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CORRELATION EFFECTS IN THE HEAT CAPACITYOF SEPARATING 3He�4He SOLID SOLUTIONST. N. Antsygina *, K. A. Chishko, V. A. SlusarevInstitute for Low Temperature Physi
s & EngineeringUkrainian National A
ademy of S
ien
es310164, Kharkov, UkraineSubmitted 25 April 2000We propose to des
ribe the impurity heat 
apa
ity of solid 3He-4He mixtures both below and above the phaseseparation temperature Ts by an extension of the Bethe�Guggenheim approximation for the latti
e gas model.It is shown that at T > Ts, the temperature behavior of the heat 
apa
ity is 
ompletely de�ned by 
orrelatione�e
ts in the impurity subsystem. The developed theory enables us to explain from the 
ommon standpoint theexperimental data by Edwards, M
Williams, and Daunt for all 
on
entrations of 4He and make some 
on
lusionsabout the stru
ture of se
ond phase nu
lei.PACS: 67.80.Gb 1. INTRODUCTIONSolid mixtures of helium isotopes are known [1�3℄to de
ompose into two (3He-ri
h and 4He-ri
h) phaseson 
ooling below the phase separation temperature Tsthat depends on both the pressure and the mixture
omposition. The separation at T = Ts is a �rst-ordertransition o

uring with mass transport. It is 
lear thatstru
ture transformations of this type signi�
antly af-fe
t thermodynami
 properties of solid mixtures. Inparti
ular, a major 
ontribution to the total heat 
a-pa
ity at T < Ts is due to additional degrees of freedomof a heterophase system.Heat 
apa
ity of separating solid 3He�4He mixtureshas been experimentally investigated in 
lose detail byseveral groups [1; 2; 4�7℄. The most 
omplete experi-mental results for a wide range of temperatures and
on
entrations n0 of 4He were reported by Edwards,M
Williams, and Daunt (EMD) [1; 2; 4℄. Other 
on-
entrations were measured in Refs. [5�7℄.In all the experiments, temperature dependen
es ofthe total heat 
apa
ity C(T ) are similar in 
hara
ter.At T < Ts, the experimental data for all impurity 
on-
entrations fall on a 
ommon 
urve. In this tempera-ture region, C(T ) in
reases with the temperature. Thetotal heat 
apa
ity drops sharply just above Ts and is*E-mail: antsygina�ilt.kharkov.ua


ompletely determined by the latti
e term Clat / T 3at T > 0:3 K. For Ts < T < 0:3 K, a deviation fromthe Debye T 3-law has been observed.It is known that at T < Ts (in the two-phase re-gion), the thermodynami
s of solid helium mixtures 
anbe des
ribed very su

essfully within the regular solu-tion model (the mean �eld approximation, MFA) [2, 8℄,but the behavior of C(T ) at T > Ts 
annot be ex-plained by it. In Ref. [9℄, an e�ort was made to take�u
tuations of the lo
al 
on
entration n into a

ount;an expression for the heat 
apa
ity of 3He�4He mix-tures above Ts was obtained there. The theory inRef. [9℄ is in agreement with some experimental datain Refs. [1; 2℄, but the approa
h used in this work isnot quite 
onsistent. It has been 
riti
ally dis
ussed ingreat detail by Edwards and Pettersen (see Ref. [4℄).Re
ently, the 
ontribution of �u
tuations to the heat
apa
ity was 
al
ulated [10℄ in the framework of therandom phase approximation (RPA) [11℄. This allowedadequately interpreting the behavior of the 
on
en-trated mixtures in the entire temperature range. How-ever, some additional 
onsiderations have been used totreat the limit of dilute solutions in a proper way [10℄.Thus, it is 
lear that further improvements in the theo-reti
al des
ription of the thermodynami
s of quantumsolid 3He�4He mixtures remain urgent.The purpose of the present work is to develop arigorous theory that des
ribes the temperature depen-107
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es of the heat 
apa
ity of separating helium solidsolutions with arbitrary 
on
entrations both below andabove Ts. The proposed method is based on the quasi-
hemi
al approximation [12, 13℄. It enables us to pro-perly take the 
ontribution of �u
tuations into a

