ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ЧИСЛА ЧАСТИЦ В КОНДЕНСАТЕ ЗАХВАЧЕННОГО В ЛОВУШКУ ИДЕАЛЬНОГО БОЗЕ-ГАЗА

В. А. Алексеев*

Физический институт им. П. Н. Лебедева Российской академии наук 117924, Москва, Россия

Поступила в редакцию 15 сентября 2000 г.

Найдена функция распределения $W_0(n_0)$ числа частиц n_0 в конденсате захваченного в ловушку идеального бозе-газа. Показано, что при температуре ниже критической T_c эта функция имеет гауссову форму и зависит от потенциала ловушки только через входящие в нее два параметра. С уменьшением температуры центр этой функции смещается в сторону все больших значений n_0 , а ширина стремится к нулю, что соответствует подавлению флуктуаций. В узкой окрестности критической температуры $|T - T_c| \leq T_c/\sqrt{N}$, где N — число частиц в ловушке, функция распределения перестраивается и при температуре выше критической принимает обычный вид $W_0(n_0) = [1 - \exp(\mu)] \exp(\mu n_0)$, где μ — химический потенциал в единицах температуры. В пределе $N \to \infty$ эта перестройка носит характер скачка.

PACS: 03.75.Fi, 05.30.Jp

1. ВВЕДЕНИЕ

После первых экспериментальных наблюдений бозе-конденсации атомов в магнитной параболической ловушке [1] появилось большое количество теоретических работ, посвященных исследованию этого нового состояния вещества. Однако до настоящего времени практически не обсуждался принципиально важный вопрос о функции распределения $W_0(n_0)$ числа частиц в конденсате, т. е. числа частиц n_0 , находящихся в основном состоянии с энергией E_0 .

В настоящей работе найдена функция распределения $W_0(n_0)$ числа частиц в основном состоянии захваченного в ловушку идеального бозе-газа и исследована ее зависимость от температуры. Показано, что при температуре ниже критической распределение $W_0(n_0)$ претерпевает качественные изменения, сопровождающиеся подавлением флуктуаций и изменением теплоемкости газа. При большом числе N захваченных в ловушку частиц (формально при $N \to \infty$) эти изменения происходят скачком, т.е. приобретают характер, предсказанный Ландау для фазовых переходов в кристаллах [2].

Безусловно, распределение $W_0(n_0)$ находится суммированием

$$W_0(n_0) = \sum_{n_1+n_2+\ldots=N-n_0} W(n_0, n_1, \ldots)$$
 (1)

распределения Гиббса

$$W(n_0, n_1, \dots) = \frac{1}{S} \exp(-\varepsilon_0 n_0 - \varepsilon_1 n_1 - \dots), \quad (2)$$

где $\varepsilon_k = E_k/T$, E_k — энергия k-го состояния частицы в ловушке, T — температура в энергетических единицах, а полная энергия газа $E = E_0 n_0 + E_1 n_1 + \ldots$ задается числом частиц n_k в состояниях с энергией E_k . Суммирование в (1) проводится по всем положительным значениям n_1, n_2, \ldots (кроме n_0), удовлетворяющим условию

$$n_1 + n_2 + \ldots = N - n_0.$$
 (1a)

Для нахождения статсуммы S (нормировки) необходимо выполнить суммирование

$$S = \sum_{n_0 + n_1 + \dots = N} W(n_0, n_1, \dots)$$
(3)

по всем положительным значениям n_k (включая n_0), удовлетворяющим условию

$$n_0 + n_1 + \ldots = N. \tag{4}$$

^{*}E-mail: valeks@sci.lebedev.ru

Обычно вместо точного соблюдения при суммировании условия (4) в распределение Гиббса вводится дополнительный параметр μ (химический потенциал в единицах температуры):

$$W(n_0, n_1, \dots) = S^{-1} \times \\ \times \exp\left(\mu(n_0 + n_1 + \dots) - \varepsilon_0 n_0 - \varepsilon_1 n_1 - \dots\right), \quad (5)$$

после чего для нахождения статсуммы выполняется суммирование по всем $n_k \ge 0$. В результате получаем

$$S = \prod_{k} (1 - \exp(\mu - \varepsilon_{k}))^{-1},$$
$$W(n_{0}, n_{1}, \dots) = \prod_{k} W_{k}(n_{k}),$$
$$W_{k}(n_{k}) = (1 - \exp(\mu - \varepsilon_{k})) \exp(((\mu - \varepsilon_{k})n_{k})). \quad (6a)$$

В частности, при отсчете энергии от энергии основного состояния функция распределения числа частиц в основном состоянии имеет вид

$$W_0(n_0) = (1 - e^{\mu})e^{\mu n_0}.$$
 (66)

Из (6) немедленно получаются средние значения чисел частиц \tilde{n}_k в состояниях с энергиями E_k (соответствующие (6) средние значения чисел частиц мы далее помечаем волной)

$$\tilde{n}_k = (e^{\varepsilon_k - \mu} - 1)^{-1}, \tag{7}$$

после чего химический потенциал μ определяется условием

$$\sum_{k} \tilde{n}_{k} = N. \tag{8}$$

Таким образом, распределение (6a) удовлетворяет не точному условию (4), а условию (8), выполняющемуся только для средних значений.

