СУММИРОВАНИЕ РАСХОДЯЩИХСЯ РЯДОВ ТЕОРИИ ВОЗМУЩЕНИЙ В ПРЕДЕЛЕ СИЛЬНОЙ СВЯЗИ. ФУНКЦИЯ ГЕЛЛ-МАННА–ЛОУ ТЕОРИИ φ^4

И. М. Суслов*

Институт физических проблем им. П. Л. Капицы Российской академии наук 117334, Москва, Россия

Поступила в редакцию 27 декабря 2000 г.

Предложен алгоритм определения асимптотики суммы ряда теории возмущений в пределе сильной связи по заданным значениям его коэффициентов. Дана иллюстрация алгоритма на тестовых примерах, отработаны методика оценки ошибок и процедура оптимизации. Применение алгоритма к теории φ^4 дает для ее функции Гелл-Манна–Лоу поведение $\beta(g)\approx 7.4g^{0.96}$ при больших g. Близость индекса к единице может быть интерпретирована как проявление логарифмического ветвления вида $\beta(g)\sim g(\ln g)^{-\gamma}$ с $\gamma\approx 0.14$, в пользу чего есть независимые аргументы. В любом случае теории φ^4 является внутренне непротиворечивой. Обсуждается процедура суммирования рядов теории возмущений при произвольных значениях параметра разложения.

PACS: 74.50.+r, 74.60.Ge, 74.25.Fy

1. ВВЕДЕНИЕ

Настоящая работа содержит систематическое изложение алгоритма, предложенного в кратком сообщении [1]. Дана иллюстрация алгоритма на тестовых примерах, отработана методика оценки ошибок и процедура оптимизации. В результате точность восстановления функции Гелл-Манна–Лоу теории φ^4 — основного физического результата работы возросла примерно на порядок.

Абстрактная постановка задачи состоит в следующем. Пусть некоторая величина W(g) раскладывается в ряд теории возмущений по степеням константы связи g:

$$W(g) = \sum_{N=0}^{\infty} W_N (-g)^N.$$
 (1)

Несколько первых коэффициентов W_N можно получить путем прямых диаграммных вычислений; далекие члены ряда могут быть вычислены с помощью метода Липатова [2], который применим к большинству актуальных задач и дает для W_N асимптотику вида (см. обзоры [3–5])

$$W_N^{as} = ca^N \Gamma(N+b) \approx ca^N N^{b-1} N!.$$
⁽²⁾

Сшивка асимптотики (2) со значениями первых коэффициентов дает информацию обо всех членах ряда и позволяет приближенно восстановить функцию W(g), однако это требует специальной процедуры суммирования расходящихся рядов. Реализация этой программы позволила получить значения критических индексов теории фазовых переходов с точностью до третьего знака [6–8] и тем самым принципиально освоить область промежуточной связи $g \sim 1$. В дальнейшем интерес к этому направлению угас из-за проблемы ренормалонных вкладов, поставивших под сомнение метод Липатова [9], и прорыва в область сильной связи не произошло.

Продвижения в область сильной связи требуют многие задачи теоретической физики. Наиболее известные из них связаны с зависимостью эффективной константы взаимодействия g от масштаба расстояний L: таковы проблема электродинамики на сверхмалых расстояниях и проблема конфайнмента. Зависимость g от L в перенормируемых теориях определяется уравнением

^{*}E-mail: suslov@kapitza.ras.ru

$$-\frac{dg}{d\ln L^2} = \beta(g) = \beta_2 g^2 - \beta_3 g^3 + \beta_4 g^4 - \dots$$
(3)

и в общем случае требует информации о функции Гелл-Манна–Лоу $\beta(g)$ при произвольных g. Классификация возможностей дана в книге Боголюбова и Ширкова [10] и для $\beta_2 > 0$ сводится к следующему: если $\beta(g)$ имеет корень в точке g_0 , то $g(L) \to g_0$ при $L \to 0$; если при больших g функция $\beta(g)$ ведет себя как g^{α} с $\alpha \leq 1$, то $g(L) \to \infty$ при малых L; если же $\beta(g)$ растет как g^{α} с $\alpha > 1$, то теория внутренне противоречива и не позволяет описать зависимость g(L) при всех L.

Первая попытка восстановления
 $\beta\mbox{-} функции для теории <math display="inline">\varphi^4$ с евклидовым действием

$$S\{\varphi\} = \int d^4x \left\{ \frac{1}{2} (\partial\varphi)^2 + \frac{16\pi^2}{4!} g\varphi^4 \right\}$$
(4)

сделана в работе [11]. Продвижение в область сильной связи предпринято группой Ширкова [12] и привело при больших g к асимптотике $0.9g^2$, которая лишь коэффициентом отличается от однопетлевого результата $1.5g^2$, справедливого при $g \to 0$. Близкая асимптотика 1.06g^{1.9} получена Кубышиным [13]. Недавно развитая вариационная теория возмущений [14] дает 2.99g^{1.5}. Все результаты¹⁾ свидетельствуют о внутренней противоречивости теории φ^4 , что выглядит странным с точки зрения твердотельных приложений: к теории φ^4 математически точно сводится разумная модель неупорядоченной системы [16, 17], хорошо определенная в континуальном пределе. Другой аргумент следует из недавней работы автора [9]: доказанное в ней отсутствие ренормалонных сингулярностей в теории φ^4 можно интерпретировать как свидетельство ее внутренней непротиворечивости. Поэтому ревизия указанных результатов является весьма актуальной.

В настоящей работе предложен алгоритм восстановления асимптотики суммы ряда теории возмущений в пределе сильной связи по заданным значениям его коэффициентов (разд. 2). Дана иллюстрация работы алгоритма на тестовых примерах с известными коэффициентами разложения (разд. 4) и коэффициентами, полученными в результате интерполяции (разд. 5, 6). Отработана процедура оценки ошибок и оптимизации (разд. 3, 6). Обсуждается суммирование рядов теории возмущений при конечных *g* и показано, что знание асимптотики W(g) существенно повышает его точность (разд. 7). Основное физическое содержание работы состоит в восстановлении функции Гелл-Манна–Лоу теории φ^4 (разд. 8). При этом мы исходим из той же информации, которая использовалась в работе [13], т.е. значений первых четырех коэффициентов разложения β -функции в схеме вычитаний [15, 18],

$$\beta(g) = \frac{3}{2}g^2 - \frac{17}{6}g^3 + \frac{154.14}{8}g^4 - \frac{2338}{16}g^5 + \dots, \quad (5)$$

и их асимптотики Липатова с учетом первой поправки к ней, вычисленной в [19]:

$$\beta_N = \frac{1.096}{16\pi^2} N^{7/2} N! \left\{ 1 - \frac{4.7}{N} + \dots \right\}$$
(6)

(вид члена взаимодействия в (4) соответствует «естественной» нормировке заряда, для которой параметр *a* в (2) равен единице). Мы покажем, что результат работ [12, 13] не является артефактом и отражает объективное поведение $\beta(g)$ в области $1 \leq g \leq 10$. Однако истинная асимптотика наступает позже и соответствует внутренней непротиворечивости теории φ^4 .

2. СВЯЗЬ АСИМПТОТИКИ W(g) С КОЭФФИЦИЕНТАМИ РАЗЛОЖЕНИЯ

Поставим задачу о восстановлении асимптотики функции

$$W(g) = W_{\infty} g^{\alpha}, \quad g \to \infty, \tag{7}$$

по коэффициентам W_N ряда (1), которые растут при больших N по факториальному закону (2) и предполагаются заданными численно. Как при введении критических индексов в теории фазовых переходов, имеется в виду, что медленные (логарифмические) поправки к закону (7) являются превышением точности. В случае экспоненциального роста функции W(g), который может быть обнаружен по появлению неправдоподобно больших значений индекса α , ряд (1) предполагается предварительно прологарифмированным.

2.1. Стандартная процедура суммирования («конформ-борель»)

Понимая сумму ряда (2) в борелевском смысле [20], будем пользоваться модифицированным определением борелевского образа B(g):

¹⁾ Заметим, что авторы работы [12] не настаивают на своем утверждении, а всячески подчеркивают его предварительный характер (см. также [15]).

Рис. 1. Борелевский образ аналитичен в комплексной плоскости с разрезом $(-\infty, -1/a)$ (*a*), и его область аналитичности можно конформно отобразить на единичный круг (*б*). Если ограничиться аналитическим продолжением на положительную полуось, то допустимо конформное преобразование на любую область, для которой точка u = 1 является ближайшей к началу координат из всех граничных точек (*b*); при экстремальной форме такого преобразования (18) отображение происходит на плоскость с разрезом $(1, \infty)$ (*c*)

$$W(g) = \int_{0}^{\infty} dx e^{-x} x^{b_0 - 1} B(gx),$$

$$B(g) = \sum_{N=0}^{\infty} B_N(-g)^N, \quad B_N = \frac{W_N}{\Gamma(N + b_0)},$$
(8)

где b_0 — произвольный параметр, который удобно использовать для оптимизации процедуры суммирования [6]. Как было предположено в [6] и для теории φ^4 недавно доказано автором [9], борелевский образ аналитичен в комплексной плоскости g с разрезом от -1/a до $-\infty$ (рис. 1*a*). Для аналитического продолжения B(g) из круга сходимости |g| < 1/a на произвольные комплексные g используется конформное преобразование g = f(u), отображающее плоскость с разрезом на единичный круг |u| < 1 (рис. 1*б*): тогда переразложение B(g) в ряд по u,

$$B(g) = \sum_{N=0}^{\infty} B_N (-g)^N \big|_{g=f(u)} \longrightarrow B(u) =$$
$$= \sum_{N=0}^{\infty} U_N u^N, \quad (9)$$

при любых g дает сходящийся ряд. Действительно, все возможные особые точки, P, Q, R, \ldots , функции B(g) лежат на разрезе, а их образы P, Q, Q', R, R', \ldots на границе круга |u| = 1, так что второй ряд в (9) сходится при всех |u| < 1; но внутренность круга |u| < 1 находится во взаимно однозначном соответствии с областью аналитичности в плоскости g.

Конформное отображение определяется формулами

$$g = \frac{4}{a} \frac{u}{(1-u)^2}$$
 или $u = \frac{(1+ag)^{1/2} - 1}{(1+ag)^{1/2} + 1},$ (10)

откуда легко найти связь U_N и B_N :

$$U_{0} = B_{0}, \quad U_{N} = \sum_{K=1}^{N} B_{K} \left(-\frac{4}{a}\right)^{K} C_{N+K-1}^{N-K}$$
(11)
(N \ge 1).

Для установления связи асимптотики (7) с коэффициентами разложения воспользуемся тем, что асимптотика U_N при больших N определяется суммой вкладов особых точек, лежащих на границе круга |u| = 1. В этом легко убедиться, записывая U_N в терминах B(u),

$$U_N = \oint_C \frac{du}{2\pi i} \frac{B(u)}{u^{N+1}},\tag{12}$$

и деформируя контур C, охватывающий точку u = 0, так, чтобы он проходил вокруг разрезов, проведенных от всех особых точек до бесконечности. Если в точке $u_0 = e^{i\varphi}$ имеется особенность $A(1 - u/u_0)^{\beta}$, то она дает вклад в асимптотику U_N вида

$$\frac{A}{\Gamma(-\beta)} \frac{e^{-i\varphi N}}{N^{1+\beta}}.$$
(13)

Теперь легко найти вклады в U_N от особых точек исходного борелевского образа B(g); для степенных

особенностей в точках $g=\infty,\,g=-1/a$ и $g=g_0$ с $g_0\in(-\infty,-1/a)$ имеем соответственно

$$B(g) = Ag^{\alpha} \longrightarrow U_N = \frac{A}{\Gamma(2\alpha)} \left(\frac{4}{a}\right)^{\alpha} \frac{1}{N^{1-2\alpha}},$$

$$B(g) = A(g+1/a)^{\beta} \longrightarrow U_N =$$

$$= \frac{A}{(4a)^{\beta} \Gamma(-2\beta)} \frac{(-1)^N}{N^{1+2\beta}},$$

$$B(g) = A(g-g_0)^{\beta} \longrightarrow U_N =$$

$$= \frac{2A}{\Gamma(-\beta)} \left(\frac{\cos(\varphi/2)}{a\sin^3(\varphi/2)}\right)^{\beta} \frac{\cos(\varphi N - \pi\beta/2)}{N^{1+\beta}},$$
(14)

где $\varphi = \arccos(1 + 2/ag_0).$

Особенности B(g) изменяются при изменении параметра b_0 в (8). Если B(g) и $\tilde{B}(g)$ — борелевские образы, соответствующие b_0 и b_1 , то нетрудно вывести формулу пересчета:

$$\tilde{B}(g) = \frac{1}{\Gamma(b_1 - b_0)} \int_0^\infty dx \frac{x^{b_1 - b_0 - 1}}{(1 + x)^{b_1}} B\left(\frac{g}{1 + x}\right), \quad (15)$$

с помощью которой легко получить правило преобразования особенностей в конечной (g_0) и бесконечно удаленной точке при переходе от b_0 к b_1 :

$$B(g) = A\Gamma(-\beta) \left(\frac{g_0 - g}{g_0}\right)^{\beta} \longrightarrow \tilde{B}(g) =$$

= $A\Gamma(-\beta - b_1 + b_0) \left(\frac{g_0 - g}{g_0}\right)^{\beta + b_1 - b_0},$ (16)
 $B(g) = \frac{A}{\Gamma(\alpha + b_0)} g^{\alpha} \longrightarrow \tilde{B}(g) = \frac{A}{\Gamma(\alpha + b_1)} g^{\alpha}.$

Мы видим, что при увеличении b_0 особенности при конечных g ослабляются, тогда как характер особенности при $g = \infty$ остается неизменным. При достаточно больших b_0 вклад в U_N конечных особых точек подавляется и асимптотика U_N определяется особенностью B(g) (а следовательно, W(g)) при $g \to \infty$:

$$U_N = \frac{W_\infty}{\Gamma(2\alpha)\Gamma(b_0 + \alpha)} \left(\frac{4}{a}\right)^{\alpha} N^{2\alpha - 1}, \quad N \to \infty.$$
(17)

Эта формула решает поставленную задачу: коэффициенты U_N линейным преобразованием (11) связаны с исходными коэффициентами W_N (см. (8)), а их асимптотика (17) определяет параметры W_{∞} и α асимптотики (7).