ountand make some 
on
lusions about the stru
ture of se
-ond phase nu
lei. As we see in Se
. 4, our theory is ingood agreement with the experimental data [1, 2℄. It issigni�
ant that this agreement 
an be obtained with-out invoking any additional 
on
epts about extraneous
enters of a new phase nu
leation su
h as dislo
ations,grain boundaries, and other latti
e defe
ts. We notethat suggestions of this type were used in Ref. [14℄ toexplain experimental results in Ref. [7℄.2. GENERAL FORMALISMThe basis of the present theory is the latti
e gasmodel [12℄. Some simpli�
ations 
an be made in apply-ing this model to quantum solid mixtures of helium iso-topes (whi
h is in 
ontrast to 
lassi
al systems). First,we are interested in e�e
ts that o

ur at temperatures
onsiderably below the Debye temperature �D. Thisallows us to negle
t heat vibrations of helium atomsand 
onsider parameters of the intera
tion between im-purities as temperature independent. Se
ond, despitethe low temperatures, the system approa
hes the ther-modynami
 equilibrium rather rapidly be
ause of anintense quantum motion of helium atoms.A. HamiltonianFor de�niteness, we hereafter treat the 4He 
ompo-nent as an impurity subsystem in the mixture. TheHamiltonian of the system has the formH = "0Xf nf � 12Xf f 0 Vf f 0nfnf 0 ; (1)where nf is the o

upation number of 4He impurityatoms at a latti
e site f , "0 is the energy of a 4Heatom in the 3He matrix, and Vf f 0 = V (jf � f 0j) is theintera
tion energy of impurities pla
ed at the sites fand f 0. Hamiltonian (1) 
an be represented in a some-what di�erent form for the following reason. In then0 � T 
oordinates, where n0 is the average 4He 
on-
entration, the phase separation 
urve of solid 3He�4Hemixtures is pra
ti
ally symmetri
al about n0 = 0:5 (seeRef. [4℄) and has the maximum T
 at this point. The
riti
al temperature T
 is the highest temperature atwhi
h phase separation o

urs [3℄. This means thatthe Hamiltonian must be expli
itly invariant under the

repla
ement nf ! 1�nf , and we 
an therefore rewriteEq. (1) asH = 12Xf f 0 Vf f 0nf (1� nf 0); "0 = 12Xf Vf f 0 : (2)As 
an be seen from (2), it is irrelevant whether 3Heor 4He is 
hosen as the impurity subsystem. We alsonote that Hamiltonian (2) 
an be redu
ed to the Isingmodel with the spin 1/2 [12℄.B. Intera
tion between impuritiesBe
ause of the di�eren
e in atomi
 volumes of he-lium isotopes, a 4He impurity is the dilatation 
enter inthe 3He matrix [4℄. It is known [15℄ that the intera
tionbetween two dilatation 
enters is long-range; at a largeseparation r, it de
reases as 1=r3 for 
ubi
 and hexago-nal latti
es. Moreover, it is anisotropi
 with a 
ompli-
ated angular dependen
e [16�18℄. If many impuritiesexist in the matrix, their elasti
 �elds overlap and thee�e
tive intera
tion be
omes essentially isotropi
, butremains long-range. To des
ribe the intera
tion Vf f 0in the mixtures with arbitrary 
on
entrations of 4He,we use a rather simple model well-known in the litera-ture [11℄. Namely, the intera
tion of an impurity atompla
ed at a latti
e site f with another impurity atom isassumed to be 
onstant (equal to V0) if the distan
e be-tween them is less than R0 and equal to zero otherwise.Thus, Vf f 0 = ( V0 if jf � f 0j � R0;0 otherwise: (3)We introdu
e the e�e
tive 
oordination number z that
an be 
onsidered as the number of impurities intera
t-ing with the given impurity atom. The e�e
tive radiusR0 of the impurity�impurity intera
tion is related toz as R0 = (3!0z=4�)1=3 (where !0 is the volume peratom). In the present theory, z is 
onsidered as a �ttingparameter.C. Quasi-
hemi
al approximationAlthough the exa
t solution for the latti
e gasmodel is not available in the three-dimensional 
ase,there are several rather e�
ient approximate meth-ods for its analysis. To analyze the model, we usethe Bethe�Guggenheim method [12, 13℄ also known asthe quasi-
hemi
al approximation (QCA). It providesa su�
iently a

