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We propose to describe the impurity heat capacity of solid *He-*He mixtures both below and above the phase
separation temperature T by an extension of the Bethe-Guggenheim approximation for the lattice gas model.
It is shown that at T' > T, the temperature behavior of the heat capacity is completely defined by correlation
effects in the impurity subsystem. The developed theory enables us to explain from the common standpoint the
experimental data by Edwards, McWilliams, and Daunt for all concentrations of He and make some conclusions

about the structure of second phase nuclei.
PACS: 67.80.Gb

1. INTRODUCTION

Solid mixtures of helium isotopes are known [1-3]
to decompose into two (*He-rich and *He-rich) phases
on cooling below the phase separation temperature T
that depends on both the pressure and the mixture
composition. The separation at T = T is a first-order
transition occuring with mass transport. It is clear that
structure transformations of this type significantly af-
fect thermodynamic properties of solid mixtures. In
particular, a major contribution to the total heat ca-
pacity at T' < Ty is due to additional degrees of freedom
of a heterophase system.

Heat capacity of separating solid *He—*He mixtures
has been experimentally investigated in close detail by
several groups [1,2,4-7]. The most complete experi-
mental results for a wide range of temperatures and
concentrations ng of ‘He were reported by Edwards,
McWilliams, and Daunt (EMD) [1,2,4]. Other con-
centrations were measured in Refs. [5-7].

In all the experiments, temperature dependences of
the total heat capacity C'(T') are similar in character.
At T < T, the experimental data for all impurity con-
centrations fall on a common curve. In this tempera-
ture region, C'(T) increases with the temperature. The
total heat capacity drops sharply just above T and is
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completely determined by the lattice term Cj,; o< T
at T > 0.3 K. For Ts < T < 0.3 K, a deviation from
the Debye T3-law has been observed.

It is known that at T < T, (in the two-phase re-
gion), the thermodynamics of solid helium mixtures can
be described very successfully within the regular solu-
tion model (the mean field approximation, MFA) [2, 8],
but the behavior of C(T') at T > T cannot be ex-
plained by it. In Ref. [9], an effort was made to take
fluctuations of the local concentration n into account;
an expression for the heat capacity of *He-*He mix-
tures above Ty was obtained there. The theory in
Ref. [9] is in agreement with some experimental data
in Refs. [1,2], but the approach used in this work is
not quite consistent. It has been critically discussed in
great detail by Edwards and Pettersen (see Ref. [4]).
Recently, the contribution of fluctuations to the heat
capacity was calculated [10] in the framework of the
random phase approximation (RPA) [11]. This allowed
adequately interpreting the behavior of the concen-
trated mixtures in the entire temperature range. How-
ever, some additional considerations have been used to
treat the limit of dilute solutions in a proper way [10].
Thus, it is clear that further improvements in the theo-
retical description of the thermodynamics of quantum
solid 3He-*He mixtures remain urgent.

The purpose of the present work is to develop a
rigorous theory that describes the temperature depen-
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dences of the heat capacity of separating helium solid
solutions with arbitrary concentrations both below and
above Ts. The proposed method is based on the quasi-
chemical approximation [12, 13]. It enables us to pro-
perly take the contribution of fluctuations into account
and make some conclusions about the structure of sec-
ond phase nuclei. As we see in Sec. 4, our theory is in
good agreement with the experimental data [1, 2]. It is
significant that this agreement can be obtained with-
out invoking any additional concepts about extraneous
centers of a new phase nucleation such as dislocations,
grain boundaries, and other lattice defects. We note
that suggestions of this type were used in Ref. [14] to
explain experimental results in Ref. [7].

2. GENERAL FORMALISM

The basis of the present theory is the lattice gas
model [12]. Some simplifications can be made in apply-
ing this model to quantum solid mixtures of helium iso-
topes (which is in contrast to classical systems). First,
we are interested in effects that occur at temperatures
considerably below the Debye temperature ©p. This
allows us to neglect heat vibrations of helium atoms
and consider parameters of the interaction between im-
purities as temperature independent. Second, despite
the low temperatures, the system approaches the ther-
modynamic equilibrium rather rapidly because of an
intense quantum motion of helium atoms.

