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BIG ENTROPY FLUCTUATIONS IN THE NONEQUILIBRIUMSTEADY STATE: A SIMPLE MODEL WITH THE GAUSSHEAT BATHB. V. Chirikov*Budker Institute of Nulear PhysisSiberian Branh of Russian Aademy of Sienes630090, Novosibirsk, RussiaSubmitted 6 July 2000Large entropy �utuations in a nonequilibrium steady state of lassial mehanis are studied in extensive nu-merial experiments on a simple two-freedom model with the so-alled Gauss time-reversible thermostat. Theloal �utuations (on a set of �xed trajetory segments) from the average heat entropy absorbed in thermostatare found to be non-Gaussian. The �utuations an be approximately disribed by a two-Gaussian distribu-tion with a rossover independent of the segment length and the number of trajetories (�partiles�). Thedistribution itself does depend on both, approahing the single standard Gaussian distribution as any of thoseparameters inreases. The global time-dependent �utuations are qualitatively di�erent in that they have astrit upper bound muh less than the average entropy prodution. Thus, unlike the equilibrium steady state,the reovery of the initial low entropy beomes impossible after a su�iently long time, even in the largest�utuations. However, preliminary numerial experiments and the theoretial estimates in the speial ase ofthe ritial dynamis with superdi�usion suggest the existene of in�nitely many Poinaré reurrenes to theinitial state and beyond. This is a new interesting phenomenon to be further studied together with some otheropen questions. The relation of this partiular example of a nonequilibrium steady state to the long-standingpersistent ontroversy over statistial �irreversibility�, or the notorious �time arrow�, is also disussed. Inonlusion, the unsolved problem of the origin of the ausality �priniple� is onsidered.PACS: 05.70.Ln, 05.40.+j1. INTRODUCTION: EQUILIBRIUM VS.NONEQUILIBRIUM STEADY STATEThe �utuations are an inseparable part of statisti-al laws. This is well known sine Boltzmann. Whatis apparently less known are the peuliar properties ofrare big �utuations (BF) as di�erent from, and in asense even opposite to, those of small stationary �u-tuations. In partiular, the former an be perfetlyregular on the average, symmetri in time with respetto the �utuation maximum, and an be desribed bysimple kineti equations rather than by a sheer proba-bility of irregular �noise�. Even though big �utuationsare very rare, they may be important in many vari-ous appliations (see, e.g., [1℄ and referenes therein).In addition, the orret understanding and interpreta-tion of the properties and origin of big �utuations may*E-mail: hirikov�inp.nsk.su

help (at last!) to settle a strangely persistent ontro-versy over statistial �irreversibility� and the notorious�time arrow�.In the big �utuations problem, one must distin-guish at least two qualitatively di�erent lasses of thefundamental (Hamiltonian, nondissipative) dynamialsystems: those with and without the statistial equi-librium, or the equilibrium steady state (ES).In the former (simpler) ase, a big �utuation on-sists of the two symmetri parts: the rise of a �u-tuation followed by its return, or relaxation, bak toES (see Fig. 1 below). Both parts are desribed bythe same kineti (e.g., di�usion) equation, the onlydi�erene being in the sign of time. This relatesthe time-symmetri dynamial equations to the time-antisymmetri kineti (but not statistial!) equations.The prinipal di�erene between the two, some timesoverlooked, is that the kineti equations are widely un-205
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Fig. 1. Boltzmann's di�usive �utuations in model (1.2) with the parameter C = 15: the square of the phase spae areaoupied by N independent trajetories (�partiles�) vs. the time (the number of map iterations t� ti) ounted from theinstant ti of �utuation maximum, or of minimal �fl, for eah of the Nfl superimposed big �utuations separated by theaverage period P = h(ti � ti�1)i. Straight lines show the expeted dependene for anti-di�usion and di�usion (see text).Two slightly di�erent urves orrespond to N = 1 (grey) and N = 4 (blak) with �fl = 0.0001 and 0.1; Nfl = 3352 and2851; P = 29863 and 35110, respetivelyderstood as desribing the relaxation only, i.e., the in-rease of the entropy in a losed system, whereas theyatually do so for the rise of the big �utuations as well,i.e., for the entropy derease. All this was qualitativelyknown already to Boltzmann [2℄. The �rst simple ex-ample of a symmetri big �utuation was onsidered byShrödinger [3℄. A rigorous mathematial theorem forthe di�usive (slow) kinetis was proved by Kolmogorovin 1937 in the paper entitled �Zur Umkehrbarkeit derstatistishen Naturgesetze� (�Conerning reversibilityof statistial laws in nature�) [4℄ (see also [5℄). Re-grettably, the prinipal Kolmogorov theorem still re-mains unknown to the partiipants of the heated debateover �irreversibility� (see, e.g., �Round Table on Irre-versibility� in [6℄) and to the physiists atually study-ing suh big �utuations [1℄.By now, there exists the well developed ergodi the-ory of dynamial systems (see, e.g., [7℄). In partiular,it proves that the relaxation (orrelation deay, or mix-ing) proeeds eventually in both diretions of time foralmost any initial onditions of a haoti dynamialsystem. However, the relaxation must not be alwaysmonotoni, whih simply means a big �utuation onthe way, depending on the initial onditions. To elim-inate this apparently onfusing (to many) �freedom�,one an take a di�erent approah to the problem: tostart at arbitrary initial onditions (most likely orre-

sponding to ES) and see the big �utuation dynamisand statistis.At this point, it is essential to reall that the sys-tems with ES allow for very simple models in boththe theoretial analysis and numerial experiments (ofwhih the latter are even more important). In this pa-per, we use one of the most simple and popular modelsspei�ed by the so-alled Arnold at map (see [8, 9℄)p = p+ x mod 1;x = x+ p mod 1; (1:1)that is a linear anonial map on the unit torus. It hasno parameters and is haoti and even ergodi. Therate of the loal exponential instability, the Lyapunovexponent � = ln�3=2 +p5=2� = 0:96;implies a fast (ballisti) kinetis with the relaxationtime tr � 1=� � 1.A minor modi�ation of this map,p = p+ x� 12 mod C;x = x+ p mod 1; (1:2)where C � 1 is the irumferene of the phase spaetorus admits a slow (di�usive) relaxation withtr � C2=4Dp;206



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Big entropy �utuations : : :where Dp = 1=12 is the di�usion rate in p. A onve-nient harateristi of the big �utuation size is the rmsphase spae volume (area) �(t) = �p ��x for a group ofN trajetories. In the ergodi motion at equilibrium,we have � = �0 = C=12:In what follows, we use the dimensionless measure~� = �=�0 ! �and omit the tilde.The entropy S an be de�ned by the relationS(t) = ln �(t); (1:3)with S = 0 at equilibrium. This de�nition is not iden-tial to the standard one (via the (oarse-grained) dis-tribution funtion) but it is quite lose to the latter if�� 1, i.e., for a big �utuation, whih is what we needin the problem under onsideration. A great advantageof de�nition (1.3) is that the omputation of S does notrequire very many trajetories as does the distributionfuntion. In fat, even a single trajetory is su�ient!A �nite number of trajetories used for alulatingthe phase-spae volume � is a sort of the oarse-graineddistribution, as required in relation (1.3), but with afree bin size that an be arbitrarily small. The detailedstudy of big �utuations in this lass of ES models willbe published elsewhere [10℄. Here, we brie�y onsiderthe example shown in Fig. 1.The data were obtained from running 4 and only 1(!) trajetories for a su�iently long time in order toollet su�iently many big �utuations; they are su-perimposed in Fig. 1 to lean up the regular big �utua-tion from a �podlike trash� of stationary �utuations.The size of big �utuation hosen was approximately�xed by the ondition �(t) � �fl. In spite of the in-equality, the mean values h�(ti)i = 0:000033 and 0.069are lose (by the order of magnitude) to the �xed �flvalues in Fig. 1. We note that for a slow di�usive ki-netis, we have exp (2S) / �2p / hp2iand �x remains onstant.The probability of big �utuation an be harater-ized by the average period between them, for whih avery simple estimateP � 3��Nfl � 3 exp (�NSfl) (1:4)is in a good agreement with data in Fig. 1 (upon in-luding the empirial fator 3).