urate des
ription for the system understudy. In this approximation, the latti
e symmetry isof signi�
an
e and the �nal results only depend on the108
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ts : : :e�e
tive 
oordination number z. This method is pre-
ise in the limit of dilute solutions. It also gives ana

urate result for arti�
ial models of the Bethe latti
etype.In the QCA framework, a two-
omponent solid mix-ture involving A-type and B-type atoms 
an be repre-sented as a set of independent atomi
 pairs of the AA,BB, and AB types. The partition fun
tion has theform [12℄Z0 =XN yN XNAB g(N;NAB;B)�� exp(�E(NAB)=T ); (4)where B is the total number of latti
e sites, N is thenumber of sites o

upied by A-type atoms (4He impu-rities), y = exp(�=T ), and � is the 
hemi
al potentialof the impurity subsystem. We 
hoose the units su
hthat the Boltzmann 
onstant kB = 1. The fun
tiong(N;NAB ;B) is the number of 
on�gurations 
ontain-ing N impurities and NAB pairs. Ea
h of these 
on�g-urations has the energyE(NAB) = V02 NAB :Within the QCA, the fun
tion g is assumed to beg = G (zB=2)!NAA!NBB ![(NAB=2)!℄2 ; (5)whereNAA = 12 (zN�NAB) ; NBB = 12 [z(B�N)�NAB ℄are the respe
tive total numbers of the AA-type andBB-type pairs. The 
onstant G is determined by theobvious relationXNAB g(N;NAB ;B) = B!N !(B �N)! :Setting the number of unlike pairs NAB enteringEqs. (4) and (5) equal to its average value in the mix-ture, we obtain the well-known mean-�eld approxima-tion [12℄. In the limit as B; N;NAB !1 withN=B andNAB=B 
onstant, the sum in Eq. (4) 
an be repla
edby its maximum term. We letNB ! n; 2NABzB ! a:The quantities n and a are 
hosen su
h that they varyfrom zero to unity. We now introdu
e the long-rangeorder parameter � related to the lo
al impurity 
on-
entration n by � = 1� 2n. We note that the quantity

a is related to the short-order parameter x introdu
edin Ref. [19℄ by a = (1 + x)=2.Using the Stirling formula, we obtain the thermo-dynami
 potential 
0 (per site) as
0 = �TB lnZ0 = E � TS � �2 (1� �); (6)where E is the internal energy per site and S is the en-tropy per site. In a

ordan
e with the above-mentionedapproximations, we �ndE = V04 za; (7)S = 1B ln g = �1� z2� ln 2 + z � 12 �� [(1� �) ln(1� �) + (1 + �) ln(1 + �)℄ �� z4 [(1� � � a) ln(1� � � a)++ (1 + � � a) ln(1 + � � a) + 2a lna℄ : (8)The parameters � and a satisfy the set of equations(z � 1) ln 1� �1 + � + z2 ln 1 + � � a1� � � a + �T = 0; (9)ln �(1� a)2 � �2�� 2 lna� V0T = 0: (10)If we put � = 0, the system of Eqs. (9) and (10) is in-variant under the inversion � ! ��, whi
h means thatthe two-phase mixture o

