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MULTIPETAL VORTEX STRUCTURES IN TWO-DIMENSIONALMODELS OF GEOPHYSICAL FLUID DYNAMICS AND PLASMAV. P. Gonharov*Institute of Atmospheri Physis, Russian Aademy of Sienes109017, Mosow, RussiaV. I. Pavlov**U.F.R. des Mathématiques Pures et Appliquées,U.S.T.L, 59655 Villeneuve d'Asq Cedex FraneSubmitted 14 September 2000A new lass of strongly nonlinear steadily rotating vorties is found. The Hamiltonian ontour dynamis isproposed as a new approah for their study in some models of geophysial �uid dynamis and plasma. Usingthe Euler desription as a starting point, we present a systemati proedure to redue the two-dimensionaldynamis of onstant-vortiity and onstant-density pathes to the Hamiltonian dynamis of their ontours forvarious parametrizations of the ontour. The speial Dira proedure is used to eliminate the onstraints arisingin the Hamiltonian formulations with the Lagrangian parametrization of the ontour. Numerial estimationsillustrating the physial signi�ane of the results and the range of model parameters where these results an beappliable are presented. Possible generalizations of the approah based on the appliation of the Hamiltonianontour dynamis to nonplanar and 3D �ows are disussed.PACS: 47.32.-y, 52.30.-q1. INTRODUCTIONThe purpose of this paper is the analytial andnumerial study of a new lass of strongly nonlin-ear steadily rotating vorties that an exist in two-dimensional �ows with the internal sale similar to theRossby deformation radius in quasigeostrophi modelsof geophysial �uid dynamis [1℄. We show that thesevorties an have a nontrivial multipetal struture andmust rotate with omparatively small veloities underthe assumption that their harateristi sales are suf-�iently large ompared to the internal one.We also present a new approah based on Hamilto-nian versions of the ontour dynamis. The fat thatequations of ontour dynamis are strongly nonlinearand genuinely nonloal gave impetus to the progressand appliation mainly of numerial methods for theirsolution [2℄. The analytial versions involving small pa-rameters used for deriving and solving the approximate(loal) equations of ontour dynamis are only applia-*E-mail: vponom�atm.phys.msu.su**E-mail: vipavlov�omega.univ-lille1.fr

ble in �uid models with an exterior harateristi sale(e.g., the depth of the unperturbed layer [3℄) or with aninternal one (e.g., the Rossby radius [4℄). Beause thesolution of problems of this type essentially depends onhoosing dynami variables parametrizing the bound-ary, it is desirable to have a su�iently �exible formu-lation of the equations of ontour dynamis suh thatthese equations ould be easily reformulated from onephase spae into another. In using approximate meth-ods, it is important to keep in mind that all the infor-mation on the internal symmetry properties responsiblefor the dynamial individuality of the Hamiltonian sys-tem is ontained in the Poisson brakets. Thus, in orderto prevent the loss of internal symmetry properties ofthe system, we must use the approximations where onequantity�the Hamiltonian of system�is subjeted tothese approximations but the original Poisson braketsremain intat. The need to use asymptoti methodsis the prinipal reason for refusing traditional formula-tions, whih are not only inompatible with these re-quirements but also not infrequently lead to umber-some and reurrent alulations.685



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001This paper is organized as follows. In Se. 2, weonstrut loal Poisson brakets for an inompressiblenonuniform �uid. Relying heavily on this result as afundamental priniple, in Se. 3 we derive a hierarhyof the redued Poisson brakets speially adapted to theHamiltonian desription of models of the ontour dy-namis. The ontour parametrization plays a deisiverole. The ourrene of onstraints is the indispensablefeature of those Hamiltonian formulations that use theLagrangian oordinates for this purpose. To eliminatethe onstraints, Dira's proedure is used. In Se. 4, weonsider multipetal vortex strutures in the Hasegawa�Mima model and the axial model of eletroni �uid asexamples of models admitting a diret appliation ofthe obtained results. We fous our attention on thestudy of steadily rotating multipetal vortex strutureswithout ontour self-intersetions. Some numerial es-timates and onluding remarks are presented in Se. 5.2. POISSON BRACKETS FOR ANINCOMPRESSIBLE NONUNIFORMEULERIAN FLUIDThe equations of motion for a nonuniform inom-pressible �uid are formulated in terms of the Eulerianvariables: the mass density �, the veloity v, and thepressure p, as�tvi + vk�kvi = �1��ip+ 1�fi; (2.1)�t�+ vk�k� = 0; (2.2)�kvk = 0; (2.3)where f is the resultant of exterior fores that do notviolate onservativeness of the �uid. This means thatequations of motion (2.1)�(2.3) preserve the total en-ergy H given by the sum of the kineti energy T andthe potential energy U of the �uid,H = T + U;T = Z v22�dx; U = U [�℄ ; (2.4)where U is in general an arbitrary funtional of thedensity �. For simpliity, we assume that the �uid isunbounded.We now �nd the evolution equation for the momen-tum density � = �v. Equations (2.1) and (2.2) imply�t�i + vk (�k�i � �i�k) == ��i�p+ �v22 �+ v22 �i�+ fi: (2.5)

Taking the url of (2.5) and thereby eliminating thegradient term involving the pressure, we obtain theequation�ti = eimn�m �enklvkl � v22 �n�+ fn� (2.6)that desribes the evolution law for the vortiity of themomentum density  = r � � under the ation ofexterior onservative fores.We now show that the equations of motion forthe inompressible inhomogeneous �uid reformulatedin terms of the momentum density vortiity are Hamil-tonian with the loal Poisson brakets fi; 0kg andf�; 0kg. First, we ompute the Poisson braket f�; 0kg.Beause the model is expeted to be Hamiltonian, wehave every reason to write�t� = f�;Hg == Z �f�; 0kg ÆTÆ0k + f�; �0gÆUÆ�0 � dx0: (2.7)Comparing (2.7) with ontinuity ondition (2.2) leadsus toZ �f�; 0kg ÆTÆ0k + f�; �0gÆUÆ�0 � dx0 + vk�k� = 0: (2.8)We next introdue a loal term in the integrand usingthe Æ-funtion and express the veloity omponents vlin terms of the funtional derivatives ÆT=Æk asvl = ÆTÆ�l = Z ÆTÆ0k Æ0kÆ�l dx0 = elki�k ÆTÆi ; (2.9)whih an be diretly obtained from (2.4). Upon in-tegrating by parts and after some algebra in (2.8), weobtainZ ÆTÆ0k �f�; 0kg � ekml�l��mÆ (x� x0)� dx0 ++ Z f�; �0gÆUÆ�0 dx0 = 0:This implies thatf�; 0kg = ekml�l��mÆ (x� x0) ; f�; �0g = 0: (2.10)It remains to ompute the Poisson braket fi; 0kg.Using the same reasoning as for the density, we anwrite the equation of motion for the vortiity of themomentum density  as�ti = fi; Hg = Z �fi; 0kg ÆTÆ0k++ fi; �0g ÆTÆ�0� dx0 + fi; Ug: (2.11)686



