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It is shown that right and left combinations of the positive- and negative-frequency hyperbolically symmetric
solutions of the Klein—-Fock—Gordon equation possess an everywhere timelike current density vector with a def-
inite Lorentz-invariant sign of the charge density, and similar combinations of solutions to the Dirac equation
possess the energy-momentum tensor with everywhere real eigenvalues and a definite Lorentz-invariant sign of
the energy density. These right and left modes, just as their +-frequency components, are eigenfunctions of
the Lorentz boost generator with the eigenvalue . The sign of the charge (energy) density coincides with the
sign of  for the right scalar (spinor) modes and is opposite to it for the left modes. It is then reasonable to
assume that the particles (antiparticles) are precisely described by the right modes with x > 0 (k < 0) and by

the left modes with k < 0 (k > 0).
PACS: 11.10.-z, 11.30.-j

1. INTRODUCTION

Three complete sets of solutions of the Klein—Fock—
Gordon (KFG) and Dirac equations are usually consid-
ered in relation to the Unruh effect [1]. One of these
solution sets is the usual planewave set and the other
two are the sets of field modes with a hyperbolic sym-
metry. The hyperbolically symmetric modes radically
differ from the planewave modes by singularities occur-
ring on the light cone. As a result, the corresponding
charge and energy densities oscillate with increasing
the frequency at Compton distances near the cone and
become infinite on the cone. It is not surprising that
the charge density of the scalar field and the energy
density of the spinor field can have either sign near the
singularity. This means that these modes contain both
particles and antiparticles near the light cone. It is
then difficult to distinguish the hyperbolically symmet-
ric field state created by external sources on the light
cone from the state created by the measuring device it-
self. Nevertheless, there exist right and left states with
the hyperbolic symmetry for which the charge density
of the scalar field and the energy density of the spinor
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field possess an everywhere definite Lorentz-invariant
sign.

2. PLANE WAVES WITH DEFINITE
MOMENTUM AND FREQUENCY

For scalar plane waves

() (g =L xp [i(pz
ey (2) NoToh pli(pz F Et)], Q)
E=+v/m?2+p* a%=(tz2),

the current densities j,(,i)a(x) = (£1,p/E) are timelike

vectors. The signs of the charge densities coinside with
the frequency signs. The energy-momentum tensor ¢,z
has the components
+ + +
t(()o)a téS)a t(()s) =FE, p2/E, +p, (2)
()

with signty,” > 0.

For spinor plane waves with definite momentum and
frequency and with the double spin projection s,

X4 (@) = o) (2)VmulH (6), 5
1) (0)uls) () = 2,0 0ss
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(the bispinors ul® (#) are given in (41) in the chiral rep-

resentation in the transposed form), the current densi-
ties jéiﬁ)a(m) = (1, p/E) are timelike vectors with pos-
itive time components. The energy-momentum tensor
tap corresponding to (3) has the components

tho, s, oy = +E, +p*/E, —p, (4)
where sign t(()éc) 2 0.

A superposition of the scalar positive (negative)-
frequency plane waves, unlike the partial waves them-
selves, does not possess a positive (negative) definite
charge density in general. Thus, if

w@=/@%¢Wm (5)

the charge density may not be everywhere positive be-
cause of oscillations of the integrand in the representa-

tion
dd (E+ E'

BE)t]} cpep- (6)

However, the total charge of the packet is positive and
time-independent,,

Q= [ @@ =2 [ dple,l. (")

Similarly, a superposition of the spinor positive
(negative)-frequency plane waves does not possess an
everywhere positive (negative) energy density in gen-
eral. Thus, the positive-frequency wave packet

mm=/@%mw@ ®)

has the energy density

x exp{i[(p' —p)z— (B —

V(@) D xele) =

// dpdp' (E+ E' )
V2E2E'
x exp {i [(p' — p)z — (E' = E)t]} x
x mulHH ()l (0') ey (9)

l\.’)l»—t

too () =

that may not be everywhere positive, but the total en-
ergy of the packet is positive and conserved,

&= /dz too(z) = 27r/dp lep| 2 E(p). (10)

The negative charge (energy) density for a positive-
frequency scalar (spinor) wave packet can occur be-
cause the packet is nonstationary (cannot be repre-
sented as exp(—iEt)f(z), E > 0). Expressions (6) and

(9) imply that the time-averaged values of the charge
and energy densities are equal to zero at any point in
space. This means that charge and energy come from
infinity and go to infinity. In a finite region of space Az,
they can therefore reach perceptible values AQ and AE
only for a finite time interval A¢. In addition, each of
the quantities

2Q0) = [ dz*w)

Az

and
Ag(t) = dz t()(](f)
/

can also be negative. This indicates the appearance of
the antiparticle in this space-time region.