In the example presented here, the position of allbig �utuations in the phase spae is �xed as xfl = 1=2and pfl = C=2. If one lifts this restrition, the proba-bility of big �utuation inreases by the fator 1=�fl,or by dereasing N by one (N ! N � 1), due to anarbitrary position of big �utuation in phase spae. Inthe former ase, a hain of big �utuations is preiselythe well known Poinaré reurrene. It is less knownthat the latter are a partiular and spei� ase of big�utuations, and the reurrene of a trajetory in ahaoti system is determined by the kinetis of the sys-tem. Reurrene of several (N > 1) trajetories analso be interpreted as the reurrene of a single traje-tory in N unoupled freedoms.As an be seen from Fig. 1, irregular deviations froma regular big �utuation are rapidly dereasing withthe entropy S ! Sfl. It may seem that the motionbeomes regular near big �utuation maximum, henethe term �optimal �utuational path� [1℄. In fat, themotion remains di�usive down to the dynamial salethat is j�pj � 1 independently of the parameter C inmodel (1.2).Big �utuations are not only perfetly regular bythemselves but also surprisingly stable against any per-turbations, both regular and haoti. Moreover, theperturbations do not need to be small. At �rst glane,this looks very strange in a haoti, highly unstable dy-namis. The resolution of this apparent paradox is thatthe dynamial instability of motion a�ets the big �u-tuation time instant ti only. The big �utuation shapeis determined by the kinetis that an have an arbitrarymehanism, ranging from a purely dynamial one, as inmodel (1.2), to a ompletely noisy (stohasti, f. Fig. 1above and Fig. 4 in [1℄). As a matter of fat, the funda-mental Kolmogorov theorem [4℄ is spei�ally related tothe latter ase but remains valid in a muh more gen-eral situation. Surprising stability of big �utuationsis similar to the full (less known) robustness propertyof the Anosov (strongly haoti) systems [11℄, whosetrajetories are only slightly deformed under a smallperturbation (for disussion, see [12℄). From a di�erentperspetive, this stability an be interpreted as a fun-damental property of the �marosopi� desription ofbig �utuations. In suh a simple few-freedom systemsimilar to (1.2), the term �marosopi� refers to theaveraged quantities �, �, S, and similar ones. However,a somewhat onfusing result is that the �marosopi�stability omprises not only the relaxation of big �u-tuations but also its rise, beause both parts of big�utuation always appear together. This may lead toanother misunderstanding that the �utuation and re-laxation probabilities are the same, whih is ertainly207



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001wrong. The point is that the ratio of both (unequal!)probabilities is determined by the rossover parameterRro(Sfl) = Ptr � 3 exp (�NSfl)C2 � 1; (1:5)where the latter expression refers to model (1.2) andthe inequality determines the region of big �utuationwhere its waiting time is muh longer than that of itsimmediate relaxation from a nonequilibrium �maro-sopi� state (for further disussion, see Se. 6 in whatfollows).2. A NEW CLASS OF DYNAMICAL MODELS:WHAT ARE THEY FOR?A relatively simple piture of big �utuations insystems with the equilibrium steady state is well un-derstood by now, although not yet well known. ToBoltzmann, this piture was the basis of his �utuationhypothesis for our Universe. Again, as is well under-stood by now, this hypothesis is entirely inompatiblewith the present struture of the Universe, beause itwould immediately imply the notorious �heat death�(see, e.g., [13℄). For this reason, one may even termsuh systems the heat death models. Nevertheless, theyan be and atually are widely used in the desriptionand study of loal statistial proesses in thermody-namially losed systems. The latter term means theabsene of any heat exhange with the environment.We note, however, that for the exponentially unsta-ble motion, the only dynamially losed system is thewhole Universe. In partiular, this exludes the hypo-thetial �veloity reversal�, whih is still popular in de-bates over �irreversibility� ourring sine Loshmidt(for disussion, see, e.g., [12, 14℄ and Se. 6 in whatfollows).In any event, dynamial models with ES do not tellus the whole story of either the Universe or even a typ-ial marosopi proess therein. The prinipal solu-tion of this problem, unknown to Boltzmann, is quitelear by now, namely, the �equilibrium-free� modelsare wanted. Various lasses of suh models are in-tensively studied today. Moreover, the elebrated os-mi mirowave bakground tells us that our Universewas born already in the state of a heat death; for-tunately to us, however, it beame unstable beauseof the well-known Jeans gravitational instability [15℄.This resulted in developing a rih variety of olletiveproesses, or synergetis, the term reently introduedor, better to say, put in use by Haken [16℄. The mostimportant peuliarity of this olletive instability is in

that the total overall relaxation (to somewhere?) withever inreasing total entropy is aompanied by an alsoinreasing phase spae inhomogeneity of the system,partiularly in temperature. In other words, the wholesystem as well as its loal parts beome more and morenonequilibrium to the extent of the birth of a seondarydynamis that an be, and sometimes is, as perfet as,for example, the elestial mehanis (for general disus-sion see, e.g., [17, 18, 12℄).We stress that all these inhomogeneous nonequilib-rium strutures are not big �utuations as in ES sys-tems, but are a result of regular olletive instability,and therefore, they are immediately formed under aertain ondition. In addition, they are typially dis-sipative strutures in Prigogine's terms [19℄ beause ofthe energy and entropy exhange with the in�nite en-vironment. The latter is the most important featureof suh proesses, and at the same time the main dif-�ulty in studying the dynamis of those models boththeoretially and in numerial experiments, whih areso muh simpler for the ES systems. Usually, the in-vestigations in this �eld are based upon statistial lawsomitting the underlying dynamis from the beginning.Reently, however, a new lass of dynamial modelshas been developed by Evans, Hoover, Morriss, Nosé,and others [20, 21℄. Some researhers still hope thatthese new models will help to resolve the �paradoxof irreversibility�. A more serious reason for studyingthese models is that they allow one to relatively sim-ply inlude the in�nitely dimensional �thermostat�, or�heat bath� into a model with a few degrees of free-dom. This greatly failitates both numerial experi-ments and the theoretial analysis. In partiular, thederivation of Ohm's law within this model was pre-sented in [22℄, thereby solving �one of the outstandingproblems of modern physis� [23℄ (for this peuliar dy-namial model only!). The authors of [22℄ laim that�At present, no general statistial mehanial theoryan predit whih mirosopi dynamis will yield suhtransport laws...� In our opinion, it would be more or-ret to inquire whih of many relevant models ould betreated theoretially, and espeially in a rigorous wayas was atually done in [22℄.The zest of new models is the so-alled Gauss ther-mostat, or heat bath (GHB). In the simplest ase, themotion equations of a partile in this bath are [20�22℄:dpdt = F� �p; � = F � pp2 ; (2:1)where F is a given external fore and � stands for the�frition oe�ient�. The �rst peuliarity of this �fri-tion� is in its expliit time reversibility ontrary to the208