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex strutures : : :With the braket f�; 0kg already omputed andÆTÆ� = 12v2k ;equation (2.11) an be rewritten as�ti = Z fi; 0kg ÆTÆ0k dx0 �� eiml�m�12v2k�l��+ fi; Ug: (2.12)Comparing (2.12) and (2.6), we obtainZ fi; 0kg ÆTÆ0k dx0 � eimn�m �enklvkl�++ fi; Ug � eimn�mfn = 0:If we introdue the loal term eimn�m �enklvkl� intothe integral using the Æ-funtion and replae the velo-ity omponents vl in aordane with (2.9), after theintegration by parts we obtainZ ÆTÆ0k �fi; 0kg�eipjejlneknm�pl�mÆ (x�x0)� dx0++ fi; Ug � eimn�mfn = 0:This immediately implies that the Poisson braket forthe vetor �eld  and the relation between the exteriorfore and the potential energy are given byfi; 0kg = eipjejlneknm�pl�mÆ; (2.13)fi; Ug = eimn�mfn: (2.14)We note that the resulting fore f an be foundfrom (2.14) up to a gradient term. This fat is aonsequene of the invariane of the equations of mo-tion (2.1)�(2.3) under the transformationp! p+ �; fi ! fi � �i�;where � is an arbitrary funtion whose hoie has noin�uene on physial impliations of the theory. Thus,it follows from (2.14) that no struture other thanfi = ���xi ÆUÆ�is admissible for the external fores in the ase whereU = U [�℄.Colleting Eqs. (2.10) and (2.13), we �nd theomplete system of Poisson brakets in the phasespae (; �), f�; �0g = 0; (2.15)f�; 0kg = ekml�l��mÆ; (2.16)fi; 0kg = eipjejlneknm�hl�mÆ: (2.17)

Therefore, the equations of motion for the inompres-sible nonuniform �uid orresponding to these Poissonbrakets take the form�t = f; Hg == r���;r� ÆHÆ �+ ÆHÆ� r�� ; (2.18)�t� = f�;Hg = ��r�ÆHÆ � � r�: (2.19)The results obtained in Eqs. (2.15)�(2.19) an beonsidered as a generalization of the well-known Hamil-tonian desription of the inompressible homogeneous�uid (see, for example, [5�10℄) and are used in whatfollows as a fundamental priniple in onstruting a hi-erarhy of redued Poisson brakets for various modelsof ontour dynamis.3. HAMILTONIAN VERSION OF THECONTOUR DYNAMICSWe begin with a two-dimensional plane �ow wherethe url of the momentum is normal to the �ow planeand hene has the only omponent = f0; 0; g ;  = "ik�i�k; (3.1)where "ik is the unit antisymmetri tensor (with"12 = 1). In this ase, Poisson brakets (2.15)�(2.17)for the inompressible inhomogeneous �uid an be re-formulated for the dynamial variables  and � asf�; �0g = 0; (3.2)f�; 0g = "ki�i��kÆ (x� x0) ; (3.3)f; 0g = "ki�i�kÆ (x� x0) : (3.4)It is well known that two-dimensional dynamis ofpathes of a onstant vortiity and density an be re-dued to dynamis of their ontours, ignoring the de-sription of the rest of the �uid. However, it is a non-trivial fat that the desription of the ontour evolu-tion an take various forms depending on the variablesused; this deserves attention from both pratial andtheoretial standpoints.For simpliity, we onsider a single domain G+bounded by a losed �uid ontour that separates it fromthe rest of the �uid in an exterior region G�. Denotingthe vortiity and the density inside and outside aord-ingly as !+, �+, and !�, ��, we use the respetive +and � supersripts for labeling variables in the internaldomain G+ and in the exterior region G�. Using this687



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001notation, we an write the momentum and the massdensity as� = �+v+�+ + ��v���; � = �+�+ + ����; (3.5)where �+ and �� are the mutually omplementary sub-stantive funtions�+ = ( 1 if x 2 G+;0 if x 2 G�; �� = ( 1 if x 2 G�;0 if x 2 G+;suh that �+ + �� = 1; �+�� = 0: (3.6)We note that by de�nition, a substantive �-funtionharaterizing a �uid domain has the dynamial prop-erty �t� + vk�k� = 0implying that the orresponding domain moves to-gether with the �uid.Inserting �-representation (3.5) in (3.1) yields = �+!+�+ � ��!��� + �; (3.7)where the variable � an be expressed as� = ��+v+k � ��v�k � "ik�i�+: (3.8)It is easily seen that � has a Æ-funtional harater andthus desribes a vortex sheet whose density is spei�edby the jump of the tangential momentum aross theontour.As the �rst step, we transform Poisson brak-ets (3.2)�(3.4) from the phase spae (; �) into thespae of dynamial variables (�; �+). In aordanewith (3.5), (3.6), and (3.7), we have� = �� + ��+ � ��� �+; (3.9) = ��!� + ��+!+ � ��!�� �+ + �: (3.10)Depending on the existene of a mass densityjump aross the ontour, insertion of (3.9) and (3.10)into (3.2)�(3.4) leads to two types of Poisson brakets.3.1. Pieewise-onstant vortex models withoutmass density jumpsWe �rst onsider the degenerate ase where themass density jump is absent, and therefore �+ = �� == �0. In this ase, the vortex sheet density is a onstantof motion and its presene modi�es the Hamiltonian of

