
ÆÝÒÔ, 2001, òîì 119, âûï. 6, ñòð. 1257�1261  2001
THE INFLUENCE OF THE CHEMICAL POTENTIALOSCILLATIONS ON THE DE HAAS�VAN ALPHEN EFFECTIN QUASI-TWO-DIMENSIONAL COMPOUNDSP. Grigoriev *Landau Institute for Theoretial Physis142432, Chernogolovka, Mosow region, RussiaGrenoble High Magneti Field Laboratory MPI-FKF and CNRSBP 166, F-38042 Grenoble Cedex 09, FraneSubmitted 16 January 2001The de Haas�van Alphen e�et in quasi-two-dimensional metals is studied at arbitrary parameters. Osillationsof the hemial potential an substantially hange the temperature dependene of harmoni amplitudes thatis ommonly used to determine the e�etive eletron mass. The proessing of the experimental data usingthe standard Lifshitz�Kosevih formula an therefore lead to substantial errors even in the strong harmonidamping limit. This may explain the di�erene between the e�etive eletron masses determined from the deHaas�van Alphen e�et and the ylotron resonane measurements. The osillations of the hemial potentialand the deviations from the Lifshitz�Kosevih formula depend on the reservoir density of states that exists inorgani metals due to open sheets of the Fermi surfae. This dependene an be used to determine the densityof eletron states on open sheets of the Fermi surfae. We present analytial results of the alulations ofharmoni amplitudes in some limiting ases that show the importane of the hemial potential osillations. Wealso desribe a simple algorithm for a numerial alulation of the harmoni amplitudes for arbitrary reservoirdensity of states, arbitrary warping, spin-splitting, temperature, and Dingle temperature.PACS: 71.18.+yThe quantum magnetization osillations (or the deHaas�van Alphen (dHvA) e�et) were disovered longago [1℄ and have been widely used as a powerful tool instudying the Fermi surfaes and single eletron proper-ties in metals [2℄. In a three-dimensional (3D) metal,a good quantitative desription of this e�et is givenby the Lifshitz�Kosevih (LK) formula [3℄. In two-or quasi-two-dimensional ompounds, deviations fromthe LK formula are possible for three reasons: the har-moni damping in the two-dimensional (2D) ase is dif-ferent, the impurity sattering annot be desribed bythe usual Dingle law, and the hemial potential alsobeomes an osillating funtion of the magneti �eld.The �rst problem is important only when the harmonidamping is weak and an be easily solved using the 2Dharmoni expansion [2℄. The seond problem onernswith an aurate alulation of the density of states*E-mail: pashag�itp.a.ru

(DoS) with eletron�eletron interations and the im-purity sattering. The eletron�eletron interationsare not very important if many Landau levels (LLs) areoupied (we onsider the ase where the Fermi energy"F is muh greater than the Landau level separationand the temperature). In the 3D ase, the impuritysattering adds an imaginary part i�(B) to the eletronspetrum, whih means that the eletron an leave itsquantum state with the probability w = �(B)=�~ perseond. Assuming this energy level width �(B) to beindependent of the magneti �eld B, one obtains theDingle law of harmoni damping [4℄Al / exp (�2�l�=~!) ;whereAl is the amplitude of the harmoni number l and! = eB=m� is the ylotron frequeny. This Dinglelaw has been proved by many experiments on 3D met-als. In the 2D ase, this law may be inorret and theproblem of the DoS distribution in 2D metals has not1257



