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PHYSICAL PROPERTIES OF SCALAR AND SPINOR FIELD STATESWITH THE RINDLER�MILNE (HYPERBOLIC) SYMMETRYV. I. Ritus *Tamm Department of Theoreti
al Physi
s, Lebedev Physi
al Institute, Russian A
ademy of S
ien
es117924, Mos
ow, RussiaSubmitted 19 Mar
h 2001It is shown that right and left 
ombinations of the positive- and negative-frequen
y hyperboli
ally symmetri
solutions of the Klein�Fo
k�Gordon equation possess an everywhere timelike 
urrent density ve
tor with a def-inite Lorentz-invariant sign of the 
harge density, and similar 
ombinations of solutions to the Dira
 equationpossess the energy-momentum tensor with everywhere real eigenvalues and a de�nite Lorentz-invariant sign ofthe energy density. These right and left modes, just as their �-frequen
y 
omponents, are eigenfun
tions ofthe Lorentz boost generator with the eigenvalue �. The sign of the 
harge (energy) density 
oin
ides with thesign of � for the right s
alar (spinor) modes and is opposite to it for the left modes. It is then reasonable toassume that the parti
les (antiparti
les) are pre
isely des
ribed by the right modes with � > 0 (� < 0) and bythe left modes with � < 0 (� > 0).PACS: 11.10.-z, 11.30.-j1. INTRODUCTIONThree 
omplete sets of solutions of the Klein�Fo
k�Gordon (KFG) and Dira
 equations are usually 
onsid-ered in relation to the Unruh e�e
t [1℄. One of thesesolution sets is the usual planewave set and the othertwo are the sets of �eld modes with a hyperboli
 sym-metry. The hyperboli
ally symmetri
 modes radi
allydi�er from the planewave modes by singularities o

ur-ring on the light 
one. As a result, the 
orresponding
harge and energy densities os
illate with in
reasingthe frequen
y at Compton distan
es near the 
one andbe
ome in�nite on the 
one. It is not surprising thatthe 
harge density of the s
alar �eld and the energydensity of the spinor �eld 
an have either sign near thesingularity. This means that these modes 
ontain bothparti
les and antiparti
les near the light 
one. It isthen di�
ult to distinguish the hyperboli
ally symmet-ri
 �eld state 
reated by external sour
es on the light
one from the state 
reated by the measuring devi
e it-self. Nevertheless, there exist right and left states withthe hyperboli
 symmetry for whi
h the 
harge densityof the s
alar �eld and the energy density of the spinor*E-mail: ritus�lpi.a
.ru

�eld possess an everywhere de�nite Lorentz-invariantsign. 2. PLANE WAVES WITH DEFINITEMOMENTUM AND FREQUENCYFor s
alar plane waves'(�)p (x) = 1p2E exp [i(pz �Et)℄ ;E =pm2 + p2; x� = (t; z); (1)the 
urrent densities j(�)�p (x) = (�1; p=E) are timelikeve
tors. The signs of the 
harge densities 
oinside withthe frequen
y signs. The energy-momentum tensor t��has the 
omponentst(�)00 ; t(�)33 ; t(�)03 = E; p2=E; �p; (2)with sign t(�)00 > 0.For spinor plane waves with de�nite momentum andfrequen
y and with the double spin proje
tion s,�(�)ps (x) = '(�)p (x)pmu(�)s (�);�u(!)s (�)u(!0)s0 (�) = 2!Æ!!0Æss0 (3)242
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al properties of s
alar and spinor �eld : : :(the bispinors u(�)s (�) are given in (41) in the 
hiral rep-resentation in the transposed form), the 
urrent densi-ties j(�)�ps (x) = (1; p=E) are timelike ve
tors with pos-itive time 
omponents. The energy-momentum tensort�� 
orresponding to (3) has the 
omponentst(�)00 ; t(�)33 ; t(�)03 = �E; �p2=E; �p; (4)where sign t(�)00 ? 0:A superposition of the s
alar positive (negative)-frequen
y plane waves, unlike the partial waves them-selves, does not possess a positive (negative) de�nite
harge density in general. Thus, if�(x) = Z dp 
p'(+)p (x); (5)the 
harge density may not be everywhere positive be-
ause of os
illations of the integrand in the representa-tionj0(x) = i ��(x) $�t �(x) = ZZ dp dp0(E +E0)p2E2E0 �� exp fi [(p0 � p)z � (E0 �E)t℄g 
�p
p0 : (6)However, the total 
harge of the pa
ket is positive andtime-independent,Q = Z dzj0(x) = 2� Z dp j
pj2: (7)Similarly, a superposition of the spinor positive(negative)-frequen
y plane waves does not possess aneverywhere positive (negative) energy density in gen-eral. Thus, the positive-frequen
y wave pa
ket�s(x) = Z dp 
p�(+)ps (x) (8)has the energy densityt00(x) = 12 i�+s (x) $�t �s(x) == 12 ZZ dp dp0(E +E0)p2E2E0 �� exp fi [(p0 � p)z � (E0 �E)t℄g ��mu(+)+s (�)u(+)s (�0) 
�p
p0 (9)that may not be everywhere positive, but the total en-ergy of the pa
ket is positive and 
onserved,E = Z dz t00(x) = 2� Z dp j
pj2E(p): (10)The negative 
harge (energy) density for a positive-frequen
y s
alar (spinor) wave pa
ket 
an o

ur be-
ause the pa
ket is nonstationary (
annot be repre-sented as exp(�iEt)f(z); E > 0). Expressions (6) and