the model but has no in�uene on the Poisson braketf�+; �+0g that ompletely determines the ontour evo-lution. Taking this into aount, we an set � = 0 forsimpliity of omputing. Inserting (3.10) in (3.4), wethen obtainf�+; �+0g = ��1"ik�k�+�iÆ (x� x0) ; (3.11)where � = �0 (!+ � !�).Whih of the Hamiltonian versions of ontour dy-namis follows from (3.11) depends on how we param-eterize the substantive �+-funtion. The simplest pa-rameterization an be ahieved with the Heaviside fun-tion �+ (� � x2) = ( 1 if � � x2;0 if � < x2;where the variable � = � (x1; t) spei�es the ontourshape. The orresponding version of the Hamiltoniandesription de�ned by the Poisson braket f�; �0g anbe derived diretly from (3.11) if we use the trivial re-lation � = Z x2 ddx2 �+ (� � x2) dx2that maps the dynamis in the phase spae of  intothe phase spae of �. After some algebra, we then �ndf�; �0g = Z x2x02 d2dx2dx02 f�+; �+0gdx2dx02 == ���1 ��x1 Æ (x1 � x01) :It is noteworthy that the same Poisson braket har-aterizes the KdV-type equations. Hamiltonian formu-lations based on this version of Poisson brakets arepreferable for the study of multilayer models [3℄.A more general parameterization an be realizedwhen the ontour C bounding the domain G+ is givenin the parametri formx = x̂ (s; t) ;where s is the ontour ar length. The vetort = �x̂=�s tangential to the ontour satis�es the nor-malization ondition t2 = 1: (3.12)We note that the �+-funtions admit an analytial rep-resentation through the ontour integral,�+ = i2� ZC ẑsdsz � ẑ ; (3.13)688



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex strutures : : :where z = x1+ix2 and ẑ = x̂1+ix̂2 are omplex-valuednotations for the vetors x = (x1; x2) and x̂ = (x̂1; x̂2),and i is the imaginary unit. Representation (3.13) anbe obtained as a onsequene of the Cauhy formulathat is well known in the theory of funtions of a om-plex variable. Using another formula [11℄���z 1z = �Æ (x) ;the z-derivative of the �+-funtion an be easily alu-lated from (3.13) as��+��z = i2 ZC ẑsÆ (x� x̂) ds:With this result, we an �nd the usual and variationalderivatives of the �+-funtion,�i�+ = ZC niÆ (x� x̂) ds; (3.14)Æ�+Æx̂i = �niÆ (x� x̂) ; (3.15)where n is the unit normal vetor related to the unittangent vetor t as ni = "kitk.We now �nd the expression for Poissonbraket (3.11) in the phase spae of the dynamivariables x̂ (s; t). We �rst express the left-hand sideof (3.11) in terms of the braket fx̂i; x̂0kg,f�+; �+0g = ZZC Æ�+ (x)Æx̂i (s) Æ�+ (x0)Æx̂k (s0) fx̂i; x̂0kgds ds0:Using (3.15), we obtainf�+; �+0g = ZZC Æ (x� x̂) Æ (x0 � x̂0)�� nin0kfx̂i; x̂0kgds ds0: (3.16)On the other hand, using (3.14), we an representthe right-hand side of (3.11) as��1"ik�k�+�iÆ (x� x0) == ��1 ZZC Æ (x�x̂) Æ (x0�x̂0) �Æ (s�s0)�s dsds0: (3.17)Comparing (3.16) and (3.17) yields the integral equal-ityZZC Æ (x� x̂) Æ (x0 � x̂0)�� [�nin0kfx̂i; x̂0kg � �sÆ (s� s0)℄ ds ds0 = 0;

whene it follows that�nin0kfx̂i; x̂0kg = �sÆ (s� s0) : (3.18)Beause the braket is skew-symmetri, the generalsolution of (3.18) for fx̂i; x̂0kg an be written as�fx̂i; x̂0kg = nin0k�sÆ (s� s0) + tin0ka (s; s0)�� t0knia (s0; s) + tit0kb (s; s0) ; (3.19)where a (s0; s) and b (s; s0) are some struture funtionsand in addition, b (s; s0) must be antisymmetri,b (s; s0) = �b (s0; s) :The hoie of the struture funtions a (s0; s) andb (s; s0) annot be arbitrary but must be mathed withonstraint (3.12) that means that t2 is the integral ofmotion for ontour dynamis models with any Hamil-tonian. Geometrially, Eq. (3.12) spei�es a surfae inthe phase spae x̂ (s; t) suh that all the trajetories ofreal motions lie on this surfae. Similar integrals of mo-tion are known as Casimir invariants, or annihilators, ofPoisson brakets, i.e., ft2; x̂0kg = 0. This immediatelyimplies ti�sfx̂i; x̂0kg = 0: (3.20)Inserting (3.19) into this ondition, we obtain�sa (s; s0) = �ti �ni�s �sÆ (s� s0) ; (3.21)�sb (s; s0) = ti �ni�s a (s0; s) : (3.22)Solving (3.21) and (3.22) for the struture funtionsa (s0; s) and b (s; s0), we �nda (s; s0) = ��s0 [�0� (s0 � s)℄ ;b (s; s0) = 12 ��02 + �2�� (s0 � s) ;where � = ni�sti = �ti�sniis the ontour urvature and� (s� s0) = 12 sign (s� s0) :Thus, the Poisson braket in the phase spae x̂ (s; t)is expressible asfx̂i; x̂0kg = ��1 �nin0k�sÆ (s� s0)�� tin0k ��s0 [�0� (s� s0)℄ + t0kni ��s [�� (s0 � s)℄ ++ 12 tit0k ��02 + �2�� (s0 � s)� : (3.23)5 ÆÝÒÔ, âûï. 4 689