Из формул (14) видно, что вклад в U_N особой точки $g = \infty$ является монотонным, а вклад других особых точек — осциллирующим. Поэтому при увеличении b_0 осциллирующее поведение U_N сменяется монотонным: это явление наблюдалось в [6] и систематически использовалось для улучшения сходимости, но не имело удовлетворительного объяснения.

2.2. Модифицированное конформное преобразование

Более эффективный алгоритм возникает при использовании модифицированного конформного преобразования.

Согласно теореме Римана [21], конформное преобразование односвязной области на единичный круг является однозначным с точностью до так называемой нормировки; последняя может быть зафиксирована заданием образов двух точек — одной внутренней и одной граничной. Если договориться отображать g = 0 в u = 0, а $g = \infty$ в u = 1, то конформное преобразование (10) является единственным, которое позволяет проводить аналитическое продолжение борелевского образа на произвольные комплексные д. Последнее, однако, не является необходимым: для проведения интегрирования в (8) достаточно аналитического продолжения на положительную полуось. Тогда допустимым является конформное преобразование на любую область типа показанной на рис. 1 в, для которой точка u = 1 является ближайшей к началу координат из всех граничных точек: второй ряд в (9) будет сходиться при |u| < 1 и, в частности, на интервале 0 < и < 1, который является образом положительной полуоси. Преимущество такого конформного преобразования в том, что вклады в U_N особых точек $P, Q, Q', R, R' \dots$ экспоненциально подавлены и асимптотика U_N при всех b₀ определяется вкладом особой точки u = 1, связанной с особенностью функции W(g) при $g \to \infty$.

Мы будем использовать экстремальную форму такого преобразования, отображая плоскость с разрезом $(-\infty, -1/a)$ на плоскость с разрезом $(1, \infty)$ (рис. 1*г*). Оно имеет вид

$$g = \frac{u}{a(1-u)} \tag{18}$$

и приводит к следующей связи U_N и B_N :

$$U_0 = B_0,$$

$$U_N = \sum_{K=1}^N \frac{B_K}{a^K} (-1)^K C_{N-1}^{K-1} \quad (N \ge 1).$$
(19)

Асимптотика U_N при больших N имеет вид

$$U_N = U_\infty N^{\alpha - 1}, \quad N \to \infty, \tag{20}$$

$$U_{\infty} = \frac{W_{\infty}}{a^{\alpha} \Gamma(\alpha) \Gamma(b_0 + \alpha)},$$
(21)

и в результате мы приходим к простому алгоритму: вычисляя по заданным W_N коэффициенты B_N согласно (8), пересчитывая их в U_N согласно (19) и проводя при больших N обработку по степенному закону (20), мы определяем параметры W_{∞} и α асимптотики (7).

2.3. Рост случайных ошибок

Описанные алгоритмы обладают скрытым дефектом, который существенно ограничивает их точность.

Введем для удобства приведенную коэффициентную функцию

$$F_N = \frac{W_N}{W_N^{as}} = \frac{W_N}{ca^N \Gamma(N+b)} = 1 + \frac{A_1}{N} + \frac{A_2}{N^2} + \dots + \frac{A_K}{N^K} + \dots, \quad (22)$$

которая меняется в конечных пределах и имеет регулярное разложение по 1/N; в последнем можно убедиться, вычисляя последовательные поправки к асимптотике Липатова [19]. Практически F_N задается с некоторой точностью δ_N (ошибка вычисления или ошибка округления), что порождает случайную ошибку в U_N , дисперсия которой для алгоритма п. 2.2 имеет вид

$$(\delta U_N)^2 = \sum_{K=1}^N \left[c \delta_K \frac{\Gamma(K+b)}{\Gamma(K+b_0)} C_{N-1}^{K-1} \right]^2.$$
(23)

Для ошибок округления величина $\delta_K = \delta$ не зависит от K и вычисление суммы методом перевала дает для больших N результат

$$\delta U_N \sim 2^N \delta, \tag{24}$$

демонстрирующий катастрофический рост ошибки. При вычислении с двойной компьютерной точностью имеем $\delta \sim 10^{-14}$ и δU_N становится порядка единицы при $N \approx 45^{2)}$, что ограничивает точность восстановления параметров асимптотики (7) уровнем порядка 1%. Согласно (23), при увеличении b_0 ошибка уменьшается и область допустимых значений N расширяется, однако при больших b_0 в такой же степени затягивается выход на асимптотику (20) и никаких преимуществ не возникает. Для алгоритма п. 2.1 скорость роста ошибок еще выше:

$$\delta U_N \sim \left(\sqrt{2} + 1\right)^{2N} \delta \sim 5.8^N \delta, \qquad (25)$$

а необходимость использования достаточно больших b_0 сильно ограничивает возможности оптимизации (см. разд. 3). Тем не менее этот алгоритм может оказаться полезным для повышения точности результатов в области малых g (разд. 7). В дальнейшем мы обсуждаем алгоритм п. 2.2, основанный на модифицированном конформном преобразовании, преимущества которого бесспорны в области сильной связи.

Из сказанного ясно, что уже из-за ошибок компьютерного округления точность алгоритма ограничена уровнем ~ 1% даже для тестовых примеров, в которых коэффициенты W_N известны точно. В реальных задачах точность вычисления W_N гораздо хуже и ситуация выглядит совершенно безнадежной. В действительности это не так, поскольку здесь в основном приходится иметь дело с ошибками интерполяции, влияние которых носит совершенно другой характер. Линейное преобразование (19), известное в математике как преобразование Хаусдорфа [20], обладает замечательным свойством

$$\sum_{K=1}^{N} K^{m} (-1)^{K} C_{N-1}^{K-1} = 0, \quad m = 0, 1, \dots, N-2,$$
(26)

и гладкие ошибки, хорошо аппроксимируемые полиномами, оказываются несущественными даже при большой их величине³⁾. Конечно, ограничение, связанное с компьютерным округлением, остается, но точность 1% для реальных задач является достаточной и вряд ли может быть превзойдена при уровне информации, доступной в настоящее время.

Строго говоря, проблема ошибок округления является чисто технической и может быть решена путем использования специальных программ точной арифметики, позволяющих проводить вычисления с произвольным числом значащих цифр [22], однако точность восстановления α и W_{∞} зависит от точности вычислений лишь логарифмически. Более совершенные в этом смысле алгоритмы существуют, но их обсуждение выходит за пределы работы; они дают высокую точность для тестовых примеров, но оказываются очень капризными и плохо работают

²⁾ Это действительно наблюдается в форме быстронарастающих нерегулярных осцилляций.

³⁾ Из сказанного ясно, что в случае, когда известно много коэффициентов W_N с низкой точностью, их нужно использовать не непосредственно, а аппроксимировать гладкой функцией.

в условиях ограниченной информации. Обсуждаемый же алгоритм обладает хорошей помехоустойчивостью и, на наш взгляд, идеально подходит для выработки надежного нулевого приближения⁴).

При обработке U_N по степенному закону может быть использована стандартная процедура минимизации χ^2 [22],

$$\chi^2 = \sum_i \left(\frac{y_i - y(x_i)}{\sigma_i}\right)^2, \qquad (27)$$

где предполагается, что значения функции y_i заданы в точках x_i со статистической ошибкой σ_i , а подгонка проводится теоретической зависимостью y(x). При этом весьма актуален вопрос о выборе интервала $N_{min} \leq N \leq N_{max}$, в котором проводится обработка: при больших N велика статистическая ошибка, определяемая формулой (23); при малых N существенна систематическая ошибка, связанная с тем, что зависимость U_N еще не вышла на асимптотику (20) (рис. 2*a*). Верхний предел N_{max} достаточно выбрать из условия $\delta U_N \sim U_N$, так как точки с бо́льшими N уже не содержат информации; этот выбор не очень критичен, так как процедура минимизации χ^2 автоматически дискриминирует точки с большой статистической ошибкой — они входят при усреднении с весом $1/\sigma_i^2$. Нижний предел N_{min} выбирается с учетом величины χ^2 , которая при малых N_{min} принимает огромные значения, но при увеличении N_{min} должна выходить на «нормальные» значения $n \pm \text{const}\sqrt{n}$, где n -число точек (рис. 2 δ); оптимальное значение N_{min} находится на «плато» вблизи его левого края, где систематическая ошибка уже меньше статистической, но имеющаяся информация учитывается максимально полно. Фактически условия для строгой статистической трактовки χ^2 не выполнялись, так как ошибки δU_N при разных N не были независимыми (см. (23)): практически это проявлялось в том, что значения χ^2 становились меньше «нормальных» (штрихи на рис. 2δ), а статистические неопределенности параметров α и W_{∞} оказывались очень малыми и не отражали реальную ошибку даже по порядку величины. Поэтому мы считали выбор N_{min} удовлетворительным, если значение χ^2 оказывалось правильного порядка величины ($\sim n$); небольшие вариации N_{min} мало сказывались на результатах.

3. ЗАВИСИМОСТЬ ОТ *b*₀ И ОЦЕНКА ТОЧНОСТИ

Непосредственное использование алгоритма п. 2.2 не очень конструктивно, так как результаты существенно зависят от произвольного параметра b_0 и требуется дополнительное исследование в отношении его оптимального выбора.

Естественно ожидать, что поправки к асимптотике (7) имеют вид регулярного разложения по 1/g, однако уже простейшие примеры показывают, что, вообще говоря, это не так: в нуль-мерном случае поправки идут по степеням $g^{-1/2}$, для ангармонического осциллятора — по $g^{-2/3}$ (разд. 4). Поэтому будем допускать степенные поправки общего вида:

$$W(g) = W_{\infty}g^{\alpha} + W'_{\infty}g^{\alpha'} + \dots$$
(28)

Соответственно для U_N аналогично (20), (21) получим

$$U_N = \frac{W_{\infty}}{a^{\alpha} \Gamma(\alpha) \Gamma(b_0 + \alpha)} N^{\alpha - 1} + \frac{W'_{\infty}}{a^{\alpha'} \Gamma(\alpha') \Gamma(b_0 + \alpha')} N^{\alpha' - 1} + \dots$$
(29)

Пренебрежем для начала поправками к (29), показанными многоточием. Формальная обработка (29) по степенному закону (20) дает неплохие результаты, так как в двойном логарифмическом масштабе функция (29) меняется плавно и в ограниченном интервале хорошо аппроксимируется прямой линией; при этом, однако, получаются некоторые эффективные значения α и U_{∞} .

