ФЛУКТУАЦИИ В ОГРАНИЧЕННЫХ ЯЧЕЙКАХ ЖИДКИХ КРИСТАЛЛОВ ВО ВНЕШНЕМ ПОЛЕ

А. Ю. Вальков^b, В. П. Романов^a^{*}, М. В. Романов^a

^а Санкт-Петербургский государственный университет 198904, Санкт-Петербург, Россия

^b Санкт-Петербургский институт внешнеэкономических связей, экономики и права 198104, Санкт-Петербург, Россия

Поступила в редакцию 3 апреля 2001 г.

Рассчитаны пространственные корреляционные функции флуктуаций ориентации в ограниченных ячейках смектических и нематических жидких кристаллов. Учитывается влияние внешних полей и конечность энергии сцепления с поверхностью. Рассматриваются случаи положительной и отрицательной анизотропии магнитной восприимчивости или диэлектрической проницаемости. Вычисления основаны на разбиении степеней свободы на объемные и поверхностные и сведении проблемы вычисления континуального интеграла, определяющего корреляционную функцию, к решению уравнения Эйлера с соответствующими граничными условиями первого или третьего рода. Найденные корреляционные функции использованы при описании интенсивности рассеянного света в нематиках для планарной и гомеотропной ориентаций. Показано, в частности, что измерения угловой зависимости интенсивности рассеянного света при различных значениях внешнего поля могут быть надежным методом определения энергий сцепления жидкого кристалла с подложкой.

PACS: 61.30.-v, 61.30.Gd, 68.10.Cr, 31.15.Kb

1. ВВЕДЕНИЕ

Одной из существенных особенностей жидких кристаллов (ЖК) является очень малая энергия ориентационного плавления. Это приводит к тому, что в упорядоченной фазе ориентация системы может значительно изменяться за счет очень слабых воздействий, т.е. восприимчивость системы чрезвычайно высока. В результате в большинстве типов ЖК существуют очень сильные флуктуации ориентации [1]. Флуктуации оказывают очень сильное влияние на многие свойства ЖК. Это касается поведения системы в окрестности фазовых переходов [1–5], оптических свойств, и прежде всего рассеяния света [1, 6], формирования вязкоупругих коэффициентов [1], флуктуационного вклада в притяжение между стенками [7–10] и т. д.

Существенной особенностью флуктуаций ориентации в ЖК является бесконечный радиус их корреляции. В такой ситуации важную роль начинают играть факторы, которыми в большинстве других систем можно пренебречь. Это, в первую очередь, касается влияния внешних полей [1, 11, 12], взаимодействия ЖК с ограничивающей поверхностью [5, 8, 11, 13], конечных размеров и формы образца [3, 8, 14]. Данная проблема стала весьма актуальной в связи с многочисленными применениями ЖК в системах отображения информации. При этом особенно важны описания структуры и спектра тепловых шумов ЖК в капсулированных ячейках и твист-ячейках.

Статистические свойства флуктуаций описывают с помощью корреляционных функций. Первые расчеты пространственных корреляционных функций флуктуаций в ЖК проводились для неограниченных нематических (НЖК) и смектических *А* (СЖК-*А*) жидких кристаллов [15]. Дальнейшее развитие этих исследований проходило в направлении расширения классов ЖК [1], типов флуктуаций [16], учета динамических процессов [1], учета конечности системы и взаимодействия молекул ЖК с поверхностью [10, 17–21].

^{*}E-mail: vadim.romanov@pobox.spbu.ru

Наиболее существенные трудности возникают при расчетах корреляционных функций в конечных системах. Чаще всего рассматривается случай флуктуаций в плоской ячейке. В работах [17–19] рассматривался простейший случай жестких граничных условий в НЖК. Корреляционная функция, полученная в этих работах, имела вид бесконечного ряда по собственным функциям системы. Более реалистичная модель нежестких граничных условий, описываемых потенциалом типа Рапини [22], рассматривалась для НЖК в [10, 20] и для СЖК — в [21, 23]. При этом в работах [10, 20, 23] результат удалось представить в замкнутой форме, а в [21] он имел вид ряда.

Здесь следует отметить, что к вычислению корреляционных функций в конечных ЖК нет единого подхода. Применялись методы разложения по собственным функциям [10, 17], метод континуального интегрирования [10], методы теории самосопряженных операторов [20, 23]. На первый взгляд создается впечатление, что в каждой работе метод был ориентирован на использование конкретных частных особенностей той или иной системы.

В настоящей работе предлагается схема расчета корреляционных функций в ограниченных ЖК, объединяющая подходы работ [10, 17, 18, 20, 21], которая позволяет получать результат в замкнутой форме в общем случае многокомпонентного параметра порядка.

Этот подход применяется для расчета корреляционных функций в плоско-параллельной ячейке НЖК и СЖК-А в присутствии внешнего поля. В данной работе мы рассматриваем случай, когда направления ориентации директора внешним полем и ограничивающими поверхностями совпадают. Анализируются системы с положительной и отрицательной анизотропией магнитной восприимчивости χ_a или диэлектрической проницаемости. В наиболее часто рассматриваемом в литературе случае $\chi_a > 0$ равновесное положение директора направлено вдоль внешнего поля. В случае отрицательной анизотропии в равновесии директор направлен поперек магнитного поля. Для таких систем магнитное поле подавляет только одну из двух флуктуационных мод директора, а другая остается сингулярной [24].

Получено явное выражение для корреляционной функции в смектиках A и нематиках в плоской геометрии при одновременном учете внешнего поля и влияния поверхности. Подробно проанализировано поведение корреляционной функции вблизи поверхности. Показано, что в зависимости от параметров системы флуктуации вблизи поверхности могут быть как больше, так и меньше, чем в объеме. Впервые подробно изучены флуктуации в ограниченной ячейке с планарной геометрией без использования

одноконстантного приближения. В разд. 2 вводятся основные уравнения, описывающие энергию ограниченного жидкого кристалла во внешнем поле. В разд. 3 развивается общий подход к вычислению пространственной корреляционной функции флуктуаций векторного параметра порядка в ограниченной системе. В разд. 4 выводится общее выражение для корреляционной функции. В разд. 5 полученные формулы применяются для вычисления корреляционной функции флуктуаций смещений в СЖК-А и флуктуаций директора в НЖК. Подробно анализируется зависимость пространственной корреляционной функции от параметров системы, прежде всего от энергии сцепления и от приложенного внешнего поля. В разд. 6 рассчитывается интенсивность рассеянного света в ячейке жидкого кристалла. Показано, что измерения угловой зависимости рассеянного света во внешних полях позволяют определять параметры жидкого кристалла и прежде всего энергию сцепления.

2. СВОБОДНАЯ ЭНЕРГИЯ ЖИДКОКРИСТАЛЛИЧЕСКОЙ ЯЧЕЙКИ ВО ВНЕШНЕМ ПОЛЕ

Для описания жидких кристаллов мы будем использовать стандартную континуальную модель [1]. В рамках этой модели при описании упругих свойств жидких кристаллов в ограниченных ячейках обычно учитываются вклады в упругую энергию трех типов:

$$F_{tot} = F_e + F_f + F_{sf}.$$
 (2.1)

Здесь F_e — упругая энергия жидкого кристалла, F_f — вклад внешнего поля, F_{sf} — поверхностная энергия. В рамках излагаемого ниже подхода можно изучать различные типы жидких кристаллов. В данной работе мы рассмотрим нематики и смектики A.

Для нематического жидкого кристалла упругая энергия — это энергия Франка

$$F_e = \frac{1}{2} \int d\mathbf{r} \left[K_{11} (\operatorname{div} \mathbf{n})^2 + K_{22} (\mathbf{n} \cdot \operatorname{rot} \mathbf{n})^2 + K_{33} [\mathbf{n} \times \operatorname{rot} \mathbf{n}]^2 \right], \quad (2.2)$$

где $\mathbf{n}(\mathbf{r})$ — единичный вектор директора, K_{jj} (j = 1-3) — модули Франка. Минимуму F_e соответствует однородное равновесное состояние директора $\mathbf{n}^0 = \text{const.}$ Для объемной энергии СЖК-А мы ограничимся стандартной моделью [1]:

$$F_e = \frac{1}{2} \times \int d\mathbf{r} \left\{ B \left[\partial_z u(\mathbf{r}_\perp, z) \right]^2 + K \left[\nabla_\perp u(\mathbf{r}_\perp, z) \right]^2 \right\}.$$
 (2.3)

Здесь $u(\mathbf{r})$ — компонента вектора смещения вдоль оси z, направленной поперек смектических слоев, B — смектическая упругая константа, связанная со сжатием смектических слоев, K — упругая константа, связанная с искажением формы слоев,

$$\boldsymbol{\nabla}_{\perp} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right),$$

индекс « \perp » соответствует компонентам векторов поперек ос
и z. Модели (2.3) соответствует вектор директора

$$\mathbf{n}(\mathbf{r}) \parallel (-\boldsymbol{\nabla}_{\perp} u, 1) \equiv \left(-\frac{\partial u}{\partial x}, -\frac{\partial u}{\partial y}, 1\right),$$

нормальный к смектическим слоям.

Член *F_f* в СЖК-*A* и НЖК для магнитного или электрического поля имеет, соответственно, вид

$$F_{f} = -\frac{1}{2}\chi_{a} \int d\mathbf{r} \, \left(\mathbf{n} \cdot \mathbf{H}\right)^{2},$$

$$F_{f} = -\frac{1}{8\pi}\varepsilon_{a} \int d\mathbf{r} \, \left(\mathbf{n} \cdot \mathbf{E}\right)^{2},$$
(2.4)

где χ_a и ε_a — анизотропии магнитной восприимчивости и диэлектрической проницаемости, **H** и **E** — напряженности магнитного и электрического полей. Далее мы для определенности ограничимся случаем магнитного поля. Для перехода к случаю электрического поля достаточно в окончательных формулах сделать замену **H** \rightarrow **E** и $\chi_a \rightarrow \varepsilon_a/4\pi$. Из уравнения (2.4) следует, что для $\chi_a > 0$ член F_f имеет минимум, если $\mathbf{n}^0 \parallel \mathbf{H}$, а для $\chi_a < 0$ он минимален, если $\mathbf{n}^0 \perp \mathbf{H}$.

Член F_{sf} описывает поверхностную энергию. Наиболее часто рассматривают два основных случая ориентации директора на поверхности: планарный, когда директор параллелен поверхности, и гомеотропный — когда он перпендикулярен ей. Пусть жидкий кристалл заключен в плоскопараллельную ячейку толщиной L. Введем декартову систему координат $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ с началом в центре ячейки и осью \mathbf{e}_z , направленной перпендикулярно ограничивающим ячейку плоскостям $z = l_1$ и $z = l_2$, $L = l_2 - l_1$. Для нематических жидких кристаллов будем использовать поверхностную энергию F_{sf} в форме потенциала Рапини [22]:

$$F_{sf} = \frac{1}{2} \int d\mathbf{r}_{\perp} \sum_{j=1,2} W_j n_{\perp}^2(\mathbf{r}_{\perp}, l_j) \qquad (2.5)$$

в случае гомеотропной ориентации и

$$F_{sf} = \frac{1}{2} \int d\mathbf{r}_{\perp} \times \\ \times \sum_{j=1,2} \left[W_j^{(1)} n_x^2(\mathbf{r}_{\perp}, l_j) + W_j^{(2)} n_z^2(\mathbf{r}_{\perp}, l_j) \right] \quad (2.6)$$

в случае планарной ориентации с осью легкого ориентирования y. Здесь величины W_j , $W_j^{(1,2)}$ (j=1,2) — энергии сцепления.

Для СЖК-А мы ограничимся случаем, когда смектические слои перпендикулярны оси z. Тогда

$$F_{sf} = \frac{1}{2} \int d\mathbf{r}_{\perp} \times \\ \times \sum_{j=1,2} \left[\gamma_1^{(j)} u^2(\mathbf{r}_{\perp}, l_j) + \gamma_2^{(j)} \left(\boldsymbol{\nabla}_{\perp} u(\mathbf{r}_{\perp}, l_j) \right)^2 \right], \quad (2.7)$$

где $\gamma_1^{(j)}$ — коэффициенты сцепления, а $\gamma_2^{(j)}$ — поверхностные натяжения, j = 1,2. В случае свободно подвешенной смектической пленки $\gamma_1^{(j)} = 0$.

В настоящей работе мы будем интересоваться случаем, когда и ограничивающие поверхности, и внешнее поле оказывают стабилизирующее влияние на ориентацию директора. Поэтому мы не будем рассматривать ситуации конкуренции между ориентирующими действиями поля и поверхностей (эффект Фредерикса) или двух поверхностей между собой (твист-ячейка) и т. п.

В НЖК мы будем интересоваться отклонениями $\delta \mathbf{n}$ вектора директора \mathbf{n} от своего равновесного значения \mathbf{n}^0 , $\delta \mathbf{n} = \mathbf{n} - \mathbf{n}^0$. В главном порядке $\delta \mathbf{n} \perp \mathbf{n}^0$. В СЖК-A в качестве флуктуирующего параметра мы возьмем величину $u(\mathbf{r})$, которая описывает отклонение смектических слоев от равновесного состояния.

Из структуры формул (2.2)-(2.7) следует, что флуктуационный вклад в полную энергию (2.1) в гауссовом приближении представляет собой квадратичную форму флуктуирующего параметра $u(\mathbf{r})$ или $\delta \mathbf{n}$, содержащую градиенты не выше второго порядка.