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001Now, the equations of ontour dynamis an be writtenin the Hamiltonian form as�tx̂i = fx̂i; Hg = ��1 24ni ��s �nk ÆHÆx̂k�++ ti ZC �0� (s� s0) ��s0 �n0k ÆHÆx̂0k� ds0 ++ ni ��s� ZC � (s0 � s) t0k ÆHÆx̂0k ds0 ++ 12 ti ZC ��02 + �2�� (s0 � s) t0k ÆHÆx̂0k ds035 : (3.24)We emphasize that onstraint (3.12) must be used onlyafter all the variational derivatives are taken in (3.24).In most �uid dynamis models arising ommonlyin appliations, the Hamiltonians are onstruted suhthat ti ÆHÆx̂k = 0:In this ase, Eqs. (3.24) an be presented asni��tx̂i � ��1 ��s ÆHÆx̂i� = 0: (3.25)Realling that in these modelsÆHÆx̂k = nk� ̂;where  ̂ is the streamfuntion given on the ontour, weobtain from (3.25) the equations of ontour dynamisin the traditional formni�tx̂i = � ̂�s :Equation of motion of this type was used in [4℄ toderive equation of ontour dynamis in the weak-ur-vature approximation for the Hasegawa�Mima modelof plasma.To eliminate the onstraint from the Hamiltonianformulation of the ontour dynamis, we introdue twonew variables ' and � ast1 = � os'; t2 = � sin'; (3.26)where ' (t; s) is the inlination angle of the unit tangentvetor t to the axis x1. In terms of the new variables,onstraint (3.12) beomes� = 1:

Following [12℄, we de�ne the total Hamiltonian asthe superposition HD = H + �iIiinvolving the original Hamiltonian H and a linear om-bination of the onstraintsIi = ZC tids = 0with �i being some multipliers that must be deter-mined. The onstraints of this type are not a preroga-tive of losed ontours for whih the identitiesZC tids � ZC �x̂i�s ds � 0are quite evident. The same onstraints are also validfor open ontours if we assume that the ontours arelosed at in�nity. In what follows, for simpliity, weonsider an open ontour C running in the x1-diretionfrom �1 to +1. We note that in the weak-urvatureapproximation, the desriptions of models with losedand open ontours are loally equivalent. In this sit-uation, the results obtained for open ontours an beextended to losed ones.The multipliers �i an be determined from the re-quirement that the equation of motion for the variable' on the surfae of the onstraint � = 1must be de�nedby the Poisson braket f'; '0g as�t' = f';HDg = 1Z�1 f'; '0gÆHDÆ'0 ds0: (3.27)Using the formulas for the variational derivativesÆ'Æx̂0i = ni�2 �sÆ (s� s0) ;Æ�Æx̂0i = ti� �sÆ (s� s0) ; (3.28)we �nd that�t' = f';HDg = 1Z�1 Æ'Æx̂00i fx̂00i ; x̂0kgÆHDÆx̂0k ds00ds0 == � 1Z�1 ni �fx̂i; x̂0kg�s ��s0 �n0k ÆHDÆ'0 +t0k ÆHDÆ�0 � ds0:(3.29)690



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex strutures : : :Integration by parts brings Eq. (3.29) to the form�t' = 1Z�1 nin0k �2fx̂i; x̂0kg�s�s0 ÆHDÆ'0 ds0 �� ni �fx̂i; x̂0kg�s �n0k ÆHDÆ'0 + t0k ÆHDÆ�0 �����+1�1 : (3.30)Under the assumption that the perturbation on theontour vanishes at in�nity, and therefore, ' and itsderivatives tend to zero as s ! �1, the last termin (3.30) an be written asni �fx̂i; x̂0kg�s �n0k ÆHDÆ'0 + t0k ÆHDÆ�0 ������1 == ��1 �'sss + 12'3s� ÆHÆ� �����1 + �1! :In aordane with (3.28), we havef'; '0g = 1Z�1 Æ'Æx̂00i Æ'0Æx̂000k fx̂00i ; x̂000k gds00ds000 == nin0k �2fx̂i; x̂0kg�s�s0 ; (3.31)and it is therefore easy to onlude that Eq. (3.30) anbe rewritten in form (3.27) only if the last term in (3.30)an be eliminated. There is no way of doing this exeptby setting �1 = � ÆHÆ� �����1 :Beause the theory is independent of �2, this multiplieran be hosen arbitrarily without a�eting the equationof motion. For simpliity, we put �2 = 0.The expliit form of the Poisson braket f'; '0g anbe found by inserting Poisson braket (3.23) in (3.31)and by using the Frenet formulas�sti = �ni; �sni = ��ti; � = 's: (3.32)By a diret alulation, we obtainf'; '0g = ���1��3sÆ (s� s0) + 2's�s ('sÆ (s� s0))++� (s� s0)�'0s �'sss + 12'3s�+ 's �'0sss + 12'03s ���:Thus, we have obtained the Poisson braket for onemore Hamiltonian version of ontour dynamis. The

orresponding equation of motion (3.29) an now bewritten as�t' = f';HDg = ���1"�3s ÆHDÆ' + 2's�s's ÆHDÆ' ++�'sss + 12'3s� 1Z�1 � (s� s0)'0s ÆHDÆ'0 ds0 ++ 's 1Z�1 � (s� s0)�'0sss + 12'03s � ÆHDÆ'0 ds0#: (3.33)Beause the onstraint � = 1 an now be imposeddiretly on the total Hamiltonian HD before evaluat-ing the Poisson braket, Dira's total Hamiltonian isgiven byHD = 24H � ÆHÆ� ����s=1 1Z�1 os'ds35�=1 : (3.34)3.2. Pieewise-uniform models with vortiityand density jumpsWhen a pieewise-uniform model admits densityjumps, i.e., �+ 6= ��, the vortex sheet density� (s; t) = ���v̂�i � �+v̂+i � ti; v̂�i = v�i ��x=x̂is no longer a onstant of motion. In this ase, the evo-lution of the ontour is therefore de�ned in the phasespae of two variables �+ and �, where in aordanewith (3.8) and (3.14), � is related to � as� = ��+v+k � ��v�k � "ik�i�+ == ZC � (s; t) Æ (x� x̂) ds:Inserting (3.9)�(3.10) in (3.2)�(3.4) gives the Poissonbrakets f�+; �+0g = 0; (3.35)f�+; �0g = "ik�k�+�iÆ (x� x0) ; (3.36)f�; �0g = �"ik�k�+�iÆ (x� x0) ++"ik�k��iÆ (x� x0) ; (3.37)where � = �+!+ � ��!�.The reformulation of ontour dynamis from the(�+, �) phase spae into the (x̂, �) phase spae isarried out in muh the same way as in the previ-ous subsetion. Following this proedure, we obtain691 5*