Заметим, что из-за полюсов гамма-функции первый член в (29) обращается в нуль при $b_0 = -\alpha$, а второй — при $b_0 = -\alpha'$. При этих значениях b_0 возникают чисто степенные законы: $U_N \propto N^{\alpha'-1}$ и $U_N \propto N^{\alpha-1}$, в результате чего качество обработки возрастает и χ^2 резко уменьшается. Для фиксированного интервала $N_{min} \leq N \leq N_{max}$ должна наблюдаться следующая картина (рис. 3): зависимость χ^2 от b_0 имеет резкие минимумы при $b_0 = -\alpha'$ и $b_0 = -\alpha$; эффективный индекс α_{eff} в окрестности точки $b_0 = -\alpha$ «проваливается» до α' , а вне ее близок к α , достигая точного равенства $\alpha_{eff} = \alpha$ при $b_0 = -\alpha'$; эффективный параметр U_∞ при $b_0 = -\alpha'$

⁴⁾ В вычислительной математике такая ситуация хорошо известна [22]. Все алгоритмы, грубо говоря, делятся на две группы: алгоритмы первой группы имеют умеренные точность и скорость сходимости, но обладают высокой надежностью (например, поиск корня уравнения путем деления отрезка пополам); алгоритмы второй группы характеризуются высокими точностью и сходимостью, но предъявляют повышенные требования к гладкости функций (например, поиск корня с прогнозом по нескольким производным).

Рис.2. *a*) Характерная ситуация, возникающая при обработке U_N по степенному закону: при больших N велика статистическая ошибка, при малых N — систематическая. *б*) Зависимость χ^2 от N_{min} при постоянном числе точек n

Рис.3. Теоретические зависимости χ^2 , α_{eff} и U_∞ от b_0 в пренебрежении поправками к (29), показанными многоточием

сти $b_0 = -\alpha$ проходит через нуль, причем наклон линейного участка вблизи корня,

$$U_{\infty} \approx \frac{W_{\infty}}{a^{\alpha} \Gamma(\alpha)} (b_0 + \alpha), \qquad (30)$$

дает оценку W_{∞} , не очень чувствительную к погрешностям в α . Влияние отброшенных в (29) членов приводит лишь к малым возмущениям описанной картины.

Такая картина действительно наблюдается, но

поведение α_{eff} и U_{∞} вблизи $b_0 = -\alpha$ носит, как правило, разрывный характер (штрихи на рис. 3). Последнее не имеет глубокого смысла и связано с процедурой обработки, которая проводится путем логарифмирования модуля U_N ,

$$\ln|U_N| = \ln|U_{\infty}| + (\alpha - 1)\ln N, \tag{31}$$

с последующим использованием линейного алгоритма подгонки [22]; знак U_{∞} определяется путем вычисления χ^2 для $U_{\infty} = |U_{\infty}|$ и $U_{\infty} = -|U_{\infty}|$ и выбора варианта с меньшим значением. Такая процедура дает довольно бессмысленные результаты в случае знакопеременного поведения U_N , но последнее возможно лишь в малой окрестности $b_0 = -\alpha$, тогда как вне ее знак U_N определяется знаком первого члена в правой части (29).

Гладкость функции $U_{\infty}(b_0)$ восстанавливается, если обработка по степенному закону (20) проводится с фиксированным значением индекса α и подбором лишь U_{∞} ; при этом для α используется некоторое приближенное значение. Небольшие вариации α практически не влияют на положение корня функции $U_{\infty}(b_0)$, но заметно влияют на значение W_{∞} , извлекаемое из наклона линейной зависимости (30).

Из сказанного вытекает возможность четырех различных оценок индекса α:

1) по значению α_{eff} в первом минимуме χ^2 (принимаем нумерацию минимумов со стороны больших b_0);

2) по положению второго минимума χ^2 ;

3) по смене знака U_{∞} при обработке путем логарифмирования;

4) по смене знака U_{∞} при обработке с фиксированным значением α ; приближенное значение для последнего берется из предыдущих оценок.

Первые две оценки имеют, вообще говоря, более высокую точность: их погрешность определяется от-

ношением отброшенных вкладов в правой части (29) к характерной величине первого члена вне интервала $b_0 \approx -\alpha$; точность же двух последних оценок определяется отношением второго члена к первому. Однако если отброшенные в (29) члены сравнимы со вторым (что можно контролировать по воспроизводимости результатов для α'), то все четыре оценки становятся равноправными. Практически контроль смены знака U_{∞} имеет большое значение, позволяя надежно идентифицировать минимум χ^2 , соответствующий $b_0 = -\alpha$; это важно в связи с тем, что нумерация минимумов может сбиваться из-за их исчезновения, возникновения паразитных минимумов и т. д. (см. ниже).

Для W_∞ можно получить три различные оценки:

1) по значению U_{∞} в первом минимуме χ^2 ;

2, 3) по наклону линейного участка зависимости $U_{\infty}(b_0)$ вблизи ее корня при обработке с фиксированным индексом α ; последний варьируется в пределах разброса значений, полученных четырьмя указанными выше способами, что дает верхнюю и нижнюю оценку W_{∞} .

Нетрудно показать, что различие между несколькими оценками α и W_{∞} имеет тот же порядок величины, что и отклонение каждой из них от точного значения; это дает способ определения погрешности результатов. Наличие нескольких оценок имеет большое значение: если две оценки по случайным причинам могут оказаться близкими, приводя к заниженной величине прогнозируемой ошибки, то случайное сближение трех или четырех оценок представляется маловероятным.

4. ТЕСТОВЫЕ ПРИМЕРЫ

Проиллюстрируем работу алгоритма на тестовых примерах.

4.1. Нуль-мерный случай

В качестве первого примера возьмем интеграл

$$W(g) = \int_{0}^{\infty} d\varphi \,\varphi^{n-1} \exp\left(-\varphi^2 - g\varphi^4\right), \qquad (32)$$

который можно рассматривать как нуль-мерный предел функционального интеграла *n*-компонентной теории φ^4 . Нетрудно вычислить точные коэффициенты разложения

$$W_N = ca^N \frac{\Gamma\left(N + \frac{n+2}{4}\right)\Gamma\left(N + \frac{n}{4}\right)}{\Gamma\left(N+1\right)}$$
(33)

Рис. 4. Зависимости $\tilde{U}_N = U_N \Gamma(b_0 + 1)$ от N при различных b_0 (точки) и их обработка по степенному закону (сплошные кривые) для интеграла (32) с n = 1

и их поведение при больших N,

$$W_N = ca^N \Gamma(N+b) \left\{ 1 + \frac{A_1}{N} + \dots \right\}, \qquad (34)$$

где

$$a = 4, \quad b = \frac{n-1}{2},$$

 $c = \frac{2^{n/2}}{4\sqrt{\pi}}, \quad A_1 = \frac{(n-2)(4-n)}{16}.$
(35)

Асимптотика интеграла пр
и $g \to \infty$ имеет вид

$$W(g) = W_{\infty}g^{\alpha}, \quad \alpha = -n/4,$$

$$W_{\infty} = \Gamma(n/4)/4,$$
(36)

а поправки к ней имеют вид ряда по степеням $g^{-1/2}$. Мы задавали с двойной компьютерной точностью $(\delta \sim 10^{-14})$ нужное количество коэффициентов W_N и, считая известной их асимптотику Липатова, пытались восстановить α и W_{∞} .

1)
$$n = 1$$
.

На рис. 4 приведены зависимости U_N от N для разных b_0 (точки) и их обработка по степенному за-

Рис. 5. Зависимости χ^2 , α_{eff} и $\tilde{U}_{\infty} = U_{\infty}\Gamma(b_0+1)$ от b_0 для интеграла (32) с n = 1 при обработке в интервале $24 \leq N \leq 50$. Штрихами показана зависимость $U_{\infty}(b_0)$ вблизи корня при обработке с фиксированным значением индекса $\alpha = -0.25$

кону (сплошные кривые). Для большей наглядности здесь и в дальнейшем приводятся коэффициенты

$$\tilde{U}_N = U_N \Gamma(b_0 + N_0), \qquad (37)$$

нормированные так, чтобы иметь конечный предел при $b_0 \to \infty$; N_0 — нижний предел суммирования в (19), который может отличаться от единицы, если несколько первых членов ряда (1) равны нулю. Мы видим, что все кривые действительно имеют степенную асимптотику при больших N. Выход на асимптотику затягивается для $b_0 \gg 1$ и $b_0 \to -N_0$ ввиду наличия в (19) соответствующих больших параметров; напротив, для значения $b_0 = 0.82$, соответствующего первому минимуму χ^2 , степенной закон продолжается до малых N.

На рис. 5 приведены зависимости χ^2 , α_{eff} и $\tilde{U}_{\infty} = U_{\infty}\Gamma(b_0 + N_0)$ от b_0 для интервала $24 \leq N \leq 50$. Первый минимум χ^2 реализуется при $b_0 = 0.82$, и в соответствии с разд. 3 имеем оценки

$$\alpha = -0.247, \quad W_{\infty} = 0.892, \quad \alpha' = -0.82.$$
 (38)

Второй минимум χ^2 имеет место при $b_0=0.26$ и дает

$$\alpha = -0.26, \quad \alpha' = -0.67. \tag{39}$$

Смена знака U_{∞} происходит при $b_0 = 0.210$ и $b_0 = 0.215$ при обработках соответственно с логарифмированием и с фиксированным индексом, что дает оценки $\alpha = -0.210$ и $\alpha = -0.215$; наклон линейного участка зависимости $U_{\infty}(b_0)$ вблизи корня при обработке с фиксированным α (штрихи на рис. 5) дает для W_{∞} результаты, зависящие от принятого значения α , и для $\alpha = -(0.21-0.26)$ получается разброс значений $W_{\infty} = 0.883-0.933$. Собирая все приведенные оценки, имеем

$$\alpha = -0.235 \pm 0.025, \quad W_{\infty} = 0.908 \pm 0.025, \quad (40)$$

$$\alpha' = -0.75 \pm 0.08.$$

что хорошо согласуется с точными значениями

$$\alpha = -0.25, \quad W_{\infty} = 0.9064, \quad \alpha' = -0.75.$$
 (41)

Поскольку результаты (38) и (39) для α' неплохо согласуются между собой, отброшенные в (29) члены малы по сравнению со вторым и оценки (38), (39) для α являются более точными (см. разд. 3). Если ограничиться только ими, то вместо (40) получим

$$\alpha = -0.253 \pm 0.007, \quad W_{\infty} = 0.887 \pm 0.005.$$
 (42)

Точность определения индекса α действительно возросла, но оценка ошибки для W_{∞} оказалась несколько заниженной.

Форма кривых для χ^2 весьма чувствительна к выбору нижней границы рабочего интервала $N_{min} \leq N \leq N_{max}$: при уменьшении N_{min} минимумы χ^2 размываются, при увеличении N_{min} кривые уплощаются и на них накладываются мелкомасштабные флуктуации, затрудняющие идентификацию минимумов. Мы стремились получить как можно более резкие минимумы со значениями χ^2 в них правильного порядка величины⁵⁾ — обычно выбор происходил между двумя-тремя значениями N_{min} . При изменении рабочего интервала наиболее существенно меняется оценка (39); вариации α и α' примерно соответствуют различию между (38) и (39).

2)
$$n = 2$$
.

Кривая для χ^2 имеет два резких провала при $b_0=1.26$ и $b_0=0.50$ (рис. 6). Из первого минимума χ^2 получим

$$\alpha = -0.4996, \quad W_{\infty} = 0.442, \quad \alpha' = -1.26, \quad (43)$$

тогда как три других метода дают $\alpha = -0.5000$ с точностью не хуже последнего знака. Определение α' по второму минимуму χ^2 дает значение около 20 и не согласуется с (43), так что отброшенные в (29)

⁵⁾ Заметим, что при выводе результатов с фиксированной запятой минимумы χ^2 хорошо видны по конфигурации цифр даже при быстром просмотре на экране компьютера.

Рис. 6. Зависимости χ^2 , α_{eff} и $\tilde{U}_{\infty} = U_{\infty} \Gamma(b_0 + 1)$ от b_0 для интеграла (32) с n = 2 (рабочий интервал $20 \le N \le 50$). Штрихи — зависимость $U_{\infty}(b_0)$ для фиксированного $\alpha = -0.5$. Значение α_{eff} при $b_0 = 0.5$ выходит за пределы рисунка

члены сравнимы со вторым и все четыре оценки для α равноправны. Обработка линейного участка зависимости $U_{\infty}(b_0)$ дает $W_{\infty} = 0.460$. В результате имеем

$$\alpha = -0.5000 \pm 0.0004, \quad W_{\infty} = 0.451 \pm 0.009 \quad (44)$$

в согласии с точными значениями

$$\alpha = -0.50, \quad W_{\infty} = 0.4431. \tag{45}$$

3) n = 3.