Обычный метод решения задачи о флуктуациях в неограниченных НЖК основан на переходе к трехмерному спектру Фурье. В плоскопараллельной ячейке естественно выполнить двумерное преобразование Фурье. Мы будем пользоваться преобразованием Фурье в виде

$$f(\mathbf{r}) = \frac{1}{(2\pi)^2} \int f(\mathbf{q}, z) e^{i\mathbf{q}\mathbf{r}_{\perp}} d\mathbf{q}$$

Таким образом, с формальной точки зрения задача состоит в изучении корреляционной функции скалярного параметра $\phi(\mathbf{q}, z) = u(\mathbf{q}, z)$ или двухкомпонентного вектора $\phi(\mathbf{q}, z) = \delta \mathbf{n}(\mathbf{q}, z)$. Он вносит в объемную энергию $F_{bk} = F_e + F_f$ вклад вида

$$\delta F_{bk}(\boldsymbol{\phi}) = \int \frac{d\mathbf{q}}{(2\pi)^2} \,\Phi_{bk}(\boldsymbol{\phi}),\tag{2.8}$$

где Φ_{bk} — положительно определенная квадратичная форма вида

$$\Phi_{bk} = \frac{1}{2} \times \\ \times \int_{l_1}^{l_2} \left(\phi'^+ \hat{a} \phi' + \phi'^+ \hat{b} \phi + \phi^+ \hat{b}^+ \phi' + \phi^+ \hat{c} \phi \right) dz. \quad (2.9)$$

Здесь $\phi = \phi(\mathbf{q}, z), \phi' = \partial \phi(\mathbf{q}, z)/\partial z - n$ -компонентные векторы, $\hat{a} = \hat{a}(\mathbf{q}), \hat{b} = \hat{b}(\mathbf{q}), \hat{c} = \hat{c}(\mathbf{q})$ — квадратные $n \times n$ -матрицы, причем \hat{a}, \hat{c} — эрмитовы, верхний индекс «+» обозначает эрмитово сопряжение. Для СЖК-*A* размерность n = 1, а для НЖК n = 2.

Вклад ϕ в поверхностную энергию систем (2.5), (2.6) и (2.7) имеет вид

$$\delta F_{sf}(\boldsymbol{\phi}) = \int \frac{d\mathbf{q}}{(2\pi)^2} \,\Phi_{sf}(\boldsymbol{\phi}), \qquad (2.10)$$

где

$$\Phi_{sf} = \frac{1}{2} \left(\phi_1^+ \hat{w}_1 \phi_1 + \phi_2^+ \hat{w}_2 \phi_2 \right), \qquad (2.11)$$

 $\phi_1 = \phi(\mathbf{q}, l_1), \phi_2 = \phi(\mathbf{q}, l_2),$ а эрмитовы положительно определенные $n \times n$ -матрицы $\hat{w}_{1,2}(\mathbf{q})$ относятся, соответственно, к первой $(z = l_1)$ и второй $(z = l_2)$ границам.

Конкретный вид матриц â, b, ĉ, ŵ₁, ŵ₂ зависит от типа жидкого кристалла и изучаемой геометрии. Они будут приведены в разд. 5.

3. ОБЩИЙ МЕТОД ДЛЯ ВЫЧИСЛЕНИЯ КОРРЕЛЯЦИОННОЙ ФУНКЦИИ В ЯЧЕЙКЕ КОНЕЧНЫХ РАЗМЕРОВ

Нас будет интересовать корреляционная функция флуктуаций в общем случае векторного параметра порядка $\phi(\mathbf{q}, z)$:

$$g_{\alpha\beta}(\mathbf{q}; z, z_1) = \langle \phi_{\alpha}(\mathbf{q}, z) \phi_{\beta}^*(\mathbf{q}, z_1) \rangle, \qquad (3.1)$$

где угловые скобки (...) обозначают статистическое усреднение, а верхний индекс «*» — комплексное сопряжение.

Для вычисления тензора \hat{g} следует провести усреднение выражения $\phi_{\alpha}(z)\phi_{\beta}^{*}(z_{1})$ по всевозможным значениям $\phi(\mathbf{q},z)$ с весовой функцией $\exp(-F_{tot}(\phi)/k_{B}T)$.

Поскольку величина $\phi(\mathbf{r})$ вещественна, то $\phi(-\mathbf{q}, z) = \phi^*(\mathbf{q}, z)$, следовательно, величины $\phi(\mathbf{q}, z)$ и $\phi(-\mathbf{q}, z)$ не независимы. Удобно переписать $F_{tot}(\phi)$ через независимые переменные. Для этого обычно переходят от интегрирования по всему спектру \mathbf{q} к интегрированию по полупространству [25], которое мы условно будем обозначать « $\mathbf{q} \geq 0$ »:

$$F_{tot}(\boldsymbol{\phi}) = 2 \int_{\mathbf{q} \ge 0} \frac{d\mathbf{q}}{(2\pi)^2} \Phi_{tot}(\boldsymbol{\phi}), \qquad (3.2)$$

где

$$\Phi_{tot}(\phi) = \Phi_{bk}(\phi) + \Phi_{sf}(\phi).$$

В гауссовом приближении флуктуационные моды $\phi(\mathbf{q}, z)$ для разных $\mathbf{q} \geq 0$ являются независимыми. Поэтому можно ограничиться рассмотрением некоторого фиксированного **q**. Плотность вероятности флуктуации $\phi(z) = \phi(\mathbf{q}, z)$ равна

$$\rho(\phi) = \frac{1}{Z} \exp\left[-2\frac{\Phi_{tot}(\phi)}{k_B T}\right], \qquad (3.3)$$

где статистическая сумма

$$Z = \int \exp\left[-2\frac{\Phi_{tot}(\phi)}{k_B T}\right] \mathcal{D}\phi.$$
 (3.4)

Здесь символ континуального интегрирования $\int \dots \mathcal{D}\phi$ соответствует перебору всевозможных пар функций $\operatorname{Re}(\phi(\mathbf{q}, z))$ и $\operatorname{Im}(\phi(\mathbf{q}, z))$ при $l_1 \leq z \leq l_2$. Обратим внимание на коэффициент 2 в (3.2)–(3.4). Его возникновение связано с интегрированием по полупространству $\mathbf{q} \geq 0$ в (3.2).

Парная корреляционная функция при этом выражается континуальным интегралом

$$g_{\alpha\beta}(z,z_1) = \int \phi_{\alpha}(z)\phi_{\beta}^*(z_1)\rho(\phi) \mathcal{D}\phi.$$
(3.5)

Наряду с (3.5) используется представление $g_{\alpha\beta}$ в виде функциональной производной. Для этого вводится производящая функция

$$Z(\epsilon) = \int \exp\left[-\frac{2\Phi_{tot}(\phi) + \mathcal{S}(\phi; \epsilon)}{k_B T}\right] \mathcal{D}\phi, \quad (3.6)$$

где источник

$$\mathcal{S}(\boldsymbol{\phi};\boldsymbol{\epsilon}) = \int_{l_1}^{l_2} \left[\boldsymbol{\phi}(z) \cdot \boldsymbol{\epsilon}^*(z) + \boldsymbol{\phi}^*(z) \cdot \boldsymbol{\epsilon}(z) \right] dz, \quad (3.7)$$

а функция $\epsilon(\mathbf{q}, z) = \epsilon^*(-\mathbf{q}, z)$ обозначает фиктивное внешнее поле, которое будет положено равным нулю в окончательных результатах. Тогда корреляционная функция \hat{g} может быть вычислена через среднее значение $\overline{\phi}$ в присутствии поля ϵ

$$\overline{\phi}(z,\epsilon) = \frac{1}{Z(\epsilon)} \times \int \phi(z) \exp\left[-\frac{2\Phi_{tot}(\phi) + S(\phi;\epsilon)}{k_B T}\right] \mathcal{D}\phi \quad (3.8)$$

следующим образом:

$$g_{\alpha\beta}(z,z_1) = -k_B T \left. \frac{\delta \overline{\phi}_{\alpha}(z,\epsilon)}{\delta \epsilon_{\beta}(z_1)} \right|_{\epsilon=0}.$$
 (3.9)

Здесь мы считаем, что для комплексных ϵ символ функционального дифференцирования $\delta/\delta\epsilon$ в (3.9) имеет следующий смысл:

$$\frac{\delta}{\delta\epsilon} = \frac{1}{2} \left(\frac{\delta}{\delta \operatorname{Re}(\epsilon)} - i \frac{\delta}{\delta \operatorname{Im}(\epsilon)} \right).$$
(3.10)

Особенность нашей задачи состоит в том, что $\Phi_{tot}(\phi)$ содержит поверхностное слагаемое Φ_{sf} , которое зависит от конечного числа (2n) степеней свободы $\phi_1 = \phi(l_1)$ и $\phi_2 = \phi(l_2)$. Поэтому естественно разбить степени свободы ϕ на две части, представив интеграл (3.5) как континуальный интеграл с фиксированными значениями $\phi(l_j) = \phi_j$ (j = 1, 2)на концах интервала $[l_1, l_2]$ с последующим конечномерным интегрированием по ϕ_1, ϕ_2 :

$$g_{\alpha\beta}(\mathbf{q}; z, z_{1}) = \frac{1}{Z} \times \\ \times \int \exp\left[-\frac{2\Phi_{sf}(\phi_{1,2})}{k_{B}T}\right] d\phi_{1} d\phi_{2} \times \\ \times \underbrace{\int \dots \int}_{\phi(l_{j})=\phi_{j}} \exp\left(-\frac{2\Phi_{bk} + S}{k_{B}T}\right) \times \\ \times \phi_{\alpha}(z)\phi_{\beta}^{*}(z_{1})\mathcal{D}\phi. \quad (3.11)$$

Континуальный интеграл в (3.11) соответствует жестким граничным условиям. Следуя Фейнману [26], проведем в (3.11) сдвиг переменной интегрирования, представив функцию $\phi(z)$ в виде суммы

$$\boldsymbol{\phi}(z) = \boldsymbol{\phi}_0(z) + \boldsymbol{\eta}(z), \qquad (3.12)$$

где ϕ_0 — фиксированная функция, удовлетворяющая неоднородным граничным условиям первого рода

$$\phi_0(l_1) = \phi_1, \quad \phi_0(l_2) = \phi_2 \tag{3.13}$$

и уравнению Эйлера

$$\hat{\mathcal{L}}_E \phi_0(z) = \epsilon(z), \qquad (3.14)$$

которое соответствует условию минимума показателя экспоненты $2\Phi_{bk}(\phi) + S(\phi; \epsilon)$ при $l_1 < z < l_2$. При этом граничные условия в континуальном интеграле для новой переменной интегрирования $\eta(z)$ являются однородными:

$$\eta(l_1) = \eta(l_2) = 0.$$
 (3.15)

Для энергии (2.9) дифференциальный оператор $\hat{\mathcal{L}}_E$ равен

$$\hat{\mathcal{L}}_E = \hat{a}\frac{\partial^2}{\partial z^2} + (\hat{b} - \hat{b}^+)\frac{\partial}{\partial z} - \hat{c}. \qquad (3.16)$$

В силу квадратичности $\Phi_{bk}(\phi)$ и линейности $S(\phi;\epsilon)$ по переменной ϕ , с учетом условия равновесия $\delta(2\Phi_{bk} + S) = 0$ и граничных условий (3.15), имеем

$$2\Phi_{bk}(\boldsymbol{\phi}) + \mathcal{S}(\boldsymbol{\phi};\boldsymbol{\epsilon}) \equiv \\ \equiv 2\Phi_{bk}(\boldsymbol{\phi}_0) + \mathcal{S}(\boldsymbol{\phi}_0;\boldsymbol{\epsilon}) + 2\Phi_{bk}(\boldsymbol{\eta}).$$

Здесь в правой части от параметров ϕ_1 , ϕ_2 зависит только величина $\phi_0(z) = \phi_0(\phi_{1,2})$. С учетом того, что поверхностная энергия $\Phi_{sf}(\phi_{1,2})$ тоже зависит лишь от этих параметров, интегралы по ϕ_1 , ϕ_2 и по η в (3.11) факторизуются. В результате степени свободы $\eta(z)$ и ϕ_1, ϕ_2 оказываются независимыми, и мы имеем

$$\langle \phi_{\alpha}(z)\phi_{\beta}^{*}(z_{1})\rangle = = \langle \phi_{0\alpha}(z)\phi_{0\beta}^{*}(z_{1})\rangle_{\boldsymbol{\phi}_{1,2}} + \langle \eta_{\alpha}(z)\eta_{\beta}^{*}(z_{1})\rangle_{\boldsymbol{\eta}}, \quad (3.17)$$

где

$$\langle \phi_{0\alpha}(z)\phi_{0\beta}^{*}(z_{1})\rangle_{\phi_{1,2}} = \int \phi_{0\alpha}(z,\phi_{1,2}) \times \\ \times \phi_{0\beta}^{*}(z_{1},\phi_{1,2})\rho(\phi_{1},\phi_{2}) \, d\phi_{1} \, d\phi_{2}, \quad (3.18)$$

$$\langle \eta_{\alpha}(z)\eta_{\beta}^{*}(z_{1})\rangle_{\boldsymbol{\eta}} = \underbrace{\int \dots \int}_{\boldsymbol{\eta}(l_{j})=0} \eta_{\alpha}(z)\eta_{\beta}^{*}(z_{1})\rho(\boldsymbol{\eta})\mathcal{D}\boldsymbol{\eta}, \quad (3.19)$$

а функции распределения

$$\rho(\phi_1, \phi_2) \propto \exp\left[-2\frac{\Phi_{sf}(\phi_{1,2}) + \Phi_{bk}(\phi_{1,2})}{k_B T}\right], \quad (3.20)$$

$$\rho(\boldsymbol{\eta}) \propto \exp\left[-2\frac{\Phi_{bk}(\boldsymbol{\eta})}{k_BT}\right].$$
(3.21)

Здесь мы обозначили

$$\Phi_{bk}(\phi_{1,2}) = \Phi_{bk}(\phi_0(\phi_{1,2}))$$

В (3.18), (3.19) положено $\epsilon = 0$. Интеграл (3.18) конечномерный, гауссова типа и легко вычисляется. Интеграл в (3.19) является гауссовым континуальным интегралом и, в принципе, тоже может быть вычислен в явном виде. Однако проще корреляционную функцию (3.19) вычислить, воспользовавшись соотношением

$$\langle \eta_{\alpha}(z)\eta_{\beta}^{*}(z_{1})\rangle_{\boldsymbol{\eta}} = -k_{B}T\frac{\delta\phi_{0\alpha}(z)}{\delta\epsilon_{\beta}(z_{1})},\qquad(3.22)$$

которое является вариантом соотношения (3.9) для случая нулевых граничных условий $\eta(l_1) =$ $= \eta(l_2) = 0$. Обратим внимание на то, что производная $\delta\phi_{0\alpha}/\delta\epsilon_{\beta}$ не зависит от величин ϕ_1, ϕ_2, ϵ , поскольку зависимость решения ϕ_0 уравнения Эйлера (3.13), (3.14) от параметров ϕ_1, ϕ_2, ϵ линейна.

