � = 999,9, 3, 1.22. The value � = 3 orresponds to the aseunder numerial simulations. The plotted urves arequite similar to those in Fig. 1g.The interplay between the linear oupling and theKerr nonlinear phase modulation yields the piturethat was not immediately evident (Fig. 3). We injetedthe pulses of the ounter rotating polarization in the�ber, with the amplitudes of the pulses expressed inphysial units satisfying the onditions Am1 � 2A andAm2 � A. This orresponds to hoosing ` = 0:25 and`k = 0:05 for the harateristi lengths. In this ase,one ould expet the Kerr ompressing every time theenergy ouples bak to the mode from the onjuntedpolarization state. Instead, we observe the interferenebetween the oupling proesses with di�erent beat pe-riods. The oupling is revealed in the form of the in-serted yles when every new growth of the amplitudebegins while the previous one has not yet �nished. Thephysial explanation may be found if one notes thatboth input amplitudes are hosen to be of the order

of the ritial strength of the eletri �eld A for wswithing. For suh intensities, the Kerr proesses be-ome su�iently strong to make the birefringene anonlinear proess and the beat period an even growunlimitedly [25�28℄. Attention must be drawn to thefat that the periodiity of the onsets of the bak andforth oupling yles approahes the value presribedby the hoie ` = 0:25 (ompare with Fig. 1). Thelinear behavior ours only on the slopes of the pulseenvelope, where the �eld intensity has not reahed theritial value. The further growth of the pulse �eldstrength in a pulse envelope fores the beat period toinrease as well. The result is seen in Fig. 3a, b and, d showing the 3D piture and the gray sale map ofthe polarization mode dynamis. The envelopes of the�eld in both polarization modes experiene a tempo-ral ounter-phase modulation in the entral part of thepropagating waveform (Fig. 3h). The modulation of theamplitudes of the ounter rotating polarization modesleads to the osillation of " and � over � in the propa-gating light wave that is learly seen from the gray salemaps in Fig. 3e, f and on the omparative plots of the�elds, elliptiity, and azimuth at the exit from �berplaed in Fig. 3h. Piture g in Fig. 3 shows the ("; �)phase plane for the same values of the parameter � asabove. Unlike the previous ases, the ultimate irle isdistorted, whih agrees with the analysis in [18℄. Thisyle is smeared beause the spatial modulation of thepeak intensity of polarization omponents is omplex.Our alulations presented in Fig. 4 illustrate theombined ation of the linear birefringene, Kerr non-linearity, and dispersion. The dispersion length `d = 1serves as a sale length, while the oupling length `and the Kerr length `k are shorter, `k = 0:1 and` = 0:25. The hoie of parameters ditates the val-ues of the polarization mode amplitudes at the en-trane to the �ber: Am1 � p2A � 2:7ANLS andAm2 = 0:8A � 1:6ANLS. Weak ripples at the edges ofthe omputational grid are due to the time boundaryonditions.The urrent ase is not a ompletely integrableproblem beause of the inter-mode oupling. The prop-agating pulse annot �nd a stable form at least overthe distane onsidered here. In one of our preliminaryomputations under the onditions similar to those inFig. 4, but with `k � 0:05 (i.e., for a greater amplitude),we observed the breaking up of the input pulses of bothpolarizations into two separate subpulses subsequentlysattering aside.The periodial squeezing of the pulse shape, a fea-ture of a high-order NLS solution, produes new os-illations on the wings of the pulse (Fig. 4a, b) be-853
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Fig. 2. a, b � the same as in Fig. 1 for the parameters hosen as `k = 1, ` = 0:25, and `d = 1:0; , d � gray salemaps of the entral parts of pitures a and b; e, f � gray sale maps of the azimuthal angle � and the elliptiity "; g � thesame as in Fig. 1854
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Fig. 3. a, b � normalized �eld strengths in polarization omponents of the pulse propagating in birefringent nonlinear anddispersionless �ber with ` = 0:25, `k = 0:05; , d, e, and f � the same as in Fig. 2; g � the same as in Fig. 1; h � fromtop to bottom: the azimuthal angle �, the elliptiity ", and the polarization mode modules at the exit of the �ber855
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Fig. 4. a, b � normalized �eld strengths in polarization omponents of the pulse for ` = 0:25, `d = 1:0, and `k = 0:1; ,d, e, and f � the same as in Fig. 2; g � polarization mode shapes (absolute values) at the entrane (dashed line) and atthe exit (solid line) of the �ber856



