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CORRELATION EFFECTS IN THE HEAT CAPACITYOF SEPARATING 3He�4He SOLID SOLUTIONST. N. Antsygina *, K. A. Chishko, V. A. SlusarevInstitute for Low Temperature Physis & EngineeringUkrainian National Aademy of Sienes310164, Kharkov, UkraineSubmitted 25 April 2000We propose to desribe the impurity heat apaity of solid 3He-4He mixtures both below and above the phaseseparation temperature Ts by an extension of the Bethe�Guggenheim approximation for the lattie gas model.It is shown that at T > Ts, the temperature behavior of the heat apaity is ompletely de�ned by orrelatione�ets in the impurity subsystem. The developed theory enables us to explain from the ommon standpoint theexperimental data by Edwards, MWilliams, and Daunt for all onentrations of 4He and make some onlusionsabout the struture of seond phase nulei.PACS: 67.80.Gb 1. INTRODUCTIONSolid mixtures of helium isotopes are known [1�3℄to deompose into two (3He-rih and 4He-rih) phaseson ooling below the phase separation temperature Tsthat depends on both the pressure and the mixtureomposition. The separation at T = Ts is a �rst-ordertransition ouring with mass transport. It is lear thatstruture transformations of this type signi�antly af-fet thermodynami properties of solid mixtures. Inpartiular, a major ontribution to the total heat a-paity at T < Ts is due to additional degrees of freedomof a heterophase system.Heat apaity of separating solid 3He�4He mixtureshas been experimentally investigated in lose detail byseveral groups [1; 2; 4�7℄. The most omplete experi-mental results for a wide range of temperatures andonentrations n0 of 4He were reported by Edwards,MWilliams, and Daunt (EMD) [1; 2; 4℄. Other on-entrations were measured in Refs. [5�7℄.In all the experiments, temperature dependenes ofthe total heat apaity C(T ) are similar in harater.At T < Ts, the experimental data for all impurity on-entrations fall on a ommon urve. In this tempera-ture region, C(T ) inreases with the temperature. Thetotal heat apaity drops sharply just above Ts and is*E-mail: antsygina�ilt.kharkov.ua

ompletely determined by the lattie term Clat / T 3at T > 0:3 K. For Ts < T < 0:3 K, a deviation fromthe Debye T 3-law has been observed.It is known that at T < Ts (in the two-phase re-gion), the thermodynamis of solid helium mixtures anbe desribed very suessfully within the regular solu-tion model (the mean �eld approximation, MFA) [2, 8℄,but the behavior of C(T ) at T > Ts annot be ex-plained by it. In Ref. [9℄, an e�ort was made to take�utuations of the loal onentration n into aount;an expression for the heat apaity of 3He�4He mix-tures above Ts was obtained there. The theory inRef. [9℄ is in agreement with some experimental datain Refs. [1; 2℄, but the approah used in this work isnot quite onsistent. It has been ritially disussed ingreat detail by Edwards and Pettersen (see Ref. [4℄).Reently, the ontribution of �utuations to the heatapaity was alulated [10℄ in the framework of therandom phase approximation (RPA) [11℄. This allowedadequately interpreting the behavior of the onen-trated mixtures in the entire temperature range. How-ever, some additional onsiderations have been used totreat the limit of dilute solutions in a proper way [10℄.Thus, it is lear that further improvements in the theo-retial desription of the thermodynamis of quantumsolid 3He�4He mixtures remain urgent.The purpose of the present work is to develop arigorous theory that desribes the temperature depen-107