Отметим, что величина $\Phi_{bk}(\phi_{1,2})$, входящая в формулу (3.20), может быть выражена через значения $\phi_0(z)$ и $\phi'_0(z)$ на границах $z = l_1$, $z = l_2$. Действительно, если в формуле (2.9) воспользоваться уравнением Эйлера (3.14), то после проведения интегрирования по частям при $\epsilon = 0$ получаем

$$\Phi_{bk}(\phi_0) = \frac{1}{2} \left(\phi_0^+ \hat{a} \phi_0' + \phi_0^+ \hat{b} \phi_0 \right) \Big|_{l_1}^{l_2}.$$
 (3.23)

Таким образом, вычисление корреляционной функции $\hat{g}_{\alpha\beta}(\mathbf{q}; z, z_1)$ сводится к решению уравнения Эйлера (3.14) с граничными условиями первого рода (3.13) и последующему вычислению конечномерного интеграла (3.18) и функциональной производной (3.22).

Альтернативный метод вычисления корреляционной матрицы $\hat{g}(\mathbf{q}; z, z_1)$ основан на прямом вычислении функциональной производной (3.9). Такая возможность связана с тем, что среднее значение $\overline{\phi}$ в (3.8) для гауссовой случайной величины может быть найдено из решения уравнения Эйлера, отвечающего условию минимума полного действия

$$2\Phi_{tot}(\phi) + \mathcal{S} = 2\Phi_{bk} + 2\Phi_{sf} + \mathcal{S}$$

в поле источника є. В уравнении равновесия

$$\delta\Phi_{bk} + \delta\Phi_{sf} + \delta\mathcal{S}/2 = 0$$

проинтегрируем по частям первый, второй и третий члены из выражения (2.9) для Φ_{bk} . В промежутке $l_1 < z < l_2$ уравнение равновесия приводится к виду

$$\hat{\mathcal{L}}_E \overline{\phi}(z) = \epsilon(z), \qquad (3.24)$$

идентичному (3.14). На границах $z = l_{1,2}$ в условии равновесия необходимо учесть как вклад поверхностной энергии Φ_{sf} , так и внеинтегральные члены, возникающие после интегрирования по частям Φ_{bk} . Требование обращения в нуль первой вариации действия при $z = l_2$ и $z = l_1$ дает

$$\begin{cases} \hat{a}\overline{\phi}'(l_2) + (\hat{b} + \hat{w}_2)\overline{\phi}(l_2) = 0, \\ \hat{a}\overline{\phi}'(l_1) + (\hat{b} - \hat{w}_1)\overline{\phi}(l_1) = 0. \end{cases}$$
(3.25)

Таким образом, для нахождения $\overline{\phi} = \overline{\phi}(\mathbf{q}, z, \phi)$ следует решить уравнение Эйлера (3.24) с граничными условиями третьего рода (3.25).

Можно получить и непосредственно уравнение для корреляционной функции $g_{\alpha\beta}$. Для этого достаточно взять функциональную производную по $\delta \epsilon(z_1)$ от уравнения Эйлера (3.24) и граничных условий (3.25). Получим

$$\begin{cases} \hat{\mathcal{L}}_E g(z, z_1) = -k_B T \delta(z - z_1) \hat{1}, \\ \hat{a} \hat{g}'(l_2, z_1) + (\hat{b} + \hat{w}_2) \hat{g}(l_2, z_1) = 0, \\ \hat{a} \hat{g}'(l_1, z_1) + (\hat{b} - \hat{w}_1) \hat{g}(l_1, z_1) = 0 \end{cases}$$
(3.26)

для любого фиксированного z_1 : $l_1 \leq z_1 \leq l_2$. Производные в (3.26) вычисляются по первому аргументу функции $\hat{g}(z, z_1)$. Система уравнений типа (3.26) использовалась в работах [20, 23].

4. ЯВНОЕ ВЫРАЖЕНИЕ ДЛЯ КОРРЕЛЯЦИОННОЙ ФУНКЦИИ

Решение неоднородного уравнения Эйлера

$$\hat{\mathcal{L}}_E \phi(z) = \epsilon(z)$$

нетрудно получить методом вариации произвольных постоянных. Для этого введем набор независимых решений

$$\boldsymbol{\phi}_i(z) = e^{\lambda_i z} \mathbf{e}^{(i)} \tag{4.1}$$

 $(i = 1, \ldots, 2n)$ однородного уравнения

$$\hat{\mathcal{L}}_E \boldsymbol{\phi}(z) = 0.$$

Векторы $\mathbf{e}^{(i)}$ являются решением системы уравнений

$$[\hat{a}\lambda_i^2 + (\hat{b} - \hat{b}^+)\lambda_i - \hat{c}]\mathbf{e}^{(i)} = 0, \qquad (4.2)$$

а числа λ_i — это корни алгебраического уравнения

$$\det \left[\hat{a}\lambda^2 + (\hat{b} - \hat{b}^+)\lambda - \hat{c} \right] = 0. \tag{4.3}$$

Из свойств эрмитовости матриц \hat{a}, \hat{c} и антиэрмитовости матрицы $\hat{b} - \hat{b}^+$ вытекает, что если λ является корнем уравнения (4.3), то и $-\lambda^*$ также является его корнем. Поэтому числа λ_i можно упорядочить следующим образом: $\lambda_{j+n} = -\lambda_j^*, j = 1, \ldots, n$. Если ввести матрицу $\hat{\Phi}(z)$ фундаментальных решений размерности $n \times 2n$ со столбцами из решений $\phi_i(z)$:

$$\hat{\Phi}(z) = (\phi_1(z), \phi_2(z), \dots, \phi_{2n}(z)),$$
 (4.4)

то общее решение уравнения (3.14) при $l_1 \leq z \leq l_2$ можно записать в виде

$$\boldsymbol{\phi}(z) = \hat{\Phi}(z)\mathbf{C}_0 + \int_{l_1}^{l_2} \hat{k}(z, z')\boldsymbol{\epsilon}(z')dz', \qquad (4.5)$$

где ядро $\hat{k}(z, z')$ — матрица размерности $n \times n$:

$$\hat{k}(z, z') = \theta(z - z')\hat{\Phi}(z)\hat{\Psi}(z'),$$
 (4.6)

а матрица $\hat{\Psi}(z)$ размерности $2n \times n$ определяется с помощью блочных матриц:

$$\hat{\Psi}(z) = \begin{pmatrix} \hat{a}\hat{\Phi}'(z) \\ \hat{\Phi}(z) \end{pmatrix}^{-1} \hat{R}_{10}.$$
(4.7)

Здесь и далее мы используем обозначения

$$\hat{R}_{01} = \begin{pmatrix} \hat{0} \\ \hat{1} \end{pmatrix}, \quad \hat{R}_{10} = \begin{pmatrix} \hat{1} \\ \hat{0} \end{pmatrix}$$

— матрицы размерности $2n \times n$; $\hat{1}$ — единичная матрица *n*-го порядка, $\hat{0}$ — нулевая матрица *n*-го порядка; вектор \mathbf{C}_0 — произвольный постоянный вектор-столбец размерности $2n \times 1$, $\theta(z)$ — функция Хевисайда. Отметим, что в силу тождества $\hat{\Phi}(z)\hat{\Psi}(z) = \hat{0}$ функция $\hat{k}(z, z_1)$ непрерывна при $z = z_1$.

Равновесное решение $\phi_0(z)$ удовлетворяет граничным условиям (3.13). Подставляя уравнение (4.5) в (3.13), найдем компоненты вектора C_0 . Отсюда получим

$$\phi_{0}(z) = \hat{\Phi}(z)\hat{M}\begin{pmatrix}\phi_{1}\\\phi_{2}\end{pmatrix} + \int_{l_{1}}^{l_{2}} \left[\hat{k}(z,z') - \hat{\Phi}(z)\hat{M}\hat{R}_{01}\hat{k}(l_{2},z')\right]\boldsymbol{\epsilon}(z')dz', \quad (4.8)$$

где $\hat{M}=\hat{M}(l_1,l_2)$ — матрица размерности $2n\times 2n$

$$\hat{M} = \begin{pmatrix} \hat{\Phi}(l_1) \\ \hat{\Phi}(l_2) \end{pmatrix}^{-1}.$$
(4.9)

Вычисляя функциональную производную в (3.22), находим

$$\langle \eta_{\alpha}(z)\eta_{\beta}^{*}(z_{1})\rangle_{\boldsymbol{\eta}} = \\ = k_{B}T \left[\hat{\Phi}(z)\hat{M}\hat{R}_{01}\hat{k}(l_{2},z_{1}) - \hat{k}(z,z_{1}) \right].$$
(4.10)

Отметим, что при $z = l_{1,2}$ или $z_1 = l_{1,2}$ правая часть (4.10) обращается в нуль. При $\epsilon \to 0$ из (4.8) имеем

$$\langle \phi_{0\alpha}(z)\phi_{0\beta}^*(z_1)\rangle_{\boldsymbol{\phi}_{1,2}} = \\ = \left[\hat{\Phi}(z)\hat{M} \left\langle \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} (\phi_1^*, \phi_2^*) \right\rangle_{\boldsymbol{\phi}_{1,2}} \hat{M}^+ \hat{\Phi}^+(z_1) \right]_{\substack{\alpha\beta \\ (4.11)}}.$$

Вычисление среднего в уравнении (4.11) проводится по формуле (3.18). Используя (4.8) при $\epsilon = 0$ в формулах (2.11), (3.23), выражение $\Phi_{bk} + \Phi_{sf}$ можно записать в виде квадратичной формы по переменным ϕ_1 и ϕ_2 :

$$\Phi_{bk} + \Phi_{sf} = \frac{1}{2} (\phi_1^*, \phi_2^*) \hat{F}_1 \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \qquad (4.12)$$

где $2n \times 2n$ -матрица

$$\hat{F}_{1} = \begin{bmatrix} \hat{R}_{01} \hat{a} \hat{\Phi}'(l_{2}) - \hat{R}_{10} \hat{a} \hat{\Phi}'(l_{1}) \end{bmatrix} \hat{M} + \\ + \begin{pmatrix} -\hat{b} + \hat{w}_{1} & \hat{0} \\ \hat{0} & \hat{b} + \hat{w}_{2} \end{pmatrix}. \quad (4.13)$$

Здесь мы использовали соотношения

$$\hat{M}^{+}\hat{\Phi}^{+}(l_{2}) = \hat{R}_{01}, \quad \hat{M}^{+}\hat{\Phi}^{+}(l_{1}) = \hat{R}_{10}, \quad (4.14)$$

которые являются следствием определения (4.9) матрицы \hat{M} . Тогда по стандартной формуле гауссова усреднения (см., например, [25]) получаем результат, выраженный через элементы обратной матрицы:

$$\langle \phi_{0\alpha}(z)\phi_{0\beta}^{*}(z_{1})\rangle_{\phi_{1,2}} = k_{B}T \left[\hat{\Phi}(z)\hat{M}\hat{F}_{1}^{-1}\hat{M}^{+}\hat{\Phi}^{+}(z_{1})\right]_{\alpha\beta}.$$
 (4.15)

Таким образом, полная корреляционная функция, вычисленная по формуле (3.17), имеет вид

$$\hat{g}(z, z_1) = k_B T \left[\hat{\Phi}(z) \hat{M} \hat{F}_1^{-1} \hat{M}^+ \hat{\Phi}^+(z_1) - \hat{k}(z, z_1) + \hat{\Phi}(z) \hat{M} \hat{R}_{01} \hat{k}(l_2, z_1) \right]. \quad (4.16)$$

Для вычисления $\hat{g}(z, z_1)$ можно также использовать альтернативный метод, основанный на решении уравнения Эйлера (3.24) (идентичного (3.13)) с граничными условиями третьего рода (3.25).

Подставляя (4.5) в (3.25), получим систему линейных уравнений, определяющую вектор \mathbf{C}_0 для этих граничных условий, из которой находим

$$\mathbf{C}_{0} = -\hat{F}_{2}^{-1}\hat{R}_{01}\hat{X}_{2}\int_{l_{1}}^{l_{2}}\hat{\Psi}(z')\boldsymbol{\epsilon}(z')dz', \qquad (4.17)$$

где $2n \times 2n$ -матрица \hat{F}_2 имеет блочный вид

$$\hat{F}_2 = \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \end{pmatrix}, \qquad (4.18)$$

а $n \times 2n$ -матрицы

$$\hat{X}_{j} = \hat{a}\hat{\Phi}'(l_{j}) + \left(\hat{b} + (-1)^{j}\hat{w}_{j}\right)\hat{\Phi}(l_{j}).$$
(4.19)

После подстановки (4.17) в (4.5) видим, что зависимость $\overline{\phi}$ от ϵ оказывается линейной. Производная $\delta/\delta\epsilon$ в (3.9) тривиально вычисляется, и мы с учетом (4.6) получаем корреляционную функцию в виде

$$\hat{g}(z, z_1) = k_B T \left[\hat{\Phi}(z) \hat{F}_2^{-1} \hat{R}_{01} \hat{X}_2 \hat{\Psi}(z_1) - \hat{k}(z, z_1) \right] = k_B T \hat{\Phi}(z) \left[\hat{F} - \theta(z - z_1) \hat{I} \right] \hat{\Psi}(z_1), \quad (4.20)$$

где

 $\hat{F} = \hat{F}_2^{-1} \hat{R}_{01} \hat{X}_2,$

а \hat{I} — единичная матрица порядка 2n.

Проводя несложные, но громоздкие вычисления, основанные на свойствах аналога определителя Вронского для оператора (3.16), можно показать, что выражения (4.16) и (4.20) тождественно совпадают. Для определенности мы будем далее использовать формулу (4.20). Дальнейшие упрощения можно провести, если учесть явное выражение для функций $\hat{\Phi}(z)$ в (4.4).

