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NON-ABELIAN STOKES THEOREMS IN YANG�MILLSAND GRAVITY THEORIESD. I. Diakonov ab*, V. Yu. Petrov b**a NORDITA, DK-2100 Copenhagen Ø, Denmarkb St. Petersburg Nulear Physis Institute188350, Gathina, Leningrad region, RussiaSubmitted 1 February 2001We disuss the interpretation of the non-Abelian Stokes theorem for the Wilson loop in the Yang�Mills theory.For the �gravitational Wilson loops�, i. e., holonomies in urved d = 2; 3; 4 spaes, we then derive �non-AbelianStokes theorems� that are similar to our formula in the Yang�Mills theory. In partiular, we derive an elegantformula for the holonomy in the ase of a onstant-urvature bakground in three dimensions and a formula forsmall-area loops in any number of dimensions.PACS: 11.15.Ha, 12.38.G1. INTRODUCTIONOne of the main objets in the Yang�Mills theoryand in gravity is the parallel transporter along losedontours, or holonomy. In Yang�Mills theory, it is on-ventionally alled the Wilson loop; it an be written asa path-ordered exponentialWr = 1d(r) Tr P exp�i I d� dx�d� Aa� T a� ; (1)where x�(�) with 0 � � � 1 parameterizes the losedontour, Aa� is the Yang�Mills �eld (or onnetion) andT a are the gauge group generators in a given represen-tation r whose dimension is d(r). For d-dimensionalvetors in urved Riemannian spaes, the �gravita-tional Wilson loop�, or holonomy, an also be writtenas a trae of the path-ordered exponential of the on-netion given by the Christo�el symbol,WGvetor = 1d �P exp�� I d� dx�d� ������ : (2)One an also onsider parallel transporters of spinors ina urved bakground: the holonomy is then de�ned notby the Christo�el symbols, but by the spin onnetionthat is not uniquely determined by the metri tensor(see the preise de�nitions below).*E-mail: diakonov�nordita.dk**E-mail: vitorp�thd.pnpi.spb.ru

The Yang�Mills Wilson loop is invariant undergauge transformations of the bakground �eld A�; thegravitational Wilson loop is invariant under general o-ordinate transformations, or di�eomorphisms, providedthe ontour is transformed as well.It is generally believed that in three and four dimen-sions, the average of the Wilson loop in a pure Yang�Mills quantum theory exhibits the area-law behaviourfor large and simple (e. g., �at retangular) ontours.This must be true not for all representations, but onlythose with a nonzero �N -ality�; in the simplest ase ofthe SU(2) gauge group, these are the representationswith a half-integer spin J .One of the di�ulties in proving the area law forthe Wilson loop is that it is a ompliated objet byitself: it is impossible to ompute it analytially in ageneral non-Abelian bakground �eld, not to mentionaveraging it over an ensemble of on�gurations.A deade ago, we suggested a formula for the Wil-son loop in a given bakground belonging to any gaugegroup and any representation [1℄. In this formula, thepath ordering along the loop is removed at the prieof an additional integration over all gauge transfor-mations of the given non-Abelian bakground �eld, ormore preisely, over a oset depending on the parti-ular representation in whih the Wilson loop is on-sidered. Furthermore, the Wilson loop an be pre-sented in the form of a surfae integral [2℄, see the next1050



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :setion. We all this representation the non-AbelianStokes theorem. It is quite di�erent from previous in-teresting statements [3�6℄ that were also referred to as�non-Abelian Stokes theorem� but whih involved sur-fae ordering. Our formula has no surfae ordering.A lassi�ation of �non-Abelian Stokes theorems� forarbitrary groups and their representations was reentlygiven by Kondo et al. [7℄ who used the naturally arisingtehniques of �ag manifolds.Although these formulas do not usually failitate�nding Wilson loops in partiular bakgrounds, theyan be used in averaging Wilson loops over ensemblesof Yang�Mills on�gurations or over di�erent metris,and in more general settings, see, e.g., [7�11℄.The main aim of this paper is to present new formu-las for the gravitational holonomies in urved d = 2; 3; 4spaes; these formulas are similar to our non-AbelianStokes theorem for the Yang�Mills ase. We eliminatethe path ordering in Eq. (2) and write the holonomiesas exponentials of surfae integrals. Instead of path-or-dering, we must integrate over ertain ovariantly unitvetors (for d = 3) or ovariantly unit (anti)self-dualtensors (for d = 4). Remarkably, these formulas putparallel transporters of di�erent spins on the same foo-ting. In partiular, holonomies for half-integer spinsare presented in terms of the metri tensor (and itsderivatives) only, but not in terms of the vielbein orthe spin onnetion.In addition to a purely theoretial interest, we havea pratial motivation in mind. Reently, it was shown,both in the ontinuum and on the lattie, that theSU(2) Yang�Mills partition funtion in d = 3 anbe exatly rewritten in terms of loal gauge-invariantquantities given by the six omponents of the dualspae metri tensor. This rewriting an be useful indiretly investigating the spetrum and the orrelationfuntions of the theory in a gauge-invariant way, butit is insu�ient to study the interations of externalsoures beause these ouple to the Yang�Mills poten-tial and not to gauge-invariant quantities. The presentpaper demonstrates, however, that a typial soure, i.e.,the Yang-Mills Wilson loop, an be expressed not onlythrough the potential (or onnetion) but also throughthe metri tensor, whih is gauge-invariant. Thus, notonly the partition funtion, but also the Wilson loops inthe d = 3 Yang�Mills theory an be expressed throughloal gauge-invariant quantities. A detailed formula-tion of the resulting theory is given elsewhere.Although the main ontent of the paper is the non-Abelian Stokes theorems for holonomies in 3 and 4 di-mensions, we add three short setions with relevant ma-terial. For ompleteness, we add the Stokes theorem in

two dimensions, ompute the holonomy in the speialase of a onstant urvature with a ylinder topologyin three dimensions, and give a general formula for the�gravitationalWilson loop� for small loops in any num-ber of dimensions.2. NON-ABELIAN STOKES THEOREM IN THEYANG�MILLS THEORYWe let � parameterize the loop de�ned by the tra-jetory x�(�) and let A(�) be the tangent omponent ofthe Yang�Mills �eld along the loop in the fundamentalrepresentation of the gauge group,A(�) = Aa�ta dx�d� ; Tr(tatb) = 12Æab:Gauge transformations of A(�) are given byA(�) ! S(�)A(�)S�1(�) + iS(�) dd� S�1(�): (3)Let Hi be the Cartan subalgebra generators(i = 1; : : : ; r, where r is the rank of the gaugegroup) and the r-dimensional vetor m be the highestweight of the representation r in whih the Wilsonloop is onsidered. The formula for the Wilson loopderived in Ref. [1℄ is a path integral over all gaugetransformations S(�) that are periodi along theontour:Wr = Z DS(�)�� exp�i Z d� Tr hmiHi(SAS�1 + iS _S�1)i� : (4)We stress that Eq. (4) is manifestly gauge invariant, asis the Wilson loop itself. For example, in the simplease of the SU(2) group, Eq. (4) beomesWJ = Z DS(�)�� exp�i J Z d� Tr h�3(SASy + iS _Sy)i� ; (5)where �3 is the third Pauli matrix and J = 1=2, 1,3=2; : : : is the �spin� of the representation of the Wil-son loop onsidered.The path integrals over all gauge rotations inEqs. (4) and (5) are not of the Feynman type: theydo not ontain terms quadrati in the derivativesin � . A ertain regularization of these equationsis therefore implied ensuring that S(�) is su�-iently smooth. For example, one an introduequadrati terms in the angular veloities iS _Sywith small oe�ients eventually set equal to zero;1051



