КОРРЕЛЯЦИИ НАПРАВЛЕНИЙ ПРИХОДА КОСМИЧЕСКИХ ЛУЧЕЙ СВЕРХВЫСОКИХ ЭНЕРГИЙ С КРУПНОМАСШТАБНОЙ СТРУКТУРОЙ ВСЕЛЕННОЙ

А. В. Глушков^{*}, М. И. Правдин

Институт космофизических исследований и аэрономии Якутского научного центра Сибирского отделения Российской академии наук 677891, Якутск, Россия

Поступила в редакцию 23 ноября 2000 г.

Приведены результаты анализа направлений прихода космических лучей с энергиями $E_0 \ge 4 \cdot 10^{17}$ эВ и зенитными углами $\theta \le 45^{\circ}$, зарегистрированных на Якутской установке за период 1974–2000 гг. Показано, что из плоскости Галактики при $E_0 \approx (2-4) \cdot 10^{18}$ эВ и из плоскости Сверхгалактики при $E_0 \ge 8 \cdot 10^{18}$ эВ наблюдаются повышенные потоки частиц с превышением над ожидаемыми уровнями для случайных распределений на $(4-5)\sigma$.

PACS: 96.40.-z, 98.70.-f

1. ВВЕДЕНИЕ

Поиск источников космических лучей сверхвысоких энергий ($E_0 \ge 10^{17}$ эВ) является трудной задачей астрофизики. Исследования в этом направлении ведутся во всем мире более 40 лет, но до сих о них мало что известно. В глобальном масштабе космические лучи не противоречат изотропному распределению, хотя в области предельно высоких энергий $(E_0 > 10^{19} \text{ sB})$ существует слабая корреляция направлений прихода с плоскостью Галактики (см., например, [1, 2]), а также с плоскостью Сверхгалактики [3, 4]. В работах [5, 6] сообщается об обнаружении кластеров в направлениях прихода первичных частиц с энергиями $E_0 \geq 10^{19}$ эВ. Найдена даже корреляция отдельных кластеров с пульсарами, расположенными в стороне входа Местного рукава Галактики [5]. Имеются также некоторые указания [7,8], что источниками космических лучей предельно высоких энергий могут быть галактики с активными ядрами.

В работе [9] показано, что частицы с энергиями $E_0 \geq 10^{19}$ эВ из экваториальной области Сверхгалактики имеют не только более высокий по сравнению с другими направлениями поток, но и переменную во времени интенсивность. В этой рабо-

те приведены экспериментальные результаты, которые проливают дополнительный свет на проблему происхождения космических лучей сверхвысоких энергий.

2. ИССЛЕДУЕМЫЕ ХАРАКТЕРИСТИКИ И ОБСУЖДЕНИЕ

Ниже рассмотрены широкие атмосферные ливни (ШАЛ) с энергиями $E_0 \ge 4 \cdot 10^{17}$ эВ и зенитными углами $\theta \le 45^{\circ}$, зарегистрированные на Якутской установке за период 1974–2000 гг. Исследованы корреляции направлений их прихода с плоскостями Галактики и Сверхгалактики. В анализ вошли ШАЛ, направления прихода которых находились по данным пяти и более станций, а оси попали в центральный круг установки с радиусом ≤ 1700 м. Эти события дают минимальные ошибки при нахождении основных параметров ШАЛ (направление прихода, координаты оси, E_0 и др.). Энергия первичных частиц находилась из соотношений

$$E_0 \ [\Im B] = (4.8 \pm 1.6) \cdot 10^{17} (\rho_{s,600} (0^\circ))^{1.0 \pm 0.02}, \quad (1)$$

$$\rho_{s,600}(0^{\circ}) \ [\mathrm{M}^{-2}] = \rho_{s,600}(\theta) \exp\left[(\sec\theta - 1)\frac{1020}{\lambda_{\rho}}\right], \quad (2)$$

$$\lambda_{\rho} \ [\Gamma/c_{\rm M}^2] = (450 \pm 44) + (32 \pm 15) \lg(\rho_{s,600}(0^\circ)), \quad (3)$$