Введем матрицу \hat{U} размерности $n \times 2n$ с компонентами $U_{\alpha i} = e_{\alpha}^{(i)}$ и диагональную матрицу $\hat{\Lambda}$ порядка 2n с числами λ_i на диагонали, $\Lambda_{ij} = \lambda_i \delta_{ij}$. Здесь по индексу *i* нет суммирования. Через матрицы \hat{U} и $\hat{\Lambda}$ выражаются все матрицы в (4.20):

$$\begin{aligned} \hat{\Phi}(z) &= \hat{U}e^{\hat{\Lambda}z}, \quad \hat{\Psi}(z) = e^{-\hat{\Lambda}z}\hat{V}, \\ \hat{V} &= \left(\begin{array}{c} \hat{a}\hat{U}\hat{\Lambda} \\ \hat{U} \end{array}\right)^{-1}\hat{R}_{10}, \\ \hat{X}_{j} &= \left(\hat{a}\hat{U}\hat{\Lambda} + (\hat{b} + (-1)^{j}\hat{w}_{j})\hat{U}\right)e^{\hat{\Lambda}l_{j}}. \end{aligned}$$
(4.21)

Подставляя (4.21) в (4.20), имеем

$$\hat{g}(z, z_1) = k_B T \hat{U} e^{\hat{\Lambda} z} \times \left[\hat{F} - \theta(z - z_1)\hat{I}\right] e^{-\hat{\Lambda} z_1} \hat{V} . \quad (4.22)$$

Как мы видели выше, числа λ_i связаны условиями $\lambda_{i+n} = -\lambda_i^*$. В общем случае антиэрмитовой матрицы $\hat{b} - \hat{b}^+$ для векторов $\mathbf{e}^{(i)}$ такой простой связи нет. Однако, как мы увидим в разд. 5, для всех основных геометрий СЖК-*A* и НЖК матрица $\hat{b} - \hat{b}^+$ симметрична, а следовательно, мнима (причем для смектиков $A\hat{b} = 0$). Тогда из уравнения (4.2) следует $\mathbf{e}^{(i+n)} = \mathbf{e}^{(i)*}$. Поэтому можно записать матрицы $\hat{\Lambda}$ и \hat{U} в блочной форме:

$$\hat{\Lambda} = \begin{pmatrix} \hat{\lambda} & \hat{0} \\ \hat{0} & -\hat{\lambda}^* \end{pmatrix}, \quad \hat{U} = (\hat{u}, \hat{u}^*), \quad (4.23)$$

где $\hat{\lambda}$ — диагональная матрица порядка n с числами $\lambda_1, \ldots, \lambda_n$ на диагонали, \hat{u} — матрица размерности $n \times n$ с элементами $u_{\alpha i} = e_{\alpha}^{(i)}$. Удобно считать, что $\operatorname{Re} \lambda_i > 0, i = 1, \ldots, n$.

Тогда нетрудно проверить, что матрица \hat{V} в (4.21) может быть записана в виде

 $\hat{V} = \hat{D}\hat{\mathcal{T}}\hat{U}^+ \,,$

(4.24)

где

$$\hat{\mathcal{T}} = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}, \quad \hat{D} = \begin{pmatrix} \hat{d} & 0 \\ 0 & -\hat{d^*} \end{pmatrix}, \qquad (4.25)$$
$$\hat{d} = (\hat{u}^T \hat{s} \hat{u})^{-1}, \quad \hat{s} = 2\hat{a} \operatorname{Re} \left(\hat{u} \hat{\lambda} \hat{u}^{-1} \right).$$

Здесь матрица $\hat{\mathcal{T}}$ — матрица перестановок, $\hat{\mathcal{T}}^2 = \hat{\mathcal{T}}$; \hat{d} , \hat{s} — $n \times n$ -матрицы, причем \hat{d} диагональна, а \hat{s} вещественна. Верхний индекс «T» обозначает транспонирование.

Подставляя уравнения (4.23)-(4.25) в уравнения (4.21), (4.22), представим корреляционную матрицу в виде

$$\hat{g}(z, z_1) = k_B T[\hat{g}^{(1)}(z, z_1) + \hat{g}^{(2)}(z, z_1)], \qquad (4.26)$$

где

$$\hat{g}^{(1)}(z,z_{1}) = \hat{u}e^{\hat{\lambda}z} \left[\hat{f}^{(11)} - \hat{1}\theta(z-z_{1}) \right] \hat{d} \times \\ \times e^{-\hat{\lambda}z_{1}} \hat{u}^{T} - \\ - \hat{u}^{*}e^{-\hat{\lambda}^{*}z} \left[\hat{f}^{(22)} - \hat{1}\theta(z-z_{1}) \right] \hat{d}^{*}e^{\hat{\lambda}^{*}z_{1}} \hat{u}^{+}, \quad (4.27) \\ \hat{g}^{(2)}(z,z_{1}) = \hat{u}^{*}e^{-\hat{\lambda}^{*}z} \hat{f}^{(21)} \hat{d}e^{-\hat{\lambda}z_{1}} \hat{u}^{T} - \\ - \hat{u}e^{\hat{\lambda}z} \hat{f}^{(12)} \hat{d}^{*}e^{\hat{\lambda}^{*}z_{1}} \hat{u}^{+}.$$

Здесь $\hat{f}^{(ij)} - n \times n$ -матрицы, определяемые блочным представлением

$$\hat{F} = \begin{pmatrix} \hat{f}^{(11)} & \hat{f}^{(12)} \\ \hat{f}^{(21)} & \hat{f}^{(22)} \end{pmatrix}.$$
(4.28)

Обратим внимание, что в силу тождества

$$\hat{u}\hat{d}\hat{u}^T = \hat{u}^*\hat{d}^*\hat{u}^+$$

функция $\hat{g}^{(1)}(z, z_1)$ непрерывна при $z = z_1$, несмотря на наличие в ее определении разрывных θ -функций.

Для нахождения блоков $\hat{f}^{(ij)}$ необходимо явное выражение для матрицы \hat{F}_2^{-1} . Поскольку \hat{F}_2 в общем случае представляет собой полную матрицу $2n \times 2n$, соответствующая обратная матрица для нематика (n = 2) весьма громоздка.

Для преодоления этой трудности в не очень тонких образцах удобно использовать теорию возмущений по малым параметрам $e^{-|\lambda_j|L}$.

Выберем начало отсчета так, что $l_1 = -L/2$, $l_2 = L/2$. В этом случае матрицы $\hat{X}_{1,2}$ в (4.19) можно записать в блочном виде:

$$\hat{X}_j = \left(\hat{X}_j^{(1)} e^{\hat{\lambda} l_j}, \hat{X}_j^{(2)} e^{-\hat{\lambda}^* l_j}\right), \qquad (4.29)$$

j = 1, 2, где

$$\hat{X}_{j}^{(1)} = \hat{a}\hat{u}\hat{\lambda} + \left(\hat{b} + (-1)^{j}\hat{w}_{j}\right)\hat{u},
\hat{X}_{j}^{(2)} = -\hat{a}\hat{u}^{*}\hat{\lambda}^{*} + (\hat{b} + (-1)^{j}\hat{w}_{j})\hat{u}^{*}.$$
(4.30)

В главном порядке по параметрам $e^{-|\lambda_j|L}$ из (4.18), (4.28), (4.29) имеем

$$\begin{split} \hat{f}^{(11)} &= \hat{1}, \quad \hat{f}^{(22)} = \hat{0}, \\ \hat{f}^{(12)} &= e^{-\hat{\lambda}L/2} \left(\hat{X}_2^{(1)} \right)^{-1} \hat{X}_2^{(2)} e^{-\hat{\lambda}^* L/2}, \\ \hat{f}^{(21)} &= -e^{-\hat{\lambda}^* L/2} \left(\hat{X}_1^{(2)} \right)^{-1} \hat{X}_1^{(1)} e^{-\hat{\lambda}L/2}. \end{split}$$
(4.31)

Следующие поправки к матрицам $\hat{f}^{(11)}, \hat{f}^{(22)}$ имеют порядок $e^{-2\lambda_j L}$, а к матрицам $\hat{f}^{(12)}, \hat{f}^{(21)}$ — порядок $e^{-3\lambda_j L}$.

Подставляя формулы (4.31) в (4.27), получаем

$$\hat{g}^{(1)}(z,z_{1}) = \hat{u}\hat{d}e^{\hat{\lambda}(z-z_{1})}\hat{u}^{T}\theta(z_{1}-z) + \\
+ \hat{u}^{*}\hat{d}^{*}e^{-\hat{\lambda}^{*}(z-z_{1})}\hat{u}^{+}\theta(z-z_{1}), \\
\hat{g}^{(2)}(z,z_{1}) = -\hat{u}^{*}e^{-\hat{\lambda}^{*}(L/2+z)} \times \\
\times \hat{Y}_{1}e^{-\hat{\lambda}(L/2+z_{1})}\hat{u}^{T} - \\
- \hat{u}e^{\hat{\lambda}(z-L/2)}\hat{Y}_{2}e^{\hat{\lambda}^{*}(z_{1}-L/2)}\hat{u}^{+},$$
(4.32)

где

$$\hat{Y}_{1} = \left(\hat{X}_{1}^{(2)}\right)^{-1} \hat{X}_{1}^{(1)} \hat{d},$$

$$\hat{Y}_{2} = \left(\hat{X}_{2}^{(1)}\right)^{-1} \hat{X}_{2}^{(2)} \hat{d}^{*}$$
(4.33)

— эрмитовы $n \times n$ -матрицы. Отметим, что при $L \to \infty$ член $\hat{g}^{(2)}$ в (4.32) стремится к нулю и, следовательно, $\hat{g} = \hat{g}^{(1)}$. Таким образом, член $\hat{g}^{(1)}$ в (4.32) описывает флуктуации в безграничной среде в **q**, *z*-представлении, а член $\hat{g}^{(2)}$ — поправки, связанные с ограниченностью образца и сцеплением с поверхностью.

5. КОРРЕЛЯЦИОННАЯ ФУНКЦИЯ ФЛУКТУАЦИЙ В СМЕКТИКАХ *А* И НЕМАТИКАХ

Применим полученные общие формулы для нахождения корреляционных функций в конкретных случаях.

5.1. Флуктуации в смектиках А

Для упругой части энергии из формулы (2.3) имеем

$$\Phi_e = \frac{1}{2} \int dz \left\{ B \left| \partial_z u_{\mathbf{q}}(z) \right|^2 + K q^4 \left| u_{\mathbf{q}}(z) \right|^2 \right\}.$$
 (5.1)

Согласно (2.4) вклад внешнего поля в **r**-представлении для $\chi_a > 0$ имеет вид

$$F_f = \frac{1}{2} \chi_a H^2 \left[1 - \left(\boldsymbol{\nabla}_{\perp} u \right)^2 \right],$$

а для $\chi_a < 0$

$$F_f = -\frac{1}{2}\chi_a H^2 \left(\frac{\partial u}{\partial x}\right)^2.$$

В последнем случае мы направили ось x вдоль внешнего поля $\mathbf{H} = (H, 0, 0).$

Соответствующие величины Φ_f имеют вид

$$\Phi_f = \begin{cases} \frac{1}{2} \chi_a H^2 q^2 \int dz \, |u_{\mathbf{q}}(z)|^2 \,, & \chi_a > 0, \\ -\frac{1}{2} \chi_a H^2 q_1^2 \int dz \, |u_{\mathbf{q}}(z)|^2 \,, & \chi_a < 0, \end{cases}$$
(5.2)

где $\mathbf{q} = (q_1, q_2, 0).$

Как следует из формулы (2.7), плотность поверхностной энергии равна

$$\Phi_{sf} = \frac{1}{2} \sum_{j=1,2} \left(\gamma_1^{(j)} + q^2 \gamma_2^{(j)} \right) |u_{\mathbf{q}}(l_j)|^2 \,. \tag{5.3}$$

В данном случае матрицы $\hat{a}, \hat{b}, \hat{c}, \hat{w}_j$ (j = 1, 2) в (2.9) имеют размерность 1, т. е. являются скалярами:

$$a = B, \quad b = 0, \quad w_j = \gamma_1^{(j)} + \gamma_2^{(j)} q^2,$$

$$c = \begin{cases} Kq^4 + \chi_a H^2 q^2, & \chi_a > 0, \\ Kq^4 - \chi_a H^2 q_1^2, & \chi_a < 0. \end{cases}$$
(5.4)

Характеристическое уравнение является квадратным и имеет корни

$$\lambda_1 = -\lambda_2 = \sqrt{\frac{c}{B}} \,. \tag{5.5}$$

«Векторы» $\mathbf{e}^{(j)}$ также являются скалярами и их можно положить равными единице: $e^{(1)} = 1$, $e^{(2)} = 1$. «Матрицы» $\hat{\lambda} = \lambda$, $\hat{u} = 1$, $d = (2B\lambda)^{-1}$. Отсюда находим

$$\hat{V} = \frac{1}{2B\lambda} \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$

$$\hat{X}_1 = \left((B\lambda - w_1)e^{-\lambda L/2}, -(B\lambda + w_1)e^{\lambda L/2} \right),$$

$$\hat{X}_2 = \left((B\lambda + w_2)e^{\lambda L/2}, (-B\lambda + w_2)e^{-\lambda L/2} \right).$$
(5.6)

Подставляя (5.6) в (4.28)-(4.31), получим корреляционную функцию (4.26), (4.27) в виде

$$g(\mathbf{q}; z, z_1) = \frac{k_B T}{2B\lambda\Delta} \left\{ (B^2\lambda^2 - w_1w_2) \operatorname{ch}[(z+z_1)\lambda] + B\lambda(w_1 - w_2) \operatorname{sh}[(z+z_1)\lambda] + (B^2\lambda^2 + w_1w_2) \operatorname{ch}[(L-|z-z_1|)\lambda] + B\lambda(w_1 + w_2) \operatorname{sh}[(L-|z-z_1|)\lambda] \right\},$$
 (5.7)

где

$$\Delta = (B^2 \lambda^2 + w_1 w_2) \operatorname{sh}(\lambda L) + B(w_1 + w_2) \lambda \operatorname{ch}(\lambda L).$$

Формула (5.7) описывает оба случая $\chi_a > 0$ и $\chi_a < 0$.