На зависимости $\chi^2(b_0)$ есть два минимума при $b_0 = 1.07$ и $b_0 = 0.77$, из которых имеем соответственно

$$\alpha = -0.704, \quad W_{\infty} = 0.192, \quad \alpha' = -1.07 \tag{46}$$

И

$$\alpha = -0.77, \quad \alpha' = -1.42. \tag{47}$$

Смена знака U_{∞} дает $\alpha = -0.86$ при логарифмической обработке и $\alpha = -0.84$ при обработке с фиксированным индексом. Извлекая W_{∞} из наклона линейного участка зависимости $U_{\infty}(b_0)$, получим 0.311, 0.420, 0.751 соответственно для $\alpha = -0.704, -0.77$ и -0.86. Два результата для α' разумно согласуются между собой, и потому оценки (46), (47) для индекса α являются более точными; учитывая только их, имеем

$$\alpha = -0.737 \pm 0.033, \quad W_{\infty} = 0.306 \pm 0.114, \\ \alpha' = -1.25 \pm 0.18$$
(48)

в согласии с точными значениями

$$\alpha = -0.75, \quad W_{\infty} = 0.3063, \quad \alpha' = -1.25.$$
 (49)

При учете всех четырех оценок α получим

$$\alpha = -0.78 \pm 0.08, \quad W_{\infty} = 0.47 \pm 0.28, \tag{50}$$

и ошибка существенно возрастает.

В качестве примера возникающих трудностей отметим наличие неглубокого «паразитного» минимума при $b_0 = 1.90$, который можно исключить из рассмотрения, идентифицировав по смене знака U_{∞} минимум при $b_0 = 0.77$ как соответствующий $b_0 = -\alpha$ и минимум при $b_0 = 1.07$ как соответствующий $b_0 = -\alpha'$ по согласованности результатов для α' . В общем случае идентификация нужных минимумов напоминает ситуацию, возникающую в спектроскопии в условиях сильной зашумленности, и требует некоторого искусства.

4) n = 4.

В этом случае мы сталкиваемся с «подводным камнем» алгоритма. На основе всех указанных оценок получается довольно точный результат:

$$\alpha = -1.500 \pm 0.004, \quad W_{\infty} = -0.222 \pm 0.005, \quad (51)$$

который, однако, не согласуется с (36). Причина состоит в том, что при точном значении индекса $\alpha = -1$ главный вклад в асимптотику U_N исчезает из-за полюса гамма-функции (см. (20), (21)) и наблюдается следующий член разложения с параметрами

$$\alpha' = -1.50, \quad W'_{\infty} = -\sqrt{\pi}/8 = -0.2216.$$
 (52)

Таким образом, в случае целочисленных неположительных α алгоритм не позволяет восстановить правильную асимптотику (7). Во избежание таких неприятностей его следует дополнить правилом: если в результате обработки получается отрицательное значение α , то результат надо проверять путем возведения ряда (1) в отрицательную или дробную степень и суммирования переразложенного ряда.

4.2. Ангармонический осциллятор

В качестве второго примера рассмотрим задачу об основном состоянии $E_0(g)$ ангармонического осциллятора, описываемого уравнением Шредингера

$$\left\{-\frac{d^2}{dx^2} + \frac{x^2}{4} + \frac{gx^4}{4}\right\}\Psi(x) = E\Psi(x), \qquad (53)$$

которая может быть сведена к одномерной теории φ^4 . Примем $E_0(g)$ в качестве функции W(g), для которой начало ряда теории возмущений имеет вид

$$W(g) = \frac{1}{2} + \frac{3}{4}g - \frac{21}{8}g^2 + \frac{333}{16}g^3 - \frac{30885}{128}g^4 + \dots, \quad (54)$$

Рис.7. Зависимости $\tilde{U}_N = U_N \Gamma(b_0 + 1)$ от N для ангармонического осциллятора. Обозначения те же, что на рис. 4

а первые 75 коэффициентов W_N с двенадцатью значащими цифрами приведены в работе Бендера и Ву [23]. Ими же получено поведение коэффициентов разложения при больших N:

$$W_N = -\frac{\sqrt{6}}{\pi^{3/2}} 3^N \Gamma\left(N + \frac{1}{2}\right) \left\{1 - \frac{95/72}{N} + \dots\right\}.$$
 (55)

Асимптотика $E_0(g)$ при $g \to \infty$ выявляется с помощью замен $E_0(g) = \lambda_0 g^{1/3}$ и $x \to x g^{-1/6}$, в результате которых (53) приводится к виду

$$\left\{-\frac{d^2}{dx^2} + \frac{x^4}{4} + \frac{x^2}{4g^{2/3}}\right\}\Psi(x) = \lambda_0\Psi(x), \qquad (56)$$

где при $g \to \infty$ последний член в скобках несуществен и λ_0 стремится к постоянному значению 0.6679863 [24], которое можно найти вариационным методом. Итак, асимптотика W(g) имеет степенной вид (7) с параметрами

$$\alpha = 1/3, \quad W_{\infty} = 0.668,$$
 (57)

а поправки к ней имеют вид ряда по степеням $g^{-2/3}$.

Зависимости U_N от N и их обработка по степенному закону приведены на рис. 7, а зависимости χ^2 , α_{eff} и \tilde{U}_{∞} от b_0 — на рис. 8. Легко видеть, что χ^2 имеет минимумы при $b_0 = 1.30$ и $b_0 = -0.34$, из которых получим соответственно

$$\alpha = 0.349, \quad W_{\infty} = 0.602, \quad \alpha' = -1.80$$
 (58)

$$\alpha = 0.34, \quad \alpha' \approx 20. \tag{59}$$

Рис. 8. Зависимости χ^2 , α_{eff} и $\tilde{U}_{\infty} = U_{\infty}\Gamma(b_0 + 1)$ от b_0 для ангармонического осциллятора; рабочий интервал $24 \le N \le 45$. Штрихи — обработка с фиксированным $\alpha = 0.34$

Оценки по смене знака U_{∞} дают $\alpha = 0.285$ и $\alpha = 0.337$ соответственно при логарифмической обработке и обработке с фиксированным индексом. Оценка W_{∞} по наклону линейного участка зависимости $U_{\infty}(b_0)$ дает 0.616–0.883. Два результата для α' не имеют ничего общего, указывая на равноправность всех оценок для α . В результате имеем

$$\alpha = 0.317 \pm 0.032, \quad W_{\infty} = 0.74 \pm 0.14$$
 (60)

в хорошем согласии с (57).

Рассмотренные примеры показывают, что точность восстановления асимптотики W(g) существенно зависит от конкретной задачи, но в целом коррелирует с характером поправок к асимптотике U_N (20). Средняя точность порядка 10⁻² получается в нуль-мерном случае при нечетных *n*, когда поправки к (20) имеют вид ряда по степеням $N^{-1/2}$. При четных *п* поправочные члены через один исчезают из-за полюсов гамма-функции и возникает регулярное разложение по 1/N, в результате чего точность существенно возрастает. Низкая точность для ангармонического осциллятора связана с тем, что поправки идут по степеням $N^{-1/3}$ ⁶). Существенно, однако, что алгоритм автоматически дает оценку ошибки, которая при использовании всех четырех оценок для α оказывается очень надежной.

И

⁶⁾ Первый член в (28) кроме главного вклада в U_N вида $N^{\alpha-1}$ дает также регулярные поправки к нему, $N^{\alpha-2}$, $N^{\alpha-3},\ldots$, второй член в (28) дает $N^{\alpha'-1}$, $N^{\alpha'-2},\ldots$ и т. д. Поэтому разложение по $g^{-2/3}$ преобразуется в разложение по $N^{-1/3}$.

ЖЭТФ, том **120**, вып. 1 (7), 2001

5. РАБОТА АЛГОРИТМА В УСЛОВИЯХ ИНТЕРПОЛЯЦИИ КОЭФФИЦИЕНТНОЙ ФУНКЦИИ

Значение интерполяции до настоящего времени сильно недооценивалось, хотя это достаточно очевидный способ повышения точности. В большинстве работ данного направления авторы формулировали алгоритм так, чтобы избежать упоминания о коэффициентах W_N при промежуточных значениях N. Такой подход является концептуально ошибочным: по конечному числу первых коэффициентов и их асимптотике можно построить функцию с наперед заданным поведением на бесконечности⁷). Осмысленная постановка задачи возникает при приближенном задании всех W_N : тогда с некоторой точностью возможно восстановление W(g). Поэтому необходимым этапом в решении задачи является проведение интерполяции коэффициентной функции; разумеется, это возможно лишь в предположении ее аналитичности (см. п. 8.2). Проведение интерполяции позволяет эффективно использовать параметр с асимптотики Липатова (который фактически остается невостребованным в стандартной процедуре «конформ-бореля» [6]), учесть гладкость приведенной коэффициентной функции и ее регулярность по 1/N, а в перспективе — и информацию об асимптотике коэффициентов A_K в (22) [25].

В п. 2.3 приведены качественные соображения, что влияние ошибок интерполяции не столь существенно, как ошибок округления. К сожалению, нам не удалось получить никаких конкретных оценок, и мы продемонстрируем это экспериментально на примере нуль-мерного случая с n = 1.

Имея в виду моделирование ситуации для теории φ^4 , будем считать известными значения нескольких коэффициентов разложения ряда (1),

$$W_{L_0}, W_{L_0+1}, \dots, W_L,$$
 (61)

асимптотику Липатова (2) и первую поправку к ней по 1/N. Интерполяцию удобно проводить для приведенной коэффициентной функции, сохраняя в разложении (22) конечное число членов и выбирая коэффициенты A_K из соответствия с (61). Мы рассмотрим подробно две реализации интерполяционной процедуры: (1) $L_0 = 1$, L = 5 и (2) $L_0 = 1$,

L = 1. Из-за медленности изменений коэффициентной функции точность интерполяции оказывается очень высокой, $\sim 10^{-9}$ в первом случае и $\sim 10^{-4}$ во втором. Случайная ошибка такой амплитуды привела бы к большим флуктуациям U_N при $N \approx 30$ в первом случае и $N \approx 13$ во втором. Фактическое вычисление показывает, что ничего катастрофического не происходит вплоть до N = 40, когда уже заметно влияние ошибок округления. Это легко видеть из табл. 1, где приведены значения некоторых коэффициентов U_N для $b_0 = 1$, вычисленные по точным коэффициентам W_N и при использовании интерполяции; с увеличением b0 точность еще более возрастает, с уменьшением b_0 несколько убывает, но в масштабе рис. 4 возникающие отклонения были бы незаметны.

Зависимость $\chi^2(b_0)$ аналогична показанной на рис. 5, хотя и не воспроизводится буквально. Оценки параметров асимптотики сведены в табл. 2: для наглядности они даны для постоянного рабочего интервала 23 \leq
N
 \leq 45 и с использованием одинакового значения $\alpha = -0.25$ при обработке линейного участка зависимости $U_{\infty}(b_0)$. Мы видим, что изменение α и W_{∞} за счет интерполяции оказалось на уровне разброса различных оценок и точность восстановления асимптотики (7) практически не изменилась. Таким образом, в данном случае интерполяция с использованием единственного коэффициента разложения W_1 позволила восстановить асимптотику W(g) не хуже, чем при использовании точных коэффициентов W_N ; конечно, такая ситуация не является типичной.

6. ОПТИМИЗАЦИЯ ИНТЕРПОЛЯЦИОННОЙ ПРОЦЕДУРЫ

В предыдущем разделе нам несколько повезло самый естественный способ интерполяции дает хорошие результаты. В общем случае требуется оптимизация интерполяционной процедуры, которую мы продемонстрируем на примере ангармонического осциллятора. Начнем с обсуждения общей стратегии оптимизации, которая существенно изменена по сравнению с предшествующими работами.

6.1. Общая стратегия оптимизации

На абстрактном уровне оптимизация состоит в том, что вводится некоторая вариация процедуры суммирования, характеризуемая произвольным параметром λ , который затем выбирается «оптимальным образом». Например, исходный ряд (1) можно

⁷⁾ Функция от факториального ряда имеет ту же асимптотику коэффициентов (2), но с другим значением параметра с [17]; сформулированное в тексте утверждение легко доказать, беря подходящую линейную комбинацию нескольких функций.

