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CONDUCTANCE OF THE ELLIPTICALLY SHAPEDQUANTUM WIRES. N. Shevhenko *, Yu. A. KolesnihenkoB. I. Verkin Institute for Low Temperature Physis and EngineeringNational Aademy of Sienes of Ukraine61164, Kharkov, UkraineSubmitted 25 Otober 2000The ondutane of a ballisti elliptially shaped quantum wire is investigated theoretially. It is shown thatthe e�et of the urvature results in a strongly osillating dependene of the ondutane on the applied bias.PACS: 73.20.Dx, 73.50.-h1. INTRODUCTIONReent advanes in semiondutor physis and teh-nology enabled the fabriation and investigation ofnanostruture devies that have some important prop-erties, suh as small size, redued dimensionality, rela-tively small density of harge arriers, and hene, largemean free path (whih means that partiles exist in theballisti regime, and sattering proesses an thereforebe negleted) and large Fermi wavelength �F . One ofmesosopi systems of partiular interest is the quan-tum wire in whih partiles are onstrained to movealong a one-dimensional urve due to quantization ofthe transverse modes1). One of the numerous impor-tant problems pertaining to the quantum wire is todetermine the in�uene of the proess of reduing thedimensionality upon properties of the system.Jensen and Koppe [1℄ and da Costa [2℄ have empha-sized that a low dimensional system, in general, hassome knowledge of its surrounding three-dimensionalCartesian spae: the e�etive potential arises from themesosopi on�nement proess, whih onstrains par-tiles to move in a domain of a redued dimensionality.Namely, it was shown that a partile moving in a one-or two-dimensional domain is a�eted by an attrativee�etive potential [2℄; this result was �rst obtained inRef. [3℄ and later in Ref. [4℄. This idea was widely stud-ied by several other authors (see Refs. [5�12℄ and, for*E-mail: sshevhenko�ilt.kharkov.ua1) We study here only the one-hannel wire with only the low-est subband oupied.

example, Ref. [13℄ about the experimental realizationof suh systems).It was also shown in Ref. [14℄ that the torsion of thetwisted waveguide a�ets the wave propagation in thewaveguide independently of the nature of the wave. Inpartiular, the torsion of the waveguide results in therotation of the polarization of light in a twisted op-tial �ber [15℄. In Ref. [16℄, the authors prove thatin a waveguide, be it quantum or eletromagneti one,bound states exist. Several papers have been devotedto the relation of the quantum waveguide theory to thelassial theory of aousti and eletromagneti waveg-uides (see Ref. [6℄ and referenes therein).The e�et of the urvature on quantum propertiesof eletrons on a two-dimensional surfae, in a quantumwaveguide, or in a quantum wire an be observed by in-vestigating kineti and thermodynami harateristisof quantum systems [8�12℄. In this paper, we proposeto use measurements of the ondutane G of a quan-tum wire for this purpose; we show that the re�etion ofeletrons from regions with a variable urvature resultsin a non-monotonous dependene of the ondutaneon the applied bias.In Ref. [4℄, the Shrödinger equation on the ellip-tially shaped ring was solved numerially in order toobtain the eigenvalue spetrum of a partile on�ned tothe ring. The authors studied a quantum mehanialsystem on�ned to a narrow ring by the retangularwell potential. They showed that in the limit as thering width  tends to zero, the behavior of the systemis similar to the straight line motion with the e�etivepotential931 5*
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Fig. 1. Elliptially shaped quantum wire

Veff = � ~28mR2 ; (1)where R is the radius of urvature. Later, in Ref. [9℄,the eletron energy spetrum in an elliptial quantumring was onsidered in onnetion with the persistenturrent; the authors have onluded that the e�etivepotentials Veff are di�erent for di�erent on�ning po-tentials even in the limit as  tends to zero. Thisonlusion is in ontradition with the results of someother papers [2; 6℄. We address this problem in thepresent paper; we investigate the derivation of the one-dimensional Shrödinger equation in order to under-stand deeper how the partile motion along the urveC is a�eted by the on�ning potential. We demon-strate the onsisteny with the previous results in [2℄:the e�etive potential is universal for di�erent on�n-ing potentials and depends only on the urvature (seeEq. (1)).In Se. 2, we study the derivation of the one-dimensional Shrödinger equation starting from thetwo-dimensional Shrödinger equation desribing anon-relativisti eletron that moves in a plane2) and issubjeted to the on�ning potential V . In Se. 3, weapply these results to theoretially study the ondu-tane of the quantum wire that onsists of two linearparts and one elliptially shaped part between them;the wire is onneted to two onduting reservoirs atdi�erent voltages (see Fig. 1). In Se. 4, we disuss thein�uene of the urvature on the ondutane.2) We osider only �at urves and we refer the reader interestedin the e�et of the torsion to Ref. [7℄.