Рис. 1. Поведение корреляционной функции g(z,z) в СЖК-A для различных поверхностных натяжений. Использованы следующие параметры: $\gamma_1^{(1,2)} = 0, B = 3 \cdot 10^7$ дин/см², $K = 10^{-6}$ дин, $q = 10^5$ см⁻¹, $L = 10^{-3}$ см, T = 300 К, H = 0.1 -Слабое сцепление на обеих поверхностях, $\gamma_2^{(1)} = \gamma_2^{(2)} = 2.5$ эрг/см²; 2 -сильное сцепление на поверхности $z = -L/2, \gamma_2^{(1)} = 10$ эрг/см², и слабое сцепление на поверхности $z = L/2, \gamma_2^{(2)} = 3$ эрг/см²; 3 -сильное сцепление на обеих поверхности $z = L/2, \gamma_2^{(2)} = 3$ эрг/см²; 3 -сильное сцепление на обеих поверхностях, $\gamma_2^{(1)} = \gamma_2^{(2)} = 15$ эрг/см². Все графики нормированы на g(0,0) для $\gamma_2^{(1)} = \gamma_2^{(2)} = 15$ эрг/см²

Выделим два типа поведения жидкого кристалла на границе, которые можно назвать случаями сильного и слабого сцепления. В случае сильного сцепления флуктуации вблизи поверхности подавляются. Если же энергия сцепления с данной поверхностью мала, то флуктуации вблизи нее могут быть больше, чем в объеме. Качественно причина этого состоит в том, что вблизи поверхности возвращающая сила определяется как поверхностным, так и объемным вкладами, причем роль объемных сил на границе меньше, чем внутри образца.

Смысл этого иллюстрируется на рис. 1. Если взять простейший случай $\gamma_1^{(1,2)} = 0, \ \gamma_2^{(1)} = \gamma_2^{(2)} = \gamma$, то переход от случая сильного сцепления к случаю слабого происходит при $\gamma \sim \sqrt{KB}$.

Обсудим влияние внешнего поля на корреляционную функцию в СЖК-А.

Из условий $\lambda L \sim 1$ и $\chi_a H^2 \sim Kq^2$ имеем характерное значение поля в СЖК-А:

$$H_S \sim (KB)^{1/4} (\chi_a L)^{-1/2}$$

Для типичных значений $K \sim 10^{-6}$ дин, $B \approx \approx 3 \cdot 10^7$ дин/см², $\chi_a \sim 10^{-7}$ при $L \approx 3 \cdot 10^{-3}$ см это дает $H_S \sim 10^5$ Гс. Как видим, характерное поле для смектиков весьма велико.

Перейдем теперь к рассмотрению нематиков.

5.2. Гомеотропная ориентация, $\chi_a > 0$

В этом случае равновесный вектор директора \mathbf{n}^{0} параллелен вектору напряженности внешнего поля **H** и направлен вдоль оси z, $\mathbf{n}^{0} = (0, 0, 1)$, $\mathbf{H} = (0, 0, H)$. Вектор флуктуаций директора

$$\delta \mathbf{n}(\mathbf{q}, z) = (\delta n_{1\mathbf{q}}(z), \, \delta n_{2\mathbf{q}}(z), \, 0)$$

Следуя [1], выберем ось x вдоль волнового вектора $\mathbf{q} = (q, 0, 0)$. Из формулы (2.2) для энергии Франка имеем

$$\Phi_{e} = \frac{1}{2} \int dz \left[q^{2} \left(K_{11} \left| \delta n_{1\mathbf{q}} \right|^{2} + K_{22} \left| \delta n_{2\mathbf{q}} \right|^{2} \right) + K_{33} \left(\left| \partial_{z} \delta n_{1\mathbf{q}} \right|^{2} + \left| \partial_{z} \delta n_{2\mathbf{q}} \right|^{2} \right) \right].$$
(5.8)

Вклад внешнего поля равен

$$\Phi_f = \frac{1}{2} \chi_a H^2 \int dz \left(|\delta n_{1\mathbf{q}}|^2 + |\delta n_{2\mathbf{q}}|^2 \right).$$
 (5.9)

Отсюда получаем матрицы \hat{a}, \hat{b} и \hat{c} :

$$\hat{a} = K_{33}\hat{1}, \quad \hat{b} = \hat{0},$$

$$\hat{c} = \begin{pmatrix} K_{11}q^2 + \chi_a H^2 & 0 \\ 0 & K_{22}q^2 + \chi_a H^2 \end{pmatrix}.$$
(5.10)

Для поверхностной энергии в этой геометрии чаще всего используется модель (2.5), в которой матрицы \hat{w}_1 и \hat{w}_2 в (2.11) пропорциональны единичной:

$$\hat{w}_1 = W_1 \hat{1}, \quad \hat{w}_2 = W_2 \hat{1}.$$
 (5.11)

Таким образом, имеем

$$\Phi_{sf} = \frac{1}{2} \sum_{i,j=1,2} |\delta n_{i\mathbf{q}}(l_j)|^2 W_j.$$
 (5.12)

Отметим, что если матрицы \hat{w}_1 и \hat{w}_2 не пропорциональны единичной, то они будут в общем случае недиагональными и зависящими от направления вектора **q**.

Корни соответствующего характеристического уравнения равны

$$\lambda_i = -\lambda_{i+2} = \sqrt{\frac{K_{ii}q^2 + \chi_a H^2}{K_{33}}}.$$
 (5.13)

Собственные векторы имеют вид

$$\mathbf{e}^{(1)} = \mathbf{e}^{(3)} = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \mathbf{e}^{(2)} = \mathbf{e}^{(4)} = \begin{pmatrix} 0\\ 1 \end{pmatrix}.$$
 (5.14)

Матрица \hat{u} в (4.23) при этом оказывается единичной, $\hat{u} = \hat{1}$, а матрица \hat{d} в (4.25) равна

$$\hat{d} = \frac{1}{2K_{33}} \begin{pmatrix} \lambda_1^{-1} & 0\\ 0 & \lambda_2^{-1} \end{pmatrix}.$$
 (5.15)

Блочные матрицы $\hat{f}^{(ij)}$ легко вычисляются и имеют диагональный вид

$$\hat{f}^{(11)} = \hat{diag} \left(\varphi_j^+ / \Delta_j \right),
\hat{f}^{(22)} = \hat{diag} \left(\varphi_j^- / \Delta_j \right),
\hat{f}^{(12)} = \hat{diag} \left(\psi_j^- / \Delta_j \right),
\hat{f}^{(21)} = \hat{diag} \left(\psi_j^+ / \Delta_j \right),$$
(5.16)

где через díag (μ_j) мы обозначаем диагональную матрицу с элементами μ_1, μ_2, \ldots на диагонали,

$$\begin{split} \varphi_{j}^{\pm} &= \frac{1}{2} \left[\pm \left(K_{33}^{2} \lambda_{j}^{2} + W_{1} W_{2} \right) + \\ &+ K_{33} \lambda_{j} (W_{1} + W_{2}) \right] e^{\pm \lambda_{j} L}, \\ \psi_{j}^{\pm} &= \frac{1}{2} \times \\ &\times \left[\pm \left(K_{33}^{2} \lambda_{j}^{2} - W_{1} W_{2} \right) + K_{33} \lambda_{j} (W_{2} - W_{1}) \right], \\ \Delta_{j} &= \left[\left(K_{33}^{2} \lambda_{j}^{2} + W_{1} W_{2} \right) \operatorname{sh}(\lambda_{j} L) + \\ &+ K_{33} \lambda_{j} (W_{1} + W_{2}) \operatorname{ch}(\lambda_{j} L) \right]. \end{split}$$
(5.17)

Подставляя (5.14)–(5.17) в (4.26), (4.27), найдем корреляционную матрицу флуктуаций директора, которая в данном случае является диагональной, $g_{12} = g_{21} = 0$,

$$g_{jj}(\mathbf{q}; z, z_1) = \frac{k_B T}{2K_{33}} \mathcal{E}_j(\mathbf{q}, z, z_1), \quad j = 1, 2, \quad (5.18)$$

где

$$\mathcal{E}_{j}(\mathbf{q}; z, z_{1}) = \frac{1}{\lambda_{j}\Delta_{j}} \left\{ \left(K_{33}^{2}\lambda_{j}^{2} + W_{1}W_{2} \right) \times \right. \\ \left. \times \operatorname{ch}\left[\lambda_{j}(L - |z - z_{1}|) \right] + \right. \\ \left. + \left(K_{33}\lambda_{j}(W_{1} + W_{2})\operatorname{sh}[\lambda_{j}(L - |z - z_{1}|)] + \right. \\ \left. + \left(K_{33}^{2}\lambda_{j}^{2} - W_{1}W_{2} \right)\operatorname{ch}[\lambda_{j}(z + z_{1})] \right] + \right. \\ \left. + \left. K_{33}\lambda_{j}(W_{1} - W_{2})\operatorname{sh}[\lambda_{j}(z + z_{1})] \right\} \right\}.$$
(5.19)

Характерная величина внешнего поля в НЖК $H_N \approx L^{-1} (K_{ii}/\chi_a)^{1/2} [1]$. Для типичных значений $K \sim K_{ii} \sim 10^{-6}$ дин, $\chi_a \sim 10^{-7}$ при $L \approx 3 \cdot 10^{-3}$ см это дает $H_N \sim 10^3$ Гс. Поэтому для обычно используемых в эксперименте напряженностей $H_N \sim 10^3$ –10⁴ Гс влияние поля может быть заметным, в отличие от СЖК-A.

Реальные значения энергии сцепления лежат в интервале $W \sim 10^{-2} - 10^{-4}$ эрг/см² [27, 28]. В случае

больших значений $q \sim 10^4 - 10^5$ см⁻¹ для обеих мод g_{jj} будет иметь место случай слабого сцепления. Если же $q \sim 10^3$ см⁻¹, то может иметь место случай сильного сцепления, а также становятся существенными эффекты поля.

5.3. Гомеотропная ориентация, $\chi_a < 0$

В этом случае вектор напряженности внешнего поля **H** перпендикулярен директору $\mathbf{n}^0 = (0, 0, 1)$. Ось *x* выберем вдоль направления $\mathbf{H} = (H, 0, 0)$. Флуктуации директора и волновой вектор при данном выборе осей имеют вид $\delta \mathbf{n} = (\delta n_1, \delta n_2, 0)$, $\mathbf{q} = (q_1, q_2, 0)$.

Энергия Франка равна

$$\Phi_{e} = \frac{1}{2} \int dz \left[\left(K_{11}q_{1}^{2} + K_{22}q_{2}^{2} \right) \left| \delta n_{1\mathbf{q}} \right|^{2} + \left(K_{11}q_{2}^{2} + K_{22}q_{1}^{2} \right) \left| \delta n_{2\mathbf{q}} \right|^{2} + q_{1}q_{2} \left(K_{11} - K_{22} \right) \left(\delta n_{1\mathbf{q}} \delta n_{2\mathbf{q}}^{*} + \delta n_{1\mathbf{q}}^{*} \delta n_{2\mathbf{q}} \right) + K_{33} \left(\left| \partial_{z} \delta n_{1\mathbf{q}} \right|^{2} + \left| \partial_{z} \delta n_{2\mathbf{q}} \right|^{2} \right) \right], \quad (5.20)$$

а вклад внешнего поля

$$\Phi_f = -\frac{1}{2}\chi_a H^2 \int dz \left|\delta n_{1\mathbf{q}}\right|^2.$$
 (5.21)

Поверхностная энергия имеет такой же вид (5.12), как и в случае $\chi_a > 0$.

Таким образом, в этой геометрии получаем такие же матрицы $\hat{a}, \hat{b}, \hat{w}_j$, как в (5.10), (5.11), а матрица \hat{c} имеет вид

$$\hat{c} = \begin{pmatrix} A_2 & B \\ B & A_1 \end{pmatrix}, \qquad (5.22)$$

где

$$A_{1} = K_{11}q_{2}^{2} + K_{22}q_{1}^{2}, \quad B = q_{1}q_{2}(K_{11} - K_{22}),$$

$$A_{2} = K_{11}q_{1}^{2} + K_{22}q_{2}^{2} - \chi_{a}H^{2}.$$
(5.23)

Характеристическое уравнение имеет вещественные корни

$$\lambda_{i} = -\lambda_{i+2} = \left[\frac{1}{2K_{33}} \times ((K_{11} + K_{22})q^{2} - \chi_{a}H^{2} + (-1)^{i+1}Q)\right]^{1/2}, \quad (5.24)$$

где

$$Q = \left[q^4 (K_{11} - K_{22})^2 - 2\chi_a H^2 (K_{11} - K_{22}) \times (q_1^2 - q_2^2) + \chi_a^2 H^4\right]^{1/2},$$

ЖЭТФ, том **120**, вып. 2 (8), 2001

i=1,2.Векторы $\mathbf{e}^{(i)}$ с точностью до нормировки равны

$$\mathbf{e}^{(i)} = \mathbf{e}^{(i+2)} = \begin{pmatrix} B \\ K_{33}\lambda_i^2 - A_2 \end{pmatrix}.$$
 (5.25)

Далее мы могли бы проводить вычисления по формулам (4.26), (4.27). Однако конечный результат можно получить значительно проще. Заметим, что векторы $\mathbf{e}^{(1)}$ и $\mathbf{e}^{(2)}$ в (5.25) ортогональны и вещественны. Следовательно, матрица \hat{u} в (4.23) ортогональна: $\hat{u}^{-1} = \hat{u}^T$. После перехода в плоскости (x, y)к системе координат с осями $\mathbf{e}^{(1)}$ и $\mathbf{e}^{(2)}$ матрица \hat{c} диагонализуется. Так как матрицы \hat{w}_1 и \hat{w}_2 пропорциональны в данной геометрии единичным, то они не изменяются при переходе к новой системе координат. Тогда задача (3.26) для $\chi_a < 0$ (и дифференциальное уравнение, и граничные условия) становится формально совпадающей с этой же задачей для $\chi_a > 0$. Единственная разница состоит в том, что теперь λ_i определяются формулами (5.24), а не (5.13). Возвращаясь к исходной системе координат, корреляционную функцию для $\chi_a < 0$ можно записать в виде

$$\hat{g}_{\chi_a < 0} = \hat{u}\hat{g}_{\chi_a > 0}\hat{u}^{-1}, \qquad (5.26)$$

 $\hat{g}_{\chi_a>0}$ — диагональная матрица с компонентами g_{jj} , определенными в (5.18).