	U_N							
37	Точные коэффициенты	Интерполяция	Интерполяция					
N	W_N	c $L_0 = 1, L = 5$	c $L_0 = 1, L = 1$					
30	$-2.911 \cdot 10^{-3}$	$-2.911 \cdot 10^{-3}$	$-2.868 \cdot 10^{-3}$					
35	$-2.408 \cdot 10^{-3}$	$-2.409 \cdot 10^{-3}$	$-2.369 \cdot 10^{-3}$					
40	$-2.038 \cdot 10^{-3}$	$-2.041 \cdot 10^{-3}$	$-2.004 \cdot 10^{-3}$					

Таблица 1

Таблица 2. Параметры асимптотики для интеграла (32) с n = 1, полученные по точным коэффициентам W_N и при использовании интерполяции

	Точные коэффициенты <i>W_N</i>	Интерполяция с $L_0 = 1, L = 5$	Интерполяция с $L_0 = 1, L = 1$
Первый минимум χ^2	$\alpha = -0.246$ $\alpha' = -0.827$ $W_{\infty} = 0.893$	$\alpha = -0.245$ $\alpha' = -0.830$ $W_{\infty} = 0.892$	$\alpha = -0.269$ $\alpha' = -0.761$ $W_{\infty} = 0.912$
$ m B$ торой минимум χ^2	$\alpha = -0.249$ $\alpha' = -0.792$	$\alpha = -0.245$ $\alpha' = -0.849$	$\begin{aligned} \alpha &= -0.271\\ \alpha' &= -0.747 \end{aligned}$
$\mathbf{C}_{\mathbf{M}}$ ена знака U_{∞}	$\alpha = -0.210$	$\alpha = -0.210$	$\alpha = -0.218$
Линейный участок $U_{\infty}(b_0)$	$\alpha = -0.215$ $W_{\infty} = 0.889$	$\alpha = -0.215$ $W_{\infty} = 0.887$	$\alpha = -0.225$ $W_{\infty} = 0.885$

возвести в степень λ и суммировать переразложенный ряд

$$W^{\lambda}(g) = \tilde{W}_0 - \tilde{W}_1 g + \tilde{W}_2 g^2 - \dots + \\ + \tilde{c} a^N \Gamma(N+b) (-g)^N + \dots, \quad (62)$$

который по свойствам аналогичен исходному (меняется лишь параметр *c* асимптотики Липатова [17]), выбирая λ из соображений наилучшей сходимости второго ряда в (9). Процедура оптимизации присутствует в большинстве работ данного направления, являясь одновременно их достоинством и недостатком. С одной стороны, принципиальная возможность улучшения сходимости не вызывает сомнений; с другой стороны, результаты начинают зависеть от произвольного параметра λ , и трудно избавиться от ощущения, что таким образом можно получить все, что угодно.

Теоретически использование ряда (62) ничем не хуже, чем ряда (1), и значение любой величины Q, полученной в результате суммирования, не должно зависеть от λ . В условиях ограниченной информации о коэффициентах W_N зависимость Q от λ воз-

2 ЖЭТФ, вып.1(7)

никает, но с увеличением информации становится все более слабой. В общем случае равномерная по λ сходимость не имеет места и приближенное значение Q близко к точному лишь в области некоторого «плато» (рис. 9*a*), при удалении от которого отклонения быстро нарастают. По мере увеличения информации плато расширяется и уплощается (см., например, [26]). Ясно, что наилучшая сходимость достигается в центре плато, но выбор этого центра не всегда очевиден: плато может быть асимметричным или плохо выраженным, его центр может сдвигаться в процессе сходимости и т. д. Поэтому выбор оптимального λ , а следовательно наилучшего приближения для Q, и оценка его погрешности являются весьма субъективными.

На наш взгляд, проблема оптимизации может быть решена объективно. Дело в том, что от λ зависит не только приближенное значение Q, но и ошибка его определения; если эта ошибка оценена правильно, то точное значение Q_{exact} должно быть совместимо с приближенными результатами при любых λ (рис. 9б): тем самым снимается проблема фиктив-

Рис. 9. а) Любая величина Q, полученная в результате суммирования ряда, теоретически не зависит от оптимизационного параметра λ , но в условиях ограниченной информации такая зависимость возникает. При увеличении информации эта зависимость эволюционирует от кривой 1 к кривым 2, 3 и т. д. Оптимальное значение λ лежит вблизи центра плато. б) От λ зависит не только приближенное значение Q (жирная кривая), но и ошибка его определения (коридор ошибок заштрихован); при правильной оценке ошибки точное значение Q_{exact} должно быть совместимо со всеми данными. В показанной «идеальной» ситуации выбор оптимального значения λ сводится к выбору результата с минимальной погрешностью

ной зависимости Q от λ . Если такая «идеальная» ситуация достигнута, то выбор оптимального значения λ сводится к выбору результата с минимальной погрешностью.

Процедуру оптимизации логично проводить на стадии интерполяции, так как все неопределенности результатов, в конечном счете, связаны с неточным знанием коэффициентов W_N . Если переписать (22) в эквивалентной форме,

$$W_{N} = ca^{N} N^{\bar{b}} \Gamma(N+b-\tilde{b}) \left\{ 1 + \frac{\tilde{A}_{1}}{N-\tilde{N}} + \frac{\tilde{A}_{2}}{(N-\tilde{N})^{2}} + \dots + \frac{\tilde{A}_{K}}{(N-\tilde{N})^{K}} + \dots \right\}, \quad (63)$$

и проводить интерполяцию путем обрыва ряда и подбора коэффициентов \tilde{A}_K , то возникает множество реализаций интерполяционной процедуры, характеризуемое двумя параметрами, \tilde{b} и \tilde{N} . Рассмотрение тестовых примеров показывает достаточную эффективность такой параметризации: точность интерполяции при оптимальных \tilde{b} и \tilde{N} может на порядки превышать ту, которая получается при их случайном выборе. Мы проведем оптимизацию по \tilde{b} из теоретических соображений, а оптимизацию по \tilde{N} — численно⁸⁾.

6.2. Оптимизация по \tilde{b}

Оптимизация по \tilde{b} связана с вопросом о параметризации асимптотики Липатова, которая может быть записана в виде $ca^N\Gamma(N+b)$, $ca^NN^{b-1}N!$ и т. д. Этот вопрос обсуждался во многих работах [11, 12], но не получил удовлетворительного решения.

Заметим, что значения $\hat{b} = b$ и $\hat{b} = b - 1$ приводят к тождественным результатам:

$$N^{b}\Gamma(N+b-\tilde{b}) =$$

$$= \begin{cases} N^{b}\Gamma(N), & \tilde{b} = b, \\ N^{b-1}\Gamma(N+1) = N^{b}\Gamma(N), & \tilde{b} = b-1. \end{cases}$$
(64)

Поэтому приближенные значения любой величины *Q*, полученной в результате суммирования ряда, при $\tilde{b} = b$ и $\tilde{b} = b - 1$ совпадают. При увеличении информации о коэффициентах W_N функция $Q(\tilde{b})$ становится все более медленной; с ростом характерного масштаба L, на котором она меняется, ее k-я производная убывает как $1/L^k$ и в ситуации общего положения возникает экстремум в точке $\tilde{b} = b - 1/2;$ возникающее плато «ложится» на значения Q при $\tilde{b} = b$ и $\tilde{b} = b - 1$, а точка $\tilde{b} = b - 1/2$ становится его естественным центром. Ошибка восстановления Q, как всякая величина, имеет при $\tilde{b} = b - 1/2$ экстремум, и естественно ожидать, что он окажется минимумом (см. разд. 8). Таким образом, выбор $\tilde{b} = b - 1/2$ является оптимальным, что соответствует параметризации асимптотики Липатова в виде

$$W_N^{as} = ca^N N^{b-1/2} \Gamma(N+1/2).$$
(65)

Если A_1/N — первая поправка к асимптотике (см. (22)), то ее зависимость от \tilde{b} имеет вид

$$A_1 = \bar{A}_1 - (b - 1/2 - \tilde{b})^2/2, \tag{66}$$

⁸⁾ Увеличение числа оптимизационных параметров представляется нецелесообразным, так как на этом пути легко дойти до абсурда. Так, при большом числе параметров можно имитировать быструю сходимость алгоритма к неправильному результату; в нашем подходе можно обеспечить совпадение четырех оценок индекса α и получить нулевую оценку погрешности.

где \bar{A}_1 — значение A_1 при $\tilde{b} = b - 1/2$. Во всех известных случаях $\bar{A}_1 < 0$ (см. [19, 23, 27, 28]), и для параметризации (65) поправка минимальна; тем самым более вероятна хорошая сшивка асимптотики с низшими порядками. Заметим, что в методе Липатова [2] асимптотика возникает в виде

$$\sqrt{2\pi}c(a/e)^N N^{b-1/2} N^N$$

Параметризация (65) соответствует приближению

$$\sqrt{2\pi}e^{-N}N^N \approx \Gamma(N+1/2),$$

точность которого около 4% даже при N = 1, и в этом смысле она близка к «естественной». Для ангармонического осциллятора оптимальная параметризация совпадает с (55), а в нуль-мерном случае с n = 1 близка к (34), (35).

6.3. Оптимизация по \tilde{N}

Для ангармонического осциллятора подробно исследовалась интерполяция с $L_0 = 1, L = 9, т. е. с ис$ пользованием первых девяти коэффициентов W_N ; она соответствовала точности ~ 10⁻³. Интерполяция на основе формулы (22) оказалась совершенно неудовлетворительной — для разумных интервалов усреднения значения χ^2 при обработке по степенному закону (20) оказывались огромными, и сколько-нибудь четкой картины минимумов не возникало. Причина этого проясняется при сравнении полученных коэффициентов U_N с точными: как видно из рис. 10*a*, различия велики и обработка по степенному закону практически невозможна. Отклонения нарастают примерно по тому же закону, что для случайных ошибок, но изменяются плавно и имеют аналогичный вид для разных b_0 . Представляется возможным скомпенсировать эти отклонения в широком интервале значений b_0 путем оптимизации по N.

Это действительно так, причем область оптимальных значений \tilde{N} можно найти, не зная заранее результата. На рис. 11 представлено поведение χ^2 для интервала $20 \le N \le 40$ в зависимости от \tilde{N} для целочисленных значений b_0 . Нетрудно видеть, что в интервале $\tilde{N} = -(5.0-5.5)$ малые значения χ^2 достигаются сразу для $b_0 = 0, 1, 2, 3$. Это указывает на возможность компенсации ошибки в U_N для всех $b_0 \ge 0$, так как при больших b_0 ошибки всегда малы (см. п. 2.3). Из рис. 10*б* видно, что для $\tilde{N} = -5.4$ отклонения полученных U_N от точных при $b_0 \ge 0$ действительно почти незаметны.

Возможность более тонкой оптимизации основана на том, что в формуле (29) ошибки интерполяции

Рис. 10. а) Сравнение коэффициентов U_N для ангармонического осциллятора, полученных в результате интерполяции для $\tilde{N} = 0$ с использованием первых девяти коэффициентов W_N (сплошные кривые), с точными (штрихи); вертикальными штрихами отмечены значения N, выше которых поведение точных коэффициентов U_N визуально неотличимо от степенного закона. δ) Те же кривые после оптимизации по \tilde{N} (для $\tilde{N} = -5.4$)

играют такую же роль, как высшие поправки к скейлингу, показанные многоточием. При изменении \tilde{N} ошибки интерполяции плавно меняются и при некотором \tilde{N} могут приближенно компенсироваться поправками к скейлингу: этот момент можно зафиксировать по максимальному сближению различных оценок α и W_{∞} .

Систематическая обработка с определением параметров α и W_{∞} проводилась для \tilde{N} в интервале от -5.0 до -5.6 с шагом 0.1. «Правильная» картина минимумов χ^2 наблюдалась для $\tilde{N} = -5.5$; при $\tilde{N} = -5.6$ первый минимум χ^2 исчезал, а при $\tilde{N} \leq -5.4$ он оказывался расщепленным на два. Причину расщепления качественно легко понять: как ясно из рис. 10 и 11, для фиксированного \tilde{N} существует некоторое b_0 , для которого влияние ошибки интерполяции на U_N практически скомпенсировано;

Рис. 11. Поведение χ^2 для интервала $20 \le N \le 40$ в зависимости от \tilde{N} при фиксированных значениях b_0 для ангармонического осциллятора

при этом b_0 и возникает минимум χ^2 , который является «лишним» по сравнению с рис. 8. Поскольку *а priori* трудно решить, какой из двух «первых» минимумов χ^2 является истинным, мы проводили оценки для каждого из них — фактически они оказывались близкими.