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Big entropy �utuations : : :�standard frition�. The prie for reversibility is thestrit onnetion between the two fores, the fritionand the external fore F. Moreover, and this is mostimportant, the onnetion is suh thatjpj2 = p20 = onstis the exat motion invariant,ddt jpj22 = p � dpdt = p � F�F � p: (2:2)The �rst of the two idential terms represents the me-hanial work of the external regular fore F, the springof the external energy, and the seond one desribesthe sink of energy into GHB. Thus, asymptotially ast!1, the model desribes a steady state only. This isthe main restrition of suh models. The partile itselfdoes only immediately transfer the energy without anyhange of its own one beause of the above onstraintjpj2 = onst:For one degree of freedom, the latter would lead to thetrivial solution p = onst. Therefore, at least two de-grees of freedom are required to allow for a variationof the vetor p in spite of the onstraint. For manyinterating partiles, the onstraintX jpij2 = onstis less stringent, hene the referene to the Gauss �Prin-iple of Least Constraint� [24℄ for deriving the re-versible frition in Eq. (2.1). In the present paper, thesimplest ase of N noniterating partiles with two de-grees of freedom is onsidered only as in [22℄.The next important point is a speial form of theenergy in GHB, whih is the heat. In true heat bath itis given by the haoti motion of in�nitely many par-tiles. This is not the ase in GHB, and one needs anadditional fore in Eq. (2.1) to make the partile motionhaoti, at the same time maintaining the onstraint.Whether suh an external to GHB haos is equivalentto the haos inside the true heat bath, at least statisti-ally, remains an open question, but it seems plausiblefrom the physial viewpoint [22℄ (see also Ref. [25℄).If so, the model desribes the diret onversion of me-hanial work into heat Q, and hene the permanententropy prodution. The alulation of the latter is nota trivial question (for disussion, see [20�22℄). In ouropinion, the simplest way is to use the thermodynamirelation dSdt = 1T dQdt ; dQdt = p �F; (2:3)

where T = p20 is the e�etive temperature [22℄. Beausethe input energy is of zero entropy (the formal temper-ature Tin = 1), relation (2.3) determines the entropyprodution in the whole system (partiles + GHB). Wenote that in Eq. (2.3), as well as throughout this paper,the entropy S is understood to be determined in thestandard way via a oarse-grained distribution fun-tion.On the other hand, the usual interpretation of GHBmodels is quite di�erent [20�22℄. Namely, the entropyprodution in Eq. (2.3) is expressed via the Lyapunovexponents �i of the partile motion,dSdt � dSGHBdt � �dSpdt = �Xi �i; (2:4)where SGHB and Sp are the respetive entropy of GHBand of the ensemble of partiles. An unpleasant featureof this relation is in that the latter equality holds for theGibbs entropy only, whih is onserved in the Hamil-tonian system modeled by the GHB. As a result, theentropy of the total system (partiles + GHB) remainsonstant (the seond equality in Eq. (2.4)), whih liter-ally means no entropy prodution at all! Even thoughthis interpretation an be formally justi�ed, it seemsto us to be physially misleading. In our opinion, theappliation of Lyapunov exponents would be better re-strited to haraterization of the phase-spae fratalmirostruture of the partile motion (whih is reallyinteresting), retaining the universal oarse-grained def-inition of the entropy (f. ES models in Se. 1).As mentioned above, the GHB models desribe thenonequilibrium steady states only. Moreover, any ol-letive proesses of interating partiles are also ex-luded, among them those responsible for the very ex-istene of regular nonequilibrium proesses, in parti-ular, of the �eld F in model (2.1). In a more om-pliated Nosé�Hoover version of GHB models, thesesevere restritions an be partly, but not ompletely,lifted. Whether this is su�ient for the inlusion ofolletive proesses remains, to our knowledge, an openquestion.In any event, even the simplest GHB model like(2.1) represents a qualitatively di�erent type of statis-tial behavior ompared to that in the ES models. Theorigin of this prinipal di�erene is twofold: (i) the ex-ternal �inexhaustible� spring of energy, if only intro-dued �by hand�, and (ii) a heat sink of in�nite apa-ity that exludes any equilibrium.In onlusion of this setion, we preisely formulatethe model onsidered in the main part of the paper.Choosing the model for numerial experiments, we fol-low the �golden rule�: onstrut the model as simple as14 ÆÝÒÔ, âûï. 1 209



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001possible but not simpler. In the problem under onsid-eration, the models already studied are mainly basedon the well-known and well-studied �Lorentz gas� thatis a partile (or many partiles) moving through a setof �xed satterers. A new element is a onstant �eldaelerating the partiles. Atually, the Lorentz modelbeomes the famous Galton Board [26℄, the very �rstmodel of haoti motion, whih was invented by Galtonfor another purpose, and whih has not been studied indetail until reently [20�22℄. Our model is still simpler,and is spei�ed by the two maps: (i) the 2D Arnoldat map (1.1) to haotize partiles, and (ii) the 1Dmap version of Eq. (2.1),p1 = p1 + F � 4Fp21; (2:5)where p1 = p � p0 and the parameter in Eq. (2.1) isp0 = 1=2. For jF j < 1=4, the momentum p remainswithin the unit interval (0 � p < 1) as in map (1.1).The prinipal relation (2.3) for the entropy redues alsoto the additional 1D map,S = S + (p1 + F )2 � p21 = S + 2p1F + F 2; (2:6)where the entropy unit is hanged by the fator 2 forsimpliity. Beause S is the entropy produed in GHB,the latter map impliitly inludes also the motion inthe seond degree of freedom for eah of the noninter-ating partiles beause of the Gauss onstraint thatguarantes the immediate transfer of energy to GHB.In numerial experiments onsidered below, an ar-bitrary number N of noninterating partiles (traje-tories) with random initial onditions was used. In thisase, the Gauss onstraint remains unhanged, and allthe trajetories are run simultaneously.3. NONMONOTONIC ENTROPYPRODUCTION: LOCAL FLUCTUATIONSStatistial properties of the entropy growth in themodel hosen are determined by the �rst two momentsof the p1 distribution funtion. In the limit as t ! 1and/or N ! 1, they are given by (per iteration andper trajetory) hp1i = 0; hp21i = 112 ; (3:1)where averaging is done over both the motion time t(now the number of the iterations of the map) and Nnoninterating partiles (partile trajetories). In om-bination with Eq. (2.6), the �rst moment in Eq. (3.1)implies the linear growth of the average entropy (pertrajetory), hS(t)i = t F 2: (3:2)
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�6 �4 �2 0 2 4 6Fig. 2. Distribution funtion f(S�) of loal �utua-tions in the nonequilibrium steady state with F = 0.01.Dashed line is the standard Gauss law (3.5); pointsrepresent the results of numerial experiments withN = 1, and t1 = 10, 25, 100In this setion, the statistis of loal �utuations isonsidered. A similar problem was studied in [27℄ fora more realisti model with many interating partiles.In the present model, the loal �utuation is de�nedas follows. The total motion time tf is subdivided intomany segments of equal duration t1. On eah segmenti = 1; : : : ; tf=t1, the total hange of the entropy Sifor all N trajetories is alulated using Eq. (2.6) andrepresented as the dimensionless random variableS� = Si � hSii� = Si � �� ; (3:3)where hSii = Nt1F 2 = �(see Eq. (3.2)), and the rms �utuation � is given by asimple relation (see Eqs. (2.6) and (3.1))�2 = �3 : (3:4)This relation neglets all the orrelations, whih impliesthe standard Gaussian distributionG(S�) = exp ��S2�=2�p2� : (3:5)An example of the atual distribution funtion isshown in Fig. 2 for a single trajetory with the segmentlength t1 = 10; 25; 100 iterations, and the number ofsegments up to 107. The ap of the distribution is loseto the standard Gauss form (3.5) (see also Fig. 3) butboth tails learly show a onsiderable enhanement of�utuations depending on both t1 and N (in other ex-amples, see below).210
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100
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f(S�)=G(S�)