^{*}E-mail: a.v.glushkov@ikfia.ysn.ru

Рис. 1. а) Доля первичных частиц от общего числа, приходящих из экваториальных областей ($|b| \leq 10^{\circ}$) Галактики (G) и Сверхгалактики (SG) в зависимости от их энергии. Линии — ожидаемые величины для изотропного потока, вычисленного методом Монте-Карло. б) Энергетический спектр первичных частиц $J(E) \propto E^{-\gamma}$, измеренный на Якутской установке [11]. Линии — изменения интенсивностей по степенному закону: $1 - E_0 < 10^{18.0}$ эВ ($\gamma_1 = -3.05 \pm 0.04$); $2 - 10^{18} \leq E_0 < 10^{19.0}$ эВ ($\gamma_2 = -3.34 \pm 0.05$); $3 - E_0 \geq 10^{19.0}$ эВ ($\gamma_3 = -2.53 \pm 0.25$); кривые 1' и 3' — предполагаемые галактическая и внегалактическая компоненты

где $\rho_{s,600}(\theta)$ — плотность заряженных частиц, измеряемая наземными сцинтилляционными детекторами на расстоянии R = 600 м от оси ливня.

На рис. 1*а* показана доля первичных частиц $r = N(|b_{G(SG)}| \leq 10^{\circ})/N_{all}$ от общего их числа N_{all} , приходящих из экваториальных областей $(|b_{G(SG)}| \leq 10^{\circ})$ Галактики (G) и Сверхгалактики (SG) в зависимости от энергии E_0 . Линии соответствуют ожидаемым величинам для изотропного потока, вычисленного методом Монте-Карло. Северный полюс Сверхгалактики имеет галактические координаты $b_G = 6.32^{\circ}$ и $l_G = 47.37^{\circ}$ [10]. На рис. 16 показан энергетический спектр космических лучей, измеренный на Якутской установке [11].

Видна тенденция к систематическому увеличению величины r_{SG} с ростом энергии при $E_0 \geq$

Рис.2. Кривые 1 — распределения ливней с $E_0 \ge 8 \cdot 10^{18}$ эВ (a) и $E_0 = (3-4) \cdot 10^{18}$ эВ (б) в зависимости от широты их прихода в галактических (G) и сверхгалактических (SG) координатах: N_{exp} — эксперимент; N_{ran} — ожидаемое распределение для изотропного потока; цифры — количество ливней. Гистограммы 2 — отклонения $n_{\sigma} = (N_{exp} - N_{ran})/\sqrt{N_{ran}}$; плавные кривые 2 — изменения в среднем

 $\geq 5 \cdot 10^{18}$ эВ, хотя статистические точности недостаточно велики. Что касается Галактики, то здесь, на первый взгляд, отсутствует избыточный поток со стороны диска. Однако обращает на себя внимание слабое увеличение r_G при $E_0 \leq 4 \cdot 10^{18}$ эВ, которое (как будет показано ниже) все же свидетельствует об определенной роли диска Галактики в происхождении частиц указанных энергий.

Рассмотрим этот вопрос более подробно. На рис. 2a представлены распределения по направлениям прихода 319 ливней с $E_0 \ge 8 \cdot 10^{18}$ эВ в галактических и сверхгалактических координатах в зависимости от широты прихода (с шагом $\Delta b = 5^{\circ}$). Вверху (1) показаны наблюдаемые (N_{exp}) и ожидаемые (N_{ran}) распределения, а внизу (2) — отклонения числа измеренных событий от ожидаемого в единицах стандарта $\sigma = \sqrt{N_{ran}}$; $n_{\sigma} = (N_{exp} - N_{ran})/\sigma$. Кривые на рис. 2a (2) соответствуют поведению n_{σ} в среднем при сглаживании рядом Фурье с числом гармоник 5.