Результаты сведены в табл. 3 и показаны на рис. 12. Разброс оценок α и W_{∞} дает оценку ошибки по порядку величины; чтобы возникла «идеальная» картина, ожидаемая согласно рис. 96, полученный коридор ошибок для α нужно расширить в 1.3 раза, а для W_{∞} — в 1.1 раза (пунктир на рис. 12), тогда значения α = 0.38 и W_{∞} = 0.52 (штрихи) совместимы с результатами для всех \tilde{N} . Выбирая в каждом случае значение \tilde{N} , минимизирующее одностороннюю ошибку (стрелки на рис. 12), имеем следующий результат:

$$\alpha = 0.38 \pm 0.05, \quad W_{\infty} = 0.52 \pm 0.12.$$
 (67)

Сравнение с (57) показывает, что ошибка оценивается адекватно, но средние значения получились несколько смещенными; при этом сдвиг W_{∞} является следствием сдвига α .

7. СУММИРОВАНИЕ РЯДОВ ТЕОРИИ ВОЗМУЩЕНИЙ ПРИ ПРОИЗВОЛЬНЫХ *g*

Если информации о коэффициентах W_N достаточно для восстановления асимптотики W(g) при $g \to \infty$, то суммирование ряда (1) при произвольных g не составляет проблемы: при $N \leq 40$ коэффициенты U_N вычисляются по формуле (19), а далее их можно продолжить согласно асимптотике $U_{\infty}N^{\alpha-1}$. Тем самым известны все коэффициенты сходящегося ряда (9). Ошибка суммирования определяется точностью восстановления асимптотики,

$$\Delta_{as} = \left. \frac{\delta U_N}{U_N} \right|_{N \gg 1} = \frac{\delta U_\infty}{U_\infty} + \delta \alpha \ln N, \qquad (68)$$

которая зависит от N логарифмически и в ограниченном интервале может считаться постоянной. Если ввести характерный масштаб N_c , на котором относительная ошибка сравнивается с Δ_{as} , и принять аппроксимацию

$$\frac{\delta U_N}{U_N} = \begin{cases} 0, & N < N_c, \\ \Delta_{as}, & N \ge N_c, \end{cases}$$
(69)

то при $ag \gg 1$ получим

$$\delta B(g) = \sum_{N=N_c}^{\infty} \Delta_{as} U_N \exp\left(-\frac{N_c}{ag}\right) = \\ = \begin{cases} \Delta_{as} B(g), & ag \gg N_c, \\ \Delta_{as} U_{N_c} ag \exp\left(-N_c/ag\right), & ag \ll N_c. \end{cases}$$
(70)

Подставляя (70) в (8) и используя при $ag \ll N_c$ метод перевала, имеем

$$\frac{\delta W(g)}{W(g)} \sim \left\{ \begin{array}{cc} \Delta_{as}, & ag \gtrsim N_c, \\ \Delta_{as} \exp\left\{-2(N_c/ag)^{1/2}\right\}, & ag \lesssim N_c, \end{array} \right.$$
(71)

где мы опустили для наглядности некоторые предэкспоненциальные множители. При отрицательных α результаты для области $ag\gg N_c$ несколько модифицируются; в частности, для $-1 < \alpha < 0$ имеем $\delta W(g) = \Delta_{as}(W(g) - W(g_c)),$ где $ag_c \sim N_c$. Естественным масштабом для N_c является середина рабочего интервала (N_{min}, N_{max}) , т. е. $N_c \approx 30$, однако отличия от этого значения могут быть велики, так как соответствующее равенство справедливо в логарифмическом масштабе ($\ln N_c \approx \ln 30$). Фактически аппроксимация (69) с постоянным N_c разумна лишь при больших g; в общем случае оценка (71) справедлива с эффективным значением N_c , которое определяется номером максимального члена $\delta U_N u^N$ в ряде для $\delta B(u)$ и при малых g приближается к L+1, т. е. номеру первого неизвестного коэффициента W_N .

В табл. 4 представлены результаты для нуль-мерного случая. В первом столбце даны

Таблица 3. Параметры асимптотики для ангармонического осциллятора, полученные при использовании интерполяции с $L_0 = 1, L = 9$ (значения в скобках для $\tilde{N} = -5.6$ оцениваются в точке $b_0 = 2.20$, в которой исчезает первый минимум χ^2)

lpha							
Ñ	-5.0	-5.1	-5.2	-5.3	-5.4	-5.5	-5.6
	0.398	0.396	0.393	0.390	0.385		
Первый минимум χ^2						0.378	(0.373)
	0.476	0.452	0.422	0.399	0.384		
Второй минимум χ^2	0.50	0.47	0.42	0.37	0.33	0.29	0.34
$\mathbf{C}_{\mathbf{M}}$ ена знака U_{∞}	0.585	0.535	0.485	0.445	0.405	0.365	0.335
Линейный участок $U_\infty(b_0)$	0.495	0.445	0.40	0.36	0.32	0.29	0.26
	W_{∞}						
Ñ	-5.0	-5.1	-5.2	-5.3	-5.4	-5.5	-5.6
	0.490	0.495	0.500	0.505	0.513		
Первый минимум χ^2						0.529	(0.540)
	0.356	0.390	0.440	0.487	0.517		
Линейный	0.226	0.290	0.373	0.463	0.572	0.675	0.712
участок $U_{\infty}(b_0)$	0.502	0.538	0.568	0.698	0.885	1.09	0.953

Рис.12. Различные оценки α (*a*) и W_{∞} (б) для ангармонического осциллятора. Цифры у кривых соответствуют нумерации в разд. 3. Пунктиром показан коридор ошибок, расширенный в 1.3 раза для α и в 1.1 раза для W_{∞}

точные значения интеграла (32) с n = 1, во втором, третьем и четвертом столбцах приведены результаты суммирования ряда с использованием соответственно точных W_N , интерполяции с $L_0 = 1$, L = 5 и интерполяции с $L_0 = 1$, L = 1. В каждом случае использовалось значение b_0 , соответствующее первому минимуму χ^2 . Сопоставление с (71) показывает, что $N_c \sim 200$ для второго и третьего столбцов и $N_c \sim 10$ для четвертого столбца.

В табл. 5 представлены результаты для ангармонического осциллятора. В первом столбце даны точные значения $E_0(g)$, взятые из работы [24], во втором и третьем столбцах приведены результаты суммирования ряда с использованием точных W_N и интерполяции с $L_0 = 1$, L = 9. Оцениваемые N_c достигают значений около 200 для второго и около 50

	$W(g) \cdot 10$							
	Точное Суммировани		Суммирование	Суммирование				
g	значение	с точными W_N	при интерполяции	при интерполяции				
			c $L_0 = 1, L = 5$	c $L_0 = 1, L = 1$				
1	6.842134	6.842135	6.842134	6.8436				
2	6.183453	6.183454	6.183452	6.1867				
4	5.497111	5.497110	5.497105	5.5034				
8	4.820615	4.820608	4.820594	4.832				
16	4.181699	4.181669	4.181637	4.200				
32	3.597297	3.59720	3.59714	3.624				
64	3.075230	3.07500	3.07490	3.113				
128	2.616802	2.61633	2.61617	2.668				
256	2.219222	2.2184	2.2182	2.285				
512	1.877472	1.8761	1.8758	1.959				
1024	1.585578	1.5835	1.5831	1.68				
$g \to \infty$	$0.9064g^{-0.25}$	$0.895g^{-0.247}$	$0.895g^{-0.247}$	$0.912g^{-0.269}$				

Таблица 4. Сравнение точных значений интеграла (32) с n=1 и результатов суммирования ряда

Таблица 5. Сравнение точных значений энергии основного состояния ангармонического осциллятора и результатов суммирования ряда. Дана зависимость $2E_0(g)$ от 2g, чтобы обеспечить соответствие с числами, приводимыми большинством авторов и относящимися к другой нормировке

	$2E_0(g)$							
2g		Суммирование	Суммирование при интерполяции					
	Точное значение	с точными W_N						
		$(b_0 = 1.30)$	c $L_0 = 1, L = 9$					
			$(\tilde{N} = -5.3, b_0 = 3.55)$					
0.5	1.241854	1.241854	1.241857					
1	1.392352	1.392352	1.392396					
2	1.607541	1.607545	1.60790					
3	1.769589	1.769605	1.7706					
4	1.903137	1.903178	1.9051					
5	2.018341	2.018418	2.0214					
10	2.449174	2.44961	2.4599					
20	3.009945	3.0117	3.040					
50	4.003993	4.0115	4.096					
100	4.999418	5.018	5.19					
$g \to \infty$	$2\cdot 0.668g^{1/3}$	$2 \cdot 0.602 g^{0.349}$	$2 \cdot 0.511 g^{0.387}$					

для третьего столбцов.

Информацию об асимптотике W(g) можно учесть и в рамках стандартной процедуры «конформ-бореля» (п. 2.1), интерполируя коэффициенты U_N , вычисленные по формуле (11), с известной их асимптотикой (17). Для аппроксимации (69) получим аналогично (71)

$$\frac{\delta W(g)}{W(g)} \sim \left\{ \begin{array}{cc} \Delta_{as}, & ag \gtrsim N_c^2, \\ \Delta_{as} \exp\left\{-3(N_c^2/ag)^{1/3}\right\}, & ag \lesssim N_c^2. \end{array} \right.$$
(72)

При достаточно малых g, когда N_c близко к L+1, такая процедура является предпочтительной, приводя к меньшей ошибке по сравнению с (71); при больших g достижение значений N_c , подобных указанным выше, представляется нереальным.

В стандартной процедуре вычисления критических индексов [6] второй ряд в (9) обрывается на *L*-м члене, что соответствует ошибке (72) с $N_c = L + 1$ и $\Delta_{as} \sim 1$. В трехмерном случае известно большое число коэффициентов разложения (L = 6), которые хорошо сшиваются с (2), что позволяет надеяться на восстановление асимптотики скейлинговых функций с точностью $\Delta_{as} \sim 10^{-2}$ и на некоторое увеличение N_c за счет интерполяции. Поэтому представляется возможным поднять точность вычисления критических индексов на два-три порядка уже при имеющейся информации. Использование модифицированного конформного преобразования приведет к дальнейшему повышению точности, если в соответствующей области ag ~ 0.2 окажутся достижимыми значения $N_c \gtrsim 20$.

8. ТЕОРИЯ φ^4

8.1. Восстановление функции Гелл-Манна–Лоу

Теперь обратимся к реальной физической задаче — восстановлению функции Гелл-Манна–Лоу теории φ^4 , принимая $\beta(g)$ в качестве W(g) и исходя из информации, представленной в (5) и (6).

Интерполяция проводилась на основе формулы (63) с оптимальным значением $\tilde{b} = 4$. На рис. 13 представлено поведение χ^2 для интервала $20 \leq N \leq 40$ в зависимости от \tilde{N} для нескольких фиксированных значений b_0 . Нетрудно видеть, что перспективными являются значения \tilde{N} вблизи нуля, где кривые для $b_0 = -1$, 0, 1, 2 имеют

Рис.13. Поведение χ^2 для интервала $20 \le N \le 40$ в зависимости от \tilde{N} при фиксированных значениях b_0 для теории φ^4

Рис. 14. Зависимости коэффициентов $\tilde{U}_N = U_N \Gamma(b_0 + 2)$ от N при различных b_0 (точки) и их обработка по степенному закону (сплошные кривые) для теории φ^4 . Использовалась интерполяция с $\tilde{b} = 4$, $\tilde{N} = 0$, близкая к оптимальной

резкие минимумы. Подробно исследовался интервал $-0.5 \leq \tilde{N} \leq 0.5.$

На рис. 14 показано поведение коэффициентов $\tilde{U}_N = U_N \Gamma(b_0 + 2)$ для интерполяции с $\tilde{N} = 0$, близ-

Рис. 15. *a*) Картина минимумов χ^2 для теории φ^4 (интервал $20 \le N \le 40$) и б) зависимости α_{eff} и \tilde{U}_{∞} от b_0 для $\tilde{N} = 0$. Штрихи — зависимость $U_{\infty}(b_0)$ для фиксированного $\alpha = 1$

кой к оптимальной. Если исключить кривые для $b_0 \gg 1$ и $b_0 \approx -2$, для которых выход на асимптотику затянут, то при больших N имеется приблизительный выход на константу, что соответствует значению индекса α , близкому к 1. Этот вывод подтверждается положением второго минимума χ^2 и сменой знака U_{∞} (рис. 15). Четкая картина минимумов χ^2 наблюдалась для $\tilde{N} \leq 0.2$; при увеличении \tilde{N} первый минимум χ^2 приближался ко второму и сливался с ним. Поэтому при $\tilde{N} \geq 0.3$ оценки по первому минимуму отсутствуют.