2. SCHRÖDINGER EQUATIONIn this setion, we follow the argument given in [2℄.We onsider the eletron with the e�etive mass mmoving in a quantum wire along a urve C that is on-struted by a prior on�nement potential V . For sim-pliity, we start with the two-dimensional motion. Weintrodue the orthonormal oordinate system3) (s; q),where s is the ar length parameter and q is the o-ordinate along the normal n = n(s) to the refereneurve C. The urve C is then desribed by a vetorvalued funtion r(s) of the ar length s. In a viinityof C, the position is therefore desribed byR(s; q) = r(s) + qn(s): (2)To obtain a meaningful result, the partile wavefuntion must be �uniformly ompressed� into a urve,thereby avoiding tangential fores [2; 4; 9℄. We thusonsider V to depend only on the q oordinate thatdesribes the displaement from the referene urve C;this means that points with the same q oordinate butdi�erent s oordinates (whih desribe the position onC) have the same potential. This potential involvesa small parameter  suh that the potential inreasessharply for every small displaement in the normal di-retion;  is the harateristi width of the potentialwell V . The simplest examples of these potentials arethe retangular well potential and the paraboli-troughpotential (we note that the real potential would likelybe a ombination of both, however). The small param-eter in the problem is therefore =R� 1 [5℄.The motion of the eletron obeys the time-independent Shrödinger equation� ~22m�s;q + V(q) = " ; (3)where the Laplaian is�s;q = 1h ��s 1h ��s + 1h ��qh ��q ; (4)with h = 1� k(s)q (5)being the Lamé oe�ient (orresponding to the lon-gitudinal oordinate s) that depends on the urvaturek = k(s) in aordane with the Frenet equation.3) The advantages of establishing the (s; q) oordinate sys-tem from the very beginning are that it allows the most generalanalysis and that (beause of the diagonal struture of the met-ri tensor) we an deompose the dynamial equation of motioninto two equations in the zero-order approximation in the widthof the quantum wire.932



ÆÝÒÔ, òîì 119, âûï. 5, 2001 Condutane of the elliptially shaped quantum wireTo eliminate the �rst-order derivative with respetto q from Eq. (3)4), we introdue the new wave funtione by e (s; q) = ph (s; q): (6)This is the wave funtion introdued in Ref. [2℄ and itis normalized suh thatZ ds dq ��� e (s; q)���2 = 1: (7)Shrödinger equation (3) then beomes� ~22m � ��s 1h2 ��s + �2�q2� e ++ Veff (s; q) e + V(q) e = " e ; (8)whereVeff (s; q) = � ~22m �� h�2 k24 + q2h�2 d2kds2 + 5q24 h�4�dkds�2! ; (9)whih is in agreement with Refs. [5; 8℄.One must be areful with Eq. (8) in order to avoidmistakes found in the literature [7; 9℄. First, we an notdeompose this equation, whih ontains terms that arefuntions of both s and q; into two equations intro-duing e (s; q) = �n(q)�t(s) as in Ref. [7℄, where theauthors obtained Eq. (31) for �t(s) with oe�ientsdepending on the q variable. To understand anothermistake [9℄, we onsider Eq. (8) within the perturba-tion theory in the small parameter  (whih is smallompared to R) (see also Ref. [6℄). We expand h�2and Veff in series in q . , and expliitly write thezeroth term as h�2 = 1 + 1Xl=1 fl(s)ql;Veff (s; q) = � ~22m  k2(s)4 + 1Xl=1 yl(s)ql! :Equation (8) an then be rewritten as� bH0 + bV � e = " e ; (10)4) We do this to eliminate terms of the form f(q)�=�q that werealled �dangerous terms� in Ref. [1℄. We annot use f(q) = f(0)beause f(q)�=�q � [f(0) + qdf(0)=dq℄�=�q: although q � , wehave �=�q � �1, and the seond term in the brakets is there-fore the order 0, and this is the order of terms in whih we areinterested below.