T. N. Antsygina, K. A. Chishko, V. A. Slusarev ÆÝÒÔ, òîì 119, âûï. 1, 2001denes of the heat apaity of separating helium solidsolutions with arbitrary onentrations both below andabove Ts. The proposed method is based on the quasi-hemial approximation [12, 13℄. It enables us to pro-perly take the ontribution of �utuations into aountand make some onlusions about the struture of se-ond phase nulei. As we see in Se. 4, our theory is ingood agreement with the experimental data [1, 2℄. It issigni�ant that this agreement an be obtained with-out invoking any additional onepts about extraneousenters of a new phase nuleation suh as disloations,grain boundaries, and other lattie defets. We notethat suggestions of this type were used in Ref. [14℄ toexplain experimental results in Ref. [7℄.2. GENERAL FORMALISMThe basis of the present theory is the lattie gasmodel [12℄. Some simpli�ations an be made in apply-ing this model to quantum solid mixtures of helium iso-topes (whih is in ontrast to lassial systems). First,we are interested in e�ets that our at temperaturesonsiderably below the Debye temperature �D. Thisallows us to neglet heat vibrations of helium atomsand onsider parameters of the interation between im-purities as temperature independent. Seond, despitethe low temperatures, the system approahes the ther-modynami equilibrium rather rapidly beause of anintense quantum motion of helium atoms.A. HamiltonianFor de�niteness, we hereafter treat the 4He ompo-nent as an impurity subsystem in the mixture. TheHamiltonian of the system has the formH = "0Xf nf � 12Xf f 0 Vf f 0nfnf 0 ; (1)where nf is the oupation number of 4He impurityatoms at a lattie site f , "0 is the energy of a 4Heatom in the 3He matrix, and Vf f 0 = V (jf � f 0j) is theinteration energy of impurities plaed at the sites fand f 0. Hamiltonian (1) an be represented in a some-what di�erent form for the following reason. In then0 � T oordinates, where n0 is the average 4He on-entration, the phase separation urve of solid 3He�4Hemixtures is pratially symmetrial about n0 = 0:5 (seeRef. [4℄) and has the maximum T at this point. Theritial temperature T is the highest temperature atwhih phase separation ours [3℄. This means thatthe Hamiltonian must be expliitly invariant under the

replaement nf ! 1�nf , and we an therefore rewriteEq. (1) asH = 12Xf f 0 Vf f 0nf (1� nf 0); "0 = 12Xf Vf f 0 : (2)As an be seen from (2), it is irrelevant whether 3Heor 4He is hosen as the impurity subsystem. We alsonote that Hamiltonian (2) an be redued to the Isingmodel with the spin 1/2 [12℄.B. Interation between impuritiesBeause of the di�erene in atomi volumes of he-lium isotopes, a 4He impurity is the dilatation enter inthe 3He matrix [4℄. It is known [15℄ that the interationbetween two dilatation enters is long-range; at a largeseparation r, it dereases as 1=r3 for ubi and hexago-nal latties. Moreover, it is anisotropi with a ompli-ated angular dependene [16�18℄. If many impuritiesexist in the matrix, their elasti �elds overlap and thee�etive interation beomes essentially isotropi, butremains long-range. To desribe the interation Vf f 0in the mixtures with arbitrary onentrations of 4He,we use a rather simple model well-known in the litera-ture [11℄. Namely, the interation of an impurity atomplaed at a lattie site f with another impurity atom isassumed to be onstant (equal to V0) if the distane be-tween them is less than R0 and equal to zero otherwise.Thus, Vf f 0 = ( V0 if jf � f 0j � R0;0 otherwise: (3)We introdue the e�etive oordination number z thatan be onsidered as the number of impurities interat-ing with the given impurity atom. The e�etive radiusR0 of the impurity�impurity interation is related toz as R0 = (3!0z=4�)1=3 (where !0 is the volume peratom). In the present theory, z is onsidered as a �ttingparameter.C. Quasi-hemial approximationAlthough the exat solution for the lattie gasmodel is not available in the three-dimensional ase,there are several rather e�ient approximate meth-ods for its analysis. To analyze the model, we usethe Bethe�Guggenheim method [12, 13℄ also known asthe quasi-hemial approximation (QCA). It providesa su�iently aurate desription for the system understudy. In this approximation, the lattie symmetry isof signi�ane and the �nal results only depend on the108



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Correlation e�ets : : :e�etive oordination number z. This method is pre-ise in the limit of dilute solutions. It also gives anaurate result for arti�ial models of the Bethe lattietype.In the QCA framework, a two-omponent solid mix-ture involving A-type and B-type atoms an be repre-sented as a set of independent atomi pairs of the AA,BB, and AB types. The partition funtion has theform [12℄Z0 =XN yN XNAB g(N;NAB;B)�� exp(�E(NAB)=T ); (4)where B is the total number of lattie sites, N is thenumber of sites oupied by A-type atoms (4He impu-rities), y = exp(�=T ), and � is the hemial potentialof the impurity subsystem. We hoose the units suhthat the Boltzmann onstant kB = 1. The funtiong(N;NAB ;B) is the number of on�gurations ontain-ing N impurities and NAB pairs. Eah of these on�g-urations has the energyE(NAB) = V02 NAB :Within the QCA, the funtion g is assumed to beg = G (zB=2)!NAA!NBB ![(NAB=2)!℄2 ; (5)whereNAA = 12 (zN�NAB) ; NBB = 12 [z(B�N)�NAB ℄are the respetive total numbers of the AA-type andBB-type pairs. The onstant G is determined by theobvious relationXNAB g(N;NAB ;B) = B!N !(B �N)! :Setting the number of unlike pairs NAB enteringEqs. (4) and (5) equal to its average value in the mix-ture, we obtain the well-known mean-�eld approxima-tion [12℄. In the limit as B; N;NAB !1 withN=B andNAB=B onstant, the sum in Eq. (4) an be replaedby its maximum term. We letNB ! n; 2NABzB ! a:The quantities n and a are hosen suh that they varyfrom zero to unity. We now introdue the long-rangeorder parameter � related to the loal impurity on-entration n by � = 1� 2n. We note that the quantity