Подставляя (5.23), (5.25) в (5.26), найдем

$$g_{ll} = \frac{k_B T}{2QK_{33}} \times \sum_{j=1,2} (-1)^j (A_l - \lambda_j^2 K_{33}) \mathcal{E}_j(\mathbf{q}; z, z_1), \ l = 1, 2,$$

$$g_{12} = g_{21} = \frac{k_B T B}{2QK_{33}} \times \sum_{i=1,2} (-1)^{j+1} \mathcal{E}_j(\mathbf{q}; z, z_1).$$
(5.27)

Системы с $\chi_a < 0$ изучены не столь подробно, как с $\chi_a > 0$. Для нас они интересны тем, что в них внешнее поле **H** подавляет лишь одну из двух флуктуирующих мод, а вторая остается конечной в пределе $H \to \infty$ [24]. Для таких систем при малых q, выбрав достаточно большое поле, можно получить слабое сцепление на границе для одной моды и сильное сцепление для другой. Эти эффекты иллюстрируются на рис. 2a, 26. Отметим также наличие перекрестной чисто мнимой компоненты корреляционной функции $g_{12}(\mathbf{q}; z, z_1)$, показанной на рис. 2e.

Рис.2. Элементы корреляционной матрицы НЖК для гомеотропной ориентации при $\chi_a < < 0.$ Использованы следующие параметры: $\chi_a = -10^{-7}$, $K_{11} = 10^{-6}$ дин, $K_{22} = 0.5 \cdot 10^{-6}$ дин, $K_{33} = 2 \cdot 10^{-6}$ дин, T = 300 К, $H = 10^4$ Гс, $q_1 = 10^3$ см⁻¹, $q_2 = 2 \cdot 10^3$ см⁻¹, $W_1 = 5 \cdot 10^{-3}$ эрг/см², $W_2 = 4 \cdot 10^{-3}$ эрг/см², $L = 10^{-2}$ см. $a - g_{11}(z, z_1)$, $6 - g_{22}(z, z_1)$, $6 - g_{12}(z, z_1)/i$. Графики нормированы на $g_{22}(0, 0)$

5.4. Планарная ориентация $\chi_a > 0$

Направим ось *у* вдоль вектора директора, $\mathbf{n}^0 \| \mathbf{H}$. Флуктуации директора и волновой вектор в этой системе координат имеют вид $\delta \mathbf{n} = (\delta n_1, 0, \delta n_2)$,

12 ЖЭТФ, вып. 2 (8)

 $\mathbf{q} = (q_1, q_2, 0).$ Энергия Франка равна

$$\Phi_{e} = \frac{1}{2} \int dz \left\{ \left(K_{11}q_{1}^{2} + K_{33}q_{2}^{2} \right) \left| \delta n_{1\mathbf{q}} \right|^{2} + K_{22} \left| \partial_{z} \delta n_{1\mathbf{q}} \right|^{2} + \left(K_{22}q_{1}^{2} + K_{33}q_{2}^{2} \right) \left| \delta n_{2\mathbf{q}} \right|^{2} + K_{11} \left| \partial_{z} \delta n_{2\mathbf{q}} \right|^{2} + iq_{1} \left[K_{11} \left(\delta n_{1\mathbf{q}} \partial_{z} \delta n_{2\mathbf{q}}^{*} - \delta n_{1\mathbf{q}}^{*} \partial_{z} \delta n_{2\mathbf{q}} \right) - K_{22} \left(\delta n_{2\mathbf{q}} \partial_{z} \delta n_{1\mathbf{q}}^{*} - \delta n_{2\mathbf{q}}^{*} \partial_{z} \delta n_{1\mathbf{q}} \right) \right] \right\}.$$
(5.28)

Вклад внешнего поля равен

$$\Phi_f = \frac{1}{2} \chi_a H^2 \int dz \left(|\delta n_{1\mathbf{q}}|^2 + |\delta n_{2\mathbf{q}}|^2 \right).$$
 (5.29)

Поверхностная энергия (2.6) в данной геометрии записывается в виде

$$\Phi_{sf} = \frac{1}{2} \sum_{i,j=1,2} W_j^{(i)} |\delta n_{i\mathbf{q}}(l_j)|^2.$$
 (5.30)

Таким образом, в этой геометрии матрицы \hat{a} , \hat{b} , \hat{c} и \hat{w}_i (j = 1, 2) равны

$$\hat{a} = \begin{pmatrix} K_{22} & 0 \\ 0 & K_{11} \end{pmatrix},
\hat{b} = iq_1 \begin{pmatrix} 0 & -K_{22} \\ K_{11} & 0 \end{pmatrix},
\hat{w}_j = \begin{pmatrix} W_j^{(1)} & 0 \\ 0 & W_j^{(2)} \end{pmatrix},
\hat{c} = \begin{pmatrix} A_3 & 0 \\ 0 & A_4 \end{pmatrix},$$
(5.31)

где

$$A_{3} = K_{11}q_{1}^{2} + K_{33}q_{2}^{2} + \chi_{a}H^{2},$$

$$A_{4} = K_{22}q_{1}^{2} + K_{33}q_{2}^{2} + \chi_{a}H^{2}.$$
(5.32)

Характеристическое уравнение (4.3) имеет следующие корни:

$$\lambda_1 = -\lambda_3 = \sqrt{\frac{A_3}{K_{11}}}, \quad \lambda_2 = -\lambda_4 = \sqrt{\frac{A_4}{K_{22}}}.$$
 (5.33)

Векторы $\mathbf{e}^{(i)}$ в данном случае равны (с точностью до нормировки):

$$\mathbf{e}^{(1)} = \mathbf{e}^{(3)*} = \begin{pmatrix} q_1 \\ -i\lambda_1 \end{pmatrix},$$

$$\mathbf{e}^{(2)} = \mathbf{e}^{(4)*} = \begin{pmatrix} -i\lambda_2 \\ q_1 \end{pmatrix}.$$
 (5.34)

Тогда

$$\hat{u} = \begin{pmatrix} q_1 & i\lambda_2 \\ -i\lambda_1 & q_1 \end{pmatrix}.$$
 (5.35)

Матрица \hat{d} в (4.25) при этом равна

$$\hat{d} = -\frac{1}{2\Omega} \begin{pmatrix} \lambda_1^{-1} & 0\\ 0 & \lambda_2^{-1} \end{pmatrix},$$
 (5.36)

где $\Omega = K_{33}q_2^2 + \chi_a H^2.$

В отличие от гомеотропной геометрии матрица \hat{F}_2 в (4.18) не имеет специальной структуры и компоненты обратной матрицы \hat{F}_2^{-1} в (4.20) (а значит, и матриц $\hat{f}^{(ij)}$ в (4.28)) будут весьма громоздкими. Поэтому для численных расчетов удобно пользоваться общими выражениями (4.26), (4.27) для корреляционной матрицы.

Отметим, что для планарной ориентации коэффициенты $W_{1,2}^{(1)}$ определяют вклад в поверхностную энергию моды δn_1 , а коэффициенты $W_{1,2}^{(2)}$ — моды δn_2 . Тогда можно ожидать, что компонента g_{11} определяется в основном только коэффициентом $W_j^{(1)}$ и почти не зависит от $W_{1,2}^{(2)}$, а компонента g_{22} — коэффициентом $W_j^{(2)}$ и почти не зависит от $W_{1,2}^{(1)}$. Этот эффект однако маскируется взаимодействием мод δn_1 и δn_2 в объемной энергии. Тем не менее для реальных значений параметров зависимость g_{ll} только от $W_j^{(l)}$ выполняется с высокой точностью. Из рис. 3 видно, что величина g_{ll} действительно зависит только от $W_j^{(l)}$. Эта зависимость для $z = z_1 = \pm L/2$ приближенно описывается формулой

$$g_{ll}^{(2)}(\pm L/2, \pm L/2) = -k_B T \frac{\lambda_1 \lambda_2 - q_1^2}{2\lambda_l \Omega} \times \frac{W_j^{(l)}(\lambda_1 \lambda_2 - q_1^2) - \lambda_l \Omega}{W_j^{(l)}(\lambda_1 \lambda_2 - q_1^2) - \lambda_l \Omega}, \quad (5.37)$$

где l = 1, 2, а верхний знак соответствует j = 1, нижний — j = 2. При z, z_1 , не лежащих одновременно на одной из границ образца, компонента g_{ll} будет зависеть об обоих коэффициентов $W_{1,2}^{(l)}$.

Условия сильного и слабого сцепления на границах $z = \pm L/2$ определяются знаком производных

$$\frac{\partial}{\partial z} \left. g_{ll}(z,z) \right|_{z=\pm L/2}$$

 $\Pi {\rm epexod}$ от одного случая к другому происходит при

$$W_i^{(l)} \approx \Omega \lambda_l / (\lambda_1 \lambda_2 - q_1^2).$$

Заметим, что это условие соответствует также смене знака $g_{ll}^{(2)}$ в формуле (5.37).

Рис.3. Элементы корреляционной матрицы НЖК g_{11} и g_{22} (произвольные единицы) для планарной ориентации при $\chi_a > 0$ для $z = z_1 = L/2$ как функции $W_1^{(1)} = W_2^{(1)}$ и $W_1^{(2)} = W_2^{(2)}$ при H = 0, $L = 10^{-2}$ см. Остальные параметры такие же, как на рис. 2. $a - g_{11}(L/2, L/2)$, $\delta - g_{22}(L/2, L/2)$

5.5. Планарная ориентация $\chi_a < 0$

В этой геометрии вектор напряженности внешнего поля перпендикулярен директору и может образовывать произвольный угол α с плоскостью x, y. Так же, как в планарной геометрии при $\chi_a > 0$, направим ось y вдоль \mathbf{n}^0 . Тогда $\mathbf{H} = H(\cos \alpha, 0, \sin \alpha)$, $\delta \mathbf{n} = (\delta n_1, 0, \delta n_2), \mathbf{q} = (q_1, q_2, 0).$

Энергия Франка и поверхностная энергия имеют здесь тот же вид (5.28), (5.30), как и в предыдущем случае.

Вклад внешнего поля равен

$$\Phi_f = -\frac{1}{2}\chi_a H^2 \times \\ \times \int dz \left| \delta n_{1\mathbf{q}} \cos \alpha + \delta n_{2\mathbf{q}} \sin \alpha \right|^2. \quad (5.38)$$

Таким образом, в этой геометрии матрицы \hat{a} , \hat{b} , \hat{w}_i такие же, как в (5.31), а матрица \hat{c} равна

$$\hat{c} = \begin{pmatrix} A_5 & A_7 \\ A_7 & A_6 \end{pmatrix}, \tag{5.39}$$

где

$$A_{5} = K_{11}q_{1}^{2} + K_{33}q_{2}^{2} - \chi_{a}H^{2}\cos^{2}\alpha,$$

$$A_{6} = K_{22}q_{1}^{2} + K_{33}q_{2}^{2} - \chi_{a}H^{2}\sin^{2}\alpha,$$

$$A_{7} = -\chi_{a}H^{2}\sin\alpha\cos\alpha.$$

(5.40)

Характеристическое уравнение в этом случае содержит линейный по λ член:

$$K_{11}K_{22}\lambda^4 - [A_5K_{11} + A_6K_{22} - q_1^2(K_{11} - K_{22})^2]\lambda^2 + + 2iq_1A_7(K_{11} - K_{22})\lambda + A_5A_6 - A_7^2 = 0.$$
(5.41)

Решения этого уравнения $\lambda_1 = -\lambda_3^*, \lambda_2 = -\lambda_4^*$ при $0 < \alpha < \pi/2$ и $K_{11} \neq K_{22}$ всегда содержат мнимую часть. Ненормированные векторы $\mathbf{e}^{(j)}$ равны

$$\mathbf{e}^{(j)} = \begin{pmatrix} A_7 - iq_1(K_{11} - K_{22})\lambda_j \\ K_{22}\lambda_j^2 - A_5 \end{pmatrix}.$$
 (5.42)

В наиболее простых случаях, когда $\alpha = 0$ или $\alpha = \pi/2$, коэффициент $A_7 = 0$ и уравнение (5.41) становится биквадратным. Его решения имеют вид

$$\lambda_{j} = -\lambda_{j+2} = \left\{ \frac{1}{2K_{11}K_{22}} \times \left[2K_{11}K_{22}q_{1}^{2} + K_{33}(K_{11} + K_{22})q^{2} - K_{ii}\chi_{a}H^{2} + (-1)^{j+1}\sqrt{D} \right] \right\}^{1/2}, \quad (5.43)$$

где

$$D = K_{33}^2 (K_{11} - K_{22})^2 q_2^4 + K_{ii}^2 \chi_a^2 H^4 + + 2(-1)^i (K_{11} - K_{22}) \chi_a H^2 (2K_{11}K_{22}q_1^2 + K_{ii}K_{33}q_2^2).$$

Здесь i = 1 соответствует случаю $\alpha = \pi/2$, а i = 2 -случаю $\alpha = 0$. Отметим, что решения (5.43) могут быть комплексными.

Пользуясь формулами (5.43), (5.42), можно получить аналитические выражения для матриц \hat{u} , \hat{U} в (4.23). Мы не приводим выражение для корреляционной матрицы в этом случае, так как оно чрезвычайно громоздко даже в рамках теории возмущений. Однако численные расчеты элементов корреляционной матрицы с помощью формул (4.26), (4.27) или (4.32) не представляют труда и в этом случае.