urs. One phase (4He-weak)
orresponds to � > 0 (0 < n < 1=2) and the other(4He-ri
h) to � < 0 (1=2 < n < 1). It follows fromEq. (10) thata = 1� �2
 + 1 ;
 = �1 + (1� �2) �exp�V0T �� 1��1=2 : (11)Inserting (11) in (9), we obtainy � exp(�=T ) = 1� �1 + � � (1 + �)(
 � �)(1� �)(
 + �)�z=2 ; (12)where y is equal to unity for all temperatures below Ts.As the temperature is in
reased, the long-range orderparameter de
reases and be
omes equal to �0 = 1�2n0at T = Ts, where n0 is the equilibrium 
on
entrationgiven by the 
oexisten
e 
urve. It follows from (12)that the phase separation temperature Ts is given byT�1s = 2V0 ln � 1�uzu(1�uz�2)� ; u = �1��01+�0�1=z : (13)109
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onst, Eq. (13) goesinto the well-known expression for Ts resulting from theregular solution model [11℄. At T > Ts, the mixture be-
omes homogeneous with the 
onstant long-range orderparameter �0. Equations (9) and (10) then determinethe temperature dependen
es of the 
hemi
al potential� and the parameter a.3. FLUCTUATION EFFECTSTo make the results of the quasi-
hemi
al approxi-mation more pre
ise, spatially inhomogeneous �u
tua-tions in parameters � and amust be taken into a

ount.Assuming that the spatial s
ale of �u
tuations is mu
hlarger than the latti
e parameter, we 
onsider these�u
tuations in the 
ontinuum approximation. We let� ! � + �(r); a! a+ �(r); (14)where the variations �(r) and �(r) are fun
tions of the
oordinate r satisfying the 
onditionsZ dr �(r) = 0; Z dr�(r) = 0: (15)Assuming that the variations of the long-range orderparameter and the parameter a from their equilibriumvalues are su�
iently small, we expand (6) in �(r) and�(r). The partition fun
tion of the system 
an then bewritten as Z = Z0Zfl;where Z0 is the partition fun
tion in the QCA givenby Eq. (4). The 
ontribution from �u
tuations Zfl isgiven by the fun
tional integralZfl = A Z Z D[�(r)℄D[�(r)℄ exp��Æ
T � ; (16)where the normalization fa
tor A is determined below.The quantity Æ
 
onsists of two terms,Æ
 = Æ
1 + Æ
2: (17)The �rst one is the series expansion of (6) to the se
ondorder in �(r) and �(r). It is given byÆ
1 = Tz4!0ab Z dr�f11(�; a)�2(r)++ 2f12(�; a)�(r)�(r) + f22(�; a)�2(r)	 ; (18)where f11 = ab1� �2 �2� z + 2a2f22� ;f22 = 1� a� �2; f12 = a�; (19)

and b = (1 � a)2 � �2. The se
ond term in (17), Æ
2,was introdu
ed by the following reason. Be
ause ofspatial inhomogeneity, an expansion of the thermody-nami
 potential must 
ontain not only powers of �(r)and �(r) but also their spatial derivatives. These latterare introdu
ed by Æ
2 to suppress short-wave spatial�u
tuations that have no physi
al meaning. To under-stand the stru
ture of Æ
2, we 
on�ne ourselves to thesimplest 
ase. Namely, assuming that the form of Æ
2is identi
al to the MFA one, we obtainÆ
2 = � 18!20 Z dr Z dr0V (r� r0)�(r)�(r0): (20)However, nonlo
al term (20) written in this form givesa nonzero 
ontribution to Æ
 in the spatially homo-geneous 
ase, i.e., for �(r) = 
onst. Thus, expression(16) in
ludes �u
tuations of the homogeneous systemthat have already been taken into a