(9) imply that the time-averaged values of the 
hargeand energy densities are equal to zero at any point inspa
e. This means that 
harge and energy 
ome fromin�nity and go to in�nity. In a �nite region of spa
e�z,they 
an therefore rea
h per
eptible values �Q and �Eonly for a �nite time interval �t. In addition, ea
h ofthe quantities �Q(t) = Z�z dz j0(x)and �E(t) = Z�z dz t00(x)
an also be negative. This indi
ates the appearan
e ofthe antiparti
le in this spa
e-time region.3. POSITIVE- AND NEGATIVE-FREQUENCYSCALAR WAVES WITH THE HYPERBOLICSYMMETRYThese s
alar waves are de�ned by the integral rep-resentation [2℄�(�)� (x) = 12 1Z�1 d� exp [i(pz �Et)� i��℄ ;p = m sh �; E = m 
h �; (11)where � = Arth(p=E) is the rapidity. In the right andleft se
tors of the Minkowski plane, these fun
tions 
anbe represented by the Ma
donald fun
tion of a real ar-gument, exp(���=2� i�v)Ki�(�);exp(���=2� i�v)Ki�(�);� = mpz2 � t2; v = Arth(t=z); (12)and in the future and past se
tors by the Ma
donaldfun
tion of an imaginary argument,exp(�i�w)Ki�(�i�); exp(�i�w)Ki�(�i�);� = mpt2 � z2; w = Arth(z=t): (13)Using the Rindler metri
ds2 = dz02 � (az0)2dt02in the R and L se
tors and the Milne metri
ds2 = (at0)2dz02 � dt02in the F and P se
tors, we 
an write� = �mz0; v = �at0;243 2*
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e and time 
oordinates in theRindler or Milne spa
es, see [3℄. It is essential that �(�)�in
ludes plane waves with unlimited energy.The s
alar waves have the following properties.a) �(�)� (x) are analyti
al and �nite fun
tions inthe lower/upper half-planes of the 
omplex variablesx+ = t+ z and x� = t� z.b) The hyperboli
 symmetry implies that �(�)� areeigenfun
tions of the Lorentz boost operator: under thetransformationz; t ! z0 = z � �tp1� �2 ; t0 = t� �zp1� �2 ; (14)the variables � and � remain invariant, while the 
y
li
variables v and w go to v0 = v � � and w0 = w � �;where � = Arth� is the rapidity 
orresponding to theLorentz transformation velo
ity �. Then�(�)� (z; t) ! �(�)� (z0; t0) = ei���(�)� (z; t); (15)and therefore, ei�� is an eigenvalue of the Lorentz boostoperator e���v or e���w ; � is an eigenvalue of theLorentz boost generator i(t�z + z�t) = i�v or i�w andis interpreted as the frequen
y for a Rindler observeror the momentum for a Milne observer.
) �(+)� and �(�)� are related by 
omplex 
onjugationa

ompanied by 
hanging the sign of �,�(+)�� (x) = �(�)�� (x) ; �(�)�� (z; t) = �(�)� (�z; t) : (16)The 
omplex 
onjugation is equivalent to time re�e
-tion. The last property is equivalent to spa
e re�e
tion.d) As a striking property of �(�)� , we note that al-though the 
urrent density ve
tors 
orresponding tothe plane wave 
omponents of �(�)� are everywheretimelike, the 
urrent densities j(�)�� 
orresponding to�(�)� themselves are not timelike ve
tors in the entireMinkowski spa
e: there are spa
e�time regions insidethe light 
one where the 
urrent densities are spa
elike.The 
urrent density j� for the Minkowski observeris related to the 
urrent density J� for Rindler or Milneobservers (more exa
tly, for lo
al Lorentz observers mo-mentarily 
omoving to them) by the Lorentz transfor-mation j0 = J0 + �J3p1� �2 ; j3 = J3 + �J0p1� �2 : (17)For the Rindler observer in the R se
tor with� = t=z, we haveJ (�)0� = 2m�e���� K2i�(�) ; J (�)3 = 0: (18)