Особенностью рассматриваемого случая является комплексность собственных чисел λ_i при

 $0 < \alpha < \pi/2$. Однако, как показывают оценки при реальных значениях параметров НЖК, амплитуды внешнего поля H и волновых чисел q_1 и q_2 , всегда выполняется неравенство Im $\lambda_j \ll \operatorname{Re} \lambda_j$. Поэтому осцилляции компонент матриц $\hat{g}(z, z_1)$ отсутствуют. Еще одна особенность этого случая комплексность всех компонент корреляционной матрицы.

Что касается влияния внешнего поля, то ситуация здесь аналогична случаю гомеотропной ориентации с $\chi_a < 0$. А именно, компонента флуктуаций директора, перпендикулярная **H**, не подавляется внешним полем. В данной геометрии такой компонентой является линейная комбинация

$$\delta \mathbf{n} = -\delta \mathbf{n}_1 \sin \alpha + \delta \mathbf{n}_2 \cos \alpha.$$

В частности, при $\alpha = 0$ поле не подавляет компоненту g_{22} , а при $\alpha = \pi/2$ — компоненту g_{11} корреляционной матрицы.

Отметим проблему, возникающую в точных формулах (4.22), (4.26) при проведении по ним численных расчетов. Сомножители $\exp(\hat{\Lambda}l_i)$ в (4.21) содержат как очень большие, так и очень малые по абсолютной величине компоненты, которые нужно учитывать одновременно, не пренебрегая последними. Для реальных параметров НЖК, например при решении оптической задачи в образце толщиной $L \sim 100 \, {\rm mk}$, это приводит к необходимости одновременно учитывать в промежуточных вычислениях величины порядка $10^{\pm 2000}$. Это делает формулу (4.22) непригодной для численных расчетов. Эта проблема не возникает при рассмотрении тонких образцов, когда $|\lambda_i| L$ невелики. В случае больших λL для численных расчетов можно использовать формулы теории возмущений (4.32). Расчеты, проводимые по точным формулам (4.22) и формулам (4.32) теории возмущений, дают отличное совпадение вплоть до значений $\lambda L \leq 2$ -3. Наиболее заметные расхождения расчетов по этим формулам возникают, когда z и z_1 расположены на противоположных краях образца: L/2 и -L/2. Эти расхождения устраняются, если учитывать второй порядок теории возмущений. Однако при этом $g_{\alpha\beta}(L/2, -L/2)$ пренебрежимо малы по сравнению с $g_{\alpha\beta}(z,z_1)$ при $z~=~z_1,$ поэтому эти поправки не представляют интереса.

6. РАССЕЯНИЕ СВЕТА

Одним из методов анализа пространственных корреляционных функций является измерение угловой и поляризационной зависимостей интенсивности рассеянного света. С оптической точки зрения СЖК-А и НЖК являются одноосными средами с тензором диэлектрической проницаемости

$$\varepsilon_{\alpha\beta}(\mathbf{r}) = \varepsilon_{\perp}\delta_{\alpha\beta} + \varepsilon_a n_\alpha(\mathbf{r})n_\beta(\mathbf{r}), \qquad (6.1)$$

где $\varepsilon_a = \varepsilon_{\parallel} - \varepsilon_{\perp}, \varepsilon_{\parallel}$ и ε_{\perp} — диэлектрические проницаемости вдоль и поперек оптической оси. Флуктуации диэлектрической проницаемости $\delta \varepsilon_{\alpha\beta}$, которые в линейном по $\delta \mathbf{n}$ приближении имеют вид

$$\delta \varepsilon_{\alpha\beta} = \varepsilon_a (n^0_\alpha \delta n_\beta + n^0_\beta \delta n_\alpha) , \qquad (6.2)$$

приводят к рассеянию света.

Интенсивность рассеяния в анизотропном плоском слое может быть записана в виде (ср. [29])

$$I(\mathbf{e}^{(i)}, \mathbf{e}^{(j)}) = \frac{V I_0^{(i)} \omega^4}{16\pi^2 R^2 c^4} A^{(is)}(\mathbf{k}^{(s)}, \mathbf{k}^{(i)}) \times e_{\nu}^{(s)} e_{\mu}^{*(s)} D_{\nu\rho\mu\eta}(\mathbf{q}_{sc}; L) e_{\rho}^{(i)} e_{\eta}^{*(i)}, \quad (6.3)$$

где V — рассеивающий объем, ω — круговая частота, c — скорость света в вакууме,

$$D_{\nu\rho\mu\eta}(\mathbf{q}_{sc};L) = \frac{1}{L} \int_{-L/2}^{L/2} \times \int_{-L/2}^{L/2} D_{\nu\rho\mu\eta}(\mathbf{q}_{sc\perp};z,z_1) e^{-iq_{sc\parallel}(z-z_1)} dz \, dz_1, \quad (6.4)$$

а $D_{\nu\rho\mu\eta}(\mathbf{q}_{sc\perp}; z, z_1)$ — корреляционная функция флуктуаций тензора диэлектрической проницаемости, которая в координатном представлении имеет вид

$$D_{\nu\rho\mu\eta}(\mathbf{r}_1,\mathbf{r}_2) = \langle \delta\varepsilon_{\nu\rho}(\mathbf{r}_1)\delta\varepsilon_{\mu\eta}(\mathbf{r}_2) \rangle, \qquad (6.5)$$

 $\mathbf{q}_{sc} = \mathbf{k}^{(i)} - \mathbf{k}^{(s)}$ — вектор рассеяния. Здесь *i*, *s* обозначают падающую (*i*) и рассеянную (*s*) волны, $\mathbf{e}^{(i)}$, $\mathbf{e}^{(s)}$ — векторы поляризации этих волн, $\mathbf{k}^{(i)}$, $\mathbf{k}^{(s)}$ — волновые векторы. В одноосной среде $\mathbf{e}^{(s)}$, $\mathbf{k}^{(s)}$ и $\mathbf{e}^{(i)}$, $\mathbf{k}^{(i)}$ могут принимать по два значения, относящиеся к обыкновенной и необыкновенной волнам. Множитель $A^{(is)}(\mathbf{k}^{(s)}, \mathbf{k}^{(i)})$ — угловой фактор, R — расстояние от рассеивающего объема до точки наблюдения, $I_0^{(i)}$ — интенсивность падающего света. В формуле (6.3) не учитывается преломление на границах образца. Этот вопрос обсуждается в [30].

Корреляционная функция $\hat{D}(\mathbf{q}_{\perp}; z, z_1)$ в формуле (6.3) согласно (6.2) связана с корреляционной функцией флуктуаций директора \hat{G} :

$$D_{\nu\rho\mu\eta} = \varepsilon_a^2 (n_\nu^0 n_\mu^0 G_{\rho\eta} + n_\nu^0 n_\eta^0 G_{\rho\mu} + n_\rho^0 n_\mu^0 G_{\nu\eta} + n_\rho^0 n_\mu^0 G_{\nu\eta} + n_\rho^0 n_\eta^0 G_{\nu\mu}), \quad (6.6)$$

где для нематика $\hat{G} = \hat{g}$, а для смектика

$$G_{\alpha\beta}(\mathbf{q}_{\perp}; z, z_1) = q_{\alpha}q_{\beta}g(\mathbf{q}_{\perp}; z, z_1).$$

Интеграл по z и z_1 в формуле (6.4) может быть вычислен в общем виде по формуле (4.22). Имеем

$$\int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \hat{G}(\mathbf{q}_{\perp}; z, z_1) e^{-iq_{\parallel}(z-z_1)} dz dz_1 =$$

= $k_B T \hat{U} \hat{J}^{-1} \left(4 \operatorname{sh} \frac{\hat{J}L}{2} \hat{F} \operatorname{sh} \frac{\hat{J}L}{2} + L \hat{J} + \hat{I} - e^{\hat{J}L} \right) \times$
 $\times \hat{J}^{-1} \hat{V}, \quad (6.7)$

где $\hat{J} = \hat{\Lambda} - iq_{\parallel}\hat{I}$ — диагональная матрица.

Для необыкновенного луча длина волнового вектора **k** зависит от направления, а вектор поляризации **e**, лежащий в плоскости (**k**, **n**⁰), не ортогонален **k**. Для нас наиболее существенно влияние анизотропии среды на длину вектора рассеяния $\mathbf{q}_{sc} = \mathbf{k}^{(i)} - \mathbf{k}^{(s)}$, поскольку в неограниченной среде при H = 0 интенсивность рассеяния $\sim 1/q_{sc}^2$ [1]. В остальных величинах анизотропией будем пренебрегать, что позволит считать $\mathbf{e} \perp \mathbf{k}$ и $A^{(is)}(\mathbf{k}^{(s)}, \mathbf{k}^{(i)}) = 1$.

Проанализируем для гомеотропной и планарной геометрий НЖК с $\chi_a > 0$ возможности определения энергий сцепления из данных по рассеянию света.

6.1. Гомеотропная ориентация

Рассмотрим случай, когда падающий луч нормален к поверхности ячейки. Геометрия рассеяния показана на рис. 4. Здесь падающий луч — обыкновенный, а рассеянный — необыкновенный.

Рис. 4. Геометрия рассеяния света для гомеотропной ориентации НЖК

Угловая зависимость интенсивности рассеянного света при этом имеет вид

$$I(\theta,\varphi) = C_0 \sin^2 \theta \times \left[G_{(2)} + (G_{(1)} - G_{(2)}) \cos^2 \varphi \cos^2 \frac{\theta}{2} \right], \quad (6.8)$$

где

$$C_0 = I_0^{(i)} V \left(\frac{\omega^2 \varepsilon_a}{4\pi R c^2}\right)^2$$

— постоянная, а $G_{(j)}$ имеет вид

$$G_{(j)} = \frac{k_B T}{K_{33} (\lambda_j^2 + q_{\parallel}^2) L} \times \left\{ L + \frac{q_{\parallel}^2 - \lambda_j^2}{\lambda_j (\lambda_j^2 + q_{\parallel}^2)} + \frac{K_{33}^2 \lambda_j^2 - W_1 W_2}{\lambda_j \mathcal{K}_j^+} + 4e^{-\lambda_j L} \lambda_j \times \frac{(W_1 W_2 - K_{33}^2 q_{\parallel}^2) \cos(Lq_{\parallel}) - K_{33} q(W_1 + W_2) \sin(Lq_{\parallel})}{(\lambda_j^2 + q_{\parallel}^2) \mathcal{K}_j^+} + \frac{e^{-2\lambda_j L}}{\lambda_j \mathcal{K}_j^+} \left[K_{33}^2 \lambda_j^2 - W_1 W_2 - \left(\lambda_j L + \frac{\lambda_j^2 - q_{\parallel}^2}{\lambda_j^2 + q_{\parallel}^2}\right) \mathcal{K}_j^- \right] \right\} \times \left[1 - e^{-2\lambda_j L} \frac{\mathcal{K}_j^-}{\mathcal{K}_j^+} \right]^{-1}, \quad (6.9)$$

где

$$C_j^{\pm} = (K_{33}\lambda_j \pm W_1)(K_{33}\lambda_j \pm W_2),$$
$$q_{\parallel} = 2\sqrt{\varepsilon_{\perp}} \frac{\omega}{c} \sin^2(\theta/2),$$

а λ_j вычисляются по формуле (5.13) с

$$q = q_{\perp} = \sqrt{\varepsilon_{\perp}} \frac{\omega}{c} \sin \theta.$$

При больших $\lambda_j L$ экспоненциальные члены в (6.9) можно опустить, и величина $G_{(j)}$ определяется первыми тремя слагаемыми. Первое из них соответствует пределу неограниченной среды, $L \to \infty$,

$$G_{(j)} = \frac{k_B T}{K_{33}} \frac{1}{\lambda_j^2 + q_{\parallel}^2} = \frac{k_B T}{K_{33} q_{\parallel}^2 + K_{jj} q_{\perp}^2 + \chi_a H^2} \,,$$

что совпадает с известным результатом [1].

Второе слагаемое связано с учетом конечности объема в экспоненциальном приближении, $\operatorname{ch} x \approx \operatorname{sh} x \approx \exp x$ в (5.19) при интегрировании пространственно-однородной корреляционной функции неограниченной среды, когда

$$g(\mathbf{q}, z, z_1) \approx g(\mathbf{q}, |z - z_1|).$$

По этой причине оно не зависит от энергий сцепления W_1, W_2 .

Третий член в (6.9), зависящий от W_1 и W_2 , возникает из-за интегрирования в конечных пределах третьего слагаемого в (5.19) в экспоненциальном приближении, которое учитывает пространственную неоднородность корреляционной функции. Заметим, что пространственно-неоднородное слагаемое, связанное с четвертым членом в (5.19), не вносит вклада в рассеяние по причинам симметрии.

Обратим внимание, что третье слагаемое в (6.9) по абсолютной величине соизмеримо с первыми двумя в не очень толстых образцах.

Как видно из формулы (6.8), угол φ определяет лишь относительный вклад мод δn_1 и δn_2 в рассеяние. Поэтому основная информация о параметрах W_1 и W_2 содержится в зависимости $I(\theta, \varphi)$ от угла θ , которая показана на рис. 5. Здесь приведена зависимость интенсивности рассеяния, вычисленная по формулам (6.8), (6.9) для двух наборов энергии сцепления в интервале углов от 0.003 до 0.03 рад. На вставке к рис. 5 а эта зависимость показана в расширенном интервале углов $0 \le \theta \le \pi/3$. На каждом из рис. 5а и 5б приведены три графика, соответствующие разным значениям внешнего поля: H = 0, 700 Гс и 2000 Гс. Отметим, что при использовании в формуле (6.9) первых трех слагаемых расхождение с точными результатами начинают наблюдаться для углов $\theta < 10^{-2}$ рад.

Различие между ходом кривых на рис. 5a и 5b показывает, что измерение угловой зависимости интенсивности рассеяния при разных значениях внешнего поля может служить эффективным методом для определения энергий сцепления.