3. POSITIVE- AND NEGATIVE-FREQUENCY
SCALAR WAVES WITH THE HYPERBOLIC
SYMMETRY

These scalar waves are defined by the integral rep-
resentation [2]

1 oo
o) =5 [ dbexplitos T BY) % int).

2. (11)
p=msh#, E =mch,

where 6 = Arth(p/E) is the rapidity. In the right and
left sectors of the Minkowski plane, these functions can
be represented by the Macdonald function of a real ar-
gument,

exp(tmrr/2 — ikv) Kk ((),
exp(Frr/2 — ikv) Kk ((), (12)

C=mvz22 -2, wv=Arth(t/z),

and in the future and past sectors by the Macdonald
function of an imaginary argument,

exp(—ikw) K, (£iT),
w = Arth(z/t).

exp(—ikw) K, (FiT),
Ea— (13)
— 22,

T=m

Using the Rindler metric
ds®> = dz"” — (a2')?dt'”

in the R and L sectors and the Milne metric
ds® = (at')?dz"” — at'”

in the F' and P sectors, we can write

(=+mz', v=+at,
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T=dmt, w=Faz,

where 2z’ and ¢ are space and time coordinates in the
Rindler or Milne spaces, see [3]. Tt is essential that o)
includes plane waves with unlimited energy.

The scalar waves have the following properties.

a) qﬁ,(.;i)(x) are analytical and finite functions in
the lower/upper half-planes of the complex variables
ry=t+zandz_ =t — z.

b) The hyperbolic symmetry implies that ¢,(€i) are
eigenfunctions of the Lorentz boost operator: under the
transformation

, z—pt , t— Bz

Z,t—)Z:m, t:\/T—m7 (].4:)

the variables ¢ and 7 remain invariant, while the cyclic
variables v and w go to v = v —a and w' = w — a,
where o = Arth 3 is the rapidity corresponding to the
Lorentz transformation velocity 5. Then

O (2 1) = ¢F (1) =P (2,1),  (15)

and therefore, e’®* is an eigenvalue of the Lorentz boost
operator e~®% or e7®% . g is an eigenvalue of the
Lorentz boost generator i(t0. + z0;) = i0, or id,, and
is interpreted as the frequency for a Rindler observer
or the momentum for a Milne observer.

c) gz&,(f) and ¢,(€_) are related by complex conjugation
accompanied by changing the sign of &,

o (@) =05 (@), 0% (2 t) = 0P (—2,0). (16)

The complex conjugation is equivalent to time reflec-
tion. The last property is equivalent to space reflection.

d) As a striking property of ¢,(¢i), we note that al-
though the current density vectors corresponding to
the plane wave components of ¢,(€i) are everywhere
timelike, the current densities j,ﬁi)"“ corresponding to
¢£i) themselves are not timelike vectors in the entire
Minkowski space: there are space-time regions inside
the light cone where the current densities are spacelike.

The current density j¢ for the Minkowski observer
is related to the current density J* for Rindler or Milne
observers (more exactly, for local Lorentz observers mo-
mentarily comoving to them) by the Lorentz transfor-

mation
0 3 3 0
o JOHBP o PAsP

/1— B2 ’ /1— B2
For the Rindler observer in the R sector with
B =t/z, we have

+)0 2mket"

JE)0 —

¢ TK&(O, JE3 =, (18)

For the L sector, we must replace e*™ — —eT™% The
current density vector is timelike.
For the Milne observer with § = z/t, we have

RS (19)
T = — sign(n) 225 Kin (i)

The current density squared
. 2 ak?
G =~ (1= i) o

can have either sign when 7 = mv#2 — 22 < 1, but is
negative for 7 > 1.