S2�=2Fig. 3. The ratio of the distribution f(S�) to thestandard Gauss law (3.5) (broken lines). The valu-es of the parameter N=t1 from top to bottom are:1/5 (S2�=2 < 7.5, see text); 1/10; 1/100; 10/10, and100/1. The oblique dotted straight line demonstratesthe Gaussian shape of the tailsThe shape of the tails is also Gaussian but the widthis the larger the smaller t1 and N . This is espeiallylear in a di�erent representation of the data in Fig. 3,where the ratio of the empirial distribution to the stan-dard Gauss one is plotted as a funtion of the Gaussianvariable SG = S2�=2. Eah run with partiular val-ues of N and t1 is represented by two slightly di�erentlines for both signs of S�. In addition to �utuations,the di�erene apparently involves some asymmetry ofthe distribution with respet to S� = 0. The originof this asymmetry is not ompletely lear as yet. Asharp rossover between the two Gaussian distributionsat SG � 3 is nearly independent of the parameters Nand t1, as is the top distribution below rossover. Onthe ontrary, the tail distribution essentially dependson both parameters in a rather ompliated way. Theorigin of the di�erene between the two Gaussian dis-tributions apparently lies in dynamial orrelations. Inspite of a fast deay (see Se. 1), the orrelation inArnold map (1.1) does a�et somehow the big entropy�utuations exept in the limiting ase N � t1 (twolower lines in Fig. 3) where the orrelations vanish be-ause of random and statistially independent initialonditions of many trajetories.For any �xed parameters N and t1, the �utuationsare bounded (F � 1),jS� j < p3Nt1; (3:6)whih follows from Eqs. (2.6), (3.3), and (3.4). This islearly seen in Fig. 3 for minimum Nt1 = 5. If only

the fore F is �xed instead, the relative entropy �u-tuations SihSii � � 1F (3:7)are also restrited but an be arbitrarily large for smallF and, moreover, an have either sign. This implies anonmonotoni growth of the entropy at the expense ofthe segments with Si < 0.The probability (in the number of trajetory seg-ments) of extremely large �utuations, Eqs. (3.6) and(3.7), is exponentially small (see Eq. (3.5) and below).However, the probability of the �utuations with a ne-gative entropy hange (Si < 0) (without time reversal!)is generally not small at all, reahing 50% as � ! 0(for arbitrary N and t1). In priniple, this is known, atleast for the systems with an equilibrium steady state(Se. 1). Nevertheless, the �rst, to our knowledge, di-ret observation of this phenomenon in a nonequilib-rium steady state [27℄ has so muh staggered the au-thors that they even entitled the paper �Probabilityof Seond Law violations in shearing steady state�. Infat, this is simply a sort of peuliar �utuations thatare big not so muh with respet to their size but pri-marily to their probability (f. disussion in Se. 1).However, the important point is that all those negativeentropy �utuations (transforming the heat into work)are randomly sattered among the others of positive en-tropy, and for making any use of the former a Maxwell'sdemon is required who is known by now to be well ina �peaeful oexistene� with the Seond Law.A Gaussian distribution of the entropy �utuationsshifted with respet to Si = 0 in a nonequilibriumsteady state �rst observed in [27℄ was also theoreti-ally explained there in terms of the Lyapunov expo-nents (see Eq. (8) in [27℄). This was the �rst form ofwhat is now alled the �Flutuation Theorem� (see,e.g., D. Ruelle in [6, p. 540℄). In our opinion, a morephysial representation of this theorem would be theratio of the two moments in Eq. (3.4). In any rep-resentation, the theorem essentially depends on boththe underlying dynamis and the type of �utuationsonsidered (see Se. 4 and 5).Another interesting limit is t1 ! tf ! 1 (a singlesegment) [27℄ with � ! 0, whih is possible if F ! 0too. In this ase, the probability of zero entropy hangein the entire motion also approahes 50%. However, theprobability of any negative entropy �utuation vanishes(see Eq. (3.3)). An interesting question is whether thereexists some intermediate region of parameters wherethe latter probability remains �nite. In other words,are the Poinaré reurrenes to negative entropy hangeSi < 0 possible in a nonequilibrium steady state as they211 14*



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001are in the equilibrium (Se. 1)? The answer to thisquestion is given by the statistis of the global �utua-tions. 4. NONMONOTONIC ENTROPYPRODUCTION: GLOBAL FLUCTUATIONSThe de�nition of the global �utuations is similarto, yet essentially di�erent from that of the loal �utu-ations in the previous Setion. Namely (f. Eqs. (3.3)and (3.4)), the prinipal dimensionless random variableS�(t) now expliitly depends on time,S�(t) = S(t)� hS(t)i� = S(t)� �� ; (4:1)where S(t) is alulated from Eq. (2.6), S(0) = 0,hS(t)i = NtF 2 � � (see Eq. (3.2)), and the rms �utu-ation � is given by the same relation (3.4) with a newtime variable � , �2 = �3 : (4:2)In other words, the global �utuations are desribed asa di�usion with the onstant rateD = �2� = 13 : (4:3)The global �utuations an also be viewed as a on-tinuous time-dependent deviation of the entropy fromits average growth unlike the loal �utuations in theensemble of �xed trajetory segments (Se. 3). Now,the primary goal is to �nd whether the entropy anreah negative values S(t) < 0 as t ! 1. As was dis-ussed in the previous Setion, this is possible at some�nite segments of the trajetory with the probabilityrapidly dereasing (but always �nite) as the segmentlength grows.In Fig. 4, three examples of global �utuationsare shown in a slightly di�erent representation (f.Eq. (4.1)) Sg(�) = S(�)� � 1 (4:4)hosen in order to always keep the most important bor-der S(�) = 0 in front of one's eyes (with Sg(�) = �1,the horizontal line in Fig. 4). Eventually, all trajeto-ries onverge to the average entropy growth (the hori-zontal line Sg = 0 in Fig. 4). During the initial stage ofdi�usion, the probability of negative entropy is roughly50%, similar to the loal �utuations (Se. 3). However,the situation ardinally hanges at � & 1, with all thetrajetories moving away from the border S = 0. More-over, the relative distane to the border with respetto the �utuation size inreases inde�nitely.