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001see Ref. [1℄ for details. Equation (5) was derived inRef. [1℄ in two independent ways: i) by a diret dis-retization and ii) by using the standard Feynman rep-resentation of path integrals as a sum over all interme-diate states, in this ase for the axial top supplementedby an ation of the �Wess�Zumino� type. Anotherdisretization leading to the same result was reentlyused by Kondo [7℄. A similar formula has been usedby Alekseev, Faddeev, and Shatashvili [16℄ in deriv-ing a formula for group haraters to whih the Wilsonloop is redued for a onstant A �eld (whih is the
ase atually onsidered in [16℄). In Ref. [17℄, Eq. (4)was rederived in an independent way spei�ally for thefundamental representation of the SU(N) gauge group.Finally, another derivation of a variant of Eq. (5) usinglattie regularization was reently given in Ref. [18℄.The seond term in the exponent in Eqs. (4) and (5)is in fat a �Wess�Zumino�-type ation, and it an berewritten not as a line but as a surfae integral assoi-ated with a losed ontour. For simpliity, we onsiderthe SU(2) gauge group and parameterize the SU(2)matrix S in Eq. (5) by Euler's angles,

S = exp�i�32 � exp�i��22 � exp�i��32 � = 0BBB� os �2 exp�i�+ 2 � sin �2 exp��i�� 2 �� sin �2 exp�i�� 2 � os �2 exp��i�+ 2 � 1CCCA : (6)The derivation of Eq. (5) implies that S(�) is a periodi matrix. This means that � �  and � are periodifuntions of � with the period 4�.The seond term in the exponent in Eq. (5), whih we denote by �, is then� = Z d� Tr(�3iS _Sy) = Z d� ( _� os� + _) = Z d� [ _�(os� � 1) + ( _�+ _)℄ = Z d� _�(os� � 1): (7)The last term is a total derivative and an be atually dropped beause �+  is 4�-periodi, and therefore, doesnot ontribute to Eq. (5) even for half-integer representations J . We note that � an be 2�-periodi if  (whihdrops from Eq. (7)) is 2�-, 6�-, : : : -periodi. If �(1) = �(0) + 2�k, �(�) makes k windings. The integration overall possible �(�) implied in Eq. (5) an be divided into distint setors with di�erent winding numbers k.Introduing a unit 3-vetorna = 12 Tr (S�aSy�3) = (sin� os�; sin� sin�; os�); (8)we an rewrite � as � = 12 Z d�d� �ab �ijna�inb�jn; i; j = �; �; (9)where we integrate over any spanning surfae for the ontour (we all it a �disk�), and n or � and � are ontinuedto the interior of the disk without singularities. We denote the seond oordinate by � suh that � = 1 orrespondsto the edge of the disk oiniding with the ontour and � = 0 orresponds to the enter of the disk. See Ref. [18℄for the details on the ontinuation to the interior of the disk.We note that if the surfae is losed or in�nite, the right-hand side of Eq. (9) is the integer topologial hargeof the n �eld on the surfae, Q = 18� Z d�d� �ab�ijna�inb�jn: (10)Equation (9) an also be rewritten in the form that is invariant under surfae reparameterizations. Introduingthe invariant surfae element d2S�� = d� d� ��x��� �x��� � �x��� �x��� � = ���d(Area); (11)1052



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :we an rewrite Eq. (9) as � = 12 Z d2S���abna��nb��n: (12)For the Wilson loop, we then obtain [1℄WJ = Z Dn(�; �) exp �iJ Z d�(Aana) + iJ2 Z d2S���abna��nb��n� : (13)The interpretation of this formula is obvious: the unit vetor n plays the role of the instant diretion of theolour �spin� in the olor spae. However, multiplying its length by J does not guarantee that we deal with a truequantum state from the representation labelled by J ; this is ahieved only by introduing the �Wess�Zumino�term in Eq. (13) that �xes the representation to whih the probe quark of the Wilson loop belongs to be exatly J .Finally, we an rewrite the exponent in Eq. (13) suh that both terms appear to be surfae integrals [2℄,W = Z Dn(�; �) exp � iJ2 Z d2S�� ��F a��na + �abna (D�n)b (D�n)�� ; (14)where Dab� = ��Æab + �abA�is the ovariant derivative andF a�� = ��Aa� � ��Aa� + �abAb�Ab�is the �eld strength. Indeed, expanding the expo-nent in Eq. (14) in powers of A�, we observe that thequadrati term anels while the linear term is a totalderivative reproduing the Aana term in Eq. (13); thezero-order term is �Wess�Zumino� term (9) or (7). Wenote that both terms in Eq. (14) are expliitly gaugeinvariant. We all Eq. (14) the non-Abelian Stokes the-orem. We stress that it is di�erent from the previ-ously proposed Stokes-like representations of the Wil-son loop, based on ordering elementary surfaes insidethe loop [3�6℄. For a further disussion of Eq. (14),see [18℄.We now brie�y disuss gauge groups higher thanSU(2): for that purpose, we must return to Eq. (4).Although it is valid for any group and any representa-tion, its surfae form depends expliitly on the grouprepresentation in whih the Wilson loop is onsidered.Equation (4) says that one an in fat integrate notover all gauge transformations S but only over thosethat do not ommute with the ombination of Cartangenerators miHi where m is the highest weight of agiven representation. In the SU(2) ase, one hasmiHi = J�3; J = 1=2; 1; 3=2; : : : ;beause SU(2) has the rank 1 and there is only oneCartan generator. In the SU(2) ase, one thereforeintegrates over the oset SU(2)=U(1) for any represen-tation; this oset an be parameterized by the n �eldas desribed above.

For higher groups, there are several possibilities oftaking osets: a partiular oset depends on the repre-sentation of the Wilson loop. For example, in the asewhere the Wilson loop is in the fundamental represen-tation of the SU(N) group, the ombination miHi isproportional to one partiular generator of the Cartansubalgebra that ommutes with the SU(N � 1)�U(1)subgroup. (For SU(3), this generator is the Gell-Mann�8 matrix or a permutation of its elements.) For thefundamental representation of the SU(N) group, theappropriate oset is therefore given bySU(N)=SU(N � 1)=U(1) = CPN�1:A possible parameterization of this oset is given by aomplex N -vetor u� of the unit length, uy�u� = 1. Tobe spei�, the Cartan ombination in the fundamentalrepresentation an always be set equal tomiHi = diag(1; 0; : : : ; 0)by rotating the axes and subtrating the unit matrix.In this basis, u� is just the �rst olumn of the unitarymatrix Sy and uy� is the �rst row of S. Unitarity of Simplies that uy�u� = 1:In this parameterization, Eq. (4) an be written asWSU(N)fund = Z DuDuy Æ(uy�u� � 1)�� exp i Z d� dx�d� uy� (ir�)�� u�;(r�)�� = ��Æ�� � iAa� (ta)�� : (15)1053