wherebH0 = � ~22m � �2�s2 + �2�q2�� ~22m k2(s)4 + V(q); (11)bV = ~22m 1Xl=1 ql�� ��sfl(s) ��s + yl(s)� : (12)We note that bV is a seond order di�erential operatorin s. The solution of Eq. (10) ise = e (0) + 1Xl=1 e (l);where e (l) � l and e (0) orresponds to the zeroth-order problem, bH0 e (0) = " e (0). This equation anbe deomposed by separating the wave funtion ase (s; q) = �(q)�(s),� ~22m d2dq2 � + V(q)� = Et� (13)and � ~22m d2ds2�+ Veff (s)� = El�; (14)where Veff (s) is given by Eq. (1), " = Et + El, andR = k(s)�1 is the urvature radius (in the next se-tion, we omit the subsript �l�, identifying the en-ergy E with its longitudinal omponent El). Equa-tion (13) desribes the on�nement of the eletron to a-neighborhood of the urve C and Eq. (14) desribesthe motion along the s oordinate (along C). In fat,Eq. (14) is a onventional one-dimensional Shrödingerequation for the eletron moving in the s-dependentpotential Veff (s); the latter relates the geometry andthe dynamial equation. The origin of this potential isin the wavelike properties of the partiles; Veff is es-sential for the values of R=�F that are not large. Weemphasize that the e�etive potential in Eq. (1) in thezeroth-order approximation in =R is independent ofthe �one-dimensionalization� method, i.e. of the hoieof V(q) (ompare this onlusion with the one derivedin Ref. [9℄).We also note that if we started from the three-dimensional equation of motion, we would obtain anadditional e�etive potential that vanishes in the pla-nar situation [2℄.3. CONDUCTANCEThe ondutane G of quantum ontats an berelated to the transmission probability T (E) by Lan-933



S. N. Shevhenko, Yu. A. Kolesnihenko ÆÝÒÔ, òîì 119, âûï. 5, 2001dauer's formula [17℄. At zero temperature and �nitevoltages V , it takes the formG = G02 �T �EF + eV2 �+ T �EF � eV2 �� ; (15)where G0 = 2e2=h and EF is the Fermi energy. Thetwo terms in this equation orrespond to two eletronibeams moving in the opposite diretions with di�erentbias energies. We are interested in the transmissionprobability T (E) for the eletron energy E.In this setion, we onsider the urve C to on-sist of three ideally onneted parts (see Fig. 1): (i)linear (s < 0), (ii) elliptial (0 < s < l, where lis half of the ellipse perimeter), and (iii) one morelinear domain (s > l). We onsider wave funtionsin regions (i) and (iii) to be the respetive planewaves  1 = eik1s + re�ik1s and  3 = teik1s, wherek1 =p2mE=~2 is the wave vetor and t and r are thetransmission and re�etion oe�ients; the transmis-sion probability is given by T = jtj2. We have  2 � �,where � is the solution of Eq. (14) with the e�etive po-tential given by Eq. (1). The urvature an be writtenmost simply in the elliptial oordinate v [18℄ de�nedby its Lamé oe�ientH = dsdv = ap1� e2 os2 v; (16)where e is the eentriity of the ellipse and a is thelength of its major semiaxis; we use v(s = 0) = 0. Thee�etive (geometrial) potential in Eq. (1) an then bewritten asVeff (s) = � ~28ma2 1� e2(1� e2 os2 v)3 ; (17)whih is in agreement with Ref. [4℄.We introdue the new wave funtion�(v(s)) = �(s)=pH; (18)for whih the equation takes the form (see Eqs. (14)and (16)�(18))d2dv2 � + �2ma2~2 Eg(v) + U(v)� � = 0; (19)U(v) = 54 1� e2g2 � 1� e2=2g � e416 sin2 2vg2 ; (20)where g = H2=a2 = 1� e2 os2 v: Equation (19) is theHill equation with �-periodi oe�ients; the funda-mental system of its solutions is [19℄�� = e�i�vy(�v); (21)