�1�20
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�S < 0
Sg
10�3 10�1 100 101 10210�2Fig. 4. Time dependene of the redued global �utu-ations Sg(�), Eq. (4.4): three sets by N = 10 trajeto-ries with di�erent initial onditions but the same initialentropy S(0) = 0 and F = 0:01. Horizontal solid lineSg = 0 represents the average entropy growth. Thelower solid line S = 0 is the border between positiveand negative entropy. A pair of dashed urves orre-sponds to the standard rms �utuation �, Eq. (4.2),and two solid urves represent the maximum di�usion�utuations �b, Eq. (4.5)The �utuation size is haraterized by two param-eters. The �rst one is the well-known rms dispersion �,Eq. (4.2) (two dashed urves in Fig. 4), whih estimatesthe �utuation distribution width. In the problem un-der onsideration, the most important is the seondharateristi, �b (two solid urves in Fig. 4), whihsets the maximum size (the upper bound) of the dif-fusion �utuations, and therefore ensures against thereurrene into the region S < 0 in a su�iently longtime. The ratio of the two sizesR�(�) = �b� =p2 ln ln (A�) (4:5)is given by the famous Khinhin law of iterated loga-rithm [28℄.We emphasize again that the prinipal peuliarityand importane of the border �b is that it harater-izes a sharp drop of the �utuation probability down tozero (in the limit as � ! 1). In other words, almostany trajetory approahes in�nitely many times arbi-trarily lose to this border from below, but the numberof border rossings remains �nite. In Fig. 4, this orre-sponds to the eternal on�nement of trajetories in thegap between the two solid urves.This surprising behavior of random trajetories iswell known to mathematiians but, apparently, not tophysiists. In Fig. 5 several examples of the �utuation212
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0 0.4 0.8 1.2 1.6 2.0100102104106108
jS�b jFig. 5. Histogram of the global �utuations in the num-ber of entries per bin of the width 0.02: F = 0.01;N = 100; R� � 3. From bottom to top in the left-most part of �gure: � = 105 (dashed line); 106 (twosolid lines, di�erent initial onditions); 107 (irles); thetotal motion time t = 100 � iterations. For ompari-son, the smooth dashed line shows unbounded Gaussiandistribution (4.7) for � = 106distributions are shown for illustration of that unpene-trable border.In the Khinhin theorem, the fator A in Eq. (4.5)is irrelevant and is set to A = 1. This is beause thetheorem an be proved in the formal limit as � ! 1,only as most theorems in the probability theory (as wellas in the ergodi theory, by the way). However, in nu-merial experiments on a �nite time, even if arbitrarilylarge, one needs a orretion to the limit expression.In addition, it would be desirable to look at the bor-der over the whole motion down to the dynamial timesale determined by the orrelation deay. In the modelunder onsideration, it is of the order of the relaxationtime tr � 1 (see Se. 1). The additional parameter Aan be �xed by the ondition�b(�1) = �(�1); �1 = NF 2; (4:6)for minimal t = 1 on the dynamial time sale of thedi�usion. It then follows from Eq. (4.5) thatA�1 = 5:2;whih is used in Figs. 4 and 5. The ondition assumedis, of ourse, somewhat arbitrary but the dependeneon A remains extremely weak provided �1 � 1.The histogram in Fig. 5 is given in the absolutenumbers of trajetory entries into bins in order tographially demonstrate a negligible number of exep-tional rossings of the border. The exat formulation of

the Khinhin theorem admits a �nite number of ros-sings in in�nite time. Atually, all those �exeptions�are onentrated within a relatively short initial timeinterval � � 1 (for the aepted A value, see Fig. 4).The distribution of entropy �utuations betweenthe borders is haraterized by its own big �utuationsdue to a large time interval (� �) required for rossingthe distribution region (see Eq. (4.3)). The spetau-lar preipie of many orders of magnitude is reminisentof a di�usion �shok wave� utting away the Gaussiantail. The unbounded Gauss urve is also shown in Fig. 5by the smooth dashed line.In terms of the variable S�b = S�=R�, the stan-dard Gauss law is no longer a stationary distribution(f. Eq. (3.5)),p2�G(S�b ) = R�(�) exp��S2�b2 R2�(�)�: (4:7)Both the probability density at the border jS�b j = 1and the integral probability beyond that are slowly de-reasing / 1= ln (A�). The �shok wave� deays butstill ontinues to �hold bak� the trajetories.Thus, unlike unrestrited entropy �utuations outof the equilibrium steady state (Se. 1), the stritly re-strited �utuations in the nonequilibrium steady stateare well separated, in a short time, from the negati-ve-entropy region, separated in a large exess thatgrows in time. In other words, the Poinaré reurrenesto any negative entropy quikly and ompletely disap-pear leaving the system with ever inreasing, even ifnonmonotonially, entropy.As the nonequlibrium steady state involves a heatbath of the in�nite phase-spae volume (or its nie sub-stitute, the Gauss heat bath), the Poinaré reurrenetheorem is not appliable. However, the �anti-reur-rene� theorem is not generally true either. For exam-ple, the entropy repeatedly rosses the line S = � ofthe average growth in spite of the in�nite heat bath,yet it does not do so for the line S = 0 of the initialentropy.We note that the new ratio �2b=hS(t)i (f. Eq. (3.4))represents another �Flutuation Theorem� as om-pared to the known one mentioned in Se. 3.5. BIG ENTROPY FLUCTUATIONS INCRITICAL DYNAMICSThe strit restrition of the global entropy �utu-ations in a nonequilibrium steady state onsidered inthe previous Setion is a result of the �normal�, Gaus-sian, di�usion of the entropy with a onstant rate (4.3)and with the surprising unpenetrable border (4.5). Inturn, this is related to a partiular underlying dynamis213



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001of model (1.1) with very strong statistial properties.We note that the border (4.5) has a statistial naturebeause it is muh less than the maximum dynamial�utuation (3.7).However, it is well known by now that the homo-geneous di�usion an in general be �abnormal� in thesense that the di�usion rate depends on time,D(t) / tD ; �1 � D � 1; (5:1)where D is the so-alled ritial di�usion exponent.The term �ritial� refers to a partiular lass of suhsystems with a very intriate and spei� struture ofthe phase spae (see, e.g., [29℄ and referenes therein).The �normal� di�usion orresponds to D = 0, whilea positive D > 0 represents a superfast di�usion withthe upper bound D = +1, the maximum di�usion ratepossible for a homogeneous di�usion. The latter is, ofourse, the most interesting ase for the problem underonsideration here. A superslow di�usion for a nega-tive D < 0 is also possible with the limit D = �1,whih means the absene of any di�usion for D < �1.An interesting example of a superslow di�usion withD = �1=2 was onsidered in [30℄. Besides a partiu-lar appliation to the plasma on�nement in magneti�eld, the example is of a speial interest beause thisslow di�usion is the result of the time-reversible di�u-sion of partiles in a haoti magneti �eld. For otherexamples and various disussions of abnormal di�usion,see [31℄.A number of dynamial models exhibiting the su-perfast di�usion are known inluding the limiting aseD = 1 [29, 32℄. Interestingly, a simple simulation ofthe abnormal di�usion is possible by a minor modi�a-tion of the model under onsideration. It onerns theadditional 1D map (2.6) only, whih now beomesS = S + ( 2p1F + F 2)ts; (5:2)where the new variable ts is de�ned by a simple relationts = s�s ; s = 1� 2jp1j; (5:3)with s being the distane from any of the two bordersp1 = �0:5 homogeneously distributed within the inter-val (0 < s < 1). The quantity ts > 1 desribes thestiking of a trajetory in the �ritial struture� on-entrated near s = 0. Atually, the model does notinvolve this struture, however its e�et is simulatedby the �stiking time� ts that enhanes both the �u-tuations and the average entropy (5.2). In a sense, thissimulation is similar in spirit to that of the Gauss heatbath. All the properties of that stiking are desribedby a single parameter s, the ritial stiking exponent(0 � s � 1). In partiular, it is diretly related to thedi�usion exponent D (see below).