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001Using the identity�ij�i �uyriu� = �ij h(riu)y (rju) + uyrirjui == �ij �� i2(uyFiju) + (riu)y (rju)� ; (16)we an present Eq. (15) in a surfae form,WSU(N)fund = Z DuDuyÆ(juj2 � 1)�� exp�iZ dS�� �12(uyF��u)+i (r�u)y (r�u)�� ; (17)where F�� is the �eld strength in the fundamentalrepresentation. Equation (17) was �rst published inRef. [17℄, however with an unexpeted overall oe�-ient 2 in the exponent. Equation (17) presents thenon-Abelian Stokes theorem for the Wilson loop in thefundamental representation of SU(N). In the partiu-lar ase of the SU(2) group, transition to Eq. (14) isahieved by identifying the unit 3-vetorna = uy�(�a)��u� ;whereu� = 0BBB� os �2 exp��i�+ 2 �sin �2 exp�i�� 2 � 1CCCA ;2i uy��u = _�(os� � 1) + ( _�+ _): (18)It must be mentioned that the quantityZ d�d��ij i�iuy��ju� = 2�Q (19)appearing in Eq. (17) is the topologial harge of the2-dimensional CPN�1 model. For losed or in�nite sur-faes, Q is an integer.In the ase where the Wilson loop is taken in theadjoint represention of the SU(N) gauge group, theombination miHi in Eq. (4) is the highest root. Onlygroup elements of the form exp(i�iHi) ommute withthis ombination (these elements belong to the maxi-mum torus subgroup U(1)N�1). In the ase of the ad-joint representation, one therefore integrates over the�ag manifold [19; 7℄SU(N)=U(1)N�1 = FN�1:3. �GRAVITATIONAL WILSON LOOPS�An objet similar to the Wilson loop of the Yang�Mills theory also exists in gravity theory. It is the par-allel transporter of a vetor on a Riemannian manifold

along a losed ontour, also alled a holonomy. Theholonomy is trivial if the spae is �at but beomes anon-trivial funtional of the urvature if it is nonzero.In the remaining setions, we present new formulasfor the parallel transporters on d = 2; 3; 4 Riemannianmanifolds.We �rst reall some notation from di�erential ge-ometry. We use [20℄ as a general referene book. Letg�� = g�� (�; � = 1; : : : d) be the ovariant metri ten-sor, with the ontravariant tensor g�� being its inverse,g��g�� = Æ��. The determinant of the ovariant met-ri tensor is denoted by g. The Christo�el symbol isde�ned by���� = g����;�� = g��2 (��g��+�� g�����g��);���� = �� g2g : (20)The ation of the ovariant derivative on a ontravari-ant vetor is de�ned as(r�)��v� = (��Æ�� + ����)v�: (21)The ommutator of two ovariant derivatives deter-mines the Riemann tensor,[r�r� ℄�� = R���� = g��0R�0��� == ������ � ������ + �������� � ��������: (22)A ontration of the Riemann tensor gives the symmet-ri Rii tensor,R�� = R���� ; R�� = R����g�� : (23)Its full ontration is the salar urvatureR = R��g�� = R��: (24)The parallel transporter of a ontravariant vetoralong a urve x�(�) is determined by solving the equa-tion dx�d� (r�)�� v�(�) = 0: (25)The solution an be written using the evolution opera-tor v�(�) = �WG(�)��� v�(0); (26)where v�(0) is the vetor at the starting point of theontour and v�(�) is the parallel-transported vetor atthe point labelled by � . The evolution operator an be1054



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :symbolially written as a path-ordered exponential ofthe Christo�el symbol,�WG(�)��� = 24P exp0�� �Z0 d� dx�d� ��1A35�� : (27)We de�ne the �gravitational Wilson loop� as thetrae of the parallel transporting evolution operatoralong the losed urve x�(�) with x�(1) = x�(0),WGvetor = 1d �WG(1)��� : (28)This quantity is di�eomorphism-invariant: the met-ri tensor is transformed under oordinate hangesx� ! x0�(x), but if the ontour is hanged asx�(�)! x0�(x(�));the gravitational Wilson loop or the holonomy remainsthe same. In this respet, the gravitational holonomyis di�erent from the Yang�Mills Wilson loop that is in-variant under gauge transformations without hangingthe ontour.The parallel transporter of a ovariant vetor isgiven by the transposed matrix; its trae oinides withthat of the matrix used in transporting ontravariantvetors.4. RELATION OF GRAVITY QUANTITIES TOTHOSE OF THE YANG�MILLS THEORYWe now show that the �gravitational Wilson loop�is not only analogous to but diretly expressiblethrough the Yang�Mills Wilson loops of the SU(2)group. For this purpose, we introdue the standardvielbein eA� and its inverse eA� suh thateA� eA� = g�� ; eA� eB� = ÆAB ;eA�eA� = g�� ; det eA� = pg: (29)We deompose the vetor experiening the paralleltransport in vielbeins, v� = AeA�, with the reiproaldeomposition A = eA� v�; (30)and insert this in Eq. (25) de�ning the parallel trans-port. We then have0 = dx�d� (r�)��AeA� == dx�d� �eA���A + A(��eA� + ����eA�)� == dx�d� eB�(��ÆBA + !BA� )A; (31)

where we introdued the spin onnetion!AB� = �!BA� = 12eA�(��eB� � ��eB� )�� 12eB�(��eA� � ��eA� )�� 12eA�eB�eC� (��eC� � ��eC� ) (32)and used the fundamental relations��eA� + ����eA� = �!AB� eB�; (33)��eA� � ����eA� = �!AB� eB� : (34)One an introdue the SO(d) ��eld strength�FAB�� = [�� + !�; �� + !� ℄AB == ��!AB� � ��!AB� + !AC� !CB� � !AC� !CB� (35)related to the Riemann tensor asFAB�� eA� eB� = �R���� ;FAB�� = �R����eA�eB�;FAB�� eA�eB� = R: (36)The above material is ommon for any number ofdimensions. To proeed further, we onsider the aseswhere d = 3 and d = 4 separately. The ase whered = 2 is onsidered in Se. 6.4.1. d= 3In three dimensions, one an immediately identifythe spin onnetion with the su(2)-valued Yang�Mills�eld as Ai = �12�ab !abi : (37)Working in three dimensions, we denote the Lorentzindies by i; j; : : : = 1; 2; 3 and the �at triade indies bya; b; : : : = 1; 2; 3. Realling the generators in the J = 1representation,(T )ab = �i�ab; [T T d℄ = i�dfT f ; (38)we an rewrite the last parenthesis in Eq. (31) as�iÆab + !abi = �iÆab � iAi (T )ab � (Di)ab; (39)whih is the standard Yang�Mills ovariant deriva-tive in the adjoint representation. In the fundamen-tal (spinor) representation, the Yang�Mills ovariantderivative is(ri)�� = �iÆ�� � iAi ��2 ��� == �iÆ�� + 18!abi ��a�b��� ; �; � = 1; 2; (40)1055



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001whih oinides with the known expression for the o-variant derivative in the spinor representation in aurved spae.The standard Yang�Mills �eld strength is diretlyrelated to that in Eq. (35),F aij = �iAaj � �jAai + �abAbiAj = �12�abFbij : (41)It then follows from Eq. (36) that�ab F aijebkel = Rijkl: (42)We next onsider the parallel transporter of a 3-vetor in a urved spae, as de�ned by Eq. (25). Inaordane with Eqs. (31) and (39), solving Eq. (25) isequivalent to solving the Yang�Mills equation for theparallel transporter,dxid� (Di)abb = 0; (43)whose solution isa(�) = �W YM1 (�)�ab b(0);�W YM1 (�)�ab = �P exp�i Z d� dxid� Ai T ��ab ; (44)where the subsript �1� indiates that the path-orderedexponential is taken in the J = 1 representation. Theparallel transport of a ontravariant vetor is thereforegiven byvk(�) = a(�)eak(�) == eak(�) �W YM1 (�)�ab ebl (0)vl(0); (45)whih immediately implies the sought relation betweenthe �gravitational� and Yang�Mills parallel trans-porters, �WG1 (�)�kl = eak(�) �W YM1 (�)�ab ebl(0): (46)The relation beomes espeially neat for the Wilsonloops, i.e., for the traes of parallel transporters alonglosed ontours. Beause the vielbeins take iden-tial values at the end points of a losed ontour,eak(1) = eak(0), we obtainWGvetor = 13 �WG1 �kk = 13 �W YM1 �aa =W YM1 : (47)In a similar way, one an show that the same equa-tion is valid for the gravitational parallel transporterof ovariant vetors and, more generally, for paralleltransporters of any integer spin J . In this ase, the