a is related to the short-order parameter x introduedin Ref. [19℄ by a = (1 + x)=2.Using the Stirling formula, we obtain the thermo-dynami potential 
0 (per site) as
0 = �TB lnZ0 = E � TS � �2 (1� �); (6)where E is the internal energy per site and S is the en-tropy per site. In aordane with the above-mentionedapproximations, we �ndE = V04 za; (7)S = 1B ln g = �1� z2� ln 2 + z � 12 �� [(1� �) ln(1� �) + (1 + �) ln(1 + �)℄ �� z4 [(1� � � a) ln(1� � � a)++ (1 + � � a) ln(1 + � � a) + 2a lna℄ : (8)The parameters � and a satisfy the set of equations(z � 1) ln 1� �1 + � + z2 ln 1 + � � a1� � � a + �T = 0; (9)ln �(1� a)2 � �2�� 2 lna� V0T = 0: (10)If we put � = 0, the system of Eqs. (9) and (10) is in-variant under the inversion � ! ��, whih means thatthe two-phase mixture ours. One phase (4He-weak)orresponds to � > 0 (0 < n < 1=2) and the other(4He-rih) to � < 0 (1=2 < n < 1). It follows fromEq. (10) thata = 1� �2 + 1 ; = �1 + (1� �2) �exp�V0T �� 1��1=2 : (11)Inserting (11) in (9), we obtainy � exp(�=T ) = 1� �1 + � � (1 + �)( � �)(1� �)( + �)�z=2 ; (12)where y is equal to unity for all temperatures below Ts.As the temperature is inreased, the long-range orderparameter dereases and beomes equal to �0 = 1�2n0at T = Ts, where n0 is the equilibrium onentrationgiven by the oexistene urve. It follows from (12)that the phase separation temperature Ts is given byT�1s = 2V0 ln � 1�uzu(1�uz�2)� ; u = �1��01+�0�1=z : (13)109



T. N. Antsygina, K. A. Chishko, V. A. Slusarev ÆÝÒÔ, òîì 119, âûï. 1, 2001As z ! 1, V0 ! 0, and V0z ! onst, Eq. (13) goesinto the well-known expression for Ts resulting from theregular solution model [11℄. At T > Ts, the mixture be-omes homogeneous with the onstant long-range orderparameter �0. Equations (9) and (10) then determinethe temperature dependenes of the hemial potential� and the parameter a.3. FLUCTUATION EFFECTSTo make the results of the quasi-hemial approxi-mation more preise, spatially inhomogeneous �utua-tions in parameters � and amust be taken into aount.Assuming that the spatial sale of �utuations is muhlarger than the lattie parameter, we onsider these�utuations in the ontinuum approximation. We let� ! � + �(r); a! a+ �(r); (14)where the variations �(r) and �(r) are funtions of theoordinate r satisfying the onditionsZ dr �(r) = 0; Z dr�(r) = 0: (15)Assuming that the variations of the long-range orderparameter and the parameter a from their equilibriumvalues are su�iently small, we expand (6) in �(r) and�(r). The partition funtion of the system an then bewritten as Z = Z0Zfl;where Z0 is the partition funtion in the QCA givenby Eq. (4). The ontribution from �utuations Zfl isgiven by the funtional integralZfl = A Z Z D[�(r)℄D[�(r)℄ exp��Æ
T � ; (16)where the normalization fator A is determined below.The quantity Æ
 onsists of two terms,Æ
 = Æ
1 + Æ
2: (17)The �rst one is the series expansion of (6) to the seondorder in �(r) and �(r). It is given byÆ
1 = Tz4!0ab Z dr�f11(�; a)�2(r)++ 2f12(�; a)�(r)�(r) + f22(�; a)�2(r)	 ; (18)where f11 = ab1� �2 �2� z + 2a2f22� ;f22 = 1� a� �2; f12 = a�; (19)