Результаты представлены в табл. 6 и на рис. 16. Для индекса α идеальная картина, соответствующая рис. 96, получается при расширении полученного коридора ошибок в два раза (пунктир на рис. 16*a*), после чего значение $\alpha = 0.96$ совместимо с результатами для всех \tilde{N} . При фиксированном интервале $20 \leq N \leq 40$ все четыре оценки для α совпадают при $\tilde{N} = -0.12$ на уровне 10^{-3} ; основ-

Рис. 16. Различные оценки α (a) и W_{∞} (δ) для теории φ^4 . Обозначения те же, что на рис. 12. Пунктиром показан коридор ошибок для α , расширенный в 2 раза

ная неопределенность возникает из-за слабой зависимости от интервала усреднения. С учетом удвоения ошибки имеем

$$\alpha = 0.96 \pm 0.01. \tag{73}$$

Для W_{∞} (рис. 16б) идеальная картина получается сразу, и значение $W_{\infty} = 7.4$ совместимо со всеми данными. Односторонняя ошибка минимальна при $\tilde{N} = -0.08$, откуда

$$W_{\infty} = 7.4 \pm 0.4.$$
 (74)

Продемонстрируем правильность оптимизации по *b*, проведенной в п. 6.2 несколько эвристическим образом. Использовалось оптимальное значение $\tilde{N} = -0.12$, а значения \tilde{b} варьировались в интервале $0 < \tilde{b} < 6$. В середине интервала наблюдалась четкая картина минимумов χ^2 , тогда как при приближении к его краям первый минимум χ^2 приближался ко второму и сливался с ним аналогично тому, как это было при увеличении Ñ. Результаты для α и W_{∞} представлены на рис. 17; если коридор ошибок для α увеличить в два раза, а для W_{∞} — в 1.1 раза, то значения (73), (74) совместимы со всеми данными, за исключением узкого интервала вблизи b = 5.5, где сближение всех оценок носит явно случайный характер. Нетрудно видеть, что минимальная ошибка соответствует (73), (74).

Суммирование ряда для функции Гелл-Манна-Лоу при конечных *g* проводилось аналогично

lpha										
Ñ	-0.5	-0.3	-0.2	-0.12	-0.1	0.0	0.1	0.2	0.3	0.5
Первый				0.962						
минимум χ^2	0.863	0.920	0.945	± 0.005	0.964	0.975	0.974	0.931	_	_
Второй										
минимум χ^2	0.54	0.78	0.90	0.960	0.970	1.00	1.01	1.01	0.97	1.16
Смена				0.960						
знака U_{∞}	0.795	0.865	0.915	-0.961	0.973	1.035	1.105	1.175	1.255	1.415
Линейный				0.961						
участок	0.907	0.90	0.929	± 0.001	0.971	1.022	1.082	1.147	1.218	1.371
	W_{∞}									
Ñ	-0.5	-0.3	-0.2	-0.12	-0.1	0.0	0.1	0.2	0.3	0.5
Первый				6.36						
минимум χ^2	4.67	5.22	5.75	± 0.16	6.63	8.26	11.82	30.9	-	_
Линейный	3.02	5.58	6.55	7.35	7.34	7.18	6.78	6.45	5.91	5.05
участок	15.9	10.0	7.85	7.55	7.61	9.07	11.3	16.5	17.3	12.3

Таблица 6. Параметры асимптотики для теории φ^4 , полученные при интерполяции с $L_0 = 2$, L = 5, $\tilde{b} = 4$ и различными \tilde{N}

разд. 7. Точность оценивалась путем варьирования по b_0 и \tilde{N} ; вариация по b_0 давала значительно более высокие значения N_c и позволяла менять асимптотику W(g) без существенного изменения результатов при $g \sim 1$. Если менять \tilde{N} , подстраивая b_0 так, чтобы поддерживать постоянное значение $\alpha = 0.96$, то наиболее вероятное значение $W_{\infty} = 7.4$ реализуется при $\tilde{N} = -0.067$, а указанной в (74) неопределенности соответствует интервал $-0.09 \leq \tilde{N} \leq -0.05$. Соответственно, в табл. 7 приводятся результаты для $\tilde{N} = -0.067$, а ошибка оценивается путем сопоставления с результатами для $\tilde{N} = -0.05$ и -0.09. Обратим внимание, что выход на асимптотику (7) происходит довольно медленно — даже при g = 100 различие составляет около 15%.

На рис. 18 полученные результаты для $g \leq 20$ сопоставляются с результатами других авторов.

8.2. Возможность логарифмического ветвления

Полученное значение α мало отличается от единицы, и возникает вопрос, достаточна ли точность для того, чтобы считать это отклонение значимым. Формально это так: оценка ошибки проводится объективно, и у нас нет никаких оснований для ее существенного увеличения. Тем не менее возможность точного равенства $\alpha = 1$ не исключена, поскольку асимптотика (7) может содержать логарифмические поправки,

$$W(g) = W_{\infty} g^{\alpha} (\ln g)^{-\gamma}, \quad g \to \infty, \tag{75}$$

которые при $\gamma > 0$ могут имитировать небольшое уменьшение α . В этом случае в формуле (20) возникает дополнительный множитель (ln N)^{$-\gamma$} при неизменном W_{∞} и результаты для U_N могут быть обработаны по закону (75) с параметрами

$$\alpha = 1, \quad \gamma \approx 0.14, \quad W_{\infty} \approx 7.7 \tag{76}$$

без увеличения χ^2 . Фактически возможность логарифмического ветвления представляется нам весьма вероятной ввиду следующих аргументов.

1. Можно утверждать, что при точном равенстве $\alpha = 1$ логарифмическое ветвление неизбежно. Дей-

Рис. 17. Зависимость от \tilde{b} различных оценок α (*a*) и W_{∞} (*b*) для теории φ^4 . Обозначения те же, что на рис. 16. Пунктиром показан коридор ошибок, расширенный в 2 раза для α и в 1.1 раза для W_{∞}

Таблица 7. Функция Гелл-Манна-Лоу теории φ^4 (в скобках — оценка ошибки в единицах последнего знака)

g	eta(g)	g	eta(g)
0.2	0.04993(2)	30	138.7(50)
0.4	0.18518(26)	40	193.2(75)
0.6	0.3939(10)	50	248.3(100)
0.8	0.6667(27)	60	303.9(127)
1	0.9952(51)	70	359.7(155)
2	3.272(33)	80	415.6(182)
3	6.278(85)	90	471.7(212)
4	9.758(157)	100	527.7(240)
5	13.57(25)	150	808.1(389)
6	17.64(36)	200	1087(54)
7	21.90(47)	250	1366(70)
8	26.32(60)	300	1644(86)
9	30.87(75)	350	1920(101)
10	35.53(90)	400	2196(127)
15	59.95(175)	450	2471(133)
20	85.59(275)	500	2745(149)
25	111.9(38)	$g \to \infty$	$7.41g^{0.96}$

Рис. 18. Сопоставление полученной функции Гелл-Манна–Лоу теории φ^4 (сплошная кривая) с результатами других авторов — штриховые кривые сверху вниз соответствуют работам [12, 13, 14]. На вставке — приведенная коэффициентная функция (различие между разными способами интерполяции в этом масштабе несущественно)

ствительно, запишем ряд (1) в виде интеграла Зоммерфельда-Ватсона [2, 13]

$$W(g) = \sum_{N=N_0}^{\infty} W_N(-g)^N = -\frac{1}{2i} \oint_C dz \frac{\mathcal{W}(z)}{\sin \pi z} g^z, \quad (77)$$

где $\mathcal{W}(z)$ — аналитическое продолжение W_N на комплексную плоскость ($\mathcal{W}(N) = W_N$), C — контур, охватывающий точки N_0 , $N_0 + 1$, $N_0 + 2, \ldots$ (рис. 19). Если $z = \alpha$ — крайняя правая особенность $\mathcal{W}(z)/\sin \pi z$, то контур можно деформировать в положение C' и показать, что эта особенность определяет поведение W(g) при $g \to \infty$. Чисто степенному закону (7) соответствует наличие при $z = \alpha$ простого полюса⁹⁾, закону (75) — особенность вида $(z - \alpha)^{\gamma-1}$.

Заметим, что в разложении β -функции (5) первый член β_0 отсутствует уже в силу определения; исчезновение же следующего коэффициента β_1 носит случайный характер — так, в $(4 - \epsilon)$ -мерной теории φ^4 он отличен от нуля и оказывается порядка ϵ ; соответственно, и $\mathcal{W}(1) \sim \epsilon$. Из предельного перехода $\epsilon \to 0$ ясно, что в четырехмерном случае $\mathcal{W}(1) = 0$ и простой полюс при $\alpha = 1$ невозможен. Если об-

⁹⁾ Из сказанного ясно, что предположение об аналитичности коэффициентной функции на действительной оси при $N \ge N_0$, необходимое для ее интерполяции, во всех рассмотренных случаях подтверждается результатом.

Рис. 19

ращение в нуль при $z \to 1$ происходит по закону $\mathcal{W}(z) = \omega_0 (z-1)^\gamma$, то

$$\beta(g) = \frac{\omega_0}{\Gamma(1-\gamma)} g(\ln g)^{-\gamma}, \quad g \to \infty$$
(78)

и положительность γ имеет прозрачное происхождение.

2. В работе Липатова [29] рассмотрен класс теорий поля (обобщающих четырехмерную теорию φ^4) с нелинейностью типа φ^n и размерностью пространства d = 2n/(n-2), в которой для них имеет место логарифмическая ситуация. Для всех таких теорий коэффициент $\beta_1 = 0$, но становится отличным от нуля при уменьшении d; поэтому $\mathcal{W}(1) = 0$ аналогично предыдущему. В пределе $n \to \infty$ функция Гелл-Манна–Лоу вычисляется точно [29] и крайняя правая особенность $\mathcal{W}(z)$ оказывается вида $(z-1)^{3/2}$, приводя к асимптотике $\beta(q) \propto g(\ln q)^{-3/2}$. По непрерывности можно ожидать, что для больших, но конечных *n* неаналитическое обращение в нуль типа $(z-1)^{\gamma}$ сохраняется и особенность при z = 1 остается крайней правой. Поэтому асимптотика (78) является для таких теорий поля естественной и неудивительно, если она сохраняется вплоть до n = 4. Заметим, что при $n \to \infty$ знак W_{∞} отрицательный и функция Гелл-Манна-Лоу имеет нуль; прямая экстраполяция результатов к n = 4 приводит к аналогичному выводу для теории φ^4 [29]. Фактически при такой экстраполяции нужно учитывать, что индекс γ меняется от 3/2 до малых значений типа (76); тогда смена знака асимптотики происходит согласно (78) естественным образом при $\gamma = 1$. (Положительность ω_0 следует из сшивки $\mathcal{W}(2) \sim \omega_0$ и положительности β_2 [29].)

Так или иначе, выбор происходит между двумя возможностями: чисто степенным законом (7) с индексом α , чуть меньшим единицы, и асимптотикой вида (78) с $\gamma > 0$. И в том, и в другом случае теория φ^4 оказывается внутренне непротиворечивой.

8.3. О результате работ [12, 13]

На кривых рис. 14 при N < 10 выделяется линейный участок $\tilde{U}_N \approx 1.1(N-1)$, устойчивый относительно изменения b_0 и интерполяционной процедуры. Он может претендовать на роль истинной асимптотики \tilde{U}_N (если считать результаты для N > 10 издержками интерполяции) и соответствует зависимости $\beta(g) \approx 1.1g^2$, близкой к результату работ [12, 13].

В действительности устойчивость этого участка имеет другое происхождение и связана с характерным «провалом» приведенной коэффициентной функции F_N при $N \leq 10$ (вставка на рис. 18). Если смоделировать этот провал, полагая $F_3 = F_4 = \ldots = F_{10} = 0$, то ввиду (19), (22) имеем

$$\tilde{U}_N = c\Gamma(b_0 + 2) \sum_{K=1}^N F_K(-1)^K \frac{\Gamma(K+b)}{\Gamma(K+b_0)} C_{N-1}^{K-1},$$
(79)

и при $N \leq 10$ для всех b_0 получается результат $\tilde{U}_N = 1.5(N-1)$, определяемый первым неисчезающим коэффициентом F_2 (см. кривую для $b_0 = \infty$ на рис. 14): это близко к реальной ситуации. Для β -функции это означает, что однопетлевой закон $1.5g^2$ затягивается до $g \sim 10$.