Между тем при низкой температуре распределение (6a) приводит к противоречию. А именно, из (6a) следуют хорошо известные соотношения

$$\langle n_k^2 \rangle = 2\tilde{n}_k^2 + \tilde{n}_k, \quad \langle \Delta n_k^2 \rangle = \tilde{n}_k^2 + \tilde{n}_k. \tag{9}$$

При $T \to 0$ все частицы должны оказаться в основном состоянии, так что $\tilde{n}_0 = N$ и из (9) получается

$$\langle \Delta n_0^2 \rangle = N^2 + N,$$

что бессмысленно. В работе [3] (см. также цитированную в [3] литературу) предлагается исправить ситуацию, используя по-прежнему (6а), однако вычисляя среднюю квадратичную флуктуацию полного числа возбужденных частиц

$$N_* = \sum_{k \neq 0} n_k.$$

Тогда из точного условия (4) следует

(

$$\Delta n_0^2 \rangle = \langle \Delta N_*^2 \rangle = \langle N_*^2 \rangle - \langle N_* \rangle^2.$$
 (10)

Поскольку при $T \to 0$ заведомо $\langle N_*^2 \rangle \to 0$ и $\langle N_* \rangle^2 \to 0$, связанное с (9) противоречие снимается. Однако результат (10) отличается от значения $\langle \Delta n_0^2 \rangle$, получающегося непосредственно из (6). Это лишний раз подчеркивает то обстоятельство, что правильное распределение отличается от (6а), которое условию (4) не удовлетворяет.

В настоящей статье показано, что распределение (6а) применимо при температурах выше температуры конденсации (критической температуры). Правильный учет условия (4) приводит к тому, что ниже температуры конденсации, $T < T_c$, функции распределения возбужденных частиц приблизительно сохраняют вид (6а), тогда как функция распределения (6б) числа частиц в конденсате коренным образом изменяется и принимает гауссову форму. При этом, в частности, устраняются противоречия, связанные с (9). Заложенная в условии (4) статистическая зависимость величин n_k становится существенной при температуре ниже критической, что приводит к изменению функции $W_0(n_0)$ и подавлению флуктуаций.

Отметим, что, как это следует из общих соображений и показано ниже в разд. 4 на примере точного решения задачи в случае газа, захваченного в параболическую ловушку, изменение функции распределения $W_0(n_0)$ и обращение в нуль среднего значения \tilde{n}_0 при большом числе частиц N происходят очень быстро, т.е. в очень узкой окрестности некоторой температуры T_c , но, тем не менее, непрерывным образом (в случае \tilde{n}_0 без скачка производной). Лишь при переходе к пределу $N \to \infty$ это изменение при $T = T_c$ носит характер скачка, а \tilde{n}_0 обращается в нуль с неравной нулю производной. Только в этом случае величина T_c приобретает точный смысл и может быть определена как температура, выше которой заселенность основного состояния становится равной нулю. При конечных N так определить величину Т_с невозможно, и в этом случае она является характерной для системы температурой, в узкой окрестности которой ñ₀ изменяется от очень больших до очень малых значений.

В настоящей статье мы ограничились рассмотрением случая захваченного в ловушку бозе-газа, т. е. системы с дискретным спектром. С практической точки зрения процесс конденсации такого газа представляет наибольший интерес в связи с экспериментальной реализацией этого явления. Очень интересен, вообще говоря, также и случай свободного бозе-газа. В силу ряда обстоятельств, о которых будет сказано ниже, этот случай требует особого подхода.

2. ВЫРОЖДЕННЫЙ БОЗЕ-ГАЗ

Условие (1а) можно выполнить автоматически, записав (1) в виде¹⁾

$$W_0(n_0) = \frac{1}{S} \exp(-\varepsilon_0 n_0) \times \\ \times \sum_{n_1, n_2, \dots}^{(n_0)} \exp(-\varepsilon_1 n_1 - \varepsilon_2 n_2 - \dots) \times \\ \times \frac{1}{2\pi i} \oint z^{(-N+n_0-1)+n_1+n_2+\dots} dz, \quad (11)$$

где знак (n_0) у суммы означает, что исключается суммирование по n_0 . Контур интегрирования в (11) имеет вид окружности с центром в точке z = 0. Только в случае выполнения условия (1а) подынтегральная функция имеет полюс кратности 1 и интеграл равен $2\pi i$. В остальных случаях он равен нулю, так что суммирование в правой части (11) можно проводить независимо (и до интегрирования) по всем значениям $0 \le n_k \le \infty$, исключая, естественно, суммирование по n_0 . Необходимо, однако, обеспечить сходимость всех возникающих сумм, в том числе и статсуммы *S*. Нетрудно видеть, что это будет выполнено, если радиус окружности |z|, который удобно записать в виде

$$|z| = e^{\mu},$$

будет ограничен условием

$$e^{\mu-\varepsilon_0} < 1.$$

Значения ε_k удобно расположить в порядке $\varepsilon_0 < \varepsilon_1 \leq \varepsilon_2 \ldots$ (основное состояние всегда невырождено), после чего можно положить $\varepsilon_0 = 0$, откуда следует $\varepsilon_{k\neq 0} > 0$, и потребовать выполнения условия $\mu < 0$.

Выполняя в (11) суммирование, получаем

$$W_0(n_0) = \frac{1}{S} \frac{1}{2\pi i} \oint z^{-N+n_0-1} e^{G(z)} dz, \qquad (12)$$
$$e^{G(z)} = \prod_{k \neq 0} (1 - z e^{-\varepsilon_k})^{-1},$$
$$G(z) = -\sum \ln(1 - z e^{-\varepsilon_k}) \equiv \sum \sum^{\infty} \frac{1}{2} z^p e^{-p\varepsilon_k}.$$

 Аналогичный метод записи суммы был использован в [4,5]. Внутри окружности радиусом $|z| = e^{\mu} < 1$ ($\mu < 0$) функция G(z) не имеет особенностей, так что автоматически выполняется $W_0(n_0) = 0$ при $n_0 > N$. При $n_0 = N$ из (12) получаем

$$W_0(n_0 = N) = \frac{1}{S}e^{G(0)} = \frac{1}{S};$$

при $n_0 = N - 1$ находим

$$W_0(n_0 = N - 1) = \frac{1}{S} \left[\frac{d}{dz} e^{G(z)} \right]_{z=0} = \frac{1}{S} \sum_{k \neq 0} e^{-\varepsilon_k}.$$