Значения N_{ran} находились розыгрышем рассматриваемого числа ливней, распределенных случайным образом по небесной сфере. Делалось это следующим образом. Для каждого измеренного ливня путем замены его реальных времени прихода и азимута (в горизонтальной системе координат установки) на случайные находилось по 500 направлений в галактических (сверхгалактических) координатах. Полученные таким образом распределения случайных событий нормировались затем по абсолютной величине на реальные.

Видно, что в плоскости Сверхгалактики имеется существенный избыток событий. Так, в полосе широт $\Delta b_{SG} = -10-0^{\circ}$ находятся 65 ливней (ожидается 35), с превышением (65 – 35)/ $\sqrt{35} \approx 5\sigma$. Плоскость Галактики в этом диапазоне энергий себя никак не проявляет, если не считать, что в полосе $\Delta b_G = -5-0^{\circ}$ есть слабый ($\approx 2\sigma$) положительный выброс.

На рис. 26 показаны распределения направлений прихода 874 ливней с $E_0 = (3-4) \cdot 10^{18}$ эВ. Они имеют относительный максимум величины r_G по сравнению с ожидаемым изотропным потоком (рис. 1*a*). У этих событий в плоскости Галактики ($|b_G| \leq 5^\circ$) наблюдается заметный пик с превышением над ожидаемой величиной на $(121-87)/\sqrt{87} \approx 3.6\sigma$. Что касается Сверхгалактики, то она в этом диапазоне энергий себя не проявляет.

Из приведенных выше данных возникает следующая картина. В области энергий с $E_0 \leq \leq (6-8) \cdot 10^{18}$ эВ первичные частицы, вероятно, генерируются, главным образом, в Галактике. Увеличение их доли в диске (r_G) можно интерпретировать как уменьшение «размытия» магнитным полем Галактики направленного движения частиц из этой области. Резкая смена формы энергетического спектра (рис. 16) и сильная корреляция направлений прихода частиц с плоскостью Сверхгалактики при $E_0 \geq (0.8-1) \cdot 10^{19}$ эВ говорят об их преимущественно внегалактическом происхождении.

Плоскость Галактики расположена почти перпендикулярно плоскости Сверхгалактики (рис. 3*a*). Воспользуемся этим обстоятельством, чтобы уточнить некоторые детали рис. 2. На рис. 4 показаны распределения без событий с $|b_{SG(G)}| \leq 10^\circ$ в плоско-

Рис. 3. а) Схема взаимного расположения Млечного пути Галактики (G) и Млечного пути Сверхгалактики (SG): C_G (C_{SG}) — центры; AC_G (AC_{SG}) — антицентры; N_G (N_{SG}) — Северные полюсы; OO' — линия пересечения плоскостей; S — точка наблюдения; заштрихованные секторы — видимые области для Якутской установки ШАЛ. δ) Схема спиральной структуры Галактики [12]

сти Сверхгалактики (Галактики). Видно, что распределения на рис. 2 и 4 схожи между собой, но последние имеют более сильную корреляцию в отмеченных выше случаях. Так, в полосе широт Сверхгалактики $\Delta b_{SG} = -10-0^{\circ}$ при $E_0 \ge 8 \cdot 10^{18}$ эВ находится 56 ливней (ожидается 28), с превышением $(56-28)/\sqrt{28} \approx 5.3\sigma$, а в плоскости Галактики $(|b_G| \le 5^{\circ})$ при $E_0 = (3-4)\cdot 10^{18}$ эВ виден пик с превышением на $(105-68)/\sqrt{68} \approx 4.5\sigma$. На рис. 5 показаны направления прихода ливней с $E_0 = (3-4)\cdot 10^{18}$ эВ на небесной сфере в галактических (G) и сверхгалактических (SG) координатах.