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short optial pulse polarization dynamis : : :ause the Kerr proesses and dispersion are spatiallymismathed. The dispersion spreading is notieable atseveral (� � 4) normalized lengths when the disper-sion hirp �lls almost the entire time window (Fig. 4,d). It is then natural that polarization properties ofthe light wave (i.e., the alternation of dark and lightshades of the gray) map the broadening area of thespatial�temporal osillation of the polarization ompo-nents (Fig. 4e, f) aused by the dispersion, therebymaking the entire piture rather ompliated. As inFig. 3h, the osillations of the �eld remain out of phasein polarization modes (Fig. 4g). We note that thereare fewer oupling periods in Fig. 4a, b than in Fig. 1or Fig. 2. Clearly, the nonlinear narrowing and peakampli�ation drive the propagation of the pulse intoa nonlinear birefringent regime. A further growth ofthe pulse input amplitudes strengthens the inequality`k < `d, thereby making the proess somewhat anal-ogous to that in Fig. 3, plus the dispersion-originatedosillations spreading away of the sharp entral peak.The resonane interation of a short pulse with theensemble of resonane atoms is now added to the on-ventional �ber e�ets as indiated in Eqs. (7)�(8) and(12)�(14). The evolutionary behavior of the ounterirularly polarized omponents with the input ampli-tudes Am1 � 2A � 4ANLS , Am2 � A � 2ANLS isplotted in Fig. 5a, b and , d. We assume the resonaneinteration to be weak by setting f = 0:0015. Underthis ondition, the population di�erenes insigni�antlydeviate from their initial values. The spatial sale ofthe proess is `d = 1:0, whereas `k = 0:05, ` = 0:25,and `r = 0:01. The value of the resonane intera-tion length L(2�)r an be estimated as L(2�)r � 7Ld (see(6)). This means that the total length of the �ber inFig. 5 is about 0:6L(2�)r or 4Ld. The resonane intera-tion proess transfers energy more e�etively than thedispersion o� the pulse to the radiation born by the re-iproal reation of the medium in the pulse after theation region. It is then lear that in omparison withFig. 4, the amplitudes of the humps rapidly derease inthe propagation diretion (Fig. 5a, b).Attention should be drawn to two humps in the en-ter of Fig. 5g. These are the above-mentioned relis ofthe NLS N -soliton break up. The visible asymmetryof the pattern relative to the initial pulse position re-sults from the delayed response of the resonane subset.Generally, we an predit that at longer distanes in-side the doped �ber, the well-evolved dispersion andoherent �ring� e�ets an hardly be distinguished.The polarization properties of the light pulse aredisplayed in the gray sale maps in Fig. 5e, f. It is inter-esting to note that these pitures preserve the periodi

alternation of the regions with the opposite elliptiityand azimuthal angle owing to the linear oupling (seeFig. 2e, f). In our further omputations (not shown),when we set `r = 0:001 for the ten times larger onen-tration of impurities, we saw the resonane osillationsalready �lling the entire (�; �) omputational area atan early stage of the pulse propagation. It was inter-esting to observe how the inrease of the dopant on-entration developed the generi piture of the periodiazimuth and elliptiity variations with the same beatperiod seen in Figs. 1 and 2. Qualitatively, this an beregarded as a result of the resonane absorption whenthe progressive dumping of the �eld humps dereasesthe �eld amplitude below the ritial value of the ele-tri �eld strength A, thereby driving the proess bakinto the linear regime, when ` begins to be shorterthan `k. Anyway, beause the dispersion and the res-onane interation are time-dependent proesses, theyintrodue a temporal modulation to the basi polariza-tion piture onsistently with the linear birefringene.The omparison of our numerial simulation withthe known results [25℄ is displayed in Figs. 6 and 7.The parameters introdued in this paper orrespond tothe analogous quantities in [25, Fig. 1b℄ if we set `d = 2,` = 4, `k = 0:33, and e2m1 = 1:25. This yields the esti-mate Am1 � 4A � 3ANLS , Am2 = 0 in physial unitsfor the input �eld amplitudes in the ases depited inFigs. 6 and 7. In both pitures, we kept the origi-nal [25℄ length of the �ber, although it orresponds to`fiber = 8`d in our onventions. The disrepany orig-inates from renormalizing the fator in the dispersionterm in (5) by the oe�ient 1/2. In Fig. 6, we re-produe the results of [25℄ observing the formation oftwo distint periodiities of the oupling proess be-tween the modes. The pulse shape dynamis (Fig. 6a,b and , d) an be physially interpreted in terms ofthe `=`k ratio, whih in the urrent ase is the biggestof all those desribed above, namely `=`k = 12. Theoupling proess between the modes must then reveala nonlinear behavior beause of the power dependeneof the energy exhange period. In the Ld units, thelinear oupling length (i.e., at low power) should havebeen `b = LbL�1d = �LL�1d = 2�. As a matter of fat,the visual estimate of the beat period in Fig. 6a, b and, d yields `nlb = Lnlb L�1d � 4:5� > `b. We note thatin the ase under onsideration, the period of the typi-al higher-order soliton ompressions beame power de-pendent. This manifests the di�erene between our ap-proah and the ideal ompletely integrable model [29℄.Figure 6e, f shows the gray sale (�; �) maps of theazimuthal angle � and the elliptiity parameter ". It isseen that the time�spae features of the dispersion pro-857
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Fig. 5. a, b � normalized �eld strengths in polarization omponents of the pulse propagating in a �ber with impurities(`r = 0:01). Other parameters are ` = 0:25, `d = 1:0, and `k = 0:05. , d, e, and f � the same as in Figs. 2�4; g �polarization mode modules at the entrane (dashed line) and at the exit (solid line) of the �ber858