Thus, inside the light cone at invariant distances

less than the Compton length from the cone, there are

. . i (H)a
spacetime regions where the current densities j, are
spacelike vectors and the charge density jff)o,m > 0,
is negative, while j,(f)o, Kk > 0, is positive. Because the
current densities are timelike vectors for the real partic-
les, we can relate the spacelike current density j,(f) to
antiparticles of the virtual pairs created in regions with
a very high energy concentration. The total charge of
the qﬁ,(f state on any spacelike surface in Minkowski
space is positive and is equal to the charge on this sur-
face entirely situated in the P, L + R or F sector. But
the charge density j° for this state with x > 0 is pos-
itive only in R sector, is negative in the L sector, and
can have either sign in the P and F' sectors.

Thus, unlike the sign of the total charge, the sign
of the charge density is not well defined by the fre-
quency sign of the ¢£i) states. This situation occurs in
external field problems due to a possible pair creation
by the external field, or in problems of forming wave
packets with a high energy density. The appearance of
a negative charge density in the P, F', and L sectors
for the positive-frequency state qﬁ,(j) is a consequence
of the hyperbolic symmetry of the state. The hyper-
bolic symmetry divides Minkowski space into spacelike
and timelike subspaces with the Rindler and Milne met-
rics. These metrics have singularities on the light cone
(which is their common boundary) and can be consid-
ered as a limiting case of a global nonsingular smooth
metric of the space with a nonzero external field near
the light cone. The pair creation by this field is then
possible and the appearance of a ne;zz;ative charge den-
sity in the positive-frequency state ¢K+) after switching
the field off can be understood.

The states qﬁ,(f) and gz&,({_) possess respectively the
positive and negative total charge but do not possess an
everywhere positive and negative charge density. This
means that both the particle and the antiparticle can
be detected in any of these states.

244



MKIT®, Tom 120, Bbim. 2 (8), 2001

Physical properties of scalar and spinor field . ..

4. RIGHT AND LEFT SCALAR MODES

In each of the R and L sectors, ¢,(€+) and gz&,(g_) differ
only by factors. According to Unruh [1], one can find
remarkable right and left combinations

OF = a, D 48,007, oF = Beo P +a, el ), (21)

such that ¢ = 0 in the L sector and ¢£ = 0 in the R
sector. In these combinations,

ewn/Z

V2shrr

\oz,.;|2 — |5N\2 =&, = Sgnk.

For £ < 0, we have vshnk = iy/shn|k|. The set

#fL possesses the same hyperbolic symmetry as the

K

Br = —age” ™, a, =

(22)

set ¢2i), but the striking property of these functions
is that the corresponding current densities j*® and
jLe are timelike vectors in the entire spacetime region
where they are nonzero. Lorentz transformation (17)
again relates the current density j¢ for the Minkowski
observer to the current density J® for the Rindler or
Milne observers.

For the Rindler observer with 5 = t/z, we have

dmrshr|k|, .

T = %Amo?, T8 =0 (23)

The current density vector is then timelike.

For the Milne observer with § = z/t, we have
JRIO _ isgn(nt)n
. VB2 -
sgn(kt) mk
J}?,LS - _ g ( ) |Jin(7)|2-

Vit2 — 22shnk

The Lorentz invariant current density squared is non-
positive,

(")

TR

X [1 - (
for all real x and 7 > 0 [4]. The current density vector
is timelike.

It is interesting to note that in the R sector, the cur-

rent density squared (jZ)? tends to infinity as ¢ — 0,
but in the P or F sectors, it is finite at 7 = O:

) (rlt| <0, (25)

shmk

7r2m

1+ K2

2

()2 r—0 = = (26)

The state ¢® (o) describes a wave with the hy-
perbolic symmetry and the charge density that is only
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positive for £ > 0 (k < 0) or only negative for £ < 0
(k > 0). We can then say that the respective state de-
scribes the particle or the antiparticle. In other words,
the state ¢X describes the particle or the antiparticle
with the sign of k that is opposite to the sign used in
describing the ¢F state [4].