Если смоделировать провал в F_N более точно и положить $F_3 = F_4 = \ldots = F_{10} = \epsilon$, то для $b_0 = b - p$ с целым p, когда отношение гамма-функций в (79) сводится к полиному, с учетом (26) получим в интервале $p + 2 \le N \le 10$

$$\tilde{U}_N = W_2 \left\{ \left(1 - \frac{\epsilon}{F_2} \right) (N-1) + \frac{\epsilon}{F_2} \frac{1+b_0}{1+b} \right\}, \quad (80)$$

т. е. линейный наклон изменяется, но остается независимым от b_0 . Более сложное вычисление показывает справедливость (80) при произвольных b_0 с точностью до поправок порядка $\epsilon/(N+b_0)^{b+1}$. Для $\epsilon = 0.2$ (см. рис. 18) получим $\tilde{U}_N = 1.1(N-1) + \text{const}$, где const зависит от b_0 , но в интервале $0 < b_0 < 10$ не превосходит нескольких десятых. Мы видим, что представление о квадратичном законе с измененным коэффициентом, $\beta(g) = 1.5(1-\epsilon/F_2)g^2$, действительно имеет смысл¹⁰⁾ в интервале $1 \leq g \leq 10$, но является следствием провала в F_N . Именно ограниченность ширины провала показывает, что этот закон не имеет никакого отношения к реальной асимптотике, какой бы она ни была.

 $^{^{10)}}$ Этот закон более четко выражен для борелевского образа, но искажается для самой β -функции за счет интегрирования в (8), однако выпуклость вниз сохраняется для $\beta(g)$ вплоть до $g\sim100.$

Из сказанного ясно, что результат работ [12, 13] ни в коей мере не является вычислительной ошибкой, но отражает объективное поведение β -функции при $g \leq 10$. Он неизбежно получается при суммировании с небольшим числом коэффициентов разложения, так как на кривых рис. 14 при N < 7 нельзя обнаружить никакого другого степенного участка (точки для кривых с $b_0 < 0$ не приведены из-за наличия резких осцилляций, которые загромоздили бы рисунок).

8.4. К вопросу о «тривиальности» теории φ^4

Ситуация, когда β -функция имеет асимптотику g^{α} с $\alpha > 1$, может трактоваться двояким образом. Если исходить из конечности физического заряда на больших расстояниях, то теория является внутренне противоречивой: эффективный заряд g(L) обращается в бесконечность при некотором L_c (полюс Ландау), а при $L < L_c$ зависимость g(L) не определена. Если же рассматривать теорию поля как предел решеточных теорий, то она является «тривиальной» — физический заряд стремится к нулю при любом значении затравочного заряда.

В последнее время проблематика, связанная с тривиальностью, интенсивно обсуждается в серии работ Консоли, Агоди и др. (см. [30, 31] и ссылки там): с одной стороны, подчеркиваются существующие указания на тривиальность теории φ^4 , с другой стороны, авторы претендуют на ее проверку (с положительным результатом) путем численного моделирования на решетке. Обсудим кратко этот вопрос.

Имеются строгие доказательства тривиальности теории φ^4 для размерности пространства d > 4 и ее нетривиальности для d < 4 [32, 33]. При d = 4полученных неравенств для доказательства тривиальности «чуть-чуть» не хватает, что в математической среде рассматривается как досадная мелочь отсюда и распространенность точки зрения, что тривиальность теории φ^4 «практически доказана». С физической точки зрения, для подобного оптимизма нет оснований: упомянутые результаты для $d \neq 4$ на современном уровне выглядят достаточно примитивными, являясь элементарными следствиями теории перенормировок и однопетлевой ренормгруппы; ситуация же при d = 4 является очень сложной по физике дела, и аналитических подходов к проблеме не существует до сих пор.

Численные эксперименты на решетке, на наш взгляд, не демонстрируют ничего неожиданного. Ввиду отсутствия нуля у β -функции эффективный заряд g(L) всегда уменьшается с расстоянием, а име-

ется ли на самом деле «нуль заряда», численные методы сказать не могут из-за ограниченности размера решетки. Множество недоразумений связано с нормировкой заряда: уже в используемой нами «естественной» нормировке квадратичный закон затянут до $q \sim 10$ (п. 8.3), тогда как в традиционных нормировках такая затянутость еще больше — например, до $g \sim 600$ при записи члена взаимодействия в виде $g\varphi^4/8$. Поэтому поведение любых величин неотличимо от тривиального в широкой области значений параметров. Из старых публикаций заслуживает упоминания лишь работа [34], в которой утверждается, что убывание g(L) происходит равномерно по g_0 , что действительно указывает на «нуль заряда». Однако, судя по результатам, используемая нормировка заряда приблизительно в 100 раз отличается от нашей (выражение для действия дано с явной опечаткой), и все результаты для конечных g_0 попадают в область квадратичного закона. Нетривиально выглядят лишь результаты для $g_0 = \infty$, полученные путем редукции к модели Изинга. Такая редукция, по-видимому, возможна, но нет способа (кроме экстраполяции) установить соответствие нормировки полевой переменной в модели Изинга с ее нормировкой в исходной теории φ^4 ; это приводит к неопределенности в нормировке заряда, с учетом которой вывод о равномерной сходимости становится необоснованным.

Обратимся к оригинальным результатам работ [30, 31]. Авторы иллюстрируют свою идею на примере неидеального бозе-газа, который имеет известный боголюбовский спектр: $\epsilon(k) \sim k$ при малых k и $\epsilon(k) \sim k^2$ при $k \to \infty$. Будем переходить к «континуальному пределу», устремляя к нулю два характерных масштаба задачи — длину рассеяния и расстояние между частицами. Если первый из них стремится к нулю достаточно быстро, то возникает «вполне тривиальная теория» — восстанавливается квадратичный спектр идеального газа. Если же при предельном переходе поддерживать определенное соотношение между двумя масштабами, обеспечивающее постоянство скорости звука, то возникает «тривиальная теория с нетривиальным вакуумом»: спектр становится строго линейным, радикально отличаясь от спектра идеального газа, но взаимодействие квазичастиц — фононов — отсутствует. Последний сценарий авторы предлагают для континуального предела теории φ^4 , утверждая, что он является логически непротиворечивым.

Даже если согласиться с последним утверждением, то остается вопрос, почему именно такой предельный переход происходит физически. Так, в случае бозе-газа из нейтральных атомов нет реальной возможности одновременно менять плотность газа и длину рассеяния. Желаемая для авторов ситуация может возникнуть при специальном законе дальнодействия — тогда при изменении плотности меняется «дебаевский радиус экранирования»; но такой сценарий не является произвольным и может быть предсказан на основе исходного гамильтониана.

Авторы работ [30, 31] считают, что предположение о нетривиальном характере континуального предела подтверждается их численным моделированием на решетке. Однако этот вывод основан не на прямых «экспериментальных» данных, а исключительно на их интерпретации: численные эксперименты проводятся глубоко в области однопетлевого закона, и никакой информации о тривиальности содержать не могут — их результаты (какими бы экзотическими они ни были) должны иметь объяснение в рамках теории слабой связи.

Тривиальность теории φ^4 приводит к неперенормируемости хиггсовского сектора Стандартной Модели, в результате чего нарушается один из важнейших принципов, на которых она основана — принцип перенормируемости; работы [30, 31] стимулированы стремлением разрешить эти трудности. Согласно нашим результатам, такие трудности отсутствуют с самого начала.

9. ЗАКЛЮЧЕНИЕ

В настоящей работе отработан алгоритм суммирования расходящихся рядов теории возмущений при произвольных значениях константы связи. Проверка на тестовых примерах показала его устойчивость в условиях сильно ограниченной информации и надежность оценки ошибок. Основной физический результат работы состоит в восстановлении функции Гелл-Манна–Лоу теории φ^4 и демонстрации ее внутренней непротиворечивости. Последний вывод находится в соответствии с доказанным ранее отсутствием ренормалонных сингулярностей [9].

Разработанный алгоритм может быть применен во многих других задачах, в частности для восстановления функций Гелл-Манна–Лоу квантовой электродинамики и квантовой хромодинамики. В настоящее время это затрудняется тем, что полноценная асимптотика Липатова в этих теориях еще не вычислена, хотя фундамент для таких вычислений полностью подготовлен [27, 35–39]. Использование описанного алгоритма в теории фазовых переходов может привести к уточнению значений критических индексов на 2–3 порядка и выше.

Работа выполнена при финансовой поддержке INTAS (грант 99-1070) и Российского фонда фундаментальных исследований (проект 00-02-17129).

ЛИТЕРАТУРА

- 1. И. М. Суслов, Письма в ЖЭТФ 71, 315 (2000).
- 2. Л. Н. Липатов, ЖЭТФ 72, 411 (1977).
- Large Order Behavior of Perturbation Theory, ed. by J. C. Le Guillou and J. Zinn-Justin, Elsevier. Sci. Publ., Amsterdam (1990).
- 4. J. Zinn-Justin, Phys. Rep. 70, 109 (1981).
- E. B. Bogomolny, V. A. Fateyev, L. N. Lipatov, Sov. Sci. Rev. A – Phys. Rev., ed. by I. M. Khalatnikov, Harwood Academic Press, New York (1980), Vol. 2, p. 247.
- J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980).
- G. A. Baker, Jr., B. G. Nickel, M. S. Green, and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. B 17, 1365 (1978).
- J. C. Le Guillou and J. Zinn-Justin, J. de Phys. Lett.
 46, L137 (1985); J. de Phys. 48, 19 (1987); 50, 1365 (1989).
- 9. И. М. Суслов, ЖЭТФ 116, 369 (1999).
- **10**. Н. Н. Боголюбов, Д. В. Ширков, *Введение в теорию* квантованных полей, Наука, Москва (1976).
- В. С. Попов, В. Л. Елецкий, А. В. Турбинер, ЖЭТФ 74, 445 (1978).
- Д. И. Казаков, О. В. Тарасов, Д. В. Ширков, ТМФ 38, 15 (1979).
- 13. Ю. А. Кубышин, ТМФ 58, 137 (1984).
- 14. A. N. Sissakian, I. L. Solovtsov, and O. P. Solovtsova, Phys. Lett. B **321**, 381 (1994).
- **15.** А. А. Владимиров, Д. В. Ширков, УФН **129**, 407 (1979).
- 16. М. В. Садовский, УФН 133, 223 (1981).
- **17**. И. М. Суслов, УФН **168**, 503 (1998).
- Ф. М. Диттес, Ю. А. Кубышин, О. В. Тарасов, ТМФ 37, 66 (1978).

- 19. Ю. А. Кубышин, ТМФ 57, 363 (1983).
- 20. И. Харди, Расходящиеся ряды, ИИЛ, Москва (1951).
- 21. Ю. В. Сидоров, М. В. Федорюк, М. И. Шабунин, Лекции по теории функций комплексного переменного, Наука, Москва (1976), § 32.
- 22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, *Numerical Recipes*, Cambridge University Press (1988).
- 23. C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969); Phys. Rev. D 7, 1620 (1973).
- 24. J. Cizek and E. R. Vrskay, Int. J. Quant. Chem. 21, 27 (1982).
- **25**. И. М. Суслов, ЖЭТФ **117**, 659 (2000).
- 26. A. I. Mudrov and K. B. Varnashev, Phys. Rev. E 58, 1 (1998).
- 27. S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 463, 489 (1996).
- 28. S. V. Faleev and P. G. Silvestrov, Phys. Lett. A 197, 372 (1995).
- 29. Л. Н. Липатов, ЖЭТФ 71, 2010 (1976).

- 30. M. Consoli and P. M. Stevenson, Z. Phys. C 63, 427 (1994).
- 31. A. Agodi, G. Andronico, P. Cea et al., Mod. Phys. Lett. A 12, 1011 (1997).
- 32. J. Frolich, Nucl. Phys. B 200 [FS4], 281 (1982);
 M. Aizenman, Comm. Math. Soc. 86, 1 (1982).
- J. P. Eckmann and R. Epstein, Commun. Math. Soc. 64, 95 (1979).
- 34. B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. B 113, 481 (1982).
- E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B
 71, 93 (1977); L. N. Lipatov, A. P. Bukhvostov, and
 E. I. Malkov, Phys. Rev. D **19**, 2974 (1979).
- 36. G. Parisi, Phys. Lett. B 66, 382 (1977).
- 37. C. Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 16, 996 (1977); R. Balian, C. Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 17, 1041 (1978).
- 38. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76, 210 (1978).
- 39. I. I. Balitsky, Phys. Lett. B 273, 282 (1991).