A. Hamiltonian

For definiteness, we hereafter treat the *He compo-
nent as an impurity subsystem in the mixture. The
Hamiltonian of the system has the form

H = Eoznf - %vaf’nfnf’a
£

ff’'

(1)

where ng is the occupation number of *He impurity
atoms at a lattice site f, o is the energy of a “He
atom in the *He matrix, and Vgp = V(|f — £']) is the
interaction energy of impurities placed at the sites f
and f’. Hamiltonian (1) can be represented in a some-
what different form for the following reason. In the
ng — T coordinates, where ng is the average 4He con-
centration, the phase separation curve of solid *He-*He
mixtures is practically symmetrical about ng = 0.5 (see
Ref. [4]) and has the maximum 7T, at this point. The
critical temperature T, is the highest temperature at
which phase separation occurs [3]. This means that
the Hamiltonian must be explicitly invariant under the
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replacement ng — 1 — ng, and we can therefore rewrite
Eq. (1) as

1
H= 3 ;Vt‘f’nt‘(l —ngr),

1
g9 = Egvff“ (2)

As can be seen from (2), it is irrelevant whether *He
or *He is chosen as the impurity subsystem. We also
note that Hamiltonian (2) can be reduced to the Ising
model with the spin 1/2 [12].

B. Interaction between impurities

Because of the difference in atomic volumes of he-
lium isotopes, a *He impurity is the dilatation center in
the *He matrix [4]. It is known [15] that the interaction
between two dilatation centers is long-range; at a large
separation 7, it decreases as 1/r?® for cubic and hexago-
nal lattices. Moreover, it is anisotropic with a compli-
cated angular dependence [16-18]. If many impurities
exist in the matrix, their elastic fields overlap and the
effective interaction becomes essentially isotropic, but
remains long-range. To describe the interaction Vg
in the mixtures with arbitrary concentrations of *He,
we use a rather simple model well-known in the litera-
ture [11]. Namely, the interaction of an impurity atom
placed at a lattice site f with another impurity atom is
assumed to be constant (equal to V4) if the distance be-
tween them is less than R and equal to zero otherwise.

Thus,

We introduce the effective coordination number z that
can be considered as the number of impurities interact-
ing with the given impurity atom. The effective radius
Ry of the impurity—impurity interaction is related to
z as Ry = (3w02/47r)1/3 (where wp is the volume per
atom). In the present theory, z is considered as a fitting
parameter.

Vo
0

if |f — £'| < Ro,

otherwise.

fo, = (3)

C. Quasi-chemical approximation

Although the exact solution for the lattice gas
model is not available in the three-dimensional case,
there are several rather efficient approximate meth-
ods for its analysis. To analyze the model, we use
the Bethe-Guggenheim method [12, 13] also known as
the quasi-chemical approximation (QCA). It provides
a sufficiently accurate description for the system under
study. In this approximation, the lattice symmetry is
of significance and the final results only depend on the
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effective coordination number z. This method is pre-
cise in the limit of dilute solutions. It also gives an
accurate result for artificial models of the Bethe lattice
type.

In the QCA framework, a two-component solid mix-
ture involving A-type and B-type atoms can be repre-
sented as a set of independent atomic pairs of the AA,
BB, and AB types. The partition function has the
form [12]

Zo =Y _yN > g(N,Nag,B) x
N

Nar

x exp(—E(Nag)/T), (4)

where B is the total number of lattice sites, NV is the
number of sites occupied by A-type atoms (*He impu-
rities), y = exp(u/T), and p is the chemical potential
of the impurity subsystem. We choose the units such
that the Boltzmann constant kg = 1. The function
g(N, N4pg, B) is the number of configurations contain-
ing N impurities and N4p pairs. Each of these config-
urations has the energy

Vi
E(Nup) = 70 Nag.

Within the QCA, the function g is assumed to be
(zB/2)!