Такое усиление корреляций на первый взгляд кажется странным, особенно в случае Галактики при $E_0 = (3-4) \cdot 10^{18}$ эВ. Какое влияние на нее может

Рис. 4. Распределения, представленные на рис. 2, но без событий в полосе $|b_{SG(G)}| \le 10^{\circ}$

оказать Сверхгалактика гораздо большего объема, включающая в себя Галактику как часть? Это возможно лишь в том случае, если частицы указанных энергий генерируются также вне Галактики.

В этой связи большой интерес вызывают распределения событий в полосе широт с $|b_{SG(G)}| \leq 10^{\circ}$. Они показаны на рис. 6 и 7. Видно, что все распределения на рис. 6 оказались другими. Во-первых, они сильно отличаются от ожидаемых для случайных событий. Так, ливни на рис. 6a(G) дают $\chi^2 = 50$ для n = 30 степеней свободы (вероятность случайности $P \approx 10^{-2}$), а на рис. $6a(SG) - \chi^2 = 55$ $(P \approx 3.5 \cdot 10^{-3})$. На рис. 66 имеем для Галактики $(G) \ \chi^2 = 77 \ (P < 10^{-5})$ и Сверхгалактики $\chi^2 = 85 \ (P < 10^{-5})$. Во-вторых, они совершенно не похожи на распределения рис. 2. Этот результат кажется неожиданным, если полагать, что данные на рис. 6 являются лишь частью общей выборки событий рис. 2.

Вернемся к распределению направлений прихода

ливней на рис. 7. Так как плоскости Сверхгалактики и Галактики расположены почти перпендикулярно, события в полосе $|b_{SG}| \leq 10^{\circ}$ с разными b_G (рис. 6G) фактически являются их распределением вдоль диска Сверхгалактики по долготе l_{SG} . И наоборот, распределение событий в полосе $|b_G| \leq 10^{\circ}$ с разными b_{SG} (рис. 6SG) являются их распределением вдоль диска Галактики по долготе l_G . Отсчет l_{SG} ведется от направления на центр Сверхгалактики по ходу часовой стрелки (рис. 3a).

Представленные в координатах долготы распределения направлений прихода ливней из дисков $(|b| \leq 10^{\circ})$ Сверхгалактики и Галактики показаны на рис. 8. Данные на рис. 8a(SG) можно интерпретировать следующим образом. В обозреваемом секторе диска Сверхгалактики ($l_{SG} \approx 0-130^{\circ}$) относительная интенсивность космических лучей с $E_0 \geq 5 \cdot 10^{18}$ эВ меняется плавно (сплайн-кривая на рис. 8a2). Увеличение потока при $l_{SG} \approx 90^{\circ}$, где пересекаются плоскости Сверхгалактики и Галактики, происходит, скорее всего, из-за дополнительного вклада частиц из диска Галактики. Пик на рис. 8a2(G) при $l_G \approx 137^{\circ}$ также обусловлен пересечением этих плоскостей.

Теперь проанализируем данные на рис. 86, где представлены ливни с $E_0 = (2.5-4) \cdot 10^{18}$ эВ. Первый пик в диске Галактики (распределение величин n_{σ}) при $l_G \approx 70^{\circ}$ обусловлен, по-видимому, повышенным потоком частиц из выхода Местного рукава Галактики. Это хорошо видно на рис. 36, где схематически изображена спиральная структура Галактики [12]. Обозреваемый Якутской установкой сектор диска Галактики зачернен. Четвертый пик при $l_G \approx 180^{\circ}$ вызван более высокой интенсивностью из антицентра, где поглощение частиц в диске наименьшее. Это вполне возможно, если частицы приходят также извне Галактики.

Что касается пиков при $l_G \approx 110$ и 155°, то их можно связать с другими рукавами Галактики. На рис. 9*д* показаны магнитные поля рукавов в диске Галактики [13]. Светлые кружки указывают на ориентацию поля навстречу наблюдателю, темные — от наблюдателя. Напряженность пропорциональна размерам кружков.