При очень низкой температуре (фактически необходимо, чтобы величина $e^{-\varepsilon_1}$ была экспоненциально малой, т.е. $\varepsilon_1 \gg 1$, что заведомо выполняется при $T \to 0$ для системы с дискретным спектром) вероятность $W_0(n_0 = N-1)$ мала по сравнению с вероятностью $W_0(n_0 = N)$ и с дальнейшим уменьшением n_0 , как легко видеть из (12), быстро убывает. Поэтому можно ограничиться двумя значениями

$$W_{0}(n_{0} = N) = 1 - \sum_{k \neq 0} e^{-\varepsilon_{k}},$$

$$W_{0}(n_{0} = N - 1) = \sum_{k \neq 0} e^{-\varepsilon_{k}},$$
(13)

откуда следует

$$\langle n_0 \rangle = N - \sum_{k \neq 0} e^{-\varepsilon_k}, \quad \langle \Delta n_0^2 \rangle = \sum_{k \neq 0} e^{-\varepsilon_k},$$

так что $\langle \Delta n_0^2 \rangle \to 0$ при $T \to 0$.

Распределение (13), которое при $T \to 0$ принимает вид

$$W_0(n_0) = \delta_{n_0,N},$$

интересно сравнить с (66). При $T \to 0$ из (8) следует

$$e^{-\mu} - 1 = 1/N$$

или

$$\mu \approx -1/N,$$

и распределение (6б) принимает вид

$$W_0(n_0) = \frac{1}{N} e^{-n_0/N},$$

т. е. имеет максимум при $n_0 = 0$, с ростом n_0 монотонно убывает и отлично от нуля в широком диапазоне значений n_0 , уменьшаясь при предельно допустимом значении $n_0 = N$ всего в e раз.

Аналогично (12) легко найти совместное распределение

$$W_{0,i\neq 0}(n_0, n_i) = \frac{1}{S} e^{-\varepsilon_i n_i} \frac{1}{2\pi i} \times \\ \times \oint z^{-N-1+n_0+n_i} e^{G(z)} \left(1 - z e^{-\varepsilon_i}\right) dz. \quad (14)$$

При $T \to 0$ существенны лишь три значения:

$$W_{0,i\neq 0}(n_0 = N, n_i = 0) = S^{-1},$$

$$W_{0,i\neq 0}(n_0 = N - 1, n_i = 1) = S^{-1}e^{-\varepsilon_i},$$

$$W_{0,i\neq 0}(n_0 = N - 1, n_i = 0) = S^{-1}\sum_{\substack{k\neq 0, i}} e^{-\varepsilon_i}.$$

В итоге для распределения числа частиц в возбужденных состояниях

$$W_{i\neq0}(n_i) = \sum_{n_0} W_{0,i\neq0}(n_0, n_i)$$

получаем результат

$$W_{i\neq 0}(n_i = 0) = 1 - e^{-\varepsilon_i}, W_{i\neq 0}(n_i = 1) = e^{-\varepsilon_i},$$
(15)

практически не отличающийся от (6а).

При более высоких температурах, когда $\varepsilon_1 \leq 1$ и полное число частиц в возбужденных состояниях сравнимо с числом частиц в основном состоянии, получить результат столь простым способом не удается. В этом случае, однако, можно воспользоваться тем обстоятельством, что при большом числе захваченных в ловушку частиц (в реальных экспериментах это число меняется от 10^3 до 10^8) при температуррах еще значительно более низких, чем температура конденсации, начинает выполняться условие $\varepsilon_1 \ll 1$, которое также позволяет практически полностью исследовать интегралы в выражениях (12) и (14).

3. КОНДЕНСАЦИЯ БОЗЕ-ГАЗА В ЛОВУШКЕ

Проведем в (12) замену

$$z = e^{\mu + ix}$$

Получаем

$$W_{0}(n_{0}) = \frac{1}{S} e^{\mu n_{0}} \int_{-\pi}^{\pi} \exp\left[-i(N-n_{0})x + F(x)\right] dx,$$

$$F(x) = -\sum_{k \neq 0} \ln\left(1 - \exp\left[\mu + ix - \varepsilon_{k}\right]\right).$$
(16)

При написании (16) мы опустили не зависящий от *n*₀ множитель

$$(2\pi)^{-1}e^{-\mu N},$$

который влияет только на нормировку, определяющуюся самим соотношением (16). Ниже мы также будем следовать этому правилу.

Далее разлагаем функцию F(x) в ряд в окрестности точки x = 0, сохраняя лишь пропорциональные x^2 члены. Находим

$$F(x) = F(0) + ixA - x^2D, \qquad (17)$$
$$F(0) = -\sum \ln\left(1 - e^{\mu - \varepsilon_k}\right), \quad A = \sum \tilde{n}_k,$$

$$D = \frac{1}{2} \sum_{k \neq 0} \left(\tilde{n}_k + \tilde{n}_k^2 \right),$$

где величины \tilde{n}_k определены соотношением (7) (напомним, что $\varepsilon_0 = 0$). Первый член разложения при подстановке в (16) «поглощается» нормировкой и его можно опустить. Величины A и D зависят от параметра μ , который удовлетворяет условию $\mu < 0$, а в остальном пока произволен. Выберем его, потребовав выполнения условия

$$N = \tilde{n}_0 + A = \tilde{n}_0 + \sum_{k \neq 0} \tilde{n}_k.$$
 (18)

Условие (18) совпадает с (8), и параметр μ обретает смысл химического потенциала, однако величины \tilde{n}_k теперь не имеют смысла средних чисел частиц. Отметим, что μ и \tilde{n}_0 связаны соотношением

$$\mu = -\ln\left(1 + 1/\tilde{n}_0\right),\,$$

позволяющим рассматривать (18) как уравнение, определяющее μ или \tilde{n}_0 в зависимости от удобства выбора.