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Fig. 6. Pitures a�d show the same as Fig. 4a�d with the parameters `d = 2:0, ` = 4:0, `k = 0:33ess are distintly reprodued. The brightest lines andspots in the region of pulse slopes demonstrate abrupthanges of the polarization state due to a rapid growthor drop of the �eld in one polarization mode omparedto the other.The reiproal reation of resonane impurities onthe �eld of the propagating short pulse an notieablyhange the spae�time piture of polarization dynam-is in the analysis of nonlinear e�ets in a pure �berby Trillo et al. [25℄. For the omputational variant pre-sented in Fig. 7, all the �ber parameters and input pulse
amplitudes remain unaltered with respet to the ase inFig. 6. But in ontrast to the variant in Fig. 6, the �eldof a short propagating pulse is now oupled to the reso-nane subsystem, and therefore, the omplete system inEqs. (7)�(8) and (12)�(14) must be solved numerially.The value of the normalized resonane length was setas `r = 0:01, with the orresponding physial length ofthe resonane interation L(2�)r � 3Ld and the parame-ter f = 0:0015. The population di�erene between theresonane levels (whih was omputed but is not shownhere) remains pratially unhanged beause the areas859
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Fig. 7. Pitures a�d show the same as Fig. 5a�d with the parameters `d = 2:0, ` = 4:0, `k = 0:33, `r = 0:01of the oherent pulses are small.The resonane response hanges the waveform ofthe polarized light. In the urrent ase, the intensityof the interation proess is higher than in Fig. 5 be-ause the resonane interation length is shorter. Theenergy of the input pulse is rapidly transferred to os-illations of the resonane polarization (Fig. 7a, b) inthe region of the retarded ation of the propagatingpulse (Fig. 7, d). The resonane absorption notie-ably weakens the humps for greater �, moving themout of the alulation window. It is interesting that
the intensity damping leads to the restoration of thelinear beat period `b � 2�, and the propagation pro-ess is therefore onverted from a nonlinear regime tothe linear one. Thus, the nonlinear phase modulationand dispersion do not play the leading role in the dy-namis of the pulse. This explains why the maps ofpolarization parameters (Fig. 7e, f) are so �at. In fat,the slow variations in the form of dark and light stripesdue to the linear oupling proess period (Fig. 7e, f)are the only prominent feature of the displayed plots.It is interesting that the osillations of the �eld enve-860



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short optial pulse polarization dynamis : : :lope aused by the retarded reiproal reation of themedium, being in phase, do not produe a modulationof the polarization parameters " and � exept in theviinities of espeially rapid hanges of the �eld.Passing to a higher onentration (`r = 0:001)demonstrates the typial features of the oherent phe-nomena in a resonane medium. In the depth of the�ber, there is no solitary wave; instead, we have a wave-form with the osillating envelope. This wave paketrapidly shifts towards the later times, leaving the alu-lation grid somewhere at � = 6. The polarization prop-erties remain indi�erent to the omplete destrution ofthe pulse and the linear birefringene beat period ispreserved. 5. CONCLUSIONSIn this paper, we have tried to give an india-tion of a rih spae�time dynamis arising from thepropagation of an elliptially polarized light pulse ina nonlinear birefringent doped �ber. The resonaneimpurities in the form of two-level atoms were inludedin the model in addition to the full set of nonlinear�ber e�ets. We have onentrated on the ase ofa weak input �eld, for whih the amplitude of thepulse is about the amplitude of a single NLS pulseand the oupling to the resonane system is thereforenot strong. A trivial aount of the weak e�et ofthe resonane system on the propagating optial pulseleads to a linear absorption. Generally speaking, theoherent interation of short pulses with resonaneatoms is a non-Markovian proess [24; 30℄. Moreover,the degeneration of resonane levels gives the on-tribution to birefringene that is nonloal in time.With the exeption of big detunings o� the resonane,the analytial onsideration of all these e�ets isextremely di�ult. Therefore, a diret numerialsimulation of the pulse evolution is preferable. Buteven within the weak-interation approximation, thegeneral piture proved to be su�iently omplex.The polarization properties of the pulsed light arenonstationary aross the pulse width and an alsodrastially hange in spae. Our numerial simula-tions show that the polarization dynami is basiallyfeatured by the interplay between the Kerr nonlinearself- and ross-phase modulation and dispersion, whilethe linear birefringene leads to a spatial modulationof the azimuthal angle and the elliptiity. There is arange of the input amplitudes where the birefringenebeomes a nonlinear power dependent proess beauseof the Kerr ross-phase modulation, and the power
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