For the L se
tor, we must repla
e e��� ! �e���: The
urrent density ve
tor is timelike.For the Milne observer with � = z=t, we haveJ (�)0� = � �pt2 � z2 ;J (�)3� = � sign(t)2m�� jKi�(i�)j2: (19)The 
urrent density squared(j(�)� )2 = � �2t2 � z2 �1� 4�2�2 jKi�(i�)j4� (20)
an have either sign when � = mpt2 � z2 � 1; but isnegative for � & 1:Thus, inside the light 
one at invariant distan
esless than the Compton length from the 
one, there arespa
etime regions where the 
urrent densities j(�)�� arespa
elike ve
tors and the 
harge density j(+)0� ; � > 0;is negative, while j(�)0� ; � > 0; is positive. Be
ause the
urrent densities are timelike ve
tors for the real parti
-les, we 
an relate the spa
elike 
urrent density j(+)� toantiparti
les of the virtual pairs 
reated in regions witha very high energy 
on
entration. The total 
harge ofthe �(+)� state on any spa
elike surfa
e in Minkowskispa
e is positive and is equal to the 
harge on this sur-fa
e entirely situated in the P , L+R or F se
tor. Butthe 
harge density j0 for this state with � > 0 is pos-itive only in R se
tor, is negative in the L se
tor, and
an have either sign in the P and F se
tors.Thus, unlike the sign of the total 
harge, the signof the 
harge density is not well de�ned by the fre-quen
y sign of the �(�)� states. This situation o

urs inexternal �eld problems due to a possible pair 
reationby the external �eld, or in problems of forming wavepa
kets with a high energy density. The appearan
e ofa negative 
harge density in the P , F , and L se
torsfor the positive-frequen
y state �(+)� is a 
onsequen
eof the hyperboli
 symmetry of the state. The hyper-boli
 symmetry divides Minkowski spa
e into spa
elikeand timelike subspa
es with the Rindler and Milne met-ri
s. These metri
s have singularities on the light 
one(whi
h is their 
ommon boundary) and 
an be 
onsid-ered as a limiting 
ase of a global nonsingular smoothmetri
 of the spa
e with a nonzero external �eld nearthe light 
one. The pair 
reation by this �eld is thenpossible and the appearan
e of a negative 
harge den-sity in the positive-frequen
y state �(+)� after swit
hingthe �eld o� 
an be understood.The states �(+)� and �(�)� possess respe
tively thepositive and negative total 
harge but do not possess aneverywhere positive and negative 
harge density. Thismeans that both the parti
le and the antiparti
le 
anbe dete
ted in any of these states.244
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al properties of s
alar and spinor �eld : : :4. RIGHT AND LEFT SCALAR MODESIn ea
h of the R and L se
tors, �(+)� and �(�)� di�eronly by fa
tors. A

ording to Unruh [1℄, one 
an �ndremarkable right and left 
ombinations�R� = ���(+)� +���(�)� ; �L� = ���(+)� +���(�)� ; (21)su
h that �R� = 0 in the L se
tor and �L� = 0 in the Rse
tor. In these 
ombinations,�� = ���e���; �� = e��=2p2 sh��;j��j2 � j��j2 = "� � sgn�: (22)For � < 0, we have psh�� = ipsh�j�j . The set�R;L� possesses the same hyperboli
 symmetry as theset �(�)� , but the striking property of these fun
tionsis that the 
orresponding 
urrent densities jR�� andjL�� are timelike ve
tors in the entire spa
etime regionwhere they are nonzero. Lorentz transformation (17)again relates the 
urrent density j� for the Minkowskiobserver to the 
urrent density J� for the Rindler orMilne observers.For the Rindler observer with � = t=z, we haveJR0� = 4m� sh�j�j� jKi�(�)j2; JR3� = 0: (23)The 
urrent density ve
tor is then timelike.For the Milne observer with � = z=t, we haveJR;L0� = � sgn(�t)�pt2 � z2 ;JR;L3� = � sgn(�t)�2�pt2 � z2 sh�� jJi�(�)j2: (24)The Lorentz invariant 
urrent density squared is non-positive,(jR;L� )2 = � �2t2 � z2 �� �1� � ��sh���2 jJi�(�)j4� � 0; (25)for all real � and � > 0 [4℄. The 
urrent density ve
toris timelike.It is interesting to note that in the R se
tor, the 
ur-rent density squared (jR� )2 tends to in�nity as � ! 0,but in the P or F se
tors, it is �nite at � = 0:(jR� )2j�!0 = � �2m21 + �2 + : : : (26)The state �R� (�L� ) des
ribes a wave with the hy-perboli
 symmetry and the 
harge density that is only