Рассмотрим зависимость величин А и D от температуры. При $T \rightarrow 0$ получаем $\varepsilon_{k \neq 0} \rightarrow \infty$, поэтому $A = 0, D = 0, \tilde{n}_0 = N$ и с большой точностью $\mu = -1/N$. С ростом температуры величины $\varepsilon_{k\neq 0}$ убывают, величины A и D растут, и при $T > T_*$, где T_* — некоторая характерная температура, зависящая от вида потенциала ловушки и числа захваченных частиц N, заведомо наступает ситуация, когда A становится порядка N, величина $\tilde{n}_0 = N - A$ все еще остается очень большой (откуда следует, что температура T_{*} много меньше критической, $T_* \ll T_c$), а химический потенциал равен $\mu = -1/\tilde{n}_0$, т. е. очень мал. Важно, что в этом случае величина D также становится порядка N, т. е. очень большой. С дальнейшим ростом температуры величины $\varepsilon_{k\neq 0}$ убывают и условие (18) становится возможным выполнить лишь при достаточно больших значениях $|\mu|$, т. е. величина \tilde{n}_0 становится малой (конденсатная фракция отсутствует). При этом с большой точностью A = N, а $D \ge N/2$.

Это означает, что начиная с температур $T > T_*$ гораздо более низких, чем температура конденсации, реальная часть функции F(x) имеет максимум при x = 0 и быстро убывает в окрестности этой точки. Поэтому разложение (17) можно подставить в (16) и выполнить интегрирование в бесконечных пределах. В итоге для числа частиц в конденсате находим распределение

$$W_0(n_0) = S^{-1} \exp\left[\mu n_0 - \frac{(n_0 - \tilde{n}_0)^2}{4D}\right], \qquad (19)$$
$$\mu = -\ln\left(1 + 1/\tilde{n}_0\right),$$

которое имеет универсальную форму, поскольку зависимость от вида потенциала ловушки отражена в нем только параметрами \tilde{n}_0 и D. Все средние значения получаются из него дифференцированием статсуммы

$$S = \sum_{n_0=0}^{N} \exp\left[\mu n_0 - \frac{(n_0 - \tilde{n}_0)^2}{4D}\right]$$

по явно входящему параметру μ .

Распределение (19) имеет качественно разный вид при больших и малых значениях \tilde{n}_0 . В широком диапазоне температур ниже температуры конденсации, когда выполняются условия

$$\tilde{n}_0^2 \gg D, \quad N - \tilde{n}_0 \gg 1,$$
(20)

функция распределения (19) экспоненциально мала на двух своих концах при $n_0 = 0$ и $n_0 = N$ (последнее неравенство эквивалентно условию $D \gg 1$ и одновременно обеспечивает применимость (19)). Поэтому при вычислении статсуммы можно от суммирования перейти к интегрированию в бесконечных пределах. Получаем

$$S = 2\sqrt{\pi D} \exp(\mu \tilde{n}_0 + \mu^2 D), \quad \mu = -1/\tilde{n}_0.$$
 (21)

В этом случае распределение является гауссовым с шириной $\Delta n_0 = \sqrt{4D}$ и с небольшим сдвигом максимума относительно \tilde{n}_0 на величину $-D/2\tilde{n}_0$, вызванным довольно слабым множителем

$$e^{\mu n_0} = e^{-n_0/\bar{n}_0}$$

С уменьшением температуры \tilde{n}_0 увеличивается, а D убывает, распределение (19) сужается,

$$\Delta n_0 = \sqrt{4D} \approx \sqrt{2 \left(N - \tilde{n}_0 \right)},$$

и центр его перемещается в сторону все больших n_0 . Все средние легко вычисляются:

$$\langle n_0^k \rangle = \frac{1}{S} \, \frac{\partial^k S}{\partial \mu^k}$$

Первый и второй моменты близки соответственно к значениям \tilde{n}_0 и \tilde{n}_0^2 :

$$\langle n_0 \rangle = \tilde{n}_0 \left(1 - \frac{2D}{\tilde{n}_0^2} \right),$$

$$\langle n_0^2 \rangle = \tilde{n}_0^2 \left(1 - \frac{2D}{\tilde{n}_0^2} + \frac{4D^2}{\tilde{n}_0^4} \right).$$
(22)

Относительная среднеквадратичная флуктуация

$$\sqrt{\langle \Delta n_0^2 \rangle}/\tilde{n}_0 \approx \frac{\sqrt{2D}}{\tilde{n}_0}$$

в соответствии с (20) мала и убывает с уменьшением температуры, т. е. с ростом числа частиц в конденсате. Наконец, при очень низкой температуре нарушается условие применимости распределения (19) (второе условие в (20)), и распределение принимает вид (13).

С ростом температуры \tilde{n}_0 уменьшается, перестает выполняться первое из условий (20) и все ощутимее становится нижняя граница распределения $n_0 = 0$. Наконец, при $\tilde{n}_0 \ll \sqrt{D}$ (при этом все еще может выполняться $\tilde{n}_0 \gg 1$, однако можно считать, что конденсатная фракция уже отсутствует) в распределении (19) главным становится множитель $e^{\mu n_0}$. Выполняя суммирование, получаем (66). Переход от гауссовой формы распределения (19) к виду (66) происходит при значениях

$$1 \ll \tilde{n}_0 \le \sqrt{D} \approx \sqrt{N/2},$$

что при больших N в шкале температуры соответствует узкой окрестности критической точки. Качественное изменение формы функции распределения (19) в окрестности критической температуры показано на рисунке.