Yang�Mills Wilson loop must be taken in the same rep-resentation as the gravitational one,WGJ =W YMJ : (48)It is understood that the right-hand side of Eq. (48)is expressed through the Yang�Mills �eld equal to thespin onnetion in aordane with Eq. (37), while theleft-hand side is expressed through the Christo�el sym-bols, that is, through the metri. It must be stressedthat the spin onnetion is de�ned via the vielbein,whih is not uniquely determined by the metri tensor.The Wilson loop, being a gauge-invariant quantity, isnevertheless uniquely determined by the metri tensorand its derivatives. This is the meaning of Eq. (48).For a half-integer J , there is no way to de�ne theparallel transporter other than through the spin on-netion. Nevertheless, as we show in Se. 8, where wepresent the holonomy for any spin in a surfae form, the�gravitational Wilson loop� is also expressible throughthe metri tensor and its derivatives, even for half-integer spins. 4.2. d= 4In four Eulidean dimensions, the rotation groupis SO(4), with its algebra isomorphi to that ofSU(2)�SU(2), and therefore, all irreduible represen-tations of SO(4) an be lassi�ed by (J1; J2), whereJ1;2 = 0; 1=2; 1; : : : label the representations of the twoSU(2) subgroups. For example, the 4-vetor represen-tation whose parallel transporter was onsidered in thebeginning of this setion, transforms in the (1=2; 1=2)representation of SU(2)�SU(2). Beause of this, it isonvenient to deompose the spin onnetion !AB� intoself-dual and anti-self-dual parts using 't Hooft's � and�� symbols�aAB = 12i Tr �a(�A+�B� � �B+�A�);�A� = (�i�; 1); (49)��aAB = 12i Tr �a(�A��B+ � �B��A+): (50)We use the apital Latin haraters to denote �at 4-dimensional vierbein indies, A;B; : : : = 1; 2; 3; 4, whilea; b; : : : = 1; 2; 3; �a are the three Pauli matries. Thespin onnetion !AB� transforms in the 6-dimensionalrepresentation of SO(4), whih an be deomposed intothe sum (1; 0) + (0; 1) of the adjoint representations ofthe two SU(2) subgroups. We write!AB� = �12 �a� �aAB � 12 �a� ��aAB : (51)1056



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :The SO(4) ��eld strength� in Eq. (35) is then deom-posed asFAB�� = �12 F a��(�) �aAB � 12 F a��(�) ��aAB ; (52)where F a��(�) = ���a� � ���a� + �ab�b��� ; (53)F a��(�) = ���a� � ���a� + �ab�b��� (54)are the usual Yang�Mills �eld strengths of the SU(2)Yang�Mills potentials �a� and �a�. We stress that6 � 4 = 24 variables !AB� equivalent to 2 � 3 � 4 = 24variables �a�, and �a� are de�ned by only 4 � 4 = 16tetrades eA� via Eq. (32), and therefore not all of themare independent.Contrating Eq. (36) with the � and �� symbols, weobtain F a��(�) = 12�aABeA�eB�R���� ; (55)F a��(�) = 12 ��aABeA�eB�R���� : (56)We now return to the parallel transporter of a 4-ve-tor. As shown in the beginning of this setion, �nd-ing this parallel transporter is equivalent to solving theequation dx�d� ��� ÆAB + !AB� � B = 0: (57)We represent the 4-vetor A as a ombination of twospinors,A = �y� ��A+���  � ; �y� � = 12A ��A���� ;�; � = 1; 2: (58)Inserting this in Eq. (57) and deomposing !AB� asin Eq. (51), we obtaindx�d� ��� ��y�A+ � ��12 ��a� �aAB + �a� ��aAB� ��y�B+ �� = 0: (59)Using the de�nition of the �-symbols in Eqs. (49)and (50), it is easy to verify that this equation is satis-�ed provided the spinors � and  satisfydx�d� "�� Æ�� � i �a���a2 ���#�� = 0or dx�d� �y� " �� � Æ�� + i �a� ��a2 ���# = 0; (60)

dx�d� "�� Æ�� � i �a���a2 ���# � = 0: (61)The expressions in square brakets are idential to theYang�Mills ovariant derivatives, with the role of theYang�Mills potentials played by �a� and �a�, respe-tively. Equations (60) and (61) de�ne the Yang�Millsparallel transporters in the fundamental representa-tion. Their solution an be written as evolution op-erators,��(�) = [W �(�)℄� �(0) or�y�(�) = �y(0) �W �y(�)�� ; (62) �(�) = [W �(�)℄�Æ  Æ(0); (63)[W �(�)℄� = �P exp�i Z d� dx�d� �a� �a2 ��� ; (64)[W �(�)℄� = �P exp�i Z d� dx�d� �a� �a2 ��� : (65)Returning to the 4-vetor A in Eq. (58), we see thatits evolution is determined byA(�) = [Wvetor(�)℄AB B(0);[Wvetor(�)℄AB == 12 Tr �W �y(�)�A+W �(�)�B�� : (66)We now hoose a losed ontour and take the traeof the evolution operator. The �gravitational Wilsonloop� for a 4-vetor is then given byWG( 12 ; 12 ) = 14eA�(1) [Wvetor(1)℄AB eB� (0) == 14 [Wvetor(1)℄AA = 12 Tr W � � 12 Tr W �: (67)Its generalization to the holonomy in an arbitrary rep-resentation (J1; J2) is obvious,WG(J1;J2) =W �J1 �W �J2 ;W �;�J = 12J + 1 Tr(2J+1) W �;�: (68)Thus, the holonomy in the (J1; J2) representation in aurved d = 4 spae is equal to the produt of two Yang�Mills Wilson loops, with the role of the Yang�Mills po-tentials played by the self-dual �a� and anti-self-dual �a�parts of the spin onnetion. In Se. 9, we show thatbothW � andW � an be written in terms of the metritensor.3 ÆÝÒÔ, âûï. 6 1057



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 20015. SMALL WILSON LOOPSFor small-area ontours, the �gravitational Wilsonloop� an be expanded in powers of the area. Themost straightforward way to do this is to use the path-ordered form of WG in Eq. (27). We take a squareontour of the size a� a lying in the 12 plane and ex-pand the path-ordered exponential in powers of a. Af-ter some simple algebra, we obtain the �rst nontrivialterm of this expansion, whih happens to be O(a4),WGvetor = 1d �WGvetor��� = 1 + a4d R��12R��12 == 1� 2(�S)��(�S)�0�04d R����R���0�0g��g��; (69)where (�S)�� is the surfae element lying in the ��plane. We note that the �rst orretion to the holon-omy is negative-de�nite. We emphasize that the �rst-order term in �S is in general present in the expansionof the parallel transporter, however it vanishes aftertaking the trae owing to the identity R���� � 0, andtherefore, the expansion of the trae starts with the(�S)2 term.In three dimensions, Eq. (69) an be further simpli-�ed beause the Riemann tensor is expressed throughthe Rii tensor viaRijkl = Rikgjl �Rilgjk +Rjlgik �Rjkgil ++ R2 (gilgjk � gikgjl): (70)Beause the Riemann tensor is antisymmetri with re-spet to eah pair of subsripts, we an replaegkmgln ! 12(gkmgln � gknglm) == 12g �kli�mnj gij : (71)Introduing the dual surfae element�Spq = �pqr�Sr; (72)we have �kli�pqr Rklpq = �4�Rir � 12Rgir� ; (73)whih as a matter of fat is the Einstein tensor. Forthe parallel transporter of an arbitrary spin J , the fa-tor 2 in the numerator of Eq. (69) must be replaed byJ(J + 1).