positive for � > 0 (� < 0) or only negative for � < 0(� > 0). We 
an then say that the respe
tive state de-s
ribes the parti
le or the antiparti
le. In other words,the state �L� des
ribes the parti
le or the antiparti
lewith the sign of � that is opposite to the sign used indes
ribing the �R� state [4℄.We note that 
omplex 
onjugation (time re�e
tion)of the fun
tions �R;L� is equivalent to 
hanging the signof �, while the spa
e re�e
tion is equivalent to 
hangingthe sign of � and repla
ing R� L :�R�� (x) = �R��(x); �L�� (x) = �L��(x);�R� (�z; t) = i�L��(z; t): (27)In the R se
tor, where � is interpreted as energy by theRindler observer and �L� = 0, parti
les are des
ribed bythe fun
tions �R� ; � > 0, and antiparti
les by the 
om-plex 
onjugate fun
tions, i.e., by �R� ; � < 0. In the For P se
tors, where � is interpreted as momentum bythe Milne observer, parti
les with the momentum � aredes
ribed by the fun
tions �R� ; � > 0, and �L� ; � < 0,while antiparti
les with same momenta are des
ribedby the 
omplex 
onjugate fun
tions �R�� and �L��.Completeness of the sets �(�)� and �R;L� is expressedby�(�)(x� x0) = �i 1Z�1 d�2�2�(�)� (x)�(�)�� (x0) == �i2�K0(mpy2) if y2 > 0;= 14 h"(y0)J0(mpjy2j)� iN0(mpjy2j)iif y2 < 0; y = x� x0; (28)�(y) =X� �(�)(y) == i 1Z�1 d�2�2 "� ��R� (x)�R�� (x0)� �L� (x)�L�� (x0)� == 12"(y0) �(�y2)J0(mpjy2j): (29)It is interesting to note that analyti
al propertiesof the fun
tions �R� and �L� in ea
h of the variables uand v are similar to the properties of the Pauli�Jordanfun
tion �(x) in x2. Indeed, �(x) is also equal to thesum of the positive-frequen
y and negative-frequen
yfun
tions �(�)(x); whi
h are boundary values of somefun
tion F (x2) that is analyti
al in the 
omplex planeof x2 
ut along the real negative semi-axis x2 < 0:�(�)(x) = �F (x2 � i" sgnx0); "! +0:245



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001It follows that �(x) di�ers from zero only for x2 < 0and is equal to the jump of F (x2) on the 
ut.The solution of the Cau
hy problem and the nor-malization 
ondition are given by�(y) = ZS d���(y � x) $�� �(x);i ZS d���(!)�� $�� �(!0)�0 = 2�2!Æ(�� �0)Æ!!0 ; (30)where S is a spa
elike surfa
e in Minkowski spa
e orin any of the P , L + R, F se
tors. For the fun
tions�a� and �a0�0 ; a; a0 2 R;L, the right-hand side of thenormalization 
ondition is 2�2"�"aÆ(�� �0)Æaa0 , where"R = �"L = 1. In a

ordan
e with the normalization
ondition, all the states have the same magnitude of the
onserved total 
harge; the sign of the 
harge 
oin
ideswith the frequen
y sign for the �(�)� states and with thesign of the produ
t "�"a for the �a� states, a 2 R;L:An arbitrary solution of the KFG equation 
an berepresented by the expansions�(x) = 1Z�1 dpp2E �� �
p exp [i(pz �Et)℄ + d�p exp [i(pz +Et)℄� = (31)= 1Z�1 d�2�2 [a��(+)� (x) + b���(�)� (x)℄ == 1Z�1 d�2�2 [r��R� (x) + l���L� (x)℄: (32)As an example, we 
onsider�(x) = 1p2E1 exp [i(p1z �E1t)℄ ;
p = Æ(p� p1); dp = 0:It then follows thata� = 2�p2E1 ei��1 ; b� = 0; �1 = Arth(p1=E1); (33)r� = "�� exp(��=2 + i��1)(pE1 sh��)� ;l�� = "�� exp(���=2 + i��1)(pE1 sh��)� : (34)