6.2. Планарная ориентация

При изучении рассеяния света в НЖК наиболее интересно рассматривать случай $q_{sc} \rightarrow 0$, поскольку при этом интенсивность рассеяния максимальна [1]. В силу анизотропии среды такая ситуация может быть реализована, когда падающий и рассеянный лучи одного типа — оба обыкновенные (оо) или оба необыкновенные (ee). Поскольку по геометрическим причинам рассеяние (оо)-типа отсутствует [1], мы рассмотрим рассеяние (ее)-типа. В отличие от гомеотропной ориентации, здесь приходится рассматривать случай наклонного падения, поскольку интенсивность рассеяния света на нулевой угол при нормальном и скользящем падении обращается в нуль [29]. Для простоты выберем угол падения $\theta^{(i)} = \pi/4$, поскольку при этом коэффициент экстинкции близок к максимальному [29], и ограничим-

Рис. 5. Угловая зависимость интенсивности рассеянного света для гомеотропной ориентации НЖК во внешнем поле при $L = 3 \cdot 10^{-3}$ см, $\chi_a = 10^{-7}$, $k_0 = \sqrt{\varepsilon_{\perp}}(\omega/c) = 10^5$ см⁻¹. Значения K_{jj} , j = 1, 2, 3 такие же, как на рис. 2. $a - W_1 = 10^{-3}$ эрг/см², $W_2 = 2 \cdot 10^{-3}$ эрг/см², $\delta - W_1 = 10^{-4}$ эрг/см², $W_2 = 2 \cdot 10^{-4}$ эрг/см². 1 - H = 0, 2 - H = 700 Гс, 3 - H = 2000 Гс

ся случаем, когда падающий и рассеянный лучи лежат в одной плоскости с нормалью к поверхности. Азимутальный угол φ между проекциями векторов $\mathbf{k}^{(i)}, \mathbf{k}^{(s)}$ на плоскость xy и осью x будем считать произвольным.

Относительный вклад мод $\delta n_{1,2}$ флуктуаций директора $\delta \mathbf{n} = (\delta n_1, 0, \delta n_2)$ в рассеяние определяется множителем

$$e_{\alpha}^{(s)} e_{\gamma}^{(s)} D_{\alpha\beta\gamma\rho} e_{\beta}^{(i)} e_{\rho}^{(i)} = (\mathbf{e}^{(s)} \cdot \mathbf{n}^{(0)})^{2} (\mathbf{e}^{(i)} \hat{g} \mathbf{e}^{(i)}) + (\mathbf{e}^{(s)} \cdot \mathbf{n}^{(0)}) (\mathbf{e}^{(i)} \cdot \mathbf{n}^{(0)}) \left[(\mathbf{e}^{(i)} \cdot \hat{g} \mathbf{e}^{(s)}) + (\mathbf{e}^{(s)} \cdot \hat{g} \mathbf{e}^{(i)}) \right] + (\mathbf{e}^{(i)} \cdot \mathbf{n}^{(0)})^{2} (\mathbf{e}^{(s)} \cdot \hat{g} \mathbf{e}^{(s)}) . \quad (6.10)$$

При $\varphi = \pi/2$ для малоуглового рассеяния векторы $\mathbf{k}^{(i)} \approx \mathbf{k}^{(s)} \perp \mathbf{e}^{(i)} \approx \mathbf{e}^{(s)}$ лежат в плоскости yz. Следовательно, все свертки типа ($\mathbf{e}^{(i,s)} \cdot \hat{g} \mathbf{e}^{(i,s)}$) в (6.10) не содержат вклада моды $\delta \mathbf{n}_1$ — компоненты флуктуаций директора вдоль оси х. Таким образом, в этой геометрии непосредственно измеряется вклад моды $\delta \mathbf{n}_2$ и связанные с ней поверхностные энергии $W_1^{(2)}$ и $W_2^{(2)}$. Это иллюстрируется на рис. 6а, где изображена зависимость интенсивности рассеяния от угла $\theta^{(s)}$ между $\mathbf{k}^{(s)}$ и осью z. Формально здесь изображены графики интенсивности для четырех наборов значений поверхностных энергий. Поскольку, как мы видели в разд. 5.4 (рис. 3), компонента g_{22} практически не зависит от $W_{1,2}^{(1)}$, на рис. 6*a* пары графиков, соответствующих одному на-бору $W_{1,2}^{(2)}$, но разным значениям $W_{1,2}^{(1)}$, неотличимы друг от друга. Таким образом, эта геометрия наиболее удобна для определения пары энергий $W_{1,2}^{(2)}$.

Для определения двух других энергий сцепления

этом следует иметь в виду, что при $\varphi = 0$ векторы $\mathbf{e}^{(s,i)}$ совпадают по направлению с вектором директора \mathbf{n}^0 , и поэтому все свертки типа $(\mathbf{e}^{(i,s)} \cdot \hat{g}\mathbf{e}^{(i,s)})$ в (6.10) равны нулю в силу условия $\delta \mathbf{n} \perp \mathbf{n}^0$. Поэтому такие измерения следует проводить при $0 < \varphi < \pi/2$. На рис. 6б показана угловая зависимость интенсивности рассеяния для тех же четырех наборов энергий сцепления $W_{1,2}^{(1,2)}$, что и на рис. 6a. Видно, что за счет вклада моды $\delta \mathbf{n}_1$ интенсивность рассеяния начинает зависеть и от энергий сцепления $W_{1,2}^{(1)}$. Влияние внешнего поля в планарной геометрии иллюстрируется на рис. 7. Видно, что характерные

 $W_{1,2}^{(1)}$ необходимо измерять вклад моды δn_1 в рас-

сеяние, т. е. проводить измерения при $\varphi \neq \pi/2$. При

иллюстрируется на рис. 7. Видно, что характерные поля, при которых значительно уменьшается интенсивность малоуглового рассеяния, имеют порядок $H \sim 10^4$ Гс.

7. ЗАКЛЮЧЕНИЕ

Предложена общая схема вычисления корреляционных функций флуктуаций ориентации в ограниченных образцах жидких кристаллов с учетом влияния ориентирующих поверхностей и внешних полей. Для случая плоскопараллельных ячеек были найдены пространственные корреляционные функции для нематических и смектических жидких кристаллов без использования упрощающих предположений типа одноконстантного приближения. Рассмотрены случаи положительной и отрицательной анизотро-

Рис. 6. Угловая зависимость интенсивности рассеяния (ee)-типа при $\theta^{(i)} = \pi/4$ для планарной ориентации НЖК. $a - \varphi = \pi/2, \ 6 - \varphi = \pi/20.$ При расчетах полагалось $\varepsilon_{\parallel} = 3.5, \ \varepsilon_{\perp} = 2.5, \ L = 10^{-3}$ см, H = 0. Значения K_{jj} (j = 1-3) такие же, как на рис. 2. $1 - W_1^{(1)} = 2, \ W_1^{(2)} = 7, \ W_2^{(1)} = 1.9, \ W_2^{(2)} = 8.6; \ 2 - W_1^{(1)} = 200, \ W_1^{(2)} = 7, \ W_2^{(1)} = 190, \ W_2^{(2)} = 8.6; \ 3 - W_1^{(1)} = 2, \ W_1^{(2)} = 700, \ W_2^{(1)} = 1.9, \ W_2^{(2)} = 860; \ 4 - W_1^{(1)} = 200, \ W_1^{(2)} = 700, \ W_2^{(1)} = 190, \ W_2^{(2)} = 860.$ Эти величины указаны в единицах 10^{-4} эрг/см². Интенсивности нормированы на одинаковую величину

Рис.7. Влияние внешнего поля на угловую зависимость интенсивности рассеянного света в той же геометрии, что и на рис. 6*a*. При расчетах использованы такие же параметры, как и на рис. 6. Энергии сцепления положены равными $W_1^{(1)} = 2$, $W_1^{(2)} = 7$, $W_2^{(1)} = 1.9$, $W_2^{(2)} = 8.6$ (в единицах 10^{-4} эрг/см²), $\chi_a = 10^{-7}$. 1 - H = 0, $2 - H = 2 \cdot 10^3$ Гс, $3 - H = 10^4$ Гс, $4 - H = 2 \cdot 10^4$ Гс

пии диэлектрической проницаемости или магнитной восприимчивости.

Полученные результаты были использованы для расчета угловой зависимости интенсивности рассеянного света в различных геометриях. Оказалось, что интенсивность рассеяния в ограниченных ячейках очень чувствительна как к значениям энергий сцепления, так и к величине приложенного внешнего поля. Показано, в частности, что с помощью таких экспериментов при планарной ориентации НЖК можно измерять отдельно поверхностные энергии, связанные с поворотом директора в ориентирующей плоскости, и отклонения от нее.

Самостоятельный интерес может представлять изучение рассеяния света в нематических жидких кристаллах с отрицательной анизотропией, поскольку здесь имеются дополнительные возможности исследования вещества, связанные с тем, что флуктуационные моды по-разному меняются во внешнем поле.

Развитый подход может быть обобщен и на другие геометрии, такие как сферическая и цилиндрическая, которые существенны при описании флуктуаций ориентации в каплях жидких кристаллов, заключенных в полимерной матрице или пористых средах, а также на использование более реалистичных поверхностных потенциалов [27], отличных от потенциала Рапини (2.11).

Работа выполнена при поддержке образовательной программой ISSEP. Авторы выражают признательность В. А. Белякову за обсуждение работы и полезные советы и А. Н. Шалагинову за ценные беседы.

ЛИТЕРАТУРА

- 1. P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals*, Clarendon Press, Oxford (1993).
- T.Bellini, N. A. Clark, C. D. Muzny et al., Phys. Rev. Lett. 69, 788 (1992); N. A. Clark, T. Bellini, R. M. Malzbender et al., Phys. Rev. Lett. 71, 3505 (1993); F. M. Aliev, Mol. Cryst. Liq. Cryst. 243, 91 (1994).
- A. Poniewierski and A. Samborski, Phys. Rev. E 53, 2436 (1996).
- P. Ziherl, A. Sarlah, and S. Zumer, Phys. Rev. E 59, 602 (1998).
- B. Alkhairalla, H. Allinson, N. Boden, S. D. Evans, and J. R. Henderson, Phys. Rev. E 59, 3033 (1999).
- S. Sprunt, M. S. Spector, and J. D. Litster, Phys. Rev. A 45, 7355 (1992); R. Hall, K. Miyachi, D. Newton, H. Takezoe, and A. Fukuda, Jap. J. Appl. Phys. 31, 329 (1992); T. Bellini, N. A. Clark, and D. W. Schaefer, Phys. Rev. Lett. 74, 2740 (1995); S. Stallinga, M. M. Wittebrood, D. H. Luijendijk, and Th. Rasing, Phys. Rev. E 53, 6085 (1996); A. N. Shalaginov, Phys. Rev. E 53, 3623 (1996).
- 7. H. Li and M. Kardar, Phys. Rev. Lett. 67, 3275 (1991).
- H. Li, M. Paczuski, K. Kardar, and K. Huang, Phys. Rev. B 44, 8274 (1991).
- A. Adjari, L. Peliti, and J. Prost, Phys. Rev. Lett. 66, 1481 (1991).
- A. Ajdari, B. Duplantier, D. Hone, L. Peliti, and J. Prost, J. de Phys. II 2, 487 (1992).
- D. Kang and C. Rosenblatt, Phys. Rev. E 53, 2976 (1996).
- S. Matsumoto, M. Houlbert, T. Hayashi, and K. Kubodera, Appl. Phys. Lett. 69, 1044 (1996);
 L. Vicari, Phys. Rev. E 58, 3280 (1998).
- O. D. Lavrentivich, Phys. Rev. A 46, R722 (1992); Yu. Panarin, S. T. Mac Lughadha, and J. K. Vij, Phys. Rev. E 52, R17 (1995); B. Cull, Y. Chi, and S. Kumar, Phys. Rev. E 51, 526 (1995); R. E. Kraig, P. L. Taylor, R. Ma, and D. Yang, Phys. Rev. E 58, 4594 (1998); U. Kuhnau, A. G. Petrov, G. Klose, and H. Schmiedel, Phys. Rev. E 59, 578 (1999).

- R. J. Ondris-Crawford, G. P. Crawford, S. Zumer, and J. W. Doane, Phys. Rev. Lett. **70**, 194 (1993); L. Limat and J. Prost, Liq. Cryst. **13**, 101 (1993); M. Ambrozic and S. Zumer, Phys. Rev. E **59**, 4159 (1999).
- P. G. de Gennes, C. R. Acad. Sci. Paris 266, 15 (1968);
 J. Phys. (Paris) Colloq. 301, (Suppl. C4) 65 (1969).
- 16. В. Л. Покровский, Е. И. Кац, ЖЭТФ 73, 774 (1977);
 А. Ю. Вальков, В. П. Романов, ЖЭТФ 83, 1777 (1982).
- **17**. Б. Я. Зельдович, Н. В. Табирян, ЖЭТФ **81**, 1788 (1981).
- Т. Я. Марусий, Ю. А. Резников, В. Ю. Решетняк, М. С. Соскин, А. И. Хижняк, ЖЭТФ 91, 851 (1986).
- 19. K. Eidner, M. Lewis, H. K. M. Vithana, and D. L. Johnson, Phys. Rev. A. 40, 6388 (1989).
- 20. В. П. Романов, А. Н. Шалагинов, ЖЭТФ 102, 884 (1992).
- 21. A. Poniewierski and A. Holyst, Phys. Rev. B 47, 9840 (1993).
- 22. A. Rapini and M. Popoular, J. Phys. (Paris) Colloq.
 30, (Suppl. C4) 54 (1969).
- 23. A. N. Shalaginov and V. P. Romanov, Phys. Rev. E 48, 1073 (1993).
- 24. A. Yu. Val'kov and M. V. Romanov, Colloid and Surfaces A 148, 179 (1999).
- Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, ч. 1, Наука, Москва (1976).
- 26. Р. Фейнман, Статистическая механика, Мир, Москва (1978).
- 27. Л. М. Блинов, Е. И. Кац, А. А. Сонин, УФН 152, 449 (1987).
- 28. В. Н. Матвеенко, Е. А. Кирсанов, Поверхностные явления в жидких кристаллах, МГУ, Москва (1991).
- 29. А. Ю. Вальков, В. П. Романов, А. Н. Шалагинов, УФН 164, 149 (1994).
- 30. M. Lax, D. F. Nelson, in Proc. of the 3rd Rochester Conf. on Coher. and Quant. Opt., ed. by L. Mandel and E. Wolf, Plenum, N. Y. (1973), p. 415.