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001from (3.35)�(3.37) that the Poisson brakets fx̂i; x̂0kgand fx̂i; �0g satisfynin0kfx̂i; x̂0kg = 0; (3.38)ni�s [�0t0kfx̂i; x̂0kg℄� nifx̂i; �0g = �sÆ (s� s0) ; (3.39)�s�0s [�0�tit0kfx̂i; x̂0kg℄� �s [�tifx̂i; �0g℄���0s [�0t0if�; x̂0ig℄ + f�; �0g = ��sÆ (s� s0) : (3.40)Finding the Poisson brakets must be mathed withonstraint (3.12). As noted above, this onstraintmeans that the quantity t2 is a Casimir invariant andhene ommutes with all the variables making up a ba-sis of the phase spae. Therefore, ondition (3.20) mustbe omplemented by one more onditionti�sfx̂i; �0g = 0: (3.41)Solving (3.38)�(3.40) with onditions (3.20)and (3.41), we obtainfx̂i; x̂0kg = 0; (3.42)fx̂i; �0g = �ni�sÆ (s� s0) + ti�0s [�0� (s� s0)℄ ; (3.43)f�; �0g = ��sÆ (s� s0) + �s�0s �� [(�0�+ ��0) � (s� s0)℄ : (3.44)To eliminate the onstraints, by analogy with theprevious subsetion, we introdue two new variables 'and � in aordane with (3.26) under the onstraint� = 1. The Poisson brakets on the (x̂i; �) phase spaean be easily transformed into the ('; �) spae. In fat,only the �rst two brakets (3.42) and (3.43), where thedynamial variables x̂i appear, must be reformulated.The required formulas an be obtained using (3.28) andtake the formf'; '0g = nin0k ��s ��s0 fx̂i; x̂0kg; (3.45)f'; �0g = ni ��sfx̂i; �0g: (3.46)Inserting the Poisson braket in Eqs. (3.42) and (3.43)in (3.45) and (3.46) and using Frenet formulas (3.32),we obtain f'; '0g = 0;f'; �0g = ��2sÆ (s� s0) + 's�0s ['0s� (s� s0)℄ ;f�; �0g = ��sÆ (s� s0) ++�s�0s [('0s�+ 's�0)� (s� s0)℄ :If we restrit our onsideration to open ontoursrunning from �1 to +1 in the x1-diretion, the or-responding Dira's total Hamiltonian HD an be deter-mined in the same way as in the previous subsetion,

with the same result as in Eq. (3.34). Thus, ontour dy-namis orresponding to a given system of the Poissonbrakets is desribed by the equations�t' = f';HDg = � �2�s2 ÆHDÆ� �� 's 1Z�1 '0s� (s� s0) ��s0 ÆHDÆ�0 ds0;�t� = f�;HDg = �2�s2 ÆHDÆ' ++ ��s 24's 1Z�1 '0s� (s� s0) ÆHDÆ�0 ds035++ � ��s ÆHDÆ� �� ��s 24 1Z�1 ('0s�+'s�0)� (s�s0) ��s0 ÆHDÆ�0 ds035 :4. N -PETAL STRUCTURES INTWO-DIMENSIONAL FLUID MODELS4.1. Hamiltonian formulation of the problemThe simplest models that admit a diret appli-ation of the obtained results are a quasigeostrophibarotropi model, a model of plasma based on theHasegawa�Mima equation, and an axial model of ele-troni vorties. These models are known [1; 13℄ to be-long to vortiity-like systems governed by the equation�t! + (�1 ) �2! � (�2 ) �1! = 0; (4.1)where the potential vortiity ! and the streamfuntion are funtions of the x1 and x2 oordinates in thehorizontal plane and are related by! = ��� 1r2� ;where r is an internal sale treated as the Rossby defor-mation radius and � = �21 + �22 is the two-dimensionalLaplae operator. For the Hasegawa�Mima model, theparameter r is treated as the Larmor ion radius rLgiven by rL = �miTe2B20e2 �1=2 ; (4.2)where mi is the ion mass, Te is the eletron temper-ature, e is the eletron harge,  is the light veloity,692



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex strutures : : :and B0 is the indution of an ambient uniform mag-neti �eld. The eletri potential � and the eletronnumber density ne an be expressed in terms of thestreamfuntion as� = B0  ; ne = n0 exp�B0eTe  � ; (4.3)where n0 is the unperturbed plasma density.In the axial model of eletroni �uid with onstantdensity, the parameter r must be hosen as the skinlayer width rS given byrS = � me4�ne2�1=2 ;where me is the eletron mass and n is the onstantplasma density. In this model, the magneti �eld B isrelated to the streamfuntion  byB = �4�ne  :It is easy to verify that the vortiity-like modelsgoverned by equation of motion (4.1) are Hamiltonian,namely, are haraterized by the Poisson braket of thesame type as (3.4),f!; !0g = "ki�i!�kÆ (x� x0) ;and have the HamiltonianH = �12 Z  !dxthat an be rewritten solely in terms of the potentialvortiity asH = �12 Z !!0G (x;x0) dx dx0:Green's funtion G is found as the solution of the prob-lem ��� 1r2�G = Æ (x� x0)and has the expliit formG (x;x0) = � 12�K0� jx� x0jr � ;where K0 denotes the modi�ed zero-order Bessel fun-tion.As already proved, the redution of the desrip-tion of vortiity-like systems in Eq. (4.1) to ontourdynamis beomes possible if the entire �uid an bedeomposed into domains eah of whih moves withthe �uid and has a onstant potential vortiity. For