Аналогичным образом можно получить совместное распределение $W_{0,i\neq 0}(n_0,n_i)$. Используя (14), снова делая замену

$$z = e^{\mu + ix}$$

и выполняя интегрирование, находим

$$W_{0,i\neq 0}(n_0, n_i) = \frac{1}{S} \exp\left[\mu(n_0 + n_i) - \varepsilon_i n_i\right] \times \\ \times \left\{ \exp\left[-\frac{\left(n_i + n_0 - \tilde{n}_0\right)^2}{4D}\right] - \exp(\mu - \varepsilon_i) \times \\ \times \exp\left[-\frac{\left(n_i + n_0 + 1 - \tilde{n}_0\right)^2}{4D}\right] \right\}.$$
(23)

Из (23) легко получить функцию распределения числа частиц в возбужденных состояниях

$$W_{i\neq 0}(n_i) = \sum_{n_0=0}^N W_{0,i\neq 0}(n_0,n_i)$$

Функция распределения (19) числа частиц в конденсате захваченного в ловушку бозе-газа для разных значений температуры $T/T_c = 1.01$ (1), 0.99 (2). Величины \tilde{n}_0 вычислены по (29), D = $= (1/2)\gamma N (T/T_c)^3 \approx 6850 (T/T_c)^3$, число частиц в ловушке N = 10000

При большом числе частиц в конденсате, когда выполняется условие (20), суммирование можно заменить интегрированием в бесконечных пределах, после чего находим распределение

$$W_{i\neq 0}(n_i) = \left(1 - e^{-\varepsilon_i}\right) e^{-\varepsilon_i n_i},\tag{24}$$

совпадающее с (ба) при $\mu = 0$. Заметим, что с точностью до членов первого порядка по $\mu = -1/\tilde{n}_0$ соответствующая (24) сумма средних равна

$$\sum_{i \neq 0} \langle n_i \rangle = \sum_{i \neq 0} \tilde{n}_i - 2D/\tilde{n}_0.$$

В итоге из (22) получаем

$$\sum_{i} \langle n_i \rangle = N.$$

В случае $\tilde{n}_0 \ll \sqrt{D}$ (однако все еще может выполняться $\tilde{n}_0 \gg 1$) при суммировании по n_0 в (23), как и в случае (19), главную роль играет множитель $e^{\mu n_0}$ и мы получаем распределение (6а).

Из распределения (23) можно получить и средние произведений. При выполнении (20), в частности, находим

$$\langle n_0 n_{i\neq 0} \rangle = \langle n_0 \rangle \langle n_i \rangle - \langle n_i \rangle - \langle n_i \rangle^2.$$

В заключение этого раздела сделаем следующее важное замечание. При конденсации газа число частиц \tilde{n}_0 становится порядка N, а химический потенциал — порядка 1/N, т. е. очень мал. Поэтому важно,

6 ЖЭТФ, вып.4

чтобы величина D оставалась конечной при $\mu \to 0$. В случае системы с дискретным спектром это заведомо выполняется, поскольку наибольшее из формирующих D слагаемых $\tilde{n}_{k=1}^2$ при $\mu \to 0$ остается конечным (величины \tilde{n}_k не могут привести к сингулярности, поскольку связаны соотношением (18)). Иначе обстоит дело в случае свободного газа (системы с непрерывным спектром). В этом случае $D \to \infty$ при $\mu \to 0$, т. е. вторая производная функции F(x) в точке x = 0 имеет особенность, и можно показать, что следующий за линейным член разложения F(x) пропорционален $|x|^{3/2}$. Это, естественно, в корне меняет ситуацию и требует специального рассмотрения.

4. ПАРАБОЛИЧЕСКИЙ ПОТЕНЦИАЛ

Этот случай, имеющий наиболее важное прикладное значение, отличается возможностью вычислить точно величины \tilde{n}_0 и D, от которых зависит распределение (19). Для обозначения уровней энергии частиц вводим векторный индекс $\mathbf{k} = (k_x, k_y, k_z), k_i = 0, 1, \ldots$, и записываем энергию трехмерного осциллятора (в единицах температуры) в виде

$$\varepsilon_{\mathbf{k}} = \frac{\hbar}{T} (\mathbf{k} \cdot \boldsymbol{\omega}),$$

где $\boldsymbol{\omega} = (\omega_x, \omega_y, \omega_z)$, а $\omega_{x,y,z}$ — частоты параболической ловушки. После этого сумма по всем $\mathbf{k} \neq 0$ в (12) вычисляется точно и мы находим

$$G(z) = \sum_{p=1}^{\infty} p^{-1} z^p g(\boldsymbol{\beta}, p),$$

$$g(\boldsymbol{\beta}, p) = \left[\prod_{i=x,y,z} \left(1 - e^{-\beta_i p}\right)^{-1}\right] - 1, \qquad (25)$$

$$\beta_i = \frac{\hbar \omega_i}{T}.$$

Выполняя в (12) замену

$$z = e^{\mu + ix},$$

мы снова получаем (16). Функция F(x) теперь равна

$$F(x) = \sum_{p=1}^{\infty} p^{-1} e^{(\mu+ix)p} g(\boldsymbol{\beta}, p),$$

а коэффициенты А и D в (17) принимают вид

$$A = \sum_{p=1}^{\infty} e^{\mu p} g(\beta, p), \quad D = \frac{1}{2} \sum_{p=1}^{\infty} p e^{\mu p} g(\beta, p).$$
(26)