ount in deriv-ing formulas of Se
. 2. In Eq. (20), we must thereforeseparate the part that vanishes at �(r) = 
onst and,
onsequently, 
ontains the 
ontribution from spatiallyinhomogeneous �u
tuations only. Thus, �nally, Æ
2
an be written asÆ
2 = 116!20 Z dr Z dr0V (r� r0) [�(r)� �(r0)℄2 : (21)We note that �u
tuations of the long-order and short-order parameters are related to ea
h other. There-fore, although Eq. (21) only des
ribes nonlo
ality in thelong-range order parameter, the spatial �u
tuations ofthe short-order parameter are also smoothed out. Be-
ause of 
onditions (15), Æ
 does not 
ontain linearterms in �(r) and �(r).In view of (18) and (21), the right-hand side ofEq. (16) represents a Gaussian fun
tional integral,whi
h 
an be easily evaluated [20℄. The integrationyieldsZfl = A�8bQ
z �Bz=2Yq �1�Q v(q)T ��1=2 ; (22)where v(q) is the Fourier transform of V (r) and wehave introdu
ed the notationQ = TV0z� ;� = 1 + 2TV0
(1� �2) �1� 
 z � 2z � : (23)For z � 1, Eq. (22) goes into the well-known expressionfor Zfl 
orresponding to the random-phase approxima-tion [11℄. This allows us to determine the fa
tor A in(22) as A = � 
z8bQ�Bz=2 :110
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ts : : :We thus obtain the 
ontribution to the thermodynami
potential �
 related to �u
tuations,�
 = �TB lnZfl = T2BXq ln �1�Q v(q)T � :The 
ontribution of �u
tuations to the internal energyis given by�E = �T 2 ��T ��
T � == � 12TBXq Q2v2(q)1�Qv(q)=T : (24)In writing Eq. (24), we used the 
onditionPq v(q) = 0to eliminate the terms that are responsible for the self-a
tion of impurities.In our model of the impurity�impurity intera
tion,the Fourier transform v(q) is given byv(q) = V0zf(qR0); f(x) = 3x3 (sinx� x 
osx):On the interval from 0 to the �st zero of f(x), thisfun
tion 
an be approximated to a su�
ient a

ura
yas f(x) � 1� �x4�2 ;and f(x) = 0 otherwise. This givesv(q) = ( V0z h1� (q=q0)2i ; q � q0;0; q > q0: (25)The quantity q0 is related to the e�e
tive 
oordinationnumber z by q0 = 4R0 = 4� 4�3z!0�1=3 : (26)Repla
ing summation by integration in Eq. (24) andusing (25) and (26), we obtain�E = 64T9�z ���1�3��1�p��1 ar
tg 1p��1�+ 25�� ; (27)where � is de�ned by Eq. (23).4. RESULTS AND DISCUSSIONThe total heat 
apa
ity of the mixture is equal toC = Cimp + Clat + Cex; Cimp = C0 +�C;

where C0 = V0z4T
 �V0b2T � T� d�dT � (28)is the heat 
apa
ity in the quasi-
hemi
al approxima-tion. The 
ontribution of �u
tuations �C is given by�C = �ET + ��32 � 1�� �ET + 25645�z�2����1 + 1
(�� 1)(1� �2) �1� �2
2++ 4�T 2V0(1� �2) �32 � 
 z � 2z � 12
2� d�dT �� : (29)Using (12), we �ndT d�dT = ( ��= [
(�� 1)℄ ; T < Ts;0; T > Ts:To obtain C(T ), we have added two terms to the im-purity 
ontribution Cimp. The �rst term is the latti
eheat 
apa
ity Clat = (12�4=5)(T=�D)3 and the se
-ond term is asso
iated with the ex
hange intera
tionbetween 3He atoms. It 
an be represented as [21℄Cex = 34(1 + �)2 � IT �2 "1� IT + 74 � IT �2# ; (30)where I is the ex
hange integral. Term (30) is onlyessential at very low temperatures. In 
omparing ourresults with the experimental data, we always take Clatand Cex into a

ount. We note that be
ause term (30)is small, we negle
t the pressure dependen
e of I andset I equal to its maximum value � 1 mK at the molarvolume 24.2 
m3/mol (see Ref. [21℄). In addition, wenegle
t the temperature dependen
e of �D be
ause the
orresponding 
orre
tion is inessential for the tempera-ture range where the relevant e�e
ts take pla
e. We put�D = 17:3 K in a