where y(v) is a �-periodi funtion and � is the har-ateristi exponent. We then have (see Eqs. (18)and (21)) � = C1ei�vey(v) + C2e�i�vey(�v); (22)where ey(v) � pHy(v).With the known wave funtions, we are now inter-ested in T = jtj2, whih desribes the transmission overthe potential well (see Eq. (17)). We use the ontinu-ity onditions for the wave funtion and its derivative,whih gives a system of four equations that is similarto the one given in Ref. [20℄; the result isT = "1 + 14 ��� 1��2 sin2 ��#�1 ; (23)where we denoted� = � iak1p1� e2 ��0+�+�v=0 : (24)(To obtain Eq. (23), we used that � and � are real,whih is straightforward to proof.)4. RESULTS AND DISCUSSIONTo understand how the ondutivity G depends onthe bias eV and the geometry, we must �nd the solu-tion of Hill equation (19). We did this numerially andalso within the perturbation theory for an ellipse thatis lose to the irle (i.e., e2 � 1); we found that thetwo solutions are in good agreement for e < 1=2. Inthe zeroth-order approximation in e2 (i.e., for e = 0,the ase of a irular ar), we have �0 = ak2 and�0 = k2=k1; where k2 = p2mE=~2 + 1=4a2 (see alsoRef. [12℄). This implies that osillations in the G(V )dependene an be observed if a & �F and the ampli-tude of these osillations is su�iently small.The �rst-order approximation of the perturbationtheory (for a > �F ) yields� � �0 + e2�1; � � �0 + e2�1; (25)where �1 = �ak214k2 � � �04�0 ; (26)�1 = k14k2((ak2)2 � 1) : (27)We next solve Hill equation (19) numerially. Theharateristi exponent � is de�ned via the solution934
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Fig. 2. Condutane as a funtion of the biasG = G(eV ) at e = 0:99, a = 10�F (at the samevalue of a but with e = 0, the amplitude �G=G0 is ofthe order 10�5)
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a=�F2 4 6 8 10Fig. 3. Condutane as a funtion of the length of themajor semiaxis G = G(a) at e = 0:99, V = 0of Eq. (19) with the initial onditions �1(0) = 1 and�01(0) = 0, and � is then the solution of the equation�1(�) = os�� (see Ref. [19℄). It is more di�ult to�nd �+ (see Eq. (21)), whih an be formulated as theboundary value problem for Eq. (19) with the bound-ary onditions �2(0) = 0 and �2(�) = sin�� (where�2(v) = Im �+(v)). Introduing �3(v) = �2(v)=�02(0),we have the initial ondition problem for �3(v) (with�3(0) = 0 and �03(0) = 1), whose solution allows us tode�ne �, ��0+=�+�v=0 = �02(0) = sin��=�3(�). The re-sults of the desribed proedure are numerially plottedin Figs. 2 and 3 for a su�iently elongated ellipse withe = 0:99 (with a=b = 7; where a and b are the respe-tive lengths of its major and minor semiaxes). We noteabout Fig. 3 that under the restrition R� , we mustnot let a go to 0, namely, we may suppose R �  fora=�F � 10 but may not for a=�F . 1 (for e lose to 1).We also note that Eq. (15) is, stritly speaking, orretfor eV small ompared with EF and desribes G(V )

dependene for eV � EF qualitatively. We onludethat e lose to 1 inreases signi�antly osillations inomparison with e = 0 ase; the amplitude of osilla-tions in G = G(V ) dependene is de�ned by the valueof a=�F .In summary, we have rederived the quantum-mehanial e�etive potential indued by the urvatureof the one-dimensional quantum wire. We have shownthat for any on�ning potential V depending only onthe displaement q from the referene urve C, thise�etive potential is universal: it does not depend onthe hoie of V and is given by Eq. (1). We havestudied the e�et of the urvature on the ondutaneof an ideal elliptially shaped quantum wire in thezeroth-order approximation in the width of the wire.It has been shown, in partiular, that due to the e�etof the urvature, the dependene of the ondutaneG(V ) on the applied bias hanges drastially. Thus,the e�et of the urvature an be observed by mea-suring the ondutane of the quantum wire. On theother hand, one an hange the harateristis of thequantum wire, suh as the ondutane, setting itssize, shape, or applied bias.One of the authors (S. N. S.) would like to thankProf. I. D. Vagner for his warm hospitality duringthe stay at Grenoble High Magneti Field Laboratory(Frane), where a part of this work was done. We alsothank Prof. A. M. Kosevih for a ritial disussion ofthe manusript. REFERENCES1. H. Jensen and H. Koppe, Ann. Phys. 63, 586 (1971).2. R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981).3. J. Marus, J. Chem. Phys. 45, 4493 (1966).4. E. Switkes, E. L. Russell, and J. L. Skinner, J. Chem.Phys. 67, 3061 (1977).5. P. Exner and P. �eba, J. Math. Phys. 30, 2574 (1989).6. P. Dulos and P. Exner, Rev. Math. Phys. 7, 73 (1995).7. I. J. Clark and A. J. Braken, J. Phys. A 29, 339(1996).8. I. J. Clark and A. J. Braken, J. Phys. A 29, 4527(1996).9. L. I. Magarill, D. A. Romanov, and A. V. Chaplik,JETP 83, 361 (1996).10. L. I. Magarill and A. V. Chaplik, JETP Lett. 68, 148(1998).935
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