We note that complex conjugation (time reflection)
of the functions ¢ is equivalent to changing the sign
of k, while the space reflection is equivalent to changing
the sign of x and replacing R = L :

o (x) = ¢F (), oL (x) = oL, (2);
¢§(_27 t) = i¢£n(27 t)'

In the R sector, where & is interpreted as energy by the
Rindler observer and ¢% = 0, particles are described by
the functions ¢f, x > 0, and antiparticles by the com-
plex conjugate functions, i.e., by ¢f,x < 0. In the F
or P sectors, where k is interpreted as momentum by
the Milne observer, particles with the momentum « are
described by the functions ¢, & > 0, and ¢%, x < 0,
while antiparticles with same momenta are described
by the complex conjugate functions ¢®, and ¢~ .

(27)

Completeness of the sets ¢l and ¢F-L is expressed
by
A N =g [ 9E @) (6B () —
(.T - ) = +i W¢n (x)¢n (.T ) -
+i L
= glxg(m\/gﬂ) if y= >0,
1 0 2 ; 2
= 7 [ TP F iNo(m /197D
if > <0,y=a—2', (28)
Aly) = AH(y) =
X
[ e : :
=i [ g PR @ (@) - ok @k (o] =
1
= 55(?40)9(—342”0("1 y?[). (29)

It is interesting to note that analytical properties
of the functions ¢f and ¢L in each of the variables u
and v are similar to the properties of the Pauli—Jordan
function A(x) in 22, Indeed, A(z) is also equal to the
sum of the positive-frequency and negative-frequency
functions A(*)(z), which are boundary values of some
function F(2?) that is analytical in the complex plane
of 2% cut along the real negative semi-axis 2> < 0:

A®)(z) = +F(2® +iesgna®), & — +0.
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It follows that A(x) differs from zero only for 22 < 0 The spectra are given by (with g, = 272/ E})
and is equal to the jump of F(z?%) on the cut.
The solution of the Cauchy problem and the nor- e2mk
|2 = -2 >0, j°>0
malization condition are given by T'r e 10 o) ' (35)
" o k<0, j°<0,
o) = [ 40" Ay~ ) 5, 610). A1
° (30)
i/daa¢(“’)* o qﬁ(w,) = 27%wo(k — K') S
K o @y ww' |ln‘2: g1 . k>0 j0<0,
S 627TH 1
2 (36)
gy €271l
where S is a spacelike surface in Minkowski space or prEEEE k<0, 7°>0
e TR| —

in any of the P, L + R, F sectors. For the functions
¢% and gz&z,,., a,a’ € R, L, the right-hand side of the
normalization condition is 272e,2,0(k — K')dqqr, Where
cg = —¢r, = 1. In accordance with the normalization
condition, all the states have the same magnitude of the
conserved total charge; the sign of the charge coincides
with the frequency sign for the ¢£i) states and with the
sign of the product £,¢, for the ¢% states, a € R, L.

An arbitrary solution of the KFG equation can be
represented by the expansions

X [epexpli(pz — Et)] + dyexp[i(pz + Et)]] =  (31)

[
= [ smslasdP @) + 160 @) =

— o0
o

= [ sminef@) +hok@l @

— 0o
As an example, we consider

1

¢($) = \/E exp [Z(plz - Elt)] 3

cp=0(p—p1), d,=0.

It then follows that

2T
a, = —6“‘91, b, =0,

o 6, = Arth(p,/E;), (33)

mexp(mk/2 + ikby)

(VE; shrmk)*

mexp(—7mk/2 + ikby)

(VE; shrmk)*

K — %R (34)

*
I =cx

There are no reasons to associate these spectra with
thermodynamical ones, especially for a uniformly mov-
ing Milne observer, for whom & is not the energy but
the momentum, and all the more so for a Minkowski
observer, for whom k& is an eigenvalue of the Lorentz
boost generator and is odd under space and time re-
flections. We have

o\ = e (asol - BLol),

(37)
o8 = enlaron — Bron).
27K
2 _ € 2 _ 1
agl® = o2k _ 1! Bxl T g2k _ 1 k>0, (38)
1 ) 6277\&\
|ax|” = PO Bl = ey <0 (39)

where |8, /a,|? is the probability to find any nonzero
number of pairs and |a,|~2 is the probability to find no
pairs in the state (;5,({"), k > 0, etc, cf. [5]. This interpre-
tation follows from the none-one-particle consideration
of the wave equation solutions and does not require
transition to the secondary quantization, although is
confirmed by it [6].