ordan
e with Ref. [21℄. This valueof �D provides the best agreement with the experimen-tal data [1, 2℄ above T � 0:3 K, where the 
ontributionClat prevails.The present 
al
ulations are 
ompared with theEMD experimental data in Figs. 1 and 2. As 
an beseen from the �gures, the agreement between the the-ory and experiment is very good. To make the theory�t the data in [1, 2℄, the parameters of potential (3)must be spe
i�ed. The potential is determined by theintensity V0 and the e�e
tive intera
tion radius R0 (orby z dire
tly related to R0). Both quantities must betreated as adjustable parameters. We note, however,that it is appropriate to 
hoose the �rst �tting param-eter as the produ
t V0z = v(0) rather than V0. This111
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n0 = 0:11%n0 = 0:28%Experimentaldata [1,2℄:C=R

0.1 T , K
0.01

0.001

0.1

Fig. 1. Heat 
apa
ity of dilute 3He�4He solid mixturesas a fun
tion of temperature. The solid 
urves 
orre-spond to the present theory

0.1 1
n0 = 21%n0 = 50%Experimentaldata [1,2℄:1

0.010.1
C=R

T , K
n0 = 4:7%

Fig. 2. Heat 
apa
ity of 
on
entrated 3He�4He solidmixtures as a fun
tion of temperature. The solid 
urves
orrespond to the present theory
hoi
e is di
tated by the following reasons. At low tem-peratures, the impurity heat 
apa
ity 
an be obtainedas a low-temperature series expansion [12, 22℄ with-out using any theoreti
al approximations. The leadingterm of this expansion is given by

Cimp � �V0z2T �2 exp��V0z2T � : (31)Expression (31) is valid for all the mixtures irrespe
-tive of their 
on
entration. It follows from Eq. (31)that the quantity Cimp depends only on the produ
tV0z. Furthermore, as shown in Refs. [1; 2℄, the thermo-dynami
s of the system at T < Ts 
an be satisfa
torilydes
ribed within the MFA, whi
h 
orresponds to thelimit as z ! 1 and V0 ! 0 with V0z ! 
onst (see,e.g., Refs. [11; 12℄). In this approximation, the quan-tity V0z is also the only parameter determining the be-havior of the system at T < Ts. Thus, it is evidentthat the produ
t V0z plays the role of a universal pa-rameter of the theory1). For all the mixtures, the valueV0z is assumed to be equal to 1.51 K, whi
h is deter-mined by the 
ondition that the impurity heat 
apa
-ity (31) �t the experimental data. The magnitude ofV0z is in 
omplete agreement with the Edwards�Balibar
onstant A = V0z=2 that was found empiri
ally to be0.76 K [2�4℄. The theoreti
al value of A and its pressuredependen
e were 
al
ulated by Mullin [8℄.As the se
ond independent adjustable parameter,we 
hoose the value z. Pre
isely this parameter 
har-a
terizes the spatial 
orrelation s
ale between impuri-ties. Numeri
al analysis shows that the heat 
apa
ityCimp(T ) is highly sensitive to the magnitude of z in the�u
tuation region (at T > Ts). This makes it possibleto unambiguously determine the value of the e�e
tive
oordination number for both dilute and 
on
entratedmixtures.Our analysis shows that the entire 
on
entrationinterval (n0 � 50%) 
onsidered in Refs. [1; 2℄ 
an be
onveniently divided into two parts: large 
on
entra-tions n0 � 4:7% and small 
on
entrations n0 = 0:11%,0.28%. The �tting parameter z is equal to 250 forall mixtures of the �rst group. This implies that thenearest-neighbor approximation is inadequate for in-terpreting the thermodynami
s of mixtures with large
on
entrations. In this 
ase, the long-range intera
tionis therefore very signi�
ant. The value z = 250 im-plies that the radius of intera
tion between impuritiesspreads over four or �ve 
oordination spheres. Withinthe QCA, the 
riti
al temperature T
 is equal to [12℄T
 = � V02 ln(1� 2=z) � V0z4 � 0:38 K;1) It is remarkable that in 
onsidering various approximationsfor the theory of solid mixtures, Fowler and Guggenheim intro-du
e the parameter w = V0z=2 (
alled the energy of unmixing)from the outset. They denote the pair intera
tion energy by2w=z (see Ref. [13, p. 570℄).112