the unbounded �uid with a single vortex path embed-ded in a bakground shear �ow, the distribution of thepotential vortiity ! an be presented as! = !+�+ + !���; �+ + �� = 1;where !+, �+ and !�, �� have the same meaning asbefore. The orresponding Hamiltonian is then givenbyH = ��22 Z �+�+0G (x;x0) dx dx0; � = !+ � !�:After some manipulations, this an be expressed interms of ontour-dynamial variables asH = (r�)22 Z �+�+0 [Æ (x� x0)��G℄ dx dx0 == (r�)22 �Z �+dx+ Z G��+�xi ��+0�x0i dxdx0� == (r�)22 0�Z �+dx+ ZC G (x̂; x̂0) tit0ids ds01A : (4.4)We note that the �rst integralI = Z �+dx = �12 ZC x̂inids;has a simple geometri meaning of the vortex patharea and is a Casimir invariant (belongs to the annihi-lator of Poisson braket (3.23)). Therefore, it does nota�et the equation of motion and an be omitted inde�ning the Hamiltonian. Thus, we obtain from (4.4)H = � (r�)24� ZZC K0� jx̂� x̂0jr � tit0ids ds0: (4.5)The following analysis is arried out in the weakurvature approximation where the harateristi ur-vature radius R of the ontour is muh larger than theinternal sale (deformation radius) r, whih allows in-troduing a small parameter " = r=R. In this ase,it is possible to develop the loal presentation for theHamiltonian in Eq. (4.5),H = ZC h [s; �; '℄ ds; (4.6)where the Hamiltonian density h is expressible as apower series in the small parameter ",h = (r�)24� �����r�+38� r3� '2s�83 r4�3's (�s's��'ss)+O �"4�� :693



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001Inserting (4.6) in (3.34) and negleting the fourth-order terms in ", we �nd Dira's Hamiltonian for on-tour dynamis in vortiity-like systems under onsider-ation, HD = r3�24 ZC �os'+ 38r2'2s� ds: (4.7)It is interesting to note that beause H � O �"2�,the main ontribution to Dira's Hamiltonian is givensolely by the onstraint funtional. In the leading-orderapproximation, therefore, Eq. (4.7) beomesHD = r3�24 ZC os'ds: (4.8)In aordane with (3.33), we now obtain the ontourdynamis equation�t' = f';HDg = �r3�4 �'sss + 12'3s� : (4.9)4.2. Steadily rotating loalized vortexstruturesWe onsider solutions of Eq. (4.9) that manifestthemselves as stationary vortex strutures rotatingwith a onstant angular veloity !0. These solutionshave the form' (t; s) = ~' (s� t)� !0t; (4.10)where !0 > 0 for the lokwise rotation and !0 < 0 forthe ounterlokwise rotation. Inserting (4.10) in (4.9)and hoosing the spatial sale R asR = r2 � �!0�1=3 ; (4.11)we introdue the dimensionless variables~s = s� tR ; ~� = � ~'�~sand obtain the equation��~��~s�2 = �14~�4 + 1~�2 + ~�+ 2; (4.12)where 2 is an integration onstant and 1 ==  (2!0R)�1.Aording to the theory of ellipti funtions [14℄,Eq. (4.12) has two sets of periodi solutions expressedin terms of ellipti funtions,~� = b+ a� b1� � F (�~sjm) ; (4.13)

where F is one of the Jaobi ellipti funtions (either snor dn) and m is the parameter of these funtions, withthe vertial line symbolizing the m-dependene. Wenote that depending on the type of the Jaobi ellip-ti funtions, the independent basi parameters � andm parametrize all the others parameters a, b, �, andonsequently, 1 and 2.To derive the equations desribing the boundaryshape of vortex strutures rotating in the horizontalz-plane, we must integrate the equation�ẑ�~s = exp (i ~') ; (4.14)where ẑ = (x̂1 + ix̂2) =R is the dimensionless omplexoordinate of the ontour. It an be diretly veri�edthat if ~� satis�es (4.12), the solution of (4.14) is givenby ẑ (~s) = 2 ��~��~s + i�1 � ~�22 �� exp (i ~') : (4.15)4.3. Classi�ation of solutionsIn this subsetion, we fous our attention on thelassi�ation of those solutions of Eq. (4.12) that or-respond to multipetal vortex strutures without self-intersetion of the ontour. For this purpose, we per-form both analytial and numerial investigation of theproblem in Eqs. (4.13) and (4.15) restriting our studyto the ase where F = sn. As beomes apparent aftera lose examination, the solutions of the seond typewith F = dn do not ontain vorties without ontourself-intersetions.With F = sn, the periodi solution for the ontoururvature (4.13) takes the form~� = b+ a� b1� �sn (�~sjm) : (4.16)If the independent parameters � and m are onsideredas basi, all the other parameters a, b, and � an beexpressed asa = �2�1=3 � �1 +m� 2�2�[(1�m)2�(m� �4)℄1=3 ;b = 2�1=3 �2 +m(�2 � 2)� [(1�m)2�(m� �4)℄1=3 ;� = 2�1=3 p(�2 �m)(1� �2)[(1�m)2�(m� �4)℄1=3 :The parameters 1 and 2 are expressed in terms of aand b as1 = ba2 � 1a+ b ; 2 = �14 �b+ a+ b2a2� :694