The spe
tra are given by (with g1 = 2�2=E1)jr�j2 = g1e2��e2�� � 1 ; � > 0; j0 > 0;g1e2�j�j � 1 ; � < 0; j0 < 0; (35)
jl�j2 = g1e2�� � 1 ; � > 0; j0 < 0;g1e2�j�je2�j�j � 1 ; � < 0; j0 > 0: (36)There are no reasons to asso
iate these spe
tra withthermodynami
al ones, espe
ially for a uniformly mov-ing Milne observer, for whom � is not the energy butthe momentum, and all the more so for a Minkowskiobserver, for whom � is an eigenvalue of the Lorentzboost generator and is odd under spa
e and time re-�e
tions. We have�(+)� = "�(����R� � ����L� );�(�)� = "�(����L� � ����R� ); (37)j��j2 = e2��e2�� � 1 ; j��j2 = 1e2�� � 1 ; � > 0; (38)j��j2 = 1e2�j�j�1 ; j��j2 = e2�j�je2�j�j�1 ; � < 0; (39)where j��=��j2 is the probability to �nd any nonzeronumber of pairs and j��j�2 is the probability to �nd nopairs in the state �(+)� ; � > 0, et
, 
f. [5℄. This interpre-tation follows from the none-one-parti
le 
onsiderationof the wave equation solutions and does not requiretransition to the se
ondary quantization, although is
on�rmed by it [6℄.We note that the modes �R;L� (x) with � = 0 are notde�ned by Eq. (21) be
ause the 
oe�
ients �� and ��are in�nite at � = 0. The term with � = 0 in expan-sions (32) of an arbitrary solution of the KFG equationis nevertheless �nite and 
an be de�ned as the � ! 0limit ofr��R� + l���L� � a��(+)� + b���(�)� j�!0 == a0�(+)0 + b�0�(�)0 :A similar remark applies to the term with � = 0 inexpansion (29).246
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al properties of s
alar and spinor �eld : : :5. DIRAC EQUATION SOLUTIONS WITH THEHYPERBOLIC SYMMETRYSolutions  (�)�s of the Dira
 equation in the Rindleror Milne spa
e are related to solutions �(�)�s of this equa-tion in Minkowski spa
e by the Lorentz transformation (�)�s (x) = e���3=2�(�)�s (x); � = Arth�;�3 = diag(�3;��3); (40)where � = t=z or z=t for the Rindler or the Milne spa
erespe
tively. We use the 
hiral representation�(�)�s (x) = 12 1Z�1 d� exp [i(pz �Et)� i��℄u(�)s (�);p = m sh �; E = m 
h �;~u(�)1 (�) = (e��=2; 0;�e��=2; 0);~u(�)�1 (�) = (0;�e��=2; 0; e��=2); (41)where s = �1 are the eigenvalues of the matrix�3 = diag(�3; �3):This representation de�nes the bispinor �(+)�s (x)(�(�)�s (x)) as an analyti
al fun
tion in the lower(upper) half-plane of the respe
tive 
omplex variablex+ = t+ z and x� = t� z.Bispinor 
omponents of  �s and ��s 
an be ex-pressed through the Ma
donald fun
tions with the in-di
es i� � 1=2. For example, in the R and F se
tors, (�)�1 
an be represented by the respe
tive expressionexp(���=2� i�=4� i�v)0BBBB� Ki��1=2(�)0�iKi�+1=2(�)0 1CCCCA and
exp(�i�w)0BBBB� Ki��1=2(�i�)0�Ki�+1=2(�i�)0 1CCCCA : (42)In other se
tors, these fun
tions 
an be obtained usingthe symmetry relations (�)�s (t; z) = �3 (�)�s (�t;�z) == �� (�)��s(t;�z) = �� (�)��s (�t; z); (43)where�3 =  �3 00 ��3 ! ; � =  0 11 0 ! : (44)

The fun
tions  (�)��1 with the opposite spin dire
tion 
anbe obtained from (42) by transposing the �rst row ele-ments with the fourth row and the third row elementswith the se
ond row.The orthogonality and normalization 
ondition for (�)�s isZS d�� � (!)�s (x)
�(x) (!0)�0s0 (x) == 2�2m Æ!!0Æss0Æ(�� �0): (45)This involves an oriented surfa
e element d�� = n�d�,where d� is the invariant surfa
e measure and n� isthe timelike normal to the surfa
e. Be
ause  (�)�sare solutions of the 
ovariant Dira
 equation with the
oordinate-dependent metri
 g�� and the matri
es 
�(see, e.g., � 3.8 in [3℄), the normalization 
ondition forthese fun
tions also 
ontains 
�(x) and it is 
onvenientto 
hoose the spa
elike integration surfa
e S entirelyin one of the P , L+R or F subspa
es with either theMilne or the Rindler metri
. For a 
onstant-t0 surfa
eS, the surfa
e element redu
es tod�0 = dz0p
 n0; n0 = p�g00and 
 = jg33j is the determinant of the spa
e metri
.Be
ause the Rindler and Milne spa
es and the 
or-responding metri
s only represent nonstandard 
oor-dinate forms of the �at spa
e-time, the solutions  (�)�smust be related to the solutions �(�)�s of the usual Dira
equation in Minkowski spa
e by a Lorentz transforma-tion. These solutions satisfy the same symmetry rela-tions (43) and orthogonality and normalization 
ondi-tion (45) with the standard 
 matri
es. For a 
onstant-tsurfa
e S, the surfa
e element be
omes d�0 = dz andthe right-hand side of (45) immediately follows whenone uses integral representation (41) for �(�)�s and per-forms the integration over z �rst.In representation (42), the fun
tions �(�)�s di�erfrom  (�)�s by the fa
tors ev=2 and e�v=2 of the �rstand the third bispinor elements in the R se
tor and byew=2 and e�w=2 in the F se
tor.Under Lorentz transformation (14), the fun
tions�(�)�s go to�(�)�s (x0) = exp(i��� ��3=2)�(�)�s (x);� = Arth�; �3 = diag(�3;��3): (46)The eigenvalues are again independent of the fre-quen
y sign. The 
urrent densities j� and J� for theMinkowski and Rindler or Milne observers are againrelated by (17).247