We note that the modes ¢fL(z) with k = 0 are not
defined by Eq. (21) because the coefficients a,; and [
are infinite at kK = 0. The term with x = 0 in expan-
sions (32) of an arbitrary solution of the KFG equation
is nevertheless finite and can be defined as the kK — 0
limit of

redf + 10k = a,olD) + 0500 im0 =
= aody”) + 36y

A similar remark applies to the term with x = 0 in
expansion (29).
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5. DIRAC EQUATION SOLUTIONS WITH THE
HYPERBOLIC SYMMETRY

Solutions 1/),%) of the Dirac equation in the Rindler
or Milne space are related to solutions x,(fs:) of this equa-
tion in Minkowski space by the Lorentz transformation

(& (),

(%)

KS

—aag/2

X5

3 = diag(crg, —0'3),

(r) =e a = Arthp,

(40)
a

where 3 = t/z or z/t for the Rindler or the Milne space

respectively. We use the chiral representation

00
W =5 [ dexplito:F ) ind] D 0)
p=msh#, E =mch,
ait (@) = (e*072,0, £e79/2,0),

i) (0) = (0, £eF0/2,0, e£0/2), (41)
where s = +1 are the eigenvalues of the matrix
Y3 = diag(os, 03).
This representation defines the bispinor x,(.g) (z)

(x,(.;)(x)) as an analytical function in the lower
(upper) half-plane of the respective complex variable
ry=t+zandz_ =t—z.

Bispinor components of ¢, and yxs can be ex-
pressed through the Macdonald functions with the in-
dices ik = 1/2. For example, in the R and F' sectors,
D

can be represented by the respective expression

Kix—1/2(¢)

0
exp(£7mk/2 +in/4 —ikv) . and
—iKi1/2(C)
0
Kip1/2(FiT)
0
exp(—ikw) i ) (42)
:l:KZ',‘H_l/Q(:EZT)
0

In other sectors, these functions can be obtained using
the symmetry relations

wr(ef)(t/ Z) = QSchf)(_tv _Z) =

= +0YC (1 —2) = £5YD"(~t,2),  (43)
where
_ g3 0 _ 0 1
a3_<0 _03>7 B_<10> (44)
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The functions 1/),%)1 with the opposite spin direction can
be obtained from (42) by transposing the first row ele-
ments with the fourth row and the third row elements
with the second row.

(i’)The orthogonality and normalization condition for
Yrs 18

(w")

K's'

/ doo B (@) (@)Y ) (z) =
S

2
a0k — ).
m

= (45)
This involves an oriented surface element do, = nydo,
where do is the invariant surface measure and n, is
the timelike normal to the surface. Because w,ﬁf)
are solutions of the covariant Dirac equation with the
coordinate-dependent metric go3 and the matrices v
(see, e.g., §3.8 in [3]), the normalization condition for
these functions also contains v*(xz) and it is convenient
to choose the spacelike integration surface S entirely
in one of the P, L + R or F subspaces with either the
Milne or the Rindler metric. For a constant-t’ surface
S, the surface element reduces to

dog = dz'\/7no, no = v—go0

and v = |gs3| is the determinant of the space metric.
Because the Rindler and Milne spaces and the cor-
responding metrics only represent nonstandard coor-
dinate forms of the flat space-time, the solutions zpéf)
must be related to the solutions x,(.;f) of the usual Dirac
equation in Minkowski space by a Lorentz transforma-
tion. These solutions satisfy the same symmetry rela-
tions (43) and orthogonality and normalization condi-
tion (45) with the standard v matrices. For a constant-¢
surface S, the surface element becomes doy = dz and

the right-hand side of (45) immediately follows when
()

one uses integral representation (41) for s  and per-
forms the integration over z first.
In representation (42), the functions X,(if) differ

from wﬁf) by the factors e?/2 and e~ v/% of the first
and the third bispinor elements in the R sector and by
e®/? and e~*/2 in the F sector.

Under Lorentz transformation (14), the functions
(£)

Xrs g0 to
) = explion —a0s 2@, o
a = Arth 3, a3 = diag(os, —03).