and b = (1 � a)2 � �2. The seond term in (17), Æ
2,was introdued by the following reason. Beause ofspatial inhomogeneity, an expansion of the thermody-nami potential must ontain not only powers of �(r)and �(r) but also their spatial derivatives. These latterare introdued by Æ
2 to suppress short-wave spatial�utuations that have no physial meaning. To under-stand the struture of Æ
2, we on�ne ourselves to thesimplest ase. Namely, assuming that the form of Æ
2is idential to the MFA one, we obtainÆ
2 = � 18!20 Z dr Z dr0V (r� r0)�(r)�(r0): (20)However, nonloal term (20) written in this form givesa nonzero ontribution to Æ
 in the spatially homo-geneous ase, i.e., for �(r) = onst. Thus, expression(16) inludes �utuations of the homogeneous systemthat have already been taken into aount in deriv-ing formulas of Se. 2. In Eq. (20), we must thereforeseparate the part that vanishes at �(r) = onst and,onsequently, ontains the ontribution from spatiallyinhomogeneous �utuations only. Thus, �nally, Æ
2an be written asÆ
2 = 116!20 Z dr Z dr0V (r� r0) [�(r)� �(r0)℄2 : (21)We note that �utuations of the long-order and short-order parameters are related to eah other. There-fore, although Eq. (21) only desribes nonloality in thelong-range order parameter, the spatial �utuations ofthe short-order parameter are also smoothed out. Be-ause of onditions (15), Æ
 does not ontain linearterms in �(r) and �(r).In view of (18) and (21), the right-hand side ofEq. (16) represents a Gaussian funtional integral,whih an be easily evaluated [20℄. The integrationyieldsZfl = A�8bQz �Bz=2Yq �1�Q v(q)T ��1=2 ; (22)where v(q) is the Fourier transform of V (r) and wehave introdued the notationQ = TV0z� ;� = 1 + 2TV0(1� �2) �1�  z � 2z � : (23)For z � 1, Eq. (22) goes into the well-known expressionfor Zfl orresponding to the random-phase approxima-tion [11℄. This allows us to determine the fator A in(22) as A = � z8bQ�Bz=2 :110



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Correlation e�ets : : :We thus obtain the ontribution to the thermodynamipotential �
 related to �utuations,�
 = �TB lnZfl = T2BXq ln �1�Q v(q)T � :The ontribution of �utuations to the internal energyis given by�E = �T 2 ��T ��
T � == � 12TBXq Q2v2(q)1�Qv(q)=T : (24)In writing Eq. (24), we used the onditionPq v(q) = 0to eliminate the terms that are responsible for the self-ation of impurities.In our model of the impurity�impurity interation,the Fourier transform v(q) is given byv(q) = V0zf(qR0); f(x) = 3x3 (sinx� x osx):On the interval from 0 to the �st zero of f(x), thisfuntion an be approximated to a su�ient aurayas f(x) � 1� �x4�2 ;and f(x) = 0 otherwise. This givesv(q) = ( V0z h1� (q=q0)2i ; q � q0;0; q > q0: (25)The quantity q0 is related to the e�etive oordinationnumber z by q0 = 4R0 = 4� 4�3z!0�1=3 : (26)Replaing summation by integration in Eq. (24) andusing (25) and (26), we obtain�E = 64T9�z ���1�3��1�p��1 artg 1p��1�+ 25�� ; (27)where � is de�ned by Eq. (23).4. RESULTS AND DISCUSSIONThe total heat apaity of the mixture is equal toC = Cimp + Clat + Cex; Cimp = C0 +�C;