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001For the Rindler observer with � = t=z, we have inthe R se
tor:J (�)0� = 2e���jKi��1=2(�)j2; J (�)3� = 0: (47)For the L se
tor, we must repla
e e��� ! e���.For the Milne observer with � = z=t, we haveJ (�)0� = jKi��1=2(i�)j2 + jKi�+1=2(i�)j2;J (�)3� = �jKi��1=2(i�)j2 � jKi�+1=2(i�)j2: (48)The 
urrent density is a timelike ve
tor and its time
omponent is positive (a well known fa
t for the spinor�eld). But the striking feature of �(�)�s is that the eigen-values of the 
orresponding energy-momentum tensort(�)�� are not everywhere real. There are some pla
es in-side the light 
one where these eigenvalues are 
omplex
onjugate.The energy-momentum tensors t�� and T�� for theMinkowski and Rindler or Milne observers are relatedby the Lorentz transformationt00 = 
2(T00 � 2�T03 + �2T33);t33 = 
2(T33 � 2�T03 + �2T00);t03 = 
2[T03(1 + �2)� �T00 � �T33℄;
 = (1� �2)�1=2: (49)For the Rindler observer with � = t=z in the R se
tor,we haveT (�)00 ; T (�)33 ; T (�)03 = 2m�e���� ��0B�jKi��1=2(�)j2; 1Z� d�� jKi��1=2(�)j2; 01CA : (50)For the L se
tor, we repla
e e��� ! �e���:For the Milne observer with � = z=t, we haveT (�)00 = �m�� 0� 1Z� d�� A(�) + ��1A ;T (�)33 = �m�� A(�); T (�)03 = m���2 ;A(�) = jKi�+1=2(i�)j2 � jKi��1=2(i�)j2: (51)The eigenvalues (invariants) of the energy-momen-tum tensor,�1;2 = 12(T33 � T00)�r14(T00 + T33)2 � T 203; (52)are real and have opposite signs in the Rindler spa
e,while in the Milne spa
e, they are 
omplex 
onjugate

for � � 1, when the momentum density (energy �ux)is greater than half the sum of the energy density andthe pressure:�1;2(�) � R(�)� � i �m��2 
h�� + : : : ; � � 1: (53)As � ! 0, R(�) os
illates with a �nite amplitude andan in
reasing frequen
y.6. RIGHT AND LEFT SPINOR MODESIn the spinor 
ase, the right and left superpositionsof the positive- and negative-frequen
y modes are de-�ned as in the s
alar 
ase, but the Dira
 s
alar produ
tleads to di�erent Bogoliubov 
oe�
ients,�R�s = ���(+)�s + ���(�)�s ;�L�s = ���(+)�s + ���(�)�s ;�� = i��e���; �� = e��=2p2 
h��;j��j2 + j��j2 = 1: (54)Evidently, the right and left modes satisfy the orthog-onality and normalization 
onditionZS d�� ��a�s(x)
��a0�0s0(x) = 2�2m Æaa0Æss0Æ(�� �0); (55)where a; a0 2 L;R and S is a spa
elike surfa
e as in(30) or (45).The modes �(�)�s and �L;R�s form two 
omplete setsof Dira
 equation solutions and any other solution �(x)
an be de
omposed into the 
orresponding integrals�(x) = 1Z�1 d�2�2 ha�s�(+)�s (x) + b��s�(�)�s (x)i == 1Z�1 d�2�2 �r�s�R�s(x) + l��s�L�s(x)� ; (56)where summation over s is assumed.For example, for the positive-frequen
y plane wavesolution with s = 1;�(+)p11(x) = 1p2E1 exp [i(p1z �E1t)℄u(+)1 (�1);�1 = Arth p1E1 ; (57)we have a�1 = 2�p2E1 ei��1 ; b��1 = 0; (58)248
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al properties of s
alar and spinor �eld : : :r�1 = � exp[��=2 + i��1℄pE1 
h�� ;l��1 = �i� exp[���=2 + i��1℄pE1 
h�� : (59)For the spe
tra of the right and left modes, we thenobtain (with g1 = 2�2=E1)jr�1j2 = g1e2��e2�� + 1 ; jl�1j2 = g1e2�� + 1 : (60)For the negative-frequen
y plane wave solution, the
oe�
ients in expansions (56) area�1 = 0; b��1 = 2�p2E1 e�i��1 ; (61)r�1 = �i� exp[���=2� i��1℄pE1 
h�� ;l��1 = � exp[��=2� i��1℄pE1 
h�� : (62)The spe
tra for the left and right modes then 
oin
idewith the respe
tive expressions in (60).Although these spe
tra resemble the thermal distri-bution of the Fermi-parti
le gas, this similarity seemsto be arti�
ial for the same reasons as in the s
alar
ase. Moreover, de
ompositions (56) of the plane wavein the hyperboli
 modes �(�)�s or �R;L�s and the inverseexpansions of these modes in plane waves in Eqs. (41)and (54) 
on�rm the 
ompleteness of these three setsand the absen
e of the loss of information or purityof states. We see that the hyperboli
 symmetry and ade�nite frequen
y sign preserve good analyti
al proper-ties of the modes but lead to an inde�nite sign of their
harge density or energy density.The �thermal� spe
tra appear when one preservesthe hyperboli
 symmetry of modes and requires thede�niteness of the 
harge density or energy densitysigns in the entire Minkowski spa
e. This 
an only bea
hieved at the expense of loosing good analyti
al prop-erties of the modes and essentially 
onsists in the tran-sition from the boundary value of an analyti
al fun
tionon the 
ut to its jump on this 
ut. We have�(+)�s = ����R�s+����L�s; �(�)�s = ����R�s+����L�s; (63)j��j2 = e2��e2�� + 1 ; j��j2 = 1e2�� + 1 ; (64)where j��j2 and j��j2 are the respe
tive probabilitiesto �nd no pairs (one pair) and one pair (no pairs) inthe state �(+)�s ; � > 0 (� < 0): This interpretation fol-lows from the none-one-parti
le analysis of wave equa-tion solutions and does not require the transition to