Сохраняет свой смысл и соотношение (18), поскольку, как видно из (26) и (25), естественно выполняется соотношение

$$A = \left(z\frac{dG}{dz}\right)_{z=e^{\mu}} = \sum_{\mathbf{k}\neq 0} \left(e^{\varepsilon_{\mathbf{k}}-\mu} - 1\right)^{-1} = \sum_{\mathbf{k}\neq 0} n_{\mathbf{k}}.$$

При малых β (далее будет видно, что это условие начинает выполняться при температурах гораздо более низких, чем критическая) главный вклад в суммы A и D дают небольшие значения p и можно написать²)

$$A = \frac{1}{\beta^3} \sum_{p=1}^{\infty} p^{-3} e^{\mu p}, \quad D = \frac{1}{2\beta^3} \sum_{p=1}^{\infty} p^{-2} e^{\mu p}$$
$$\beta = \frac{\hbar\omega}{T}, \quad \omega = (\omega_x \omega_y \omega_z)^{1/3}.$$

Эти соотношения удобно переписать, введя критическую температуру *T_c*:

$$A = Nt^{3}\zeta^{-1}(3)\sum_{p=1}^{\infty} p^{-3}e^{\mu p},$$
$$D = \frac{1}{2}Nt^{3}\zeta^{-1}(3)\sum_{p=1}^{\infty} p^{-2}e^{\mu p},$$
$$t = T/T_{c}, \quad T_{c} = \zeta^{-1/3}(3)\hbar\omega N^{1/3}, \qquad (27)$$

где $\zeta(s)$ — дзета-функция Римана. Соотношение (18), определяющее μ или \tilde{n}_0 , удобно записать в виде

$$\tilde{n}_0/N + t^3 f(\mu) = 1, \quad f(\mu) = \zeta^{-1}(3) \sum_{p=1}^{\infty} p^{-3} e^{\mu p}.$$
 (28)

При малых μ в уравнении (28) можно использовать разложение функции $f(\mu)$ с точностью до членов первого порядка по μ :

$$f(\mu) = 1 + \gamma \mu, \quad \gamma = \zeta(2)/\zeta(3) \approx 1.37$$

и значение $\tilde{n}_0 = -1/\mu$. В итоге получаем квадратное уравнение [7]

$$-\frac{1}{N\mu} + \gamma t^3 \mu = 1 - t^3,$$

позволяющее найти зависимость от температуры химического потенциала и \tilde{n}_0 :

$$\mu = \frac{1}{2\gamma t^3} \left[1 - t^3 - \sqrt{(1 - t^3)^2 + 4\gamma t^3/N} \right],$$

$$\tilde{n}_0 = \frac{N}{2} \left[1 - t^3 + \sqrt{(1 - t^3)^2 + 4\gamma t^3/N} \right].$$
(29)

При $N \to \infty$ из этих соотношений следует, что при температуре ниже критической, $T < T_c$, когда t < 1,

$$\mu = 0, \quad \tilde{n}_0/N = 1 - t^3, \quad T < T_c, \tag{30}$$

а при температуре выше критической, но пока все еще выполняющемся условии $t-1 \ll 1$, из (29) находим

$$\mu = -\frac{t^3 - 1}{\gamma t^3}, \quad \tilde{n}_0 = \frac{\gamma t^3}{t^3 - 1}, \quad (31)$$
$$T > T_c, \quad t - 1 \ll 1.$$

Из (29) видно, что при конечных N зависимость (30) реализуется при выполнении двух эквивалентных условий:

$$\tilde{n}_0 \gg \sqrt{N}, \quad 1 - t^3 \gg 1/\sqrt{N}, \quad (32)$$

фактически совпадающих с первым из условий (20). В узкой окрестности критической температуры условие (32) перестает выполняться и необходимо пользоваться более точным соотношением (29), позволяющим правильно описать плавное уменьшение \tilde{n}_0 и увеличение μ с ростом температуры вплоть до значений $T \leq T_c + \Delta T$, где $\Delta T \ll T_c$, когда \tilde{n}_0 все еще велико, а μ мало [7]. Полученные таким образом величины \tilde{n}_0 и μ следует использовать в распределении (19).

Заметим теперь, что параметр $\beta = \hbar \omega / T$ можно переписать, выразив T в единицах критической температуры

$$\beta = \zeta^{1/3}(3)N^{-1/3}t^{-1},$$

откуда следует, что при больших N условие $\beta \ll 1$ оказывается выполненным, начиная с температур много меньших критической, однако удовлетворяющих условию $T \gg T_*$, где $T_* = T_c N^{-1/3} \ll T_*$. Поэтому разложением (27) (напомним, что оно применимо при $\beta \ll 1$) можно пользоваться, начиная с достаточно высоких температур, т. е. при $T \gg T_*$. Поскольку, однако, $T_* \ll T_c$, область применимости этого разложения начинается с температур много меньших критической, когда \tilde{n}_0 , как видно из (30), уже очень близко к N, т. е. почти весь газ уже находится в конденсате. При этом в области температур

$$T_* \ll T \le T_c + \Delta T, \quad T_* = T_c N^{-1/3} \ll T_c$$
 (33)

можно вычислять \tilde{n}_0 и μ , используя (29). В области (33) выполняется условие $\mu \ll 1$, так что при вычислении величины D можно положить $\mu = 0$. В итоге находим

$$D = \frac{1}{2}\gamma t^3 N,$$

²⁾ Для упрощения записи мы здесь пренебрегаем следующим, порядка β^{-2} , слагаемым, которое дает поправку к критической температуре, связанную с конечным числом частиц в ловушке, и при желании легко может быть учтено [6, 7].