P. Grigoriev ÆÝÒÔ, òîì 119, âûï. 6, 2001been solved yet, although many theoretial works havebeen devoted to this subjet (for example, [5�7℄). Theproblem is ompliated beause even the exat alu-lation of the point-like impurity sattering is not su�-ient beause the long-range impurities (and probably,the eletron�eletron interations) are also importantin the 2D ase [8℄. The proedure of extrating the DoSdistribution from the dHvA measurements was reentlyproposed in [9℄. In the present paper, we fous on thethird question: we assume the Dingle law to be validand onsider the in�uene of the hemial potential os-illations on the harmoni amplitudes of the dHvA os-illations in this approximation. Beause we onsiderthe quasi-2D ase, the Dingle law is not a bad approx-imation. We show that the hemial potential osil-lations substantially hange the temperature and theDingle temperature dependene of the harmoni ampli-tudes even in the limit of a strong harmoni damping.Therefore, the estimate of the e�etive eletron massbased on the LK formula an lead to the error up to30%. This an explain the di�erene between the ef-fetive eletron masses obtained from the dHvA e�etand from the ylotron resonane measurements (forexample, in [10℄ and [11℄). This problem was examinednumerially by Harrison et al. [12℄ at zero warping Wof the Fermi surfae (FS). In this paper, we derive ex-pliit formulas desribing the quantum magnetizationosillations at arbitrary parameters. We study the re-sult analytially in some limiting ases. This shows theimportane of the hemial potential osillation e�eton harmoni amplitudes.The energy spetrum of the quasi-two-dimensionaleletron gas is given byEn;kz;� = ~!�n+ 12�+ W2 os(kzd) + ��eB; (1)where W is the warping of a quasi-ylindrial Fermisurfae. The DoS distribution with the impurity sat-tering an be written as�(E;B) = �0(E;B) + ~�(E;B);where for E � ~!, the osillating part of the DoSis [13℄~�(E;B) = 4g~! 1Xl=1(�1)l os�2�l E~!��� J0��l W~!� os�2�l�eB~! � exp��2�l�~! � : (2)In this formula, g = B=�0 is the LL degeneray, thefator os (2�l�eB=~!) is due to the spin splitting, and

the fator J0 (�lW=~!) omes from the �nite warpingW of the quasi-ylindrial FS. J0(x) is the zero-orderBessel funtion. The last fator in (2) is the usual Din-gle fator.The non-osillating part of the DoS is given by�0(E;B) = 2g~! (1 + nR(E)) ;where nR(E) is the ratio of the reservoir density ofstates to the average DoS on the quasi-2D part of theFS. The reservoir density of states ours in quasi-2Dorgani metals beause of open sheets of the FS. Thesequasi-one-dimensional states do not diretly ontributeto the magnetization osillations beause they form theontinuous spetrum and the nonosillationg DoS.If the DoS is known, one an alulate the thermo-dynami potential
(�;B; T ) == �T 1Z0 �(E;B) ln �1 + exp���ET �� dE == 
0(�;B; T ) + ~
(�;B; T ); (3)where �(B) is the hemial potential and the osillatingpart of the thermodynami potential is given by [13℄~
 = 2gT 1Xl=1 (�1)ll os�2�l �~!� �lsh(�l) �� J0��l W~!� os�2�l�eH~! � exp��2�l�~! � ;where � � 2�2T=~!: The total partile number is usu-ally onstant,N = ���
(�;B; T )�� �T;B == 1Z0 �(E;B)1 + exp�E � �T � dE = onst:This is an equation for the hemial potential as a fun-tion of the magneti �eld. Separating the osillatingpart of the DoS and substitutingN = 1Z0 �0(E;B)1 + exp�E � "FT � dE1258