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex strutures : : :We emphasize that the onditions of the ontour on-tinuity (smoothness) and reality of solutions to (4.12)impose the following restritions on the parameters �and m: 0 � � � 1; m < �2: (4.17)It follows from (4.15) that in order to �nd theboundary shape we must know the slope angle ~'(~s)in addition to the variable ~�. This an be omputed byintegrating (4.16) along the ontour line,~'(~s) = ~sZ0 ~�(s)ds = b~s+a�b� � ��2; am (�~sjm) jm��� 2 Imnln hn (�~sjm)p�2 �m ++ idn (�~sjm)p1� �2 io ; (4.18)where �(u;#jm) is the inomplete ellipti integral ofthe third kind and the Jaobi amplitude am(ujm) isde�ned by am(ujm) = arsin (sn(ujm)) :As mentioned above, our study is restrited to vor-tex strutures with a �nite area bounded by a losedontour without self-intersetions. It is worth notingthat the elimination of self-interseting ontours orre-sponding to rather exoti vortex formations from theonsideration is motivated by the weak-urvature ap-proximation used in deriving Eq. (4.9), but is not atall ditated by intrinsi reasons of �uid dynamis. Inother words, the exat equations of motion for the two-dimensional ideal �uid admit the existene of solutionswith suh a ontour topology.Obviously, onsidering suh ontours requires a gen-eralization of model assumptions in the initial state-ment of the problem. Beause the vortex region be-omes multiply onneted when the ontour admitsself-intersetions, the orresponding pieewise-onstantvortiity distribution an be rather spei�. If thetopology of the ontour self-intersetion is known, thevortiity distribution an be easily reprodued beausethe vortiity jump must remain invariant when goingaround the ontour in one of the diretions (see Fig. 1).In essene, the question of whether to inlude solutionsof this type into the framework of our sheme is thequestion of whether a global behavior of solutions issensitive to a loal violation of the weak-urvature ap-proximation. The answer an be found by omparingnumerial and analytial solutions. If these solutionsare insensitive, they have every ground for being in-luded and an be improved using various numerial

�2 �1 0 1 2
01 !+ !+
�2�1 !+
x2

2!+
x1Fig. 1. The geometry of a three-petal vortex region ofpieewise-onstant vortiity with a sel�nterseting on-tour. The vortiity distribution is !+ in petals and 2!+in the ore, so the jump in vortiity is the invariant !+in traing the ontour

�3 �2 �1 0 1 2 3 4�3�2�1
012
3 ~s� ~s+ = K(m)��� = �nx2

x1
~s� = 3K(m)�

Fig. 2. Three-petal vortex struture. The point~s+ = K(m)=� lies in the petal tip and ~s� = 3K(m)=�lies between the petals. ~s� is the selfontating point ofthe ontourproedures similar to the �ontour surgery� proposedin [2℄.Beause the ontour is losed and its urvature is aperiodi funtion of ~s, the boundary shape of the vor-ties must have an n-petal struture. An example ofthis struture is given in Fig. 2. From this �gure andthe analysis of (4.16), it is lear that the ontour urva-ture of the n-petal vortex struture, being an osillatoryfuntion with the period 4K(m)=�, has extrema at the695
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m

�Fig. 3. The family of n-petal vortex regimes in the plane �m. The harateristi urves assign the dependene mn(�) forn = �1;�2; : : : ;�9. The limit points where the orresponding vortex struture has the ontour with a self-ontat aremarked as �points~s� = (4j � 1)K(m)� ; ~s+ = (4j � 3)K(m)� ;j = 1; 2; : : : ; n;where K(m) is the omplete ellipti integral of the �rstkind. At these points, the ontour urvature takes theextreme values~�+ = b+ a� b1� � == 2�1=3 m(�+ 2)� �(1 + 2�)[(1�m)2�(m� �4)℄1=3 ;~�� = b+ a� b1 + � == 2�1=3 m(�� 2)� �(1� 2�)[(1�m)2�(m� �4)℄1=3 : (4.19)
The subsript notation � means that f� = f(~s�). Therelative position of the turning points ~s� and ~s+ de-pends on the parameters � and m. To establish whihof them is at the tip of the petal and whih is in thetrough between the petals, it is neessary to omputethe distanes between these points and the symmetryenter (the oordinate origin). For this purpose, weintrodue � and � as the polar oordinates,ẑ(~s) = �ei�:

In aordane with (4.15) and (4.12), the variables �and � are then given by�2 = 4 �21 + 2 + ~�� ; (4.20)� = artg� �~�=�~s1 � ~�2=2�+ ~': (4.21)Expressing 1 and 2 in terms of � and m and us-ing (4.19), we �nd from (4.20) that�2+ = 22=3 �m(1 + 2�)� �3(� + 2)�2�(m� �4) [(1�m)2�(m� �4)℄1=3 ;�2� = 2�1=3 �m(1� 2�)� �3(�� 2)�2�(m� �4) [(1�m)2�(m� �4)℄1=3 :The relative position of the turning points depends onwhether 1 is greater or less than the ratio����+�2 = 1 + 8�(�2 �m)(m� �4)[m(1 + 2�)� �3(�+ 2)℄2 :It is easy to see that the inequality �4 � m � �2 entailsthe inequality �� � �+; in this interval of the param-eters, therefore the tops of the petals lie at the points~s�. In the event that m � �4 (and onsequently, thereverse inequality �� � �+ holds), the tips of the petalslie at the points ~s+.It is amply lear that in the region of the permissibleparameters (4.17), not all solutions (4.16) orrespond696
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�2 �2�2
�2
�2Fig. 4. Shapes of boundaries for double-petal vor-tex strutures: � = 0:050 (a), 0.200 (b), 0.300 (),0.353 (d)to vortex strutures with losed ontours. The ondi-tion under whih periodi solution (4.16) orrespondsto a losed ontour an be formulated as�� = �� � �+ = �n: (4.22)This ondition has a simple geometrial interpretationshown in Fig. 2. From this �gure, it is easy to see that2�� is merely the angular distane between neighbor-ing petals. To evaluate its value, it su�es to notethat the position vetor and the tangent one are mu-tually orthogonal at the turning points. It thus followsfrom (4.21) that �� = ~'� + �2��;where the sign funtion �� is de�ned as�� = sign �m(1� 2�)� �3(�� 2)� : (4.23)The expression for ~'� an be easily found from (4.18)as ~'� = 4j � 2� 1� �� �bK(m) + (a� b)� ��2jm��� �; (4.24)where �(ujm) = ��u; �2 jm�is the omplete ellipti integral of the third kind.
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Fig. 5. Shapes of boundaries for three-petal vortexstrutures: � = 0:050 (a), 0.200 (b), 0.300 (),0.371 (d)Equations (4.23) and (4.24) allow us torewrite (4.22) asbK(m) + (a� b)� ��2jm� = �2 �� 1n ��� ; (4.25)where� = 12(����+) = 12 �sign �m(1�2�)��3(��2)��� sign �m(1 + 2�)� �3(�+ 2)�	 :The analysis shows that Eq. (4.25) has solutions in theform of n-petal strutures in the regionm � �3 �� 21� 2�;where � = 0, for n � �2. In Fig. 3, this region ismarked by a shaded bakground. The solutions arepresented by the harateristi urves that determinethe dependene mn(�) for every n. For a �xed n, themultipetal struture an therefore be desribed by asingle parameter �. The vortex shapes for n = 2; 3depending on � are shown in Figs. 4 and 5. For ev-ery n-petal regime, the harateristi urve has a limitpoint where the orresponding vortex struture has aself-ontating ontour. Solutions without intersetionsof ontours are on the left of the point and those withself-intersetions are on the right.A prerequisite to the formation of a self-ontat ina ontour an be formulated on the basis of geometrial697
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Fig. 6. Surfae plot of the streamfuntion �eld for thelimiting three-petal vortex strutureonsiderations following from Fig. 2. At the tangenypoint ~s�, the angles � and ~' are related by�(~s�) = ~'(~s�):Equation (4.21) now implies the ondition~�2 (~s�) = 21:One more ondition is obtained by taking into aountthat in traing the ontour from the point ~s+ to the tan-geny point ~s�, the tangent vetor is rotated through�=2, and therefore~'(~s�)� ~'+ = �=2:Using the relation~'+ = �2 � 1n ���� �;whih follows from (4.24) and (4.25) with j = 1, weobtain the onditions~'(s�) = �2 � 1n ��� 1� ;~�2 (s�) = 2�2=3 �� 2�4(1 +m) + �2(1 +m(m� 10)) + 2m(m+ 1)[(1�m)2�(m� �4)℄2=3 :Together with (4.25), these onditions �x all the pa-rameters of the limiting regimes presented in the Table.In the quasigeostrophi barotropi model, the phys-ial interpretation of  is the pressure deviation, and inthe plasma model based on the Hasegawa�Mima equa-tion, this quantity haraterizes the eletri potential.To illustrate the spatially-temporal harater of distri-butions of  , we assume for simpliity that the bak-ground vortiity is absent, i.e., !� = 0. Using the