Combining all the fators, we obtainWGJ = 1� 2J(J + 1)3g �Rir � 12Rgir��� gij �Rjs � 12Rgjs��Sr �Ss : (74)This is our �nal expression for the trae of thespin-J parallel transporter for small loops in a urvedd = 3 spae. We note that Eq. (74) is invariant underdi�eomorphisms.6. GRAVITATIONAL WILSON LOOP IN TWODIMENSIONSIn a urved d = 2 spae, the trae of the paralleltransporter along a losed loop an be omputed ex-atly for any metri and an be presented in the form ofa �Stokes theorem�. The result is related to the Gauss�Bonnet theorem and is generally known: we present ithere for the sake of ompleteness.The key observation is that in two dimensions, spinonnetion (32) has only one omponent,!abi = �ab !i: (75)In this setion, all indies take only two values 1; 2. Inaordane with Eq. (31), the parallel transporter of avetor is determined by the equationdad� � dxid� !i �ab b = 0; (76)whih is solved bya(�) =W ab(�) b(0);W ab(�) =  os (�) sin (�)� sin (�) os (�) ! ;(�) = �Z0 d� dxid� !i: (77)Aording to the general theorem in Se. 4, the gra-vitational Wilson loop is equal to the Yang�Mills one,and we obtainWG1 = 12W aa(1) = os�; (78)where� = (1) = 1Z0 d� dxid� !i = 12 I dxi �ab !abi : (79)1058



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :This formula is not fully satisfatory beause the holon-omy is expressed through the spin onnetion and notthrough the metri. Expressing it through the metrian be ahieved if we apply the Stokes theorem andwrite Eq. (79) in a surfae form. We have� = 12 Z dS �ab �ij �i!abj ; (80)where dS is the element of the spanning surfae for theontour. Introduing the �eld strength related to theRiemann tensor,F abij = �i!abj � �j!abj + !ai !bj � !aj !bi == Rklij eak ebl ;�ab eak ebl = �klpg; (81)and notiing that the ommutator term is zero in twodimensions, we rewrite Eq. (80) as� = 12 Z dSpg R; WG1 = os�; (82)where R = (1=2) �ij �kl Rklijis the salar urvature. It is gratifying that the holon-omy is expressed through the Einstein�Hilbert ation,whih is known to be a total derivative in two dimen-sions. Needless to explain, Eq. (82) is di�eomorphism-invariant.In two dimensions, there is essentially only one om-ponent of the Riemann tensor,R1212 = 12 Rg (83)(see [20℄). Taking this into aount, it is easy to verifythat for small areas, the expansion of Eq. (82) gives thesame result as Eq. (69) written for small loops.7. AN EXAMPLE OF BIG LOOPS: ACONSTANT-CURVATURE BACKGROUNDIN THREE DIMENSIONSIn three dimensions, the Riemann tensor is express-ible through the Rii tensor, see Eq. (70). Therefore,the di�eomorphism-invariant information about urvedspaes is fully ontained in the three eigenvalues of thesymmetri Rii tensor,Rij = � Æij ; (84)with the salar urvature being the sum of the three,R = �1 + �2 + �3:

For example, the de Sitter S3 spae orresponds to�1 = �2 = �3 = R=3 = onst:In this setion, we onsider another onstant-urvaturease, namely the ylinder spae S2 � R haraterizedby �1 = �2 = R=2 = onst; �3 = 0:We show that the parallel transporter in these spaesan be omputed for any form of the ontour and anymetri and that the gravitational Wilson loop is givenby an elegant formula.A general metri an be onsidered as the one in-dued by 6 external oordinates wA(x1; x2; x3),gij = �iwA�jwA; A = 1; : : : ; 6: (85)In the speial ase of the ylinder spae S2 � R, itis su�ient to use only four external oordinates wa(a = 1; 2; 3) and w4 subjet to the onstraint3Xa=1(wa)2 = 2R: (86)An example of suh external oordinates is given byw1;2;3(x) =r 2R x1;2;3r ; w4(x) =r 2R ln r; (87)leading to the metri tensorgij = 2R 1r2 Æij ; pg = � 2R�3=2 1r3 : (88)A simple alulation using formulas in Se. 3 shows thatthis metri indeed gives a zero eigenvalue of the Riitensor with the other two eigenvalues equal to the on-stant R=2. Beause the eigenvalues of the Rii tensorare di�eomorphism-invariant, a general hange of o-ordinates xi ! yi(x) in Eq. (87) results in the sameeigenvalues. Therefore, the most general desription ofthe ylinder spaes S2 �R is given bywa(x) =r 2R ya(x)jy(x)j ; w4(x) =r 2R ln jy(x)j;gij = 2R �iya�iyay2 ; (89)pg = � 2R� 32 13! �ijk �ab �iya�jyb�kyjyj3 == 12rR2 �ijk �ab �iwa �jwb w �kw4; (90)1059 3*



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001where ya(x) are three arbitrary funtions of the oor-dinates xi. We note that gij is given by the produt oftwo matries Mai = �iya=jyj;and hene,pg is itself a determinant (of the matrixM).Our aim is to alulate the Wilson loop for any on-tour in any metri (89) orresponding to the ylinderspaes. We use the di�eomorphism invariane of theWilson loop. If we ompute it for a general ontourin some metri representing ylinder spaes, the mostgeneral ase is reovered by di�eomorphisms of boththe ontour and the metri. We start with the spei�metri given by Eqs. (87) and (88).Given metri tensor (88), we onstrut a vielbeinorresponding to it. This is, of ourse, not unique butany hoie of the vielbein suits us. We hooseeai =r 2R 1r Æai ; eai eaj = gij : (91)Given the vielbein, we onstrut the spin onnetion(or the Yang�Mills �eld) from its de�nition (32) andobtain Aai = �12�ab!bi = �aij xjr2 ; (92)whih happens to be the �eld of the Wu�Yangmonopole; the salar urvature R has dropped from thespin onnetion. Aording to the theorem in Se. 4,the gravitationalWilson loop is equal to the Yang�MillsWilson loop, provided the Yang�Mills potential Aai isthe spin onnetion of the metri under onsideration.Therefore, all we have to do is to ompute the Wilsonloop for a general ontour in the �eld of the Wu�Yangmonopole.This task is easily solvable if we use another in-variane, the gauge invariane of the Wilson loop. Itis well known that the Wu�Yang monopole in hedge-hog gauge (92) an be transformed to the string gaugewhere the potential has only one nonzero omponentalong the third olor axis (plus a Dira string). In thisgauge, the Yang�Mills potential is basially Abelian,and the Wilson loop in any representation J is there-fore given byWGJ =W YMJ = 12J + 1 JXm=�J exp(im�);� = I dxiA3i = Z dSi xir3 : (93)In the last equation, we used the normal Stokes theo-rem for the irulation and also used the fat that in