The statistial properties of the abnormal di�usionin this model are determined by the �rst two momentsof the ts distribution, whih an be diretly evaluatedfrom the above relations as follows. For the �rst mo-ment, we havehtsi = 1Z0 ts(s)ds = 11� s ; s < 1; (5:4a)and htsi � ln 1s1 � ln t; s = 1: (5:4b)In the latter ase the integral diverges and is deter-mined by the minimum s � s1 � 1=t reahed overtime t that is the total motion time in the iterations ofthe map. It must be distinguished from the �physialtime� in a true model of the ritial struture,et � thtsi �8><>: t1� s ; s < 1;t ln t ; s = 1: (5:5)Similarly the seond moment is given by three relations:ht2si = 11� 2s ; s < 12 ; (5:6a)for the normal di�usion,ht2si � ln 1s1 � ln t; s = 12 ; (5:6b)in the ritial ase, andht2si � s1�2s12s � 1 � t2s�12s � 1 ; 12 < s � 1; (5:6)for the superfast di�usion.The average entropy prodution is found fromEq. (5.2) ashS(t)i = NF 2thtsi = NF 2et � �; (5:7)with the rede�ned time variable � (f. Eq. (3.3)). Inthis Setion, we only onsider the simplest ase of asingle trajetory (N = 1).Evaluating the superfast di�usion requires a slightlydi�erent averaging h(2p1ts)2i (see Eq. (5.2)). However,it is easily veri�ed that asymptotially as � ! 1, thedi�erene with respet to Eq. (5.6) vanishes, and onearrives at the following estimate for the ritial rmsdispersion �r:�2r(�)B2 = etD(et) = F 2ht2sit == (1� s)2s2s � 1 �2sF 4s�2 (5.8a)if 1=2 < s < 1 (5.6), and214



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Big entropy �utuations : : :�r(�)B = �F ln (�=F 2) (5:8b)in the most interesting limiting ase where s = 1. Theempirial fator B � 1 aounts for all the approxima-tions in the above relations.The limit as s ! 1 in Eq. (5.8a) ruially di�ersfrom the limiting relation (5.8b). The origin of this dis-repany is Eq. (5.4a). A more aurate evaluation fors � 1 readshtsi = 1Zs1 ts(s) ds = 1� s1�s11� s == 1� exp [(1� s) ln s1℄1� s ; (5.9)where s1 � 1=t is the minimum s over t iterations of themap (f. Eq. (5.4b)). Relation (5.4a) is therefore validunder the ondition � ln t > 1 only (with � = 1 � s),while in the opposite limit, we have htsi � ln t as fors = 1, Eq. (5.4b). The rossover between the twosalings ours attro � e1=�; �ro � e1=�� F 2: (5:10)The deviation from Eq. (5.8a) is essential for a su�-iently small � only.The ratio of �utuations to the average entropy pro-dution is given by the redued entropy (see Eq. (4.4))Sg = ��r� � � BF ln (�=F 2) ; (5:11)where the latter expression is estimate (5.8b) for therms �utuations. They are slowly dereasing with time,and at � & �0 = F 2 exp (1=F );the rms line rosses the border Sg = �1 of zero entropy.Afterwards, the entropy remains mainly positive. Tobe more preise, the probability for a trajetory to en-ter into the negative-entropy region is systematiallydereasing with time, although rather slowly. Thismust be ompared with the F -independent rossover�0 = 1=3 and a rapid drop of the probability to returnto S < 0 for the normal di�usion (Se. 4).However, there exists another mehanism of big�utuations, spei� for the ritial dynamis. Namely,a separated individual �utuation an be produed asthe result of a single extremely big stiking time tsover the total motion up to the moment the �utua-tion springs up in a single map iteration. We reallthat in the present model, eah stiking orresponds tojust one map iteration. The inrements of dynamialvariables in this jump are obtained from Eq. (5.2) as

�S = �Fts; �� = F 2ts; (5:12)where ts � 1 (with 2p1 � 1) is assumed (a big �utu-ation). The redued �utuation is then given bySg � S� = � Fts� + F 2ts � � 1=F1 + �=�� : (5:13)The maximum single stiking time over the motion timet is, on the average,htsi � t ln t = �F 2 : (5:14)Therefore, a single �utuation (5.13) has the upperbound jSgj . AF ; (5:15)where an empirial fator A � 1 is introdued similarlyto Eq. (5.8b).The border (5.15) onsiderably exeeds the rms dif-fusion �utuation (5.11) and, even more importantly,the former never rosses the zero-entropy line Sg = �1.Therefore, the ritial �utuations repeatedly bring thesystem into the negative-entropy region. This is be-ause the upper bound (5.15) does not depend on time� provided �� & � in Eq. (5.13). However, in a hainof suessive �utuations, the values of � in Eqs. (5.13)and (5.14) are not generally equal. While in the formerrelation it is always the total motion time as assumedabove, it must be the preeeding period of �utuationsin Eq. (5.14): �n ! Pn < �n, where n is the serialnumber of �utuations. Hene, the approah to theupper bound (5.15) is only possible under the ondi-tion Pn � Pn�1, whih implies Pn � �n. Thus, the�utuations beome more and more rare with the pe-riod growing exponentially in time. In other words, the�utuations are stationary in ln � with a su�iently bigmean period hlnP i � 5 (see Fig. 6).In Fig. 6, an example of several big ritial �utu-ations in the limiting ase s = 1 is presented for �vesingle su�uiently long trajetories with di�erent initialonditions and the motion time up to � � 5 � 109 andt = 1010 iterations. To ahieve suh a long time, thefore was inreased up to F = 0:1 (see Eq. (5.14)).Unlike a similar Fig. 4 for the normal di�usion, onlyseveral big �utuations with F jSgj > 0:3 are presentedin Fig. 6. For the full piture of ritial �utuations, therequired output beomes formidably long. The distri-bution of all �utuations, independent of time, is shownin Fig. 7.Eah �utuation in Fig. 6 is presented by a pair ofFSg values onneted by the straight line: one at amap iteration just before the �utuation (irles), andthe other (stars) at the next iteration when the �utu-ation springs up (see above). Both are plotted at the215
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101010�2 102 104 106 108100 �Fig. 6. Time dependene of 26 big �utuations in riti-al dynamis: 5 single trajetories up to 1010 iterations,s = 1, F = 0.1. Only �utuations with F jSgj > 0.3are shown, eah by a pair of points onneted by thestraight line: the big �utuation itself (stars) and at thepreeding map iteration (irles, see text). Two dashedurves show the rms �utuations of F jSgj, Eq. (5.11),with B = 1. Horizontal dotted lines mark the upperbound, Eq. (5.15), with A = 1