ÆÝÒÔ, òîì 119, âûï. 1, 2001 Correlation e�e
ts : : :whi
h is in ex
ellent agreement with the experimentalvalue.For mixtures with small 
on
entrations, the agree-ment between the theory and the experimental data
an be rea
hed for a unique 
hoi
e of z, namely z = 3for n = 0:11% and z = 5 for n = 0:28%. We notethat these values of z do not 
orrespond to any regularthree-dimensional 
rystal stru
ture. This suggests thatsolid 3He�4He mixtures with small n0 separate to yieldthe se
ond (4He-ri
h) phase in the form of a fra
tal(dendriti
) stru
ture.There are several arguments supporting this as-sumption. The analysis shows that for low-
on
ent-ration mixtures, the 
ontribution �C of �u
tuationsis negligible. Thus, the heat 
apa
ity C0(T ) obtainedin the QCA 
an be 
onsidered as a rather a

urate re-sult for these mixtures. On the other hand, QCA is apre
ision method for stru
tures of the Bethe latti
e (orCayley tree) type [11, 12℄. It is therefore reasonableto assume that at low 
on
entrations, the separationof the mixture o

urs with formation of a new phasein the form of a fra
tal stru
ture. For 
on
entratedmixtures, the se
ond phase nu
lei are formed as three-dimensional pre
ipitates.In our opinion, this is not surprising be
ause thedi�eren
e between the e�e
tive 
oordination numbersz 
orresponding to the mixtures with small and large
on
entrations is related to the spe
i�
 
hara
ter of theimpurity�impurity intera
tion. As mentioned above,the potential V (r) de
reases as 1=r3 at large distan
esr and has a 
ompli
ated angular dependen
e [16�18℄.In parti
ular, it is attra
tive along some dire
tions andrepulsive along others. For small n0, with the averagedistan
e between impurities by far ex
eeding the latti
eparameter, the new phase 
an therefore grow as a fra
-tal stru
ture of the Cayley tree type su
h that the orderof a node is determined by both the 
on
entration andthe number of 
rystallographi
 dire
tions along whi
hattra
tion o

urs. In the opposite 
ase of 
on
entratedmixtures, elasti
 �elds of impurities overlap and the ef-fe
tive intera
tion be
omes essentially isotropi
. As theresult, the nu
lei of the new phase grow in a 
ompa
tform. 5. CONCLUSIONSThe results of the present work 
learly demonstratethat thermodynami
 properties of quantum solid 3He�4He mixtures 
an be su

essfully interpreted within thequasi-
hemi
al approximation. The QCA has an es-sential advantage over the MFA be
ause it a

ounts

for the details of short-range 
orrelations along withthe long-range order. The QCA is therefore of pri-mary importan
e for the des
ription of the tempera-ture region above Ts, where the main 
ontribution tothe heat 
apa
ity is due to �u
tuations in the impu-rity subsystem. Another important point of the theoryis that it takes the long-range nature of the impurity�impurity intera
tion into a

ount, whi
h is 
ru
ial forunderstanding the behavior of the system. It is signi�-
ant, however, that we must not know this intera
tionin every detail. Rather simple model (3) is quite su�-
ient to properly des
ribe the thermodynami
s of solid3He�4He mixtures.The theory is in good agreement with the experi-mental data in [1, 2℄ for both dilute and 
on
entratedsolutions. Unfortunately, we do not know workswhere the heat 
apa
ity of mixtures with intermediate
on
entrations (0:3% < n0 < 5%) has been measured.The availability of these results would provide moredistin
tive 
on
lusions about the 
hange of nu
leationme
hanisms as a fun
tion of the solid mixture 
ompo-sition.We would like to express our thanks to Prof.D. O. Edwards for dis
ussions that led to the appear-an
e of this work. We are indebted to Prof. G. Frossati,Prof. A. F. Andreev, Prof. V. N. Grigor'ev, and Prof.E. Ya. Rudavskii for helpful 
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