The eigenvalues are again independent of the fre-
quency sign. The current densities 7% and J for the
Minkowski and Rindler or Milne observers are again
related by (17).
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For the Rindler observer with =
the R sector:

t/z, we have in

J,gi)O — er:ﬂn

12O, IR =0 (47)

For the L sector, we must replace e — 75,
For the Milne observer with § = z/t, we have

B0 = K12 (i) |* + [Kiggr 2 (i7) ]2,

i 4 7 4 (48)
TSP = £| K12 (i) F [Kigr 2 (i)

The current density is a timelike vector and its time
component is positive (a well known fact for the spinor
field). But the striking feature of x,(fs:) is that the eigen-
values of the corresponding energy-momentum tensor
t((;;) are not everywhere real. There are some places in-
side the light cone where these eigenvalues are complex
conjugate.

The energy-momentum tensors ¢,z and T3 for the
Minkowski and Rindler or Milne observers are related
by the Lorentz transformation

too = 7> (Too — 28Tos + B°Ts3),

tss = v*(Ts3 — 2B8To3 + B Too),

tos = v*[Tos(1 + %) — BToo — BT5s3),
y= (-5

For the Rindler observer with 5 =t¢/z in the R sector,
we have

(49)

+ + + QmRei”
Ty T, Ty = ———
X ‘an 1/2 /? ik— 1/2 )‘27 0f. (50)
¢

For the L sector, we replace e*™% — —¢¥75,

For the Milne observer with = z/t, we have

dT s

(£) _
T :I: —A
00 T T ( ) K )
! (51)
+ mer + mmk
13(3)—i - A(r), 10(3)— 2

A(r) = \Km+1/2(i7')|2 - \Km—l/2(i7)\2~

The eigenvalues (invariants) of the energy-momen-
tum tensor,

1 1
A2 = §(T33 —Too) £ \/Z(TOO + T33)2 — T¢;,  (52)

are real and have opposite signs in the Rindler space,
while in the Milne space, they are complex conjugate

for 7 < 1, when the momentum density (energy flux)
is greater than half the sum of the energy density and
the pressure:

TMkK

)\1’2(7')% - iiTQChﬂ'hj-l-“.’

r< 1. (53)

As 7 — 0, R(r) oscillates with a finite amplitude and
an increasing frequency.

6. RIGHT AND LEFT SPINOR MODES

In the spinor case, the right and left superpositions
of the positive- and negative-frequency modes are de-
fined as in the scalar case, but the Dirac scalar product
leads to different Bogoliubov coefficients,

B =anx( + 87,
Xﬁs = ﬂnxsg) + O%X,(@g)v
e™r/2 (54)

V2chrk'

Bn = ianeiﬂ-na

o, =
wl” + 18> =1

Evidently, the right and left modes satisfy the orthog-
onality and normalization condition

/ 2w
[ doataon s (2) = bl ), (5)

where a,a’ € L,R and S is a spacelike surface as in
(30) or (45).

The modes an and YL form two complete sets
of Dirac equation solutions and any other solution y(z)
can be decomposed into the corresponding integrals

T dk
— - (+) * (=) —
X(l‘) - / 271_2 |:aNSan (l‘) + bnans (x)i| -

oo
dk .
= [ 55 @) + @] (56)

where summation over s is assumed.
For example, for the positive-frequency plane wave
solution with s =1,

PR | : (+)
Xpll(x) - \/mexp [Z(plz _Elt)] Uy (91)’ (57)
P1
61 = Arth—
1 r E1
we have
2 .
et = 2—26’”9% s =0, (58)
1
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_ mexp[nr/2 + ikb]

ST B char (58)
I’ —imexp[—7K/2 + ikb]
k1 .

VE|chrk

For the spectra of the right and left modes, we then
obtain (Wlth g1 = 271'2/E1)

gleQTrn
e2mr | 1’

g1

S (60)

‘rn1|2 = ‘lnl‘Q =

For the negative-frequency plane wave solution, the
coefficients in expansions (56) are

2w

agl = 07 :1 = \/me_iﬁelv (61)
—imexp[—7kK/2 — ikb]
T ==
ml VE|chrmk (62)

I mexp[rk/2 — ikb]

L VEichmk ’
The spectra for the left and right modes then coincide
with the respective expressions in (60).