0 0.2 0.4 0.6 0.8 1.01001021041061081010

F jSgjFig. 7. Histogram of ritial �utuations in the num-ber of entries per bin of the width 0.007 for the data inFig. 6. The border S = 0 orresponds to FSg = �F == � 0.1. The points for the longest trajetory areonneted by linesame, latter, � to follow the pairs. This slightly shiftsthe irles to the right.The most important, if only preliminary, result ofnumerial experiments is the on�rmation of the �utu-ation upper bound (5.15) that is independent of time.As expeted, the irles represent onsiderably smaller

F jSg j values, roughly following the di�usive saling(5.11).The border (5.15) qualitatively reminds the stritupper bound for the normal di�usion (Se. 4), inlud-ing a logarithmi ratio with respet to the rms size(4.5), as ompared to the ratioRr(�) � ln (�=F 2) (5:16)in the ritial di�usion. An interesting questionwhether the new, ritial, border is also as strit asthe old one in the normal di�usion remains, to ourknowledge, open, at least for the physial model un-der onsideration where the superdi�usion is ausedby a strong long-term orrelation of suessive entropyhanges due to the stiking of trajetory.However, for a muh simpler problem of statis-tially independent hanges, various generalizationsof Khinhin theorem to the abnormal di�usion wereproved by many mathematiians (see, e.g., [33℄). Inthe present model, this is preisely the ase for the de-sription in map's time t with statistially independentiterations. The most general and omplete result wasreently obtained by Borovkov [34℄. In the present no-tation, it an be approximately represented in a verysimple form for the ratioRr = �b� � (ln t)s (5:17)in the entire superdi�usion interval (1=2 < s � 1). Forthe most important redued �utuation (5.13), we thenarrive at the two relationsjSg j . �b� � �s�1F 2s�1 �ln �F 2�s (5:18a)for s < 1 and jSg j . �b� � 1F (5:18b)in the limiting ase s = 1. The latter on�rms estimate(5.15), whih, in turn, is in a good agreement with theempirial data in Fig. 6. In any event, a simple physialestimate (5.15) seems to provide an e�ient desriptionof the �utuation upper bound.In Fig. 7, an example of all (at eah map's iteration)�utuations is shown for the data from the same runsas in Fig. 6. In addition to very large overall distri-bution �utuations, a sharp drop by about four ordersof magnitude is learly seen near the expeted upperbound (5.15). It is similar to the drop in Fig. 5 for thenormal di�usion.Thus, the ritial di�usion results in in�nitely manyreurrenes far into the negative-entropy region S < 0(for F � 1), the sojourn time in that region being om-parable to the total motion time. Of ourse, the former216



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Big entropy �utuations : : :is less than 50% on the average, so that asymptotiallyin time the entropy is always growing. In this respet,the global ritial �utuations are similar to the loalones in the normal di�usion (Se. 3).We note, however, that the upper bound �b=� �� 1=F (5.18b) is permanent in the strit limit s = 1only. For any deviation from the limit � = 1� s > 0,this bound lasts a �nite time determined by therossover (5.10) (� . F 2 exp (1=�)=�) to dereasing�b=� ! 0, Eq. (5.18a). Another interesting represen-tation of this intermediate behavior is the rossover inthe stiking exponent,� . 1ln (�=F 2) � F jSgj; (5:19)whih is atually shown in Fig. 6 by the upper dashedline. For the longest � = 5 � 109, the latter rossover is�ro � 0:037.Again, the new ardinally di�erent ritial ratio�2b=hS(t)i and the distribution of entropy �utuationslead to yet another �Flutuation Theorem� as om-pared to the two previous ones mentioned in Ses. 3and 4.6. DISCUSSION AND CONCLUSIONSIn the present paper, the results of extensive nu-merial experiments on big entropy �utuations in anonequilibrium steady state of lassial dynamial sys-tems are presented and their peuliarities are analyzedand disussed. For omparison, some similar resultsfor the equilibrium steady state are brie�y desribedin the Introdution (they will be published in detailelsewhere [10℄).All numerial experiments have been arried out onthe basis of a very simple model, the Arnold at map(1.1) on a unit torus, with only three minor, but im-portant, modi�ations that allowed omprising all theproblems under onsideration. The modi�ations are:(1) Expansion of the torus in p diretion (1.2),whih allows more impressive di�usive �utuations outof the equilibrium steady state (Fig. 1 in Se. 1).(2) Addition of 1D map (2.5) with the onstantdriving fore F and with an ingenious time-reversiblefrition fore that represents the so-alled Gauss heatbath and whih allows modeling a physial thermostatof in�nitely many degrees of freedom [20, 21℄. This isthe prinipal modi�ation in the present studies of �u-tuations in a nonequilibrium steady state (Ses. 3�5).(3) Addition of a new parameter ts, Eq. (5.3), inmap (5.2) whih allows for the study of very unusual�utuations of an �abnormal�, ritial, dynamial dif-fusion (Se. 5).

Big �utuations in the equilibrium steady stateare brie�y onsidered in Se. 1. The simplest one ofthis lass, whih we all the Boltzmann �utuation, isshown in Fig. 1. It is obviously symmetri under timereversal, and at least in this ase, therefore, there isno physial reason for the notorious �time arrow� on-ept. Nevertheless, a related onept, for example, thethermodynami arrow, pointing in the diretion of theaverage inrease of entropy, makes sense in spite of thetime symmetry. The point is that the relaxation timeof the �utuation is determined by model parameter Conly, and does not depend on the �utuation itself. Onthe ontrary, the expetation time for a given �utu-ation, or the mean period between suessive �utua-tions, rapidly grows with the �utuation size and withthe number of trajetories (or degrees of freedom).Besides the simplest Boltzmann �utuation, vari-ous others are also possible, typially with a muh lessprobability. One of those � the two orrelated Boltz-mann �utuations, whih we all the Shulman �utu-ation � was reently desribed in [36℄ using the sameArnold at map. However, this model is not related toosmology as was speulated in [36℄. At least, the Uni-verse and most of the marosopi phenomena thereinrequire qualitatively di�erent models, ones without anequilibrium steady state. These strutures do appear(with probability 1) as a result of ertain regular olle-tive proesses that lead to very ompliated nonequi-librium and inhomogeneous states with ever inreasingentropy. This is in ontrast with a onstant, on theaverage, entropy in ES systems.A nonequilibrium steady state, the main subjet ofthis paper, is but a little, harateristi though, pieeof the haoti olletive proesses. In model (2.5), thedriving fore F represents a result of some preed-ing olletive proesses, the spring of free energy, andthe Gauss frition does so for an in�nite environmentaround, the sink of the energy, onverting the work intoheat, on the average. An interesting peuliarity of thesesystems is that the big �utuations an, and under er-tain onditions, do the opposite, onverting some heatbak into the work.Two types of �utuations were studied:(i) the loal ones on a set of trajetory segmentsof length-t1 iterations and of the entropy hange Si(Se. 3), and(ii) ones of the global entropy S(t) along a traje-tory with respet to the initial entropy set to zero,S(0) = 0 (Ses. 4 and 5).The former were found to have a stationary unre-strited distribution lose to the standard Gauss lawwith some enhanement of an unknown mehanism for217