=G , 5
9= " NaaNgsl[(Nap/2) 2 (5)
where
1 1
Naa =3 (:N=Nag), Npp= 3 [2(B=N)—Nag]

are the respective total numbers of the AA-type and
BB-type pairs. The constant G is determined by the
obvious relation

B!
]g g(N,Nap,B) = NB =N

Setting the number of unlike pairs Nap entering
Eqgs. (4) and (5) equal to its average value in the mix-
ture, we obtain the well-known mean-field approxima-
tion [12]. In the limit as B, N, Nap — oo with N/B and
Nap/B constant, the sum in Eq. (4) can be replaced
by its maximum term. We let

N 2Nap
— —a

5™ B

The quantities n and a are chosen such that they vary
from zero to unity. We now introduce the long-range
order parameter o related to the local impurity con-
centration n by ¢ = 1 —2n. We note that the quantity
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a is related to the short-order parameter z introduced
in Ref. [19] by a = (1 + 2)/2.

Using the Stirling formula, we obtain the thermo-
dynamic potential Qg (per site) as

Qo

T

BanozE—TS—%(l—a), (6)
where E is the internal energy per site and S is the en-
tropy per site. In accordance with the above-mentioned

approximations, we find

E=%za, (7)
Sz%lng: (1—§)ln2+zgl X
x[(1-o)ln(l—0)+(1+0)In(l+0)] -
—Z[(l—a—a)ln(l—a—a)-l—

(8)

The parameters o and a satisfy the set of equations

+(14+0—a)ln(l+0—a)+2alna].

-0 2z 14+0—-—a pu
(2 l)lnl—}—a 2n1—a—a T_O’ )
%
In[(1-a)?—-0%] -2lna-—=0. (10)

T
If we put p = 0, the system of Eqs. (9) and (10) is in-
variant under the inversion o — —o, which means that
the two-phase mixture occurs. One phase (‘He-weak)
corresponds to o > 0 (0 < n < 1/2) and the other
(*He-rich) to o < 0 (1/2 < n < 1). It follows from
Eq. (10) that

11—
RSV L )
v = {1—!—(1—02) [exp (?) —1]} .
Inserting (11) in (9), we obtain
= epluym) = 122 (LA AT

where y is equal to unity for all temperatures below T.
As the temperature is increased, the long-range order
parameter decreases and becomes equal to g = 1—2ny
at T = Ty, where ng is the equilibrium concentration
given by the coexistence curve. It follows from (12)
that the phase separation temperature 7T is given by

|

1—u?
u(l—u*=2)

2
T371 = VO In
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As z — o0, Vp — 0, and Vpz — const, Eq. (13) goes
into the well-known expression for T resulting from the
regular solution model [11]. At T > Ty, the mixture be-
comes homogeneous with the constant long-range order
parameter gp. Equations (9) and (10) then determine
the temperature dependences of the chemical potential
4 and the parameter a.

3. FLUCTUATION EFFECTS

To make the results of the quasi-chemical approxi-
mation more precise, spatially inhomogeneous fluctua-
tions in parameters ¢ and a must be taken into account.
Assuming that the spatial scale of fluctuations is much
larger than the lattice parameter, we consider these
fluctuations in the continuum approximation. We let

o—=o+n(), a—a+a(r) (14)

3

where the variations 7(r) and a(r) are functions of the
coordinate r satisfying the conditions

/drn(r) ~0, /dra(r) ~0.

Assuming that the variations of the long-range order
parameter and the parameter a from their equilibrium
values are sufficiently small, we expand (6) in n(r) and
a(r). The partition function of the system can then be
written as

(15)

Z = ZoZy,

where Zp is the partition function in the QCA given
by Eq. (4). The contribution from fluctuations Zj; is
given by the functional integral

Zn=4 [ [Pawipiawlen (-7) . (0

where the normalization factor A is determined below.

The quantity 6 consists of two terms,
50 = 601 + 0Qs. (17)

The first one is the series expansion of (6) to the second
order in 7(r) and a(r). Tt is given by

T
00y = 4w0itb/dr {f11(0-,a)772(1‘)+
+ 2f12(0,a)n(r)a(r) + fa2(0.a)a®(x)}, (18)
where
fll:%(2_2+2a2f22)’ (19)
fa2 :1_a_021 fi2 = ao,
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and b = (1 — a)? — 0. The second term in (17), §Qs,
was introduced by the following reason. Because of
spatial inhomogeneity, an expansion of the thermody-
namic potential must contain not only powers of n(r)
and a(r) but also their spatial derivatives. These latter
are introduced by 6y to suppress short-wave spatial
fluctuations that have no physical meaning. To under-
stand the structure of §Q25, we confine ourselves to the
simplest case. Namely, assuming that the form of Qs
is identical to the MFA one, we obtain