the se
ondary quantization, although is 
on�rmed byit [5; 6℄.For the Rindler observer with � = t=z, we haveTR00; TR33; TR03 = 4m� 
h��� ��0B�jKi��1=2(�)j2; 1Z� d�� jKi��1=2(�)j2; 01CA (65)and for the Milne observer with � = z=t,TR00 = �m��2 0�1 + ��
h�� �Z0 d�� jJi�+1=2(�)j21A ;TR33 = �m��2 �1� ��
h�� jJi�+1=2(�)j2� ;TR03 = �m��2 : (66)The energy density is greater than the pressure. As� ! 0, we haveTR00 � TR33 � TR03 = �m�=�2similarly to the energy-momentum tensor of ele
tro-magneti
 waves.It is interesting to note that in the R se
tor, theeigenvalues �R1;2 tend to in�nity as � ! 0, while in theP or F se
tors, they are �nite at � = 0,�R1;2j�!0 = � 2�m�1 + 4�2 � 2�m�1 + 4�2r1 + 4�29 + 4�2 + : : : (67)The sign of t00 is relativisti
ally invariant in onlytwo 
ases:1) the eigenvalues �1 and �2 are real and have op-posite signs, �1�2 = T 203 � T00T33 < 0; (68)2) the eigenvalues are real, have the same sign, andthe energy density is greater than the pressure in mag-nitude: (�1 � �2)2 = (T00 + T33)2 � 4T 203 > 0;�1�2 > 0; sign(T 200 � T 233) > 0: (69)We note that the sign of (t200 � t233) is relativis-ti
ally invariant only if �1 and �2 are real, i.e., if(�1 ��2)2 > 0: Then, if �1;2 are 
omplex or if they arereal and have the same sign, but sgn(T 200�T 233) < 0; thesign of t00 
an be 
hanged by a Lorentz transformation.The tensor tR�� possesses the �rst property in the Rse
tor and either the �rst or the se
ond property de-pending on the value of � in the F and P se
tors. In249



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001the F and P se
tors, the eigenvalues �R1 and �R2 arereal be
ause of the inequality�Z0 d�� jJi�+1=2(�)j2 � jJi�+1=2(�)j2 > 0: (70)Inequalities (70) and (25) that are essential in this pa-per were not found in the mathemati
al literature.7. CONCLUSIONHyperboli
 symmetry of s
alar and spinor �eldstates requires plane waves with unlimited frequen
iesto parti
ipate in the 
orresponding superpositions. Fors
alar �eld, �eld states with the quantum number �that are formed as superpositions and are analyti
 inthe 
oordinates x� = t � z do not possess an every-where timelike 
urrent density, while for the spinor�eld, they do not possess the energy-momentum ten-sor with everywhere real eigenvalues. This means thatthese states des
ribe both parti
les and antiparti
les.Nevertheless, it is possible to 
onstru
t hyperboli
allysymmetri
 right and left states that are not analyti
 inx� but possess an everywhere timelike 
urrent densityand the energy-momentum tensor with everywhere realeigenvalues. Pre
isely these states des
ribe the parti
leor the antiparti
le.This implies that the 
harge densities jR0� and JR0�for the s
alar parti
le (antiparti
le) states �R� and theenergy densities tR�00 and TR�00 for the spinor parti
le(antiparti
le) states �R�s are everywhere positive (neg-ative) for � > 0 (� < 0) and are equal to zero in theL se
tor. This assertion remains valid after repla
ingR� L and 
hanging the sign of �.It is known [7℄ that if a wave pa
ket is formed fromplane waves and is lo
alized in a region of the orderof or less than the Compton wave length, it must 
on-tain both positive and negative frequen
ies. The su-perpositions �(+)� and �(+)�s do not 
ontradi
t this as-sertion be
ause ea
h of them is lo
alized in a region ofthe order of the Compton length only for jtj . m�1,while for jtj � m�1, ea
h superposition 
onsists of twowaves that propagate along the light 
one boundariesz = �t, exponentially de
aying outside the 
one for� = mpz2 � t2 � 1 and os
illating and falling o� onlyas ��1 inside the 
one for � = mpt2 � z2 � 1. There-fore, these two waves remain 
oherently 
onne
ted in asingle wave pa
ket with the width � 2jtj.In the well-known review [8℄, Pauli made the follow-ing remark about energy density in the Dira
 ele
tron�eld theory: �The 
on
ept of the energy density seems