the string gauge, the magneti �eld of the monopoleis the Coulomb �eld of a point harge; dSi is the el-ement of the spanning surfae for the ontour and isorthogonal to the surfae.Equation (93) is the gravitational Wilson loopfor arbitrary ontours but in a spei� metri givenby Eq. (88). To generalize it to the general metrigiven by (89), it only remains to perform the generaloordinate transformation of Eq. (93). To this end, itis onvenient to use, instead of dSi, its dual dSij suhthat dSi = �ijk dSjk . We reall that under a generaloordinate transformation xi ! yi(x), the ontravari-ant vetor transforms asV i ! V k�kyi;and the antisymmetri ontravariant tensor transformsas dSij ! dSmn �myi �nyj :The �ux in Eq. (93) is therefore given by� = Z dSi xir3 = Z dSij �ijk xkr3 !! Z dSmn �ijk �myi �nyj ykjyj3 : (94)This equation takes a more symmetri form in terms ofexternal oordinates (89),� = � 2R� 32 12 Z dSk �ab �ijk �iwa �jwb w;3Xa=1wa2 = 2R: (95)Equations (93) and (95) are our �nal result for the grav-itational Wilson loop in the ylinder S2 � R spae ofthe onstant urvature R. The Wilson loop impliitlydepends on the metri through Eq. (89). We now makeseveral omments.1) The parallel transporter must depend on the met-ri along the ontour but not on the spanning surfaefor the ontour, beause this surfae an be drawn ar-bitrarily. This is indeed so despite the surfae form ofthe result, beause�k ��ab �ijk �iwa �jwb w� = 0: (96)Therefore, the �ux in Eq. (95) an be presented as airulation of a ertain vetor.2) The �ux in Eq. (95) has the form of a well-known expression for the winding number of a mapping1060



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :S2 7! S2. For a losed or in�nite surfae, the windingnumber is normalized as18� � 2R�3=2 �� Z dSk�ab�ijk�iwa�jwb w = Q = integer: (97)3) For small ontours, Eqs. (93) and (95) reproduethe result of the previous setion. To hek this, werewrite the general small-loop expansion (69) for thespei� metri in Eq. (87). We �ndRklpq = 2Rr6 �kluxu�pqvxv ; gij = R2 r2Æij : (98)Inserting this in Eq. (69) and then performing a generaloordinate transformation xi ! yi(x), we obtain, aftersome simple algebra,WGJ = 1� J(J + 1)6 ��pquyu�iyp�jyq�Sijjyj3 �2 ; (99)whih exatly oinides with the expansion of Eq. (93)in the small loop area �S up to the seond order.8. THE NON-ABELIAN STOKES THEOREM INd= 3 GRAVITYIn Se. 4, we have shown that the gravitational Wil-son loop viewed as a funtional of the metri is equalto the Yang�Mills Wilson loop viewed as a funtionalof the Yang�Mills potential, provided this potential isset equal to the spin onnetion orresponding to themetri in question.We now present the Yang�Mills Wilson loop interms of our non-Abelian Stokes formula, see Eq. (14):WGJ [metri℄ =W YMJ [spin onnetion℄ == Z Dn Æ(n2 � 1) exp iJ2 �� Z d2Sij h�F aijna + �abna (Din)b (Djn)i : (100)We next replae the surfae element by its dualdSij = �ijp dSp with the aim to rewrite this represen-tation for the Wilson loop in terms of the metri of theurved three-dimensional spae. To this end, we �rstdeompose the integration unit vetor n in the dreibein:na = mi eai ; nana = mimjeai eaj == mimjgij = 1: (101)

The new 3-vetorm is a ovariant unit vetor. Beausethe bakground metri gij is �xed, we only hange theintegration variables from n to m asZ Dn Æ(n2 � 1) : : : == Z Dmpg Æ(mimj gij � 1) : : : (102)We next use relation (42) of the �eld strength F aijomputed from the spin onnetionAai = (1=2)�ab!bito the Riemann tensor. The �rst term in the exponentof Eq. (100) beomes�rst term == �dSp�ijp ��12� �abmneanRlkij ebl ek: (103)Using�abeblek = 1pg �lkmeam; pg = det eai ; (104)equation (103) an be ontinued as�rst term = dSp�ijp 12pg Rijkl�klmgmnmn: (105)The ombination of the ovariant Riemann tensor andtwo antisymmetri epsilon symbols has been enoun-tered in Se. 5: in three dimensions, it gives the Ein-stein tensor, see Eq. (73). We thus obtain�rst term = dSppg (RÆpn � 2Rpn) mn; (106)where Rpn is the Rii tensor and R = Rkk is the salarurvature.We now turn to the seond term in the exponentin Eq. (100) and again use deomposition (101). Weexploit fundamental relation (33) that an be presentedas Dbb0j nb0 = ebk (rj)kl ml; (107)where Dbb0j = �jÆbb0 + �bb0Ajis the Yang�Mills ovariant derivative and(rj)kl = �jÆkl + �kjlis the gravitational ovariant derivative. The seondterm is therefore given byseond term = dSp �abeakebl en �ijpmk(ri)ll0 ��ml0(rj)nn0mn0 == dSppg �ijp �klnmk(rim)l(rj m)n: (108)1061



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001Gathering Eqs. (102), (106), and (108) together, we�nally obtain a non-Abelian Stokes theorem for thegravitational Wilson loop or the trae of the spin-Jparallel transporter along a losed ontour:WGJ = Z Dmpg Æ(mimj gij � 1)�� exp iJ2 Z dSkpg ��RÆkp � 2Rkp� mp++ �ijk �pqrmp(rim)q(rj m)r� : (109)Several omments are in order here.1) The holonomy, whih was de�ned as a path-ordered exponential, is here expressed by a simple ex-ponential of an integral over the spanning surfae forthe losed ontour. That is why we all our formula a�Stokes theorem�. The prie to pay is the funtionalintegration over the ovariantly unit vetor m de�nedon the surfae.2) Equation (109) is invariant under di�eomor-phisms in the sense that the holonomy remains invari-ant under a general oordinate transformationxi ! x0 i(xi)and the appropriate hange of the surfae.3) The parallel transporter depends only on the on-tour but must not depend on the spanning surfae. Thesurfae integral in Eq. (109) has the formZ dSk pg V k; (110)and the ondition that it does not depend on the formof the surfae is �k �pg V k� = 0; (111)or equivalently, (rk)kl V l = 0; (112)beause �kkl = �klk = �l lnpg:The veri�ation of Eq. (112) is rather lengthy and werelegate it to the Appendix.4) With ondition (112) or equivalently (111) satis-�ed, the surfae integral an be written asZ dSk pg V k = Z dSk�ijk�jBk = � I dxi Bi (113)proving that it depends only on the ontour, as itshould be. However, the vetor �eld Bi annot be