ÆÝÒÔ, òîì 119, âûï. 6, 2001 The in�uene of the hemial potential osillations : : :(where "F is the Fermi energy at zero magneti �eld),we obtain1Z0 0BB� 11 + exp�E � "FT � � 11 + exp�E � �T �1CCA�� �0(E;B)dE = 1Z0 ~�(E;B)1 + exp�E � �T � dE: (4)We next use the fat that the reservoir DoS nR(E)does not hange appreiably at the sale of Tor j� � "F j < ~!=2 (this is true if many LLsare oupied beause nR(E) hanges substantiallyat the Fermi energy sale). It then follows thatnR(E) � nR("F ) = onst � nR. The left-hand sideof (4) an be simpli�ed, and after the insertion of (2),we obtain the equation for the osillating part ~�(B) ofthe hemial potential,~�(B) � �(B)� "F = ~!�(1 + nR("F )) �� 1Xl=1 (�1)l+1l sin�2�l ("F + ~�(B))~! � �lsh(�l) �� os�2�l�eH~! � exp��2�l�~! � J0 ��l W~!� : (5)This nonlinear equation annot be solved analytiallywithout any approximations, but it determines osilla-tions of the hemial potential with arbitrary parame-ters (it is only assumed that "F � T; ~!).The magnetization osillations at the onstant ele-tron density N = onst are given byM = � d(
 +N�)dB ����N=onst = � �
�B �����;N=onst �� �
�� ����N;B=onst +N! d�dB ����N=onst = � �
�B �����;N=onst :The osillating part of the magnetization is~M(B) = � � ~
�B ������;N=onst =

= 2g�B "F 1Xl=1 (�1)l+1l �lsh�l �� os�2�l�eH~! � exp��2�l�~! ����sin�2�l�(B)~! � J0��l W~!� ++ W2� os�2�l�(B)~! � J1��l W~!�� ; (6)where �(B) is given by Eq. (5) and involves the de-pendene of the magnetization on the reservoir DoS.Equations (5) and (6) desribe the magnetization os-illations at arbitrary parameters. The only approxi-mation used in deriving these formulas is the Dinglelaw of harmoni damping. In quasi-2D organi metalswith the warping W > TD, the Dingle law is believedto be a su�iently good approximation.Equations (5) and (6) are a good starting pointfor numerial alulations. It follows that in the limitW=� � 1, the osillating parts of the magnetizationand the hemial potential are related simply by~M(B) = "FB 2g~! (1 + nR)~�(B): (7)For zero warping, this was obtained in [9℄.Nonlinear equation (5) for ~�(B) an be solved an-alytially only in some simple approximations. We dothis to illustrate the in�uene of the hemial potentialosillations on the temperature and the Dingle tem-perature dependene of the harmoni amplitudes. Wethus onsider zero warping, zero spin splitting and zerotemperature. The sum in the right-hand side of Eq. (5)an then be alulated and we obtainx2 = 1(1 + nR) artg� sin(y + x)os(y + x) + eb� ; (8)where x � 2�~�(B)=~!, y � 2�"F=~!, andb � 2��=~!.For a very large eletron reservoir nR =1, we havex = 0, whih implies the ase of a �xed hemial po-tential. In this ase, the magnetization is given by [13℄~M(B) = 2g"F�B artg� sin yeb + os y� : (9)The temperature dependene of the harmoni ampli-tudes is given by the LK formulaAl(T ) = 2�2T l=~!sh(2�2T l=~!) : (10)1259



P. Grigoriev ÆÝÒÔ, òîì 119, âûï. 6, 2001It is also possible to solve Eq. (8) analytially atnR = 0 and nR = 1. At zero eletron reservoir nR = 0,the solution of this equation isx2 = � ~�(B)~! = artg� sin yeb � os y� :It gives the osillations of the hemial potential. Themagnetization at zero eletron reservoir is given by~M(B) = 2g "F�B artg� sin yeb � os y� : (11)It oinides with (9) after the phase shift y ! y + �and the sign hange ~M ! � ~M . This implies that theharmoni damping lawAl / 1l exp (�lb) (12)does not hange and only the sign of all even harmonisis reversed. This symmetry between the ases of the�xed hemial potential � = onst and the onstantpartile density N = onst is a feature of the speialexponential law of the harmoni damping. Any �nitetemperature and the eletron reservoir density breaksthis symmetry.We now onsider the intermediate ase wherenR = 1. Equation (8) then beomessinxosx = sin(y + x)os(y + x) + eb : (13)This gives x = arsin �e�b sin y� :For the magnetization, we obtain~M(y) = g "F�B arsin �e�b sin y� : (14)To determine how the harmoni damping has hanged,we must alulate the amplitudes of the �rst severalharmonis of this expression. The amplitude of the�rst harmoni isA1(b) = 1� �Z�� arsin �e�b sin y� sin y dy;and after the integration by parts, we obtainA1(b) = 4� �=2Z0 os2 y e�b dyp1� e�2b sin2 y :This is a superposition of two ellipti integrals,A1(b) = 4� �ebE(e�b)� 2 sh bK(e�b)� : (15)