На рис. 9 показаны распределения величин n_{σ} для ливней, приходящих из экваториальной области $(|b_G| \leq 10^\circ)$ Галактики с разными энергиями, в зависимости от долготы l_G . Взяты события с зенитными углами $\theta \leq 60^\circ$ и осями ливней внутри всего периметра Якутской установки. Плавными кривыми изображены сплайн-функции ряда Фурье с числом гармоник m = 13.

Рис. 5. Направления прихода 686 ливней с $E_0 = (3-4) \cdot 10^{18}$ эВ на небесной сфере в галактических (G) и сверхгалактических (SG) координатах без событий в полосе $|b_{SG(G)}| \le 10^{\circ}$

Рис.6. Распределения событий в полосе $|b_{SG(G)}| \le 10^{\circ}$

Обращает на себя внимание последовательная смена отдельных фрагментов гистограмм. Так, отмеченный выше избыток частиц из антицентра при $E_0 = (2.5 - 4) \cdot 10^{18}$ эВ наблюдается и при больших энергиях (рис. 9*a*). При $E_0 < 2.5 \cdot 10^{18}$ эВ он слабеет (рис. 9*b*) и в области $E_0 \approx (1 - 1.5) \cdot 10^{18}$ эВ исчезает полностью (рис. 9*c*). В направлении $l_G \approx 75^\circ$,

1033

наоборот, при $E_0 \geq 5 \cdot 10^{18}$ эВ имеется провал, который с уменьшением энергии первичных частиц до $E_0 \approx 2 \cdot 10^{18}$ зВ переходит в пик (рис. 96). Особенно выделяются по величине пики в секторе $\Delta l_G \approx 105 - 145^{\circ}$ у событий с $E_0 < 4 \cdot 10^{18}$ зВ (рис. 96-г). При $E_0 = (2.5 - 4) \cdot 10^{18}$ зВ превышение наблюдаемого числа событий 690 над ожидаемым 581 для изотропного распределения в этом секторе составляет (690–581)/ $\sqrt{581} \approx 4.6\sigma$.

Местоположения отмеченных выше пиков коррелируют с расположением магнитных рукавов Галактики (рис. 9*д*). Поэтому не исключено, что сами пики и динамика их изменений при $E_0 < 4 \cdot 10^{18}$ эВ вызваны активностью этих рукавов. В разных интервалах энергий роль отдельных рукавов в происхождении космических лучей, по-видимому, разная.

В области энергий $E_0 \geq 4 \cdot 10^{18}$ эВ вклад Галактики, судя по всему, не так велик. Провал на рис. 9d при $l_G \approx 75^\circ$ связан, скорее всего, с относительно более сильным поглощением частиц внегалактического происхождения рукавом Ориона (см. рис. 3δ) по сравнению с прилегающими к нему участками диска Галактики. Обращает на себя внимание на рис. 9δ провал при долготе $l_G \approx 137^\circ$, который соответствует линии пересечения плоскостей Галактики и Сверхгалактики (линия SO на рис. 3a). Можно предположить, что он вызван повышенным потоком частиц из прилегающих к экватору Сверхгалактики областей из-за относительно более сильного их поглощения в самом диске Сверхгалактики.

Данные на рис. 862(SG) показывают, что события в полосе $|b_{SG}| \leq 10^{\circ}$ при пересечении с диском Галактики при $l_{SG} \approx 90^{\circ}$ также имеют провал. Его можно объяснить относительно более сильным поглощением частиц, приходящих извне Галактики, в диске Галактики по сравнению с прилегающими к нему областями. В направлении на центр Сверхгалактики ($l_{SG} \approx 0^{\circ}$) наблюдается четко выраженный

Рис.7. Направления прихода 194 ливней с $E_0 = (3-4) \cdot 10^{18}$ эВ на небесной сфере в галактических (G) и сверхгалактических (SG) координатах для событий в полосе $|b_{SG(G)}| \le 10^{\circ}$