и, как видно из (33), выполняется условие $D \gg 1$. С дальнейшим ростом температуры величина Dрастет, приближаясь к своему предельному значению D = N/2 при высоких температурах. Поэтому, начиная с температур, удовлетворяющих условию $T \gg T_*$, но еще гораздо более низких, чем критическая, можно пользоваться асимптотической оценкой интеграла (16), которая приводит к распределению (19).

Подчеркнем, что область (33) применимости (29) захватывает не только температуры ниже критической, но и окрестность критической температуры, в которой происходит перестройка распределения (19) от гауссовой формы к виду (66). С приближением температуры к критической в области

$$|1-t| \le 1/\sqrt{N}$$

условия (32) и, соответственно, (20) перестают выполняться и распределение (19) уже не имеет гауссовой формы, но еще отличается от (66). Однако в области

$$1/\sqrt{N} \ll t - 1 \ll 1,$$

когда (29) все еще применимо, уже выполняется условие $\tilde{n}_0 \ll \sqrt{D}$ и распределение (19) принимает вид (66). Таким образом, с повышением температуры в узкой окрестности критической точки

$$|1-t| \le 1/\sqrt{N}$$

распределение (19) качественно меняет свой вид, переходя от гауссовой формы к форме (66) (см. рисунок). При больших N это изменение формы функции распределения числа частиц в конденсате происходит в очень узкой окрестности критической температуры, т. е. почти скачком.

5. СКАЧОК ТЕПЛОЕМКОСТИ

Переход распределения (19) от гауссовой формы, которую оно имеет в области (20), (32) существования ярко выраженной конденсатной фракции, к виду (66), при которой конденсатная фракция практически отсутствует, сопровождается резким изменением теплоемкости, которое при $N \to \infty$ имеет форму скачка. В случае параболического потенциала величину скачка можно вычислить точно.

При $N \to \infty$ средние значения $\langle n_{i\neq 0} \rangle$ совпадают с $\tilde{n}_{i\neq 0}$. Запишем $\varepsilon_{\mathbf{k}}$ в виде

$$\varepsilon_{\mathbf{k}} = \beta(\mathbf{\Omega} \cdot \mathbf{k}), \quad \Omega_i = \omega_i / \omega,$$

тогда для энергии газа Е получаем

$$E = T \sum_{k \neq 0} \varepsilon_k \tilde{n}_k = T \sum_{k \neq 0} \frac{\beta(\boldsymbol{\omega} \cdot \mathbf{k})}{\exp\left(\beta(\boldsymbol{\omega} \cdot \mathbf{k}) - \mu\right) - 1} =$$
$$= T \sum_{k \neq 0} \sum_{p=1}^{\infty} \beta(\boldsymbol{\omega} \cdot \mathbf{k}) \exp\left(-\left(\beta\left(\boldsymbol{\omega} \cdot \mathbf{k}\right) - \mu\right)p\right) =$$
$$= T \beta\left(-\frac{\partial}{\partial\beta}\right) \sum_{p=1}^{\infty} \frac{1}{p} e^{\mu p} \times$$
$$\times \left\{ \left[\prod_{i=x,y,z} \left(1 - \exp(-\beta\Omega_i p)\right)^{-1}\right] - 1 \right\}.$$

При очень низкой температуре $T \ll \hbar \omega_i$ отсюда следует

$$E = \hbar \sum_{i} \omega_{i} \exp(-\hbar \omega_{i}/T),$$

т.е. энергия газа экспоненциально мала. При более высоких температурах $T \gg T_*$, используя малость параметра β , находим

$$E = 3N \frac{T^4}{T_c^3} \zeta^{-1}(3) \sum_{p=1}^{\infty} p^{-4} e^{\mu p}.$$

В результате при $T \gg T_*$ теплоемкость имеет вид

$$C = \frac{dE}{dT} = 12Nt^{3}\zeta^{-1}(3)\sum_{p=1}^{\infty} p^{-4}e^{\mu p} + 3Nt^{3}\left(t\frac{\partial\mu}{\partial t}\right)\zeta^{-1}(3)\sum_{p=1}^{\infty} p^{-3}e^{\mu p}.$$
 (34)

В случае $N\to\infty$ химический потенциал μ в этом выражении равен нулю при $T\leq T_c$ и при $T\geq T_c$ определяется вытекающим из (28) равенством

$$t^{3}f(\mu) = t^{3}\zeta^{-1}(3)\sum_{p=1}^{\infty} p^{-3}e^{\mu p} = 1.$$
 (35)

Поэтому при $T \leq T_c$ для теплоемкости получаем

$$C = 12\zeta^{-1}(3)\zeta(4)Nt^3 \approx 10.8Nt^3.$$

При $T = T_c$ из (35) находим

$$\frac{\partial \mu}{\partial t} = -3/\gamma \approx -2.19.$$

В итоге скачок теплоемкости равен

$$\Delta C = -9 \left[\zeta(3) / \zeta(2) \right] N \approx -6.57N.$$

При больших отрицательных значениях μ (большие t) в сумму (35) подавляющий вклад дает первый член, и мы получаем

$$e^{\mu} = \zeta(3)t^{-3}, \quad t(\partial\mu/\partial t) = -3$$

 6^{*}

В результате при высокой температуре из (34) для теплоемкости получается значение C = 3N, совпадающее с теплоемкостью захваченного в ловушку идеального газа, описываемого классической функцией распределения

$$W(\mathbf{r}, \mathbf{v}, t) = \left(\frac{m\omega}{2\pi t}\right)^3 N \exp\left(-\frac{m\omega^2 r^2 + mv^2}{2T}\right),$$

где m — масса частицы, **r** — координата, **v** — скорость. Из точного разложения функции $f(\mu)$ (формула (П.1)) видно, что функция $(\partial \mu / \partial t)$ в точке t = 1 имеет бесконечный отрицательный наклон. Поэтому такой же наклон после скачка имеет и теплоемкость, в результате чего она очень быстро выходит на асимптотическое значение C = 3N.