Although these spectra resemble the thermal distri-
bution of the Fermi-particle gas, this similarity seems
to be artificial for the same reasons as in the scalar
case. Moreover, decompositions (56) of the plane wave
in the hyperbolic modes Xfif) or Y®L and the inverse
expansions of these modes in plane waves in Eqs. (41)
and (54) confirm the completeness of these three sets
and the absence of the loss of information or purity
of states. We see that the hyperbolic symmetry and a
definite frequency sign preserve good analytical proper-
ties of the modes but lead to an indefinite sign of their
charge density or energy density.

The «thermal» spectra appear when one preserves
the hyperbolic symmetry of modes and requires the
definiteness of the charge density or energy density
signs in the entire Minkowski space. This can only be
achieved at the expense of loosing good analytical prop-
erties of the modes and essentially consists in the tran-
sition from the boundary value of an analytical function
on the cut to its jump on this cut. We have

X = a8k, X&) =Bk ek, (63)
27K
2 € 2 1
2= BP=——— (64
onl? = o Bl = (60

where |a,|? and |3,|* are the respective probabilities
to find no pairs (one pair) and one pair (no pairs) in
the state X,(JSL), k > 0 (k < 0). This interpretation fol-
lows from the none-one-particle analysis of wave equa-

tion solutions and does not require the transition to
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the secondary quantization, although is confirmed by
it [5, 6].
For the Rindler observer with 5 = t/z, we have

dmrchnr

TO}S'/ TSIgv To% = 1§

X | [Kix—1/2(C) /?C in—1/2(C QF, 0 (65)
¢

and for the Milne observer with § = z/t,

R _ TMEK T dr 9
Too = — 1+Chﬁn/7\Jm+1/2(T)\ ;
0
66)
R _ TMEK T 9 (
Iy3=— (1 - mumﬂm(ﬂ\ ) )
TMK
TH = =
The energy density is greater than the pressure. As

7 — 0, we have
R R R _ 2
Too = Tss = Tos = mme/T

similarly to the energy-momentum tensor of electro-
magnetic waves.

It is interesting to note that in the R sector, the
eigenvalues /\lf‘f2 tend to infinity as ¢ — 0, while in the
P or F sectors, they are finite at 7 = 0,

/1 + 4k2 N
9 + 452

The sign of oo is relativistically invariant in only

2Tmk
1+ 4x2

2Tmek
1+ 4k2

/\{%,2|TH0 = - (67)

two cases:
1) the eigenvalues A\; and )y are real and have op-
posite signs,

Ao = T023 — TooT33 <0, (68)

2) the eigenvalues are real, have the same sign, and
the energy density is greater than the pressure in mag-
nitude:

(M = A2)? = (Too + T3)* — 4T55 > 0, (69)

MA2 >0, sign(Ta — Tas) > 0.
We note that the sign of (3, — t35) is relativis-
tically invariant only if A\ and A, are real, i.e., if

(A1 —A2)? > 0. Then, if A\ » are complex or if they are
real and have the same sign, but sgn(T3 —T3%;) < 0, the
sign of tgy can be changed by a Lorentz transformation.

The tensor tfﬁ possesses the first property in the R
sector and either the first or the second property de-
pending on the value of 7 in the F' and P sectors. In
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the F' and P sectors, the eigenvalues A\F and \¥ are
real because of the inequality

dr
/ sest s (P = [ins1 o > 0. (70)

0

Inequalities (70) and (25) that are essential in this pa-
per were not found in the mathematical literature.

7. CONCLUSION

Hyperbolic symmetry of scalar and spinor field
states requires plane waves with unlimited frequencies
to participate in the corresponding superpositions. For
scalar field, field states with the quantum number s
that are formed as superpositions and are analytic in
the coordinates 4 = t £ z do not possess an every-
where timelike current density, while for the spinor
field, they do not possess the energy-momentum ten-
sor with everywhere real eigenvalues. This means that
these states describe both particles and antiparticles.
Nevertheless, it is possible to construct hyperbolically
symmetric right and left states that are not analytic in
r4 but possess an everywhere timelike current density
and the energy-momentum tensor with everywhere real
eigenvalues. Precisely these states describe the particle
or the antiparticle.

This implies that the charge densities j#° and
for the scalar particle (antiparticle) states ¢% and the
energy densities ¢, and TR for the spinor particle
(antiparticle) states y %, are everywhere positive (neg-
ative) for k > 0 (k < 0) and are equal to zero in the
L sector. This assertion remains valid after replacing
R 2 L and changing the sign of x.