to be more problemati
 in this theory than that of thevolume integrated total energy. The energy density isno longer positive de�nite for the theory of holes, in
ontradistin
tion to the 
ase for the theories dis
ussedin �� 1 and 2. This is also shown in the 
 number theory;even if limitation is made to wave pa
kets in whi
h thepartial waves all have the same sign of the frequen
y inthe phase exp i(k �x�k0x0) the energy density (as dis-tinguished from the total energy) 
annot be made pos-itive de�nite.� I do not know whether Pauli had someexample of su
h a wave pa
ket. In any 
ase, ea
h of themodes �(�)�s 
an serve as a spe
i�
 illustration to his re-mark. The energy density for ea
h of these modes 
ana

ept both signs near the light 
one owing to singu-larities on the 
one related to the hyperboli
 symmetryof the modes. On the other hand, ea
h of the modes�R;L�s is an example of su
h a superposition of positive-and negative-frequen
y spinor plane waves with a sign-de�nite energy density in the entire Minkowski spa
e.It is interesting that the s
alar eigenfun
tions ofthe Lorentz boost operator appear in the analysis ofthe photon wave fun
tion in lo
alized near the photonpropagation plane 3 + 1-spa
e [9℄. However, a s
alarprodu
t di�erent from (30) is used in this analysis.I thank M. A. Soloviev for useful remarks. Thework was partly supported by the Russian Founda-tion for Basi
 Resear
h (grants � 00-15-96566 and99-02-17916a). APPENDIXThe integral JR��0 de�ned in [4℄ by Eq. (14), beingthe integral of a total di�erential, does not a
tually de-pend on the form of the spa
elike surfa
e over whi
h itextends, but depends only on the parameters mt and� �xing the 
oordinates of the left boundary of thissurfa
e. Namely, the z 
oordinate of the left bound-ary is equal to pt2 + �2=m2, while the right bound-ary is at in�nity. When the left boundary tends tozero at a �xed ratio mt=�, we obtain the result (20)from [4℄ without any un
ertainties related to the fa
torexp [i(�� �0)Arsh(mt=�)℄, whi
h eventually turns into1 at �xed mt=� and � = �0. Thus, the normalizationintegral (20) in [4℄ is 
orre
t for any spa
elike surfa
elying in the R se
tor with the left boundary at zero,rather than at z = jtj as was assumed in [4℄.Similarly, expression (28) for the normalization in-tegral JL��0 in [4℄ is 
orre
t for any spa
elike surfa
elying in the L se
tor with the right boundary at zero,rather than at z = �jtj as was assumed in [4℄.The integral JF��0 de�ned by Eqs. (22) and (23) in [4℄250



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Physi
al properties of s
alar and spinor �eld : : :is justi�ed for any spa
elike surfa
e lying inside theF se
tor with the boundaries at the points de�ned by�xed values of mt and � = mpt2 � z2. The z 
oor-dinates of the left and right boundaries of this surfa
eare then given by z1;2 = �pt2 � �2=m2. As t tendsto in�nity at �xed � , we obtain the result (25) from [4℄without any ambiguity related to the fa
tor inside theparentheses in Eq. (23) in [4℄, whi
h turns into � at�xed � and � = �0. Thus, normalization integral (25)in [4℄ is 
orre
t for any spa
elike integration surfa
elying in the F se
tor and having the boundaries atz1;2 = �1 but not at z1;2 = �jtj, as was understoodin [4℄. A similar 
omment applies to the integral JP��0 .On any spa
elike surfa
e entirely lying in the P ,L + R or F se
tors with the left and right boundariesat in�nities, ea
h of the states �(�)� has the same 
on-served total 
hargeQ(�)� = Q(�)�P = Q(�)�L +Q(�)�R = Q(�)�F ? 0: (71)Therefore, the fa
tor 1/2 in the right-hand sides ofEqs. (34) and (35) in [4℄ must be repla
ed by 1.
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