Рис. 8. Распределения ливней с энергиями $E_0 \ge 5 \cdot 10^{18}$ эВ (a) и $E_0 = (2.5-4) \cdot 10^{18}$ эВ (б), приходящих из дисков ($|b| \le 10^\circ$) Галактики (G) и Сверхгалактики (SG) в зависимости от долготы их прихода. Обозначения аналогичны рис. 2

пик с превышением над ожидаемой величиной для случайного распределения $(46-25)/\sqrt{25} \approx 4\sigma$ (в угловом секторе $\Delta l_{SG} = 15^{\circ}$).

Исходя из того, что на рис. 862(SG) проявляется определенная структура Сверхгалактики, приходится допускать возможным существование частиц с энергиями $E_0 = (2.5-4) \cdot 10^{18}$ эВ внегалактическо-

Рис.9. Распределения ливней, приходящих из диска Галактики ($|b_G| \leq 10^\circ$), по долготе в зависимости от их энергии: $E_0 \geq 10^{18.6}$ эВ (a), $E_0 = 10^{18.4-18.6}$ эВ (δ); $E_0 = 10^{18.2-18.4}$ эВ (e); $E_0 = 10^{18.0-18.2}$ эВ (z); ∂ — расположения магнитных рукавов Галактики [13]: \circ — поле направлено навстречу наблюдателю; \bullet — от наблюдателя. Стрелки — линия пересечения плоскостей Галактики и Сверхгалактики ($l_G \approx 137^\circ$); цифры — числа событий

го происхождения. А если это так, то их доля может оказаться сравнимой с вкладом Галактики. Предположим, что она составляет половину. Тогда энергетический спектр на рис. 16 можно представить как

Рис. 10. Кривые 1 — распределения ливней с $E_0 \ge 10^{19}$ эВ в зависимости от широты их прихода в сверхгалактических координатах (1) по данным Якутской установки (*a*) и AGASA [6] (*б*); гистограммы 2 — отклонения $n_{\sigma} = (N_{exp} - N_{ran})/\sqrt{N_{ran}}$ (обозначения см. на рис. 2)

сумму галактической (1') и внегалактической (3')компонент. Спектр 1' не противоречит гипотезе [14] о том, что галактические первичные частицы могут быть преимущественно нейтронами с таким по форме спектром. На это указывает обнаруженное в [14] на установке AGASA избыточное излучение вблизи центра Галактики с превышением на 4.1 σ над ожидаемым изотропным потоком. Этот результат подтвердила и уточнила группа SUGAR [15]. Якутская установка, к сожалению, центр Галактики не видит.

Отмеченные выше факты заметных корреляций направлений прихода космических лучей с плоскостями Галактики и Сверхгалактики стали возможны благодаря огромной статистике зарегистрированных на Якутской установке ливней (около 37000 при $E_0 \ge 10^{18}$ эВ) и жесткому их отбору при анализе. На установке AGASA, схожей с нашей по типу детекторов и методики обработки ливней, аналогичных результатов пока нет. В работе [6] лишь обращается внимание на то, что при $E_0 \ge 4 \cdot 10^{19}$ эВ вблизи плоскости Сверхгалактики обнаружены два кластера.

На первый взгляд, результаты исследований на Якутской установке и AGASA не согласуются между собой с точки зрения ответа на вопрос о возможной роли Сверхгалактики в происхождении космических лучей предельно высоких энергий. Однако здесь нет противоречия. Это следует из рис. 10, где приведены распределения направлений прихода ливней с $E_0 \ge 10^{19}$ эВ в сверхгалактических координатах (с шагом $\Delta b_{SG} = 10^{\circ}$) по данным обеих уста-

новок. Распределение, аналогичное измеренному на установке AGASA, получено нами как сумма трех распределений, представленных в работе [6]. Гистограммами 2 показаны n_{σ} — отклонения числа измеренных событий от ожидаемых для изотропных потоков (аналогичные рис. 26). Количество рассмотренных событий одинаково. В нашем случае взяты ливни с $\theta \leq 60^{\circ}$, зарегистрированные всей площадью (даже с осями, выходящими за периметр установки).