B. V. Chirikov ÆÝÒÔ, òîì 119, âûï. 1, 2001large �utuations. The study of the latter e�et will beontinued. The distribution is symmetri with respetto the average entropy, growing in proportion to timein agreement with previous studies on a more ompli-ated (and more realisti) model [27℄. Even though thedistribution is asymmetri with respet to zero entropyhange, the probability of negative Si < 0 is generallynot small provided F 2Nt1 . 1. This phenomenon, ap-parently a new one in the nonequilibrium steady state,was �rst observed in [27℄ but has been interpreted thereas a violation of the Seond Law. It seems to be there�etion of a ommon, but wrong in our opinion, un-derstanding of the Seond Law as a monotoni growthof the entropy, negleting all the �utuations inludingthe large ones. The nonmonotoni rise of entropy islearly seen, for instane, in Fig. 4, and disussed indetail in Ses. 3 and 4.The behavior of the global entropy is ompletelydi�erent as the data in the same Fig. 4 demonstrate(Se. 4). Although the entropy evolution remains non-monotoni, it quikly rosses the line of the initial zeroentropy and does not return into the negative entropyregion S < 0. This is insured by the famous Khinhintheorem about the strit upper bound for the di�usionproess. At least for physiists, this limitation of sta-tistial nature for a random motion is surprising andapparently less known. That unidiretional evolutionis the most important distintion of the nonequilibriumsteady states from the equilibrium ones. In partiular,it leads to a ertain asymmetry of the entropy distri-bution sometimes alled the �Flutuation Theorem� or�Flutuation Law�. However, one should bear in mindthat this law essentially depends on the underlying dy-namis as brie�y disussed in Ses. 3�5.This harateristi feature of nonequilibrium steadystate further justi�es the onept of the thermodynamiarrow pointing to a larger, on the average, entropy. Yet,again it is not related to the properties of time. Ofourse, the entropy will systematially derease uponformal time reversal, whih is also the ase with themodel under onsideration beause the Gauss heat bathis time reversible. Within the steady state approximar-ion, or rather restrition, this would be an in�nitelylarge �utuation that never omes to the end. However,this �utuation would never our either, as a result ofthe natural time evolution of the system, opposite tothe ase of equilibrium �utuations. The ultimate ori-gin of that ruial di�erene is that the former proess,even asymptotially in time, is a tiny little part of thefull underlying dynamis of an in�nite system. In par-tiular, the initial state S(0) = 0 is not a result of thepreeding �utuation, as is the ase in ES, but has been

eventually aused, for instane, by instability of the ini-tial ES at a very remote time in the past. If one imag-ined the time reversal at that instant, nothing wouldhange beause the thermodynami arrow does not de-pend on the diretion of time provided, of ourse, thetime reversible fundamental dynamis. Preisely thisuniversal overall dynamis uni�es the time for all theinterating objets like partiles and �elds throughoutthe Universe. In partiular, it is inompatible with thetwo opposite time arrows (an old Boltzmann's hypoth-esis [2℄ that still has some adherents [36℄).Coming bak to nonequilibrium steady states, it isworth mentioning that the regularities of the �utua-tions in those, both loal and global, an be applied, atleast qualitatively, to a small part of a big �utuationin a statistial equilibrium (Fig. 1) on both sides of themaximum. This interesting question will be onsideredin detail elsewhere [10℄.Finally, some preliminary numerial experiments onthe global entropy �utuations and the theoretial anal-ysis were arried out in a speial ase of the ritialdynamis, whih turned out to be the most interestingone for the problem in question (Se. 5). The pointis that the ritial dynamis leads to the �abnormal�superdi�usion with the rate D / �2s�1 and the rms�utuation size �r / � s , where s is a new param-eter of the third model (1=2 < s � 1). This impliesthat for s � 1, the redued entropy jSgj / � s�1 de-reases very slowly ompared to the normal di�usionjSg j / 1=p� . In the limiting ase where s = 1, theentropy jSg j / 1= ln � is still dereasing. However, inaddition to di�usive �utuations, there is a set of in-�nitely many separated �utuations whose size doesnot derease with time (Fig. 6). In other words, thesepreliminary numerial experiments suggest that in thelimiting ase of the ritial dynamis, the Poinaré re-urrenes to the initial state S = 0 and beyond repeat-edly our without limit. These are preliminary resultsto be on�rmed and further studied in detail.In this paper, we only onsidered the �utuationsin lassial mehanis. In general, the quantum �u-tuations must be signi�antly di�erent. However, a-ording to the Correspondene Priniple, the dynamisand statistis of a quantum system in the semilassi-al regime must be lose to the lassial ones on theappropriate, generally �nite, time sales (for details,see [12, 35℄). Interestingly, the omputer lassial dy-namis (that is, the simulation of a lassial dynamialsystem on digital omputer) is of a qualitatively simi-lar harater. This is beause any quantity is disrete(�overquantized�) in omputer representation. As a re-sult, the orrespondene between the lassial ontin-218



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Big entropy �utuations : : :uous dynamis and its omputer representation in nu-merial experiments is restrited to ertain �nite timesales as in quantum mehanis (see the �rst two ref-erenes in [35℄).Disreteness of omputer phase spae leads to an-other peuliar phenomenon: generally, the omputerdynamis is irreversible beause of the rounding-o� op-eration unless the speial algorithm is used in numeri-al experiments. Nevertheless, this does not a�et thestatistial properties of haoti omputer dynamis. Inpartiular, the statistial laws in omputer representa-tion remain time-reversible in spite of the (nondissipa-tive) irreversibility of the underlying dynamis. Thissimple example demonstrates that ontrary to a om-mon belief, the statistial reversibility is a more generalproperty than the dynamial one.In the very onlusion, we brie�y remark on a verydi�ult, ompliated and vague problem, the so-alled(physial) ausality priniple, i.e., the time-orderingof the ause and the e�et. A detailed disussion ofthis important problem will be published elsewhere[37℄. We only note the example of a simple Boltzmann�utuation shown in Fig. 1. We adhere to the idea ofstatistial nature of ausality. Indeed, the ause is,by de�nition, an �absolutely� independent event thatis only possible in the haoti dynamis. Moreover,the onept of ause loses its usual physial meaningin any purely dynamial desription. For example,the initial onditions preisely determine the entirein�nite trajetory (�1 < t < 1), i.e., both thefuture and the past of suh a �ause�. For a singleBoltzmann �utuation, an appropriate ause is theminimum entropy (at t = ti in Fig. 1). This wasexatly the proedure used in numerial experimentsfor the loation of a �utuation of an approximatelygiven size. The prinipal di�erene from the exatdynamial initial onditions is that the former ause isan approximate (e.g., average) �utuation size, whihis su�ient for the omplete statistial desriptionof the �utuation, however it leaves enough freedomfor the independene from other events, inluding thepreeding �utuations. However, this ause determinesnot only the future relaxation of the �utuation (inagreement with the ausality priniple) but also thepast rise of the same �utuation, whih is a violationof ausality, or aausality (spontaneous rise of a�utuation), or anti-ausality, whih is perhaps themost appropriate term. Upon the time reversal, theausality/antiausality exhange, whih allows for theonept of the ausality arrow, however this is notrelated to the physial time. In this philosophy, thediretions of the thermodynami and ausal arrows,
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