uniquely determined from the metri tensor and theovariantly unit vetor m.5) The following omment is losely related to theprevious one. Parallel transporters of integer spins1; 2; : : : are de�ned via Christo�el's � symbols andhene by the metri tensor, while parallel transportersof half-integer spins 1=2; 3=2; : : : are not: they arede�ned by the spin onnetion that is not uniquelyonstruted from the metri. Nevertheless, it shouldbe expeted that the holonomy for half-integer spins,being a di�eomorphism-invariant quantity, an be ex-pressed through the metri only. Equation (109) solvesthis non-trivial problem: only the metri and its deriva-tives are involved. The solution is possible only withthe holonomy represented in the form of a surfae in-tegral, as in Eq. (109). One annot solve this problemin a ontour form beause it is not uniquely expressiblethrough the metri. If that were possible, one wouldbe able to write a parallel transporter along an openontour in terms of the metri as well, but that is notso for half-integer spins.6) Equation (109) solves another long-standingproblem in the Yang�Mills theory. It was reentlyshown [12�14℄ that the SU(2) Yang�Mills partitionfuntion in three dimensions an be exatly rewrittenin terms of gauge-invariant quantities given by the sixomponents of the dual spae metri tensor. The usualargument why this rewriting is not very useful is thatexternal soures ouple to the Yang�Mills potential andnot to gauge-invariant quantities. However, we nowhave demonstrated that a typial soure�the Yang�Mills Wilson loop�an be expressed not only throughthe potential but also through the metri tensor, whihis gauge-invariant. Thus, not only the partition fun-tion, but also the Wilson loops in the d = 3 Yang�Millstheory an be expressed through loal gauge-invariantquantities.9. THE NON-ABELIAN STOKES THEOREM INd= 4 GRAVITYThe aim of this setion is to express the holonomyWG(J1;J2) in the representation (J1; J2) in a urved d = 4spae through the metri tensor and its derivatives.Equation (68) presents the holonomy in terms of the(anti)self-dual parts of the spin onnetion. The lat-ter is not uniquely determined by the metri, whih isnot satisfatory. In addition, we would like to elimi-nate the path ordering in the Yang�Mills Wilson loopsW �;� entering Eq. (68). Both goals are ahieved via1062



ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :the non-Abelian Stokes theorem similar to that of theprevious setion, whih we now derive.We start by applying representation (14) to theYang�Mills Wilson loop W �,W �J = Z DnÆ(n2�1) exp�iJ2 Z dS�� h�F a��(�)na++ �abna (D�(�)n)b (D�(�)n)i� ; (114)where Dab� (�) = �� Æab + �ab ��is the ovariant derivative with respet to the self-dualpart of the spin onnetion and F a�� (�) is the appro-priate �eld strength (53); it is related to the Riemanntensor via Eq. (55). We next introdue the antisym-metri tensor m�� = 12na �aAB eA�eB�: (115)The �rst term in Eq. (114) an be written as�R����m��. The tensor m�� has atually only twoindependent omponents. To see this, we introduetwo ovariant projetor operatorsP+���� = 14�aAB�aCDeA� eB� eC� eD� == 14(g��g�� � g��g�� +pg�����); (116)P����� = 14 ��aAB ��aCDeA� eB� eC� eD� == 14(g��g�� � g��g�� �pg�����); (117)satisfying the projetor onditionsP����� g��0g��0P��0�0�� = P����� ; (118)P����� g��0g��0P��0�0�� = 0; (119)P����� g��g�� = 3: (120)P����� are (ovariantly) orthogonal projetors, eahhaving three zero and three nonzero eigenvalues. Theyprojet a general antisymmetri tensor into (ovari-antly) self-dual and anti-self-dual parts, respetively.It is easy to verify that the tensor m�� introduedin Eq. (115) is self-dual,P����� m�� = 0; (121)and satis�es the normalization onditionm��m�� = P+���� m��m�� = 1; (122)whih follows from the normalization n2 = 1. There-fore, m�� indeed has only two independent degrees of

freedom in a given metri. We hange the integrationvariables in Eq. (114) from n to m��,Z Dn Æ(n2 � 1) : : : = Z Dm��pg �� Æ(P����� m��) Æ(m��m�� � 1) : : : (123)We now ompute the ovariant derivative of m�� asm��;� = ��m�� + ����m�� + ����m�� = 12�aAB �� ���na eA�eB� + na(��eA� + ����eA�)eB� ++naeA�(��eB� + ����eB�)� == 12�aAB ���na eA�eB��� na!AC� eC�eB� � naeA�!BC� eC�� ; (124)where in the last equation, we have used fundamentalrelation (33). We now insert the deomposition of thespin onnetion !AB� into the self-dual and anti-self-dual parts, Eq. (51). Using the relations for the �; ��symbols, �aAB�bAC = ÆabÆBC + �ab�BC ;��aAB ��bAC = ÆabÆBC + �ab��BC ; (125)�aAB ��bAC = �aAC ��bAB ; (126)it is easy to see that only the self-dual piee of !AB�survives in Eq. (124), givingm��;� = 12�aABeA�eB� ��� Æab + �ab��� nb == 12�aABeA�eB� (D�(�)n)a : (127)In other words, the gravitational ovariant derivativeof m�� is expressed through the Yang�Mills ovari-ant derivative of the n �eld entering the seond termin Eq. (114).Using onseutively Eqs. (125) and (127), we �nallyrewrite Eq. (114) in terms of the metri:W �J1 = Z Dm��pg Æ(P����� m��)Æ(m��m�� � 1)�� exp�iJ12 Z dS�� ��R���� m���� 12 pg ����� g��0 m��0 m��;�m��;��� : (128)1063



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 2001Similarly, W � is obtained by integrating over the anti-self-dual ovariantly unit tensors:W �J2 = Z Dm��pg Æ(P+���� m��) Æ(m��m�� � 1)�� exp�iJ22 Z dS�� ��R���� m��++ 12 pg ����� g��0 m��0 m��;�m��;��� : (129)As derived in Se. 4.2, the gravitational holonomy inthe representation (J1; J2) is the produt of the twoomponents, WG(J1;J2) =W �J1W �J2 : (130)Equations (128), (129), and (130) onstitute the �non-Abelian Stokes theorem� for the holonomy in a urvedd = 4 spae. It expresses the holonomy via surfaeintegrals over spanning surfaes for the ontour, andpresents the holonomy in terms of the metri tensor andits derivatives only, without refering to the spin onne-tion, even for half-integer representations (J1; J2).10. CONCLUSIONSThe main results of this paper are the non-AbelianStokes theorems for holonomies: the Yang�Mills Wil-son loop (Eq. (14)) and the traes of parallel trans-porters in urved d = 3 (Eq. (109)) and d = 4(Eqs. (128) and (129)) spaes. In all these ases, thepath-ordered exponentials of the onnetions are re-plaed by ordinary exponentials of surfae integrals,whih, however, do not atually depend on the waythe surfae is spanned on the ontour. The prie topay for the removal of path ordering is high: we ob-tain funtional integrals instead. In the simplest aseof the SU(2) Yang�Mills theory, this is an integral overa unit 3-vetor n �living� on the surfae; for the d = 3Riemannian manifold, this is an integral over a ovari-antly unit 3-vetor m, and for d = 4, one integratesover (anti)self-dual ovariantly unit tensors.In spite of the ourrene of funtional integration,we believe that our formulas are aesthetially appeal-ing. Compared to path-ordered exponentials, they arebetter suited to averaging over quantum ensembles ofYang�Mills �elds or over various metris. We hope thatelegant formulas an also be used in more general set-tings.In addition to the general non-Abelian Stokes for-mulas, we have presented holonomy as a surfae inte-gral for a spei� bakground, namely for a onstant-urvature d = 3 spae with the ylinder topology