Видно, что, хотя исходные распределения 1 на рис. 10 разные, распределения 2 схожи между собой. Отметим некоторые важные детали. Во-первых, на каждом из распределений 2 наблюдаются в полосе широт $|b_{SG}| \leq 10^{\circ}$ превышения зарегистрированных событий над ожидаемыми на $(1.8-2.1)\sigma$. Во-вторых, симметрично плоскости Сверхгалактики при $|b_{SG}| \approx 10-20^{\circ}$ имеются дефициты событий (провалы) величиной около -1.5σ . На фоне этих провалов пики избыточного излучения из плоскости Сверхгалактики становятся более значимыми. В какой-то мере совпадают между собой и другие детали распределений 2. Это говорит о неслучайном их характере.

Из сравнения наших данных на рис. 2 и 10 видна нецелесообразность выбора шага $\Delta b_{SG} = 10^{\circ}$, так как это приводит к заниженной значимости полученных результатов. Реальная точность эксперимента, особенно при жестком отборе событий для анализа, не хуже 1–2°. Из факта существования корреляции направлений прихода первичных частиц при $E_0 \ge 8 \cdot 10^{18}$ эВ с диском Сверхгалактики следует, что частицы внегалактического происхождения должны быть электрически нейтральными. В противном случае при наличии электрического заряда z они в зависимости от энергии E_0 должны были бы двигаться в магнитном поле по траекториям с радиусом кривизны

$$R = E_0/300Hz. \tag{4}$$

Даже протоны с энергиями порядка 10^{19} эВ имели бы в магнитном поле Галактики ($H \approx 3 \cdot 10^{-6}$ Гс) радиус кривизны примерно 3 кпк, значительно меньший радиуса диска Галактики (≈ 15 кпк). Межгалактические магнитные поля тоже, хотя они и слабые ($H \approx 9 \cdot 10^{-10}$ Гс), для протонов указанных энергий дают $R \approx 10$ Мпк, что гораздо меньше диаметра Сверхгалактики (≈ 60 Мпк). В этих условиях космические лучи «забыли» бы места своего образования и утратили бы связь по направлению движения со структурой Галактики и Сверхгалактики, что не наблюдается.

Такими частицами вряд ли могут быть нейтроны. При $E_0 \sim 10^{19}$ эВ они имеют лоренц-фактор порядка 10¹⁰ и в состоянии преодолеть до своего распада расстояние порядка 100 кпк, которое во много раз меньше размера Сверхгалактики. Скорее всего, это должны быть какие-то иные нейтральные частиц. К такому выводу мы пришли в результате комплексного анализа пространственно-временной структуры ШАЛ по данным Якутской установки [16-18]. В этих работах показано, что при $E_0 \leq (1-3) \cdot 10^{18}$ эВ экспериментальные данные согласуются с расчетами по модели QGSJET [19] в предположении меняющегося состава первичных частиц от смеси, обогащенной при $E_0 \sim 10^{17}$ эВ тяжелыми ядрами (z = 10-30 составляют $63 \pm 7\%$ [20]), к более легкой с преобладанием при $E_0 \sim 10^{18}$ эВ протонов. В области энергий $E_0 \ge (3-5) \cdot 10^{18}$ эВ ливни развиваются по-другому. Они существенно меняют свою поперечную структуру. Эти изменения не находят своего объяснения в рамках модели QGSJET (ни при каком составе первичных частиц от протонов до ядер железа) и требуют иных представлений о развитии ШАЛ в области предельно высоких энергий.