0 1 2 3 40.40.81.21.6
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� = 60Æ (r) (0)
r

48Æ
Fig. 7. The radial pro�le of the streamfuntionfor the limiting three-petal vortex struture given inFig. 6. The pro�les orrespond to the diretions� = 60; 48; 36results obtained in Se. 4.1, we an then establish theformula (x) = !+ Z �+0G (x;x0) dx0 == !+R2 Im ZC � 1jẑ � zj � "�1K1� jẑ � zj" ���� ẑs ��̂z � �z�jẑ � zj ds; (4.26)where z = (x1 + ix2) =R and " = jr=Rj :The distribution  (x)= (0) assoiated with the pres-ene of the three-petal vortex of limiting type is alu-lated in aordane with (4.26) and is shown in Fig. 6.The radial pro�les orresponding to this vortex are pre-sented in Fig. 7.5. CONCLUDING REMARKSTo gain greater insight into the physial signi�aneof the results and deide in whih range of parametersthese results an be appliable, we make some estimatesfor the Hasegawa�Mima model and for the axial modelof eletroni vorties, in parallel. We note that for thesemodels, the values of the rL and rS parameters overa broad range. Aording to fatual evidene [15℄, theLarmor ion radius rL measures 103 m for the inter-planetary gas and 10�2 m for the solar orona. De-pending on the type of plasma, the skin layer width rSvaries between 5 � 105 and 5 � 10�3 m.To illustrate the obtained results in more detail, weonsider the Hasegawa�Mimamodel of plasma with theparameters Te = 104 K, n0 = 1014 m�3, B0 = 104 G,698



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex strutures : : :Table. Values of parameters haraterizing the limiting regimesn � m ~�� ~�+ �� �+�2 0.352823 �0:245778 �0:456761 1.79081 0. 2.12018�3 0.371469 �0:580662 �0:820287 1.95339 0.193635 3.3365�4 0.348897 �0:844407 �1:01623 2.03108 0.42446 3.51701�5 0.323504 �1:0545 �1:15832 2.08942 0.635998 3.65998�6 0.300157 �1:22456 �1:27263 2.13903 0.83048 3.78634�10 0.231285 �1:66566 �1:60011 2.29932 1.49709 4.22362and mi = 1:67 � 10�24 g, whih are typial for a low-pressure gas disharge. In aordane with (4.2), we�nd rL � 10�2 m. Beause the theory of limit-ing vortex strutures has only two ontrol parame-ters (the angular rotation veloity !0 and the vortiityjump � = !+ � !�), we put !0 = 10 s�1, !� = 0,and !+ = 106 s�1 in order to alulate some har-ateristis of a three-petal drift vortex. In this ase,Eq. (4.11) gives R � 10rL = 10�1 m, and therefore,eah petal of the vortex struture has the radial length�+R � 3:3 � 10�1 m. Next, upon numerial integra-tion with " = rL=R � 10�1, we obtain from (4.26)that  (0) � 5:07R2!+. Thus, we an estimate themagnitudes of the eletri potential � and the eletronnumber density ne at the enter of the three-petal driftvortex. It follows from (4.3) that �(0) � 4:4 � 102 Vand ne(0) � 1:5 � 1016 m�3.We note, in losing, some possible generalizationsof the Hamiltonian versions of 2D ontour dynamis.The tehnique that we have desribed an also be usedfor 3D vortex objets, for example, in quasigeostrophibarolini models of geophysial �uid dynamis. TheHamiltonian versions of 2D ontour dynamis an besuessfully applied to the study of nonplanar modelsin all the ases where the veloity �eld is invariantalong the vortiity �eld diretion. Typial examplesare �ows on the sphere and also �ows with the rota-tional and helial spatial symmetry of the vortex �eld.This work was partly supported by theRussian Foundation for Basi Researh (grant� 00-05-64019-a). REFERENCES1. J. Pedlosky, Geophysial �uid dynamis, 2nd edn.,Springer-Verlag, New York (1986).
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