where C0 = V0z4T �V0b2T � T� d�dT � (28)is the heat apaity in the quasi-hemial approxima-tion. The ontribution of �utuations �C is given by�C = �ET + ��32 � 1�� �ET + 25645�z�2����1 + 1(�� 1)(1� �2) �1� �22++ 4�T 2V0(1� �2) �32 �  z � 2z � 122� d�dT �� : (29)Using (12), we �ndT d�dT = ( ��= [(�� 1)℄ ; T < Ts;0; T > Ts:To obtain C(T ), we have added two terms to the im-purity ontribution Cimp. The �rst term is the lattieheat apaity Clat = (12�4=5)(T=�D)3 and the se-ond term is assoiated with the exhange interationbetween 3He atoms. It an be represented as [21℄Cex = 34(1 + �)2 � IT �2 "1� IT + 74 � IT �2# ; (30)where I is the exhange integral. Term (30) is onlyessential at very low temperatures. In omparing ourresults with the experimental data, we always take Clatand Cex into aount. We note that beause term (30)is small, we neglet the pressure dependene of I andset I equal to its maximum value � 1 mK at the molarvolume 24.2 m3/mol (see Ref. [21℄). In addition, weneglet the temperature dependene of �D beause theorresponding orretion is inessential for the tempera-ture range where the relevant e�ets take plae. We put�D = 17:3 K in aordane with Ref. [21℄. This valueof �D provides the best agreement with the experimen-tal data [1, 2℄ above T � 0:3 K, where the ontributionClat prevails.The present alulations are ompared with theEMD experimental data in Figs. 1 and 2. As an beseen from the �gures, the agreement between the the-ory and experiment is very good. To make the theory�t the data in [1, 2℄, the parameters of potential (3)must be spei�ed. The potential is determined by theintensity V0 and the e�etive interation radius R0 (orby z diretly related to R0). Both quantities must betreated as adjustable parameters. We note, however,that it is appropriate to hoose the �rst �tting param-eter as the produt V0z = v(0) rather than V0. This111
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Fig. 1. Heat apaity of dilute 3He�4He solid mixturesas a funtion of temperature. The solid urves orre-spond to the present theory
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Fig. 2. Heat apaity of onentrated 3He�4He solidmixtures as a funtion of temperature. The solid urvesorrespond to the present theoryhoie is ditated by the following reasons. At low tem-peratures, the impurity heat apaity an be obtainedas a low-temperature series expansion [12, 22℄ with-out using any theoretial approximations. The leadingterm of this expansion is given by

Cimp � �V0z2T �2 exp��V0z2T � : (31)Expression (31) is valid for all the mixtures irrespe-tive of their onentration. It follows from Eq. (31)that the quantity Cimp depends only on the produtV0z. Furthermore, as shown in Refs. [1; 2℄, the thermo-dynamis of the system at T < Ts an be satisfatorilydesribed within the MFA, whih orresponds to thelimit as z ! 1 and V0 ! 0 with V0z ! onst (see,e.g., Refs. [11; 12℄). In this approximation, the quan-tity V0z is also the only parameter determining the be-havior of the system at T < Ts. Thus, it is evidentthat the produt V0z plays the role of a universal pa-rameter of the theory1). For all the mixtures, the valueV0z is assumed to be equal to 1.51 K, whih is deter-mined by the ondition that the impurity heat apa-ity (31) �t the experimental data. The magnitude ofV0z is in omplete agreement with the Edwards�Balibaronstant A = V0z=2 that was found empirially to be0.76 K [2�4℄. The theoretial value of A and its pressuredependene were alulated by Mullin [8℄.As the seond independent adjustable parameter,we hoose the value z. Preisely this parameter har-aterizes the spatial orrelation sale between impuri-ties. Numerial analysis shows that the heat apaityCimp(T ) is highly sensitive to the magnitude of z in the�utuation region (at T > Ts). This makes it possibleto unambiguously determine the value of the e�etiveoordination number for both dilute and onentratedmixtures.Our analysis shows that the entire onentrationinterval (n0 � 50%) onsidered in Refs. [1; 2℄ an beonveniently divided into two parts: large onentra-tions n0 � 4:7% and small onentrations n0 = 0:11%,0.28%. The �tting parameter z is equal to 250 forall mixtures of the �rst group. This implies that thenearest-neighbor approximation is inadequate for in-terpreting the thermodynamis of mixtures with largeonentrations. In this ase, the long-range interationis therefore very signi�ant. The value z = 250 im-plies that the radius of interation between impuritiesspreads over four or �ve oordination spheres. Withinthe QCA, the ritial temperature T is equal to [12℄T = � V02 ln(1� 2=z) � V0z4 � 0:38 K;1) It is remarkable that in onsidering various approximationsfor the theory of solid mixtures, Fowler and Guggenheim intro-due the parameter w = V0z=2 (alled the energy of unmixing)from the outset. They denote the pair interation energy by2w=z (see Ref. [13, p. 570℄).112