6. ЗАКЛЮЧЕНИЕ

1. Общая интегральная форма записи (12) функции распределения числа частиц $W_0(n_0)$ в конденсате захваченного в ловушку идеального бозе-газа (системы с дискретным спектром) позволяет проследить за изменением этой функции во всем диапазоне температур. При очень низкой температуре $(E_1/T \ll 1)$ функция распределения имеет вид (13), т.е. близка к единице при $n_0 = N$ и быстро (экспоненциально) уменьшается при $n_0 < N$, принимая при T = 0 вид

$$W_0(n_0) = \delta_{n_0,N}.$$

Начиная с достаточно высоких температур $T > T_*$ (температура T_{*} зависит от вида потенциала ловушки и числа частиц N, однако при большом N заведомо много меньше критической температуры, $T_* \ll T_c$) функция распределения $W_0(n_0)$ принимает универсальную форму (19): от потенциала ловушки зависят только входящие в эту функцию параметры \tilde{n}_0 и D. В широком диапазоне температур ниже критической, $T > T_*, T_c - T \gg T_c/\sqrt{N}$, распределение (19) имеет гауссову форму со стремящимися с понижением температуры к нулю шириной и, соответственно, среднеквадратичной флуктуацией. С приближением температуры к критической ширина распределения (19) увеличивается, т. е. флуктуации нарастают. В узкой окрестности критической температуры $|T - T_c| < T_c/\sqrt{N}$ функция распределения (19) полностью изменяется и при $T - T_c \gg T_c/\sqrt{N}$ принимает форму (66). В пределе $N \to \infty$ это изменение имеет вид скачка.

2. В случае ловушки с параболическим потенциалом величины \tilde{n}_0 и D, от которых зависит универсальное распределение (19), вычисляются точно. Во всей интересной области температур, когда существует конденсат,

$$D = \frac{\zeta(2)}{2\zeta(3)} t^3 N,$$

а \tilde{n}_0 вычисляется по формуле (29).

3. Как показывают вычисления [7], при типичных экспериментальных параметрах ловушки газ можно считать идеальным вплоть до значений $N \leq 10^4$. Это число N достаточно велико, чтобы успели проявиться изложенные выше особенности процесса конденсации. Однако, в отличие от случая свободного газа (удерживаемого лишь стенками сосуда), захваченный в ловушку газ при достаточно большом числе частиц заведомо перестает быть идеальным. Исследование влияния взаимодействия частиц газа на особенности перестройки функции распределения $W_0(n_0)$ в процессе его конденсации является одной из наиболее важных проблем теории.

ПРИЛОЖЕНИЕ

Рассмотрим равенство

$$\int_{1}^{\infty} (e^{xz} - 1)^{-1} dz = \sum_{p=1}^{\infty} \int_{1}^{\infty} e^{-pxz} dz = \frac{1}{x} \sum_{p=1}^{\infty} p^{-1} e^{-px}.$$

Из него следует

$$\sum_{p=1}^{\infty} p^{-1} e^{-xp} = x \int_{1}^{\infty} (e^{xz} - 1)^{-1} dz = \int_{x}^{\infty} (e^{z} - 1)^{-1} dz.$$

Последний интеграл переписываем в виде

$$\int_{x}^{\infty} (e^{z} - 1)^{-1} dz = \int_{x}^{1} \left[(e^{z} - 1)^{-1} - z^{-1} + z^{-1} \right] dz +$$
$$+ \int_{1}^{\infty} (e^{z} - 1)^{-1} dz = -\ln x - \int_{0}^{x} \left[(e^{z} - 1)^{-1} - z^{-1} \right] dz +$$
$$+ \int_{0}^{1} \left[(e^{z} - 1)^{-1} - z^{-1} \right] dz + \int_{1}^{\infty} (e^{z} - 1)^{-1} dz.$$

Сумма двух последних интегралов равна нулю, и мы находим

$$f(\mu) = \zeta^{-1}(3) \sum_{p=1}^{\infty} p^{-3} e^{p\mu} =$$

= 1 + \gamma \mu - \frac{\mu^2}{2\zeta(3)} [\ln(-\mu) - 3/2] -
- \zeta^{-1}(3) \int_0^{-\mu} dx_1 \int_0^{x_1} dx_2 \int_0^{x_2} dx_3 \left[\frac{1}{e^{x_3} - 1} - \frac{1}{x_3} \right]. (\Pi.1)

Благодарю Д. Д. Крылову за полезные обсуждения.

Работа частично поддержана Государственной научно-технической программой «Метрология».

ЛИТЕРАТУРА

- M. H. Anderson, J. R. Ensher, M. R. Matthews et al., Science 269, 198 (1965); C. C. Bradley, C. A. Sackett, J. J. Tolett et al., Phys. Rev. Lett. 75, 1687 (1995); K. B. Davis, M. O. Mewes, M. R. Andrews et al., Phys. Rev. Lett. 75, 3969 (1995).
- Л. Д. Ландау, ЖЭТФ 7, 19 (1937); Phys. Zs. Sowjet. 11, 26 (1937).
- M. Holthaus, E. Kalinowski, and K. Kirsten, E-print archives cond-mat/9804171.
- 4. М. А. Леонтович, Введение в термодинамику. Статистическая физика, Наука, Москва (1983).
- I. Fujiwara, D. ter Haar, and N. J. Wergeland, Stat. Phys. 2, 329 (1970).
- W. Ketterle and N. J. van Druten, Phys. Rev. A 54, 4188 (1966).
- 7. В. А. Алексеев, Д. Д. Крылова, Квант. электр. **30**, 441 (2000).