3. ЗАКЛЮЧЕНИЕ

Из приведенных выше данных видно, что космические лучи с энергиями $E_0 \approx (3-5) \cdot 10^{18}$ эВ имеют корреляции по направлениям прихода с Галактикой и Сверхгалактикой. Это дает некоторое основание полагать, что частицы таких энергий могут быть как галактического, так и внегалактического происхождения. Что касается области энергий $E_0 \geq 8 \cdot 10^{18}$ эВ, то здесь имеются определенные указания на их преимущественно внегалактическое происхождение.

Изложенные выше факты и результаты [16–18] говорят в пользу гипотезы о возможном существовании в первичном излучении внегалактического происхождения предельно высоких энергий нейтральных частиц. На своем пути к Земле они «просвечивают» крупномасштабную структуру Вселенной, охватывая, возможно, объем гораздо больший, чем размеры Сверхгалактики.

Работа выполнена при финансовой поддержке Министерства науки России Якутской комплексной установки ШАЛ (регистр. № 01-30), включенной в «Перечень уникальных научно-исследовательских и экспериментальных установок национальной значимости».

ЛИТЕРАТУРА

- J. Szabelsky, J. Wdowczyk, and A. W. Wolfendale, J. Phys. G 12, 1433 (1986).
- B. N. Afanasiev, M. N. Dyakonov, T. A. Egorov et al., in *Proc. 24-th Int. Conf. on Cosmic Rays*, Rome (1995), vol. 2, p. 756.
- T. Stanev, P. L. Bierman, J. Lloyd-Evans et al., Phys. Rev. Lett. 75, 3056 (1995).
- А. А. Иванов, А. Д. Красильников, С. И. Никольский, М. И. Правдин, Изв. РАН, серия физ. 61, 520 (1997).
- **5**. А. А. Михайлов, Изв. РАН, серия физ. **63**, 557 (1999).
- M. Takeda, N. Hayashida, K. Honda et al., Astrophys. J. 522, 225 (1999).
- **7**. А. В. Глушков, Письма в ЖЭТФ **48**, 513 (1988).
- 8. А. В. Урысон, ЖЭТФ 116, 1121 (1999).
- 9. А. В. Глушков, И. Е. Слепцов, Изв. РАН, серия физ. 65, 437 (2001).
- A. Hewitt and G. Burbidgr, Astrophys. J. Suppl. Series 63, 1–246 (1987).
- M. I. Pravdin, M. N. Dyakonov, A. V. Glushkov et al., in *Proc. 26-th Int. Conf. on Cosmic Rays*, Salt Lake City (1999), vol. 3, p. 292.

- 12. Y. M. Georgelin and Y. P. Georgelin, Map in *Cambridge Atlas of Astronomy*, ed. by J. Audouze and G. Israel, Cambridge University Press (1988), p. 308.
- 13. A. G. Lyne and F. Graham-Smith, *Pulsar Astronomy*, Cambridge University Press (1990).
- 14. N. Hayashida, M. Nagano, D. Nishikawa et al., Astropart. Phys. 10, 303 (1999).
- J. A. Bellido, R. W. Clay, B. R. Dawson, and M. Johnston-Hollitt, E-print archive, astro-ph/0009039 (2000).
- А. В. Глушков, В. Б. Косарев, И. Т. Макаров и др., Письма в ЖЭТФ 67, 361 (1998).

- А. В. Глушков, И. Т. Макаров, М. И. Правдин и др., Письма в ЖЭТФ 71, 145 (2000).
- А. В. Глушков, М. И. Правдин, И. Е. Слепцов и др., ЯФ 63, 1557 (2000).
- 19. N. N. Kalmikov, G. B. Khristiansen, S. S. Ostapenko, A. I. Pavlov, in Proc. 24-th Int. Conf. on Cosmic Rays, Rome (1995), vol. 1, p. 123.
- **20**. Е. А. Вишневская, Н. Н. Калмыков, Г. В. Куликов и др., ЯФ **62**, 300 (1999).