S2 �R. The �gravitational Wilson loop� is given by aformula for the harater whose argument is the wind-ing number of external oordinates, see Se. 8.Parallel transporters of integer spins have a dualdesription: suh a transporter an be de�ned eitheras a path-ordered exponential of Christo�el symbols oras a path-ordered exponential of the spin onnetionin the appropriate representation. In Se. 4, we haveshown that these representations are equivalent. Eventhough the spin onnetion is not uniquely determinedby the metri tensor, this equivalene implies that theholonomy written in terms of the spin onnetion anin fat be expressed through the metri only.For half-integer spins, the situation is far less trivialbeause the only way to de�ne the holonomy is via thespin onnetion, and it is not at all lear beforehandthat the holonomy an be uniquely written throughthe metri tensor and its derivatives. The non-AbelianStokes theorem proved in this paper demonstrates thatthis rewriting an be ahieved, but only with the holon-omy presented in the surfae form. Although the sur-fae integral does not depend on the way one drawsthe surfae and an atually be written as an integralalong the ontour, the ontour form is not uniquely de-�ned by the surfae one, whih re�ets the ambiguityin determining the spin onnetion from the metri.This �nding has an interesting impliation for theYang�Mills theory in three dimensions, whih an beidentially reformulated as a quantum gravity theorywith the partition funtion written as a funtionalintegral over the metri tensor of the dual spae[12�14℄. This metri tensor is loal and gauge invariant(in the Yang�Mills sense). However, one might wishto alulate the average of the Wilson loop, whih isoriginally de�ned by the Yang�Mills potential, butnot by the metri tensor. In the �quantum gravity�formulation, the Yang�Mills Wilson loop beomes aparallel transporter in the gravitational sense. It istherefore very important that the Yang�Mills Wilsonloop in any representation an be expressed throughthe gauge-invariant metri tensor. Thus, not only thepartition funtion but also the Wilson loop an be pre-sented in terms of loal and gauge-invariant quantities.This subjet is desribed in more detail elsewhere [15℄.One of us (V. P.) thanks NORDITA for kind hospi-tality and the Russian Foundation for Basi Researhfor partial support (grant � 97-27-15L).
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ÆÝÒÔ, òîì 119, âûï. 6, 2001 Non-Abelian Stokes theorems in Yang�Mills : : :APPENDIXProof that Eq. (109) does not depend on thesurfaeThe path-integral representation for the �gravita-tional Wilson loop� in Eq. (109) must not depend onthe hoie of the spanning surfae for a given ontour,but only on the ontour itself. To prove that this is so,we verify Eq. (112), (rk)kl V l = 0; (131)where V k = �RÆkp � 2Rkp�mp ++ �ijk�pqrmp(rim)q(rjm)r;mimjgij = 1: (132)To simplify the notation, we denote ovariantderivatives by � ; � (see [20℄). Expliitly, the ovari-ant derivatives of a salar, a vetor, and a tensor aregiven byS;k = �k S;V i;k = �k V i + �ikl V l; Vi;k = �k Vi � �lik Vl;T ij;k = �k T ij + �ikl T lj + �jkl T il;Tij;k = �k Tij � �lik Tlj � �ljk Til; et: (133)The ordinary derivative of a onvolution of two tensorsan be written as the sum of ovariant derivatives,�k �T (1):::i::: T (2)::::::i � = T (1):::i::: ;k T (2)::::::i ++ T (1):::i::: T (2)::::::i;k : (134)We apply the ovariant derivative to the �rst termof the vetor V k,rk ��RÆkp � 2Rkp� mp� == �RÆkp � 2Rkp�;k mp + �RÆkp � 2Rkp� mp;k: (135)The ovariant derivative of the Einstein tensor is knownto be zero [20, Eq. (92.10)℄. Therefore, only the seondterm survives in Eq. (135).We next apply the ovariant derivative to the se-ond term of V k asrk ��ijk �pqrmp(rim)q(rj m)r� == �ijk �pqr (rkm)p(rim)q(rj m)r ++ 2 �ijk �pqrmp(rim)q(rkrj m)r: (136)

The �rst term here vanishes, for the following reasons.Di�erentiating the ondition that mi is a ovariantlyunit vetor, we obtain0 = �k �mimjgij� = 2gij (rkm)imj == 2 (rkm)imi; (137)beause the ovariant derivative of the metri tensor iszero. This implies that the three vetors (r1;2;3m)i arenot linearly independent, beause three linearly inde-pendent vetors annot be orthogonal to a given vetor(in this ase, mi) in three dimensions. The �rst termin Eq. (136) is the antisymmetrized produt of thesethree linearly dependent vetors and is therefore zero.The seond term in Eq. (136) ontains the ommu-tator of ovariant derivatives, equal to�ijk(rkrj m)r = 12�ijk [rkrj ℄rs ms == 12�ijk grtRtskj ms (138)where Rtskj is the Riemann tensor. Therefore, the se-ond (and the only nonzero) term in Eq. (136) an bewritten as �ijk �pqr grtRtskj mpms (rim)q : (139)We next use Eq. (70) to express the Riemann tensorthrough the Rii and metri tensors and write theprodut of two epsilon symbols as a determinant madeof Kroneker deltas. Performing all onvolutions, weobtain that Eq. (139) an be identially rewritten as�gqs �RÆip � 2Rip�� gps �RÆiq � 2Riq����mpms (rim)q : (140)Here, the �rst term is zero beause of Eq. (137) and inthe seond term, we usegpsmpms = 1:This gives � �RÆiq � 2Riq� (rim)q ; (141)whih anels exatly with Eq. (135). Thus,(rk)kl V l = 0, q.e.d.REFERENCES1. D. Diakonov and V. Petrov, Pis'ma Zh. Eksp. Teor.Fiz. 49, 284 (1989); Phys. Lett. B 224, 131 (1989).1065



D. I. Diakonov, V. Yu. Petrov ÆÝÒÔ, òîì 119, âûï. 6, 20012. D. Diakonov and V. Petrov, in: Non-perturbativeapproahes to Quantum Chromodynamis, Pro. ofthe Int. workshop in ECT�, Trento, ed. by D. Di-akonov, Gathina (1995), p. 36; E-print arhiveshep-th/9606104.3. M. B. Halpern, Phys. Rev. D 19, 517 (1979).4. I. Ya. Aref'eva, Theor. Math. Phys. 43, 353 (1980).5. N. Brali, Phys. Rev. D 22, 3090 (1980).6. Yu. A. Simonov, Sov. J. Nul. Phys. 50, 134 (1989).7. K.-I. Kondo and Y. Taira, E-print arhiveshep-th/9911242.8. D. Diakonov and V. Petrov, Phys. Lett. 242, 425(1990).9. A. M. Polyakov, Nul. Phys. Pro. Suppl. 68, 1 (1998);E-print arhives hep-th/9711002.10. C. Kortals-Altes and A. Kovner, E-print arhiveshep-ph/0004052.11. B. Broda, E-print arhives math-ph/0012035.

12. R. Anisetty, S. Cheluvaraja, H. S. Sharathandra, andM. Mathur, Phys. Lett. B 341, 387 (1993).13. D. Diakonov and V. Petrov, Zh. Eksp. Teor. Fiz. 118,1012 (2000); E-print arhives hep-th/9912268.14. R. Anisetty, P. Majumdar, and H. S. Sharathandra,Phys. Lett. B 478, 373 (2000).15. D. Diakonov and V. Petrov, Phys. Lett. B 493, 169(2000); E-print arhives hep-th/0009007.16. A. Alekseev, L. Faddeev, and S. Shatashvili, J. Geom.Phys. 5, 391 (1989).17. F. A. Lunev, Nul. Phys. B 494, 433 (1997); E-printarhives hep-th/9609166.18. D. Diakonov and V. Petrov, E-print arhives hep-lat/0008004.19. A. M. Perelomov, Generalized Coherent States andtheir Appliations, Springer Verlag, N. Y. (1986); Phys.Rep. 146, 135 (1987).20. L. D. Landau and E. M. Lifshitz, The Classial Theoryof Fields, Pergamon Press (1980).

1066