For b � 1, the deviations of A1(b) from the LKformula are small,A1(b) = e�b + e�3b=8 + : : :In the opposite limit b� 1, we obtainA1(b) = 4� �1� b�ln 4p2b � 12�+O(b2)� : (16)This is substantially di�erent from the LK dependeneA1(b) = exp(�b) � 1�b. For example, the value A1(0)is 4=� times larger than the LK predition.A stronger deviation from LK formula (12) an beseen in the amplitudes of the next harmonis. All evenharmonis vanish beause expression (14) possesses thesymmetries ~M(� � y) = ~M(y) and ~M(�y) = ~M(y):The amplitude of the third harmoni an also bealulated. For b� 1 and e�b � 1; we haveA3(b) = �e�3b=12 +O(e�5b):This result is in ontrast with the ases where nR = 0or nR = 1, where we had A3(b) = e�3b=3. This isnot surprising beause in the symmetri ase nR = 1,the osillations must be muh smoother and more si-nusoidal. Therefore, the �rst harmoni must inreaseand the higher harmonis must derease. For b = 0, wehave A3(0) = 43� �=2Z0 os 3y os y dyos y = � 49� ; (17)whih is � 2:35 times less than the LK preditionA3(0) = 1=3 and has the opposite sign. In the asewhere nR = 1, the �rst harmoni is therefore inreasedwhile the amplitudes of the others are strongly de-reased ompared to the ases of zero and in�nite ele-tron reservoir. The deviation from the LK formula re-dues as the warping of the FS inreases. The aboveanalysis also shows that at low temperature and lowDingle temperature, the harmoni ratios an give aquantitative estimate of the eletron reservoir densitythat is muh more preise than just an observationabout the slope of magnetization osillations.To inlude the orret temperature dependene,warping, and spin-splitting and to onsider an arbi-trary reservoir density, one an do numerial alu-lations based on solving Eq. (5) for the hemial po-tential and inserting this solution in formula (6) forthe magnetization. This an be easily done for ar-bitrary parameters that are available experimentally.The temperature dependene of the �rst three har-moni amplitudes is given in the Figure for the fol-lowing set of parameters lose to the real experiments1260
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Temperature, KSeond harmoniTemperature dependene of harmoni amplitudes. Thesolid lines are the numerial results (for nR = 1,m� = 2m0, TD = 0:2 K, andW = 1 K; see text) and thedashed lines are the LK predition at the same parame-ters. Their strong deviations are learly seen, espeiallyfor higher harmonison �-(BEDT-TTF)2KHg(SCN)4: the reservoir densitynR = 1, the dHvA frequeny F = 700 T, the e�etivemass m� = 2m0, the Dingle temperature TD = 0:2 K,and the warping W = 1 K. We see a substantial devia-tion from the LK dependene. As T ! 0, the obtainedamplitude of the �rst harmoni is about 1:1 times largerthan the LK predition. If we also let TD ! 0 andW ! 0, their ratio beomes 4=� = 1:27 in agreementwith analytial result (16). The seond harmoni am-plitude is lose to zero at T = 0. The amplitude of thethird harmoni hanges its sign at T � 0:8 K and devi-ates very strongly from the LK formula. It is dampedmuh stronger than the LK preditions. At T = 0 andW = 0, it also oinides with predition (17).To onlude, it was shown both analytially andnumerially that the osillations of the hemialpotential are essential for the temperature dependeneof harmoni amplitudes of the dHvA osillations inquasi-two-dimensional ompounds. The auratedetermination of the e�etive eletron mass from thedHvA e�et should take this e�et into aount. Thisan be done by a simple numerial alulation based
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