It is known [7] that if a wave packet is formed from
plane waves and is localized in a region of the order
of or less than the Compton wave length, it must con-
tain both posmve and ne%ative frequencies. The su-
perpositions qﬁn and an do not contradict this as-
sertion because each of them is localized in a region of
the order of the Compton length only for [t| < m~!,
while for |t| > m™!, each superposition consists of two
waves that propagate along the light cone boundaries
z = =t, exponentially decaying outside the cone for
¢ =mvz22 —t2> 1 and oscillating and falling off only
!inside the cone for 7 = mv/t2 — 22 > 1. There-
fore, these two waves remain coherently connected in a
single wave packet with the width = 2|¢|.

In the well-known review [8], Pauli made the follow-
ing remark about energy density in the Dirac electron
field theory: «The concept of the energy density seems

RO
S

as 7
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to be more problematic in this theory than that of the
volume integrated total energy. The energy density is
no longer positive definite for the theory of holes, in
contradistinction to the case for the theories discussed
in §§ 1 and 2. This is also shown in the ¢ number theory;
even if limitation is made to wave packets in which the
partial waves all have the same sign of the frequency in
the phase exp i(k-x— kozo) the energy density (as dis-
tinguished from the total energy) cannot be made pos-
itive definite.» T do not know whether Pauli had some
example of such a wave packet. In any case, each of the
modes x,(fs:) can serve as a specific illustration to his re-
mark. The energy density for each of these modes can
accept both signs near the light cone owing to singu-
larities on the cone related to the hyperbolic symmetry
of the modes. On the other hand, each of the modes
YEL is an example of such a superposition of positive-
and negative-frequency spinor plane waves with a sign-
definite energy density in the entire Minkowski space.
It is interesting that the scalar eigenfunctions of
the Lorentz boost operator appear in the analysis of
the photon wave function in localized near the photon
propagation plane 3 + 1-space [9]. However, a scalar
product different from (30) is used in this analysis.

I thank M. A. Soloviev for useful remarks. The
work was partly supported by the Russian Founda-
tion for Basic Research (grants Ne00-15-96566 and
99-02-17916a).

APPENDIX

The integral J2, defined in [4] by Eq. (14), being
the integral of a total differential, does not actually de-
pend on the form of the spacelike surface over which it
extends, but depends only on the parameters mt and
(¢ fixing the coordinates of the left boundary of this
surface. Namely, the z coordinate of the left bound-
ary is equal to /> + (2/m?, while the right bound-
ary is at infinity. When the left boundary tends to
zero at a fixed ratio mt/(, we obtain the result (20)
from [4] without any uncertainties related to the factor
exp [i(k — k")Arsh(mt/()], which eventually turns into
1 at fixed mt/( and k = k'. Thus, the normalization
integral (20) in [4] is correct for any spacelike surface
lying in the R sector with the left boundary at zero,
rather than at z = |t| as was assumed in [4].

Similarly, expression (28) for the normalization in-
tegral JL, in [4] is correct for any spacelike surface
lying in the L sector with the right boundary at zero,
rather than at z = —|t| as was assumed in [4].

The integral JF, defined by Eqs. (22) and (23) in [4]
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is justified for any spacelike surface lying inside the
F' sector with the boundaries at the points defined by
fixed values of mt and 7 = mv/t> — 22. The z coor-
dinates of the left and right boundaries of this surface
are then given by z12 = F4/t? — 72/m?. As ¢ tends
to infinity at fixed 7, we obtain the result (25) from [4]
without any ambiguity related to the factor inside the
parentheses in Eq. (23) in [4], which turns into 7 at
fixed 7 and k = x'. Thus, normalization integral (25)
in [4] is correct for any spacelike integration surface
lying in the F' sector and having the boundaries at
Z1,2 = Foo but not at z » = F[t|, as was understood
in [4]. A similar comment applies to the integral JF .

On any spacelike surface entirely lying in the P,
L + R or F sectors with the left and right boundaries
at infinities, each of the states ¢£i) has the same con-
served total charge

0 =0l o +a =0 20 ()

Therefore, the factor 1/2 in the right-hand sides of
Eqgs. (34) and (35) in [4] must be replaced by 1.
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