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Correlation e�ets : : :whih is in exellent agreement with the experimentalvalue.For mixtures with small onentrations, the agree-ment between the theory and the experimental dataan be reahed for a unique hoie of z, namely z = 3for n = 0:11% and z = 5 for n = 0:28%. We notethat these values of z do not orrespond to any regularthree-dimensional rystal struture. This suggests thatsolid 3He�4He mixtures with small n0 separate to yieldthe seond (4He-rih) phase in the form of a fratal(dendriti) struture.There are several arguments supporting this as-sumption. The analysis shows that for low-onent-ration mixtures, the ontribution �C of �utuationsis negligible. Thus, the heat apaity C0(T ) obtainedin the QCA an be onsidered as a rather aurate re-sult for these mixtures. On the other hand, QCA is apreision method for strutures of the Bethe lattie (orCayley tree) type [11, 12℄. It is therefore reasonableto assume that at low onentrations, the separationof the mixture ours with formation of a new phasein the form of a fratal struture. For onentratedmixtures, the seond phase nulei are formed as three-dimensional preipitates.In our opinion, this is not surprising beause thedi�erene between the e�etive oordination numbersz orresponding to the mixtures with small and largeonentrations is related to the spei� harater of theimpurity�impurity interation. As mentioned above,the potential V (r) dereases as 1=r3 at large distanesr and has a ompliated angular dependene [16�18℄.In partiular, it is attrative along some diretions andrepulsive along others. For small n0, with the averagedistane between impurities by far exeeding the lattieparameter, the new phase an therefore grow as a fra-tal struture of the Cayley tree type suh that the orderof a node is determined by both the onentration andthe number of rystallographi diretions along whihattration ours. In the opposite ase of onentratedmixtures, elasti �elds of impurities overlap and the ef-fetive interation beomes essentially isotropi. As theresult, the nulei of the new phase grow in a ompatform. 5. CONCLUSIONSThe results of the present work learly demonstratethat thermodynami properties of quantum solid 3He�4He mixtures an be suessfully interpreted within thequasi-hemial approximation. The QCA has an es-sential advantage over the MFA beause it aounts

for the details of short-range orrelations along withthe long-range order. The QCA is therefore of pri-mary importane for the desription of the tempera-ture region above Ts, where the main ontribution tothe heat apaity is due to �utuations in the impu-rity subsystem. Another important point of the theoryis that it takes the long-range nature of the impurity�impurity interation into aount, whih is ruial forunderstanding the behavior of the system. It is signi�-ant, however, that we must not know this interationin every detail. Rather simple model (3) is quite su�-ient to properly desribe the thermodynamis of solid3He�4He mixtures.The theory is in good agreement with the experi-mental data in [1, 2℄ for both dilute and onentratedsolutions. Unfortunately, we do not know workswhere the heat apaity of mixtures with intermediateonentrations (0:3% < n0 < 5%) has been measured.The availability of these results would provide moredistintive onlusions about the hange of nuleationmehanisms as a funtion of the solid mixture ompo-sition.We would like to express our thanks to Prof.D. O. Edwards for disussions that led to the appear-ane of this work. We are indebted to Prof. G. Frossati,Prof. A. F. Andreev, Prof. V. N. Grigor'ev, and Prof.E. Ya. Rudavskii for helpful onversations.REFERENCES1. D. O. Edwards, A. S. MWilliams, and J. G. Daunt,Phys. Lett. 1, 218 (1961).2. D. O. Edwards, A. S. MWilliams, and J. G. Daunt,Phys. Rev. Lett. 9, 195 (1962).3. D. O. Edwards and S. Balibar, Phys. Rev. B 39, 4083(1989).4. D. O. Edwards and M. S. Pettersen, J. Low Temp.Phys. 87, 473 (1992).5. P. M. Tedrow and D. M. Lee, Phys. Rev. 181, 399(1969).6. G. O. Zimmermann, Pro. LT-9, Columbus 1, 244(1964).7. R. Shrenk, O. Friz, Y. Fujii, E. Syskakis, and F. Po-bell, J. Low Temp. Phys. 84, 155 (1991).8. W. J. Mullin, Phys. Rev. Lett. 20, 254 (1968).9. P. Kumar and M. Bernier, J. Low Temp. Phys. 79, 1(1990).8 ÆÝÒÔ, âûï. 1 113
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