]' ! ! !
00y = —m/dr/dr V(e —xc"n(r)n(x'). (20)

However, nonlocal term (20) written in this form gives
a nonzero contribution to 02 in the spatially homo-
geneous case, i.e., for n(r) = const. Thus, expression
(16) includes fluctuations of the homogeneous system
that have already been taken into account in deriv-
ing formulas of Sec. 2. In Eq. (20), we must therefore
separate the part that vanishes at n(r) = const and,
consequently, contains the contribution from spatially
inhomogeneous fluctuations only. Thus, finally, Qs
can be written as

= 16&)3 /dl‘/dr’V(r_rl)[n(r) _77(1'/)]2~ (21)

We note that fluctuations of the long-order and short-
order parameters are related to each other. There-
fore, although Eq. (21) only describes nonlocality in the
long-range order parameter, the spatial fluctuations of
the short-order parameter are also smoothed out. Be-
cause of conditions (15), 6Q does not contain linear
terms in n(r) and a(r).

In view of (18) and (21), the right-hand side of
Eq. (16) represents a Gaussian functional integral,
which can be easily evaluated [20]. The integration
yields

0

8bQ Bz/2 ( ) —1/2
zm=4(52) T -5

q

where v(q) is the Fourier transform of V(r) and we
have introduced the notation

T
TR
(23)
T 1,22
R TETTEr R G

For z > 1, Eq. (22) goes into the well-known expression
for Z, corresponding to the random-phase approxima-
tion [11]. This allows us to determine the factor A in
(22) as
Bz/2
vz
(G2)
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We thus obtain the contribution to the thermodynamic
potential AQ related to fluctuations,

T
InZp = %Zln {1 -Q
a
The contribution of fluctuations to the internal energy
is given by

v(@

T
AQ = —— T

B

0 (AQ
_ 72 _
s (30)
B Q2 2
N QTB Z 1-— Qv (24)
In writing Eq. (24), we used the condition >, v(q) =0

to eliminate the terms that are responsible for the self-
action of impurities.

In our model of the impurity—impurity interaction,
the Fourier transform v(q) is given by

v(q)

On the interval from 0 to the fist zero of f(x), this
function can be approximated to a sufficient accuracy

as )
and f(x) = 0 otherwise. This gives

v(q) = {

The quantity qo is related to the effective coordination
number z by

=Wozf(qRo), f(x)

— (sinz — x cos ).

xT

Vor [1-(a/w)’], 4 < .
0, q> qo-

(25)

4 4r \'°
=— =1 . 26
@ RO <3ZWO> ( )
Replacing summation by integration in Eq. (24) and

using (25) and (26), we obtain
AL — 64T
97rz
1 2
1-3) (11 S 2
x{ 3)\< A arctgm>+5)\}, (27)

where A is defined by Eq. (23).

4. RESULTS AND DISCUSSION
The total heat capacity of the mixture is equal to

C= Cimp + Olat + Oeza Oimp = CO + AO?

111

Correlation effects . ..
where
do

(a7 ~77ir)

is the heat capacity in the quasi-chemical approxima-
tion. The contribution of fluctuations AC' is given by

V()Z
4T'y

Vob

Co = 2T

(28)

AFE 3 1\ AFE 256
AC‘T+[<§_X>T 45m2}><
1 o2
4 —|1-—
{ +7<A—1><1—02>[ 7T
40T? 3 z—2 1 do
— (2= )=}, @
o (3 ) ) @
Using (12), we find
d_a _ _G/ [7()\ - 1)]7 T<T,
dar | o, T>Ts.

To obtain C(T'), we have added two terms to the im-
purity contribution Cjp,p. The first term is the lattice
heat capacity Cj.; = (127%/5)(T/Op)? and the sec-
ond term is associated with the exchange interaction
between *He atoms. It can be represented as [21]

) -5+
where I is the exchange integral. Term (30) is only
essential at very low temperatures. In comparing our
results with the experimental data, we always take Cjq;
and C,, into account. We note that because term (30)
is small, we neglect the pressure dependence of I and
set I equal to its maximum value &~ 1 mK at the molar
volume 24.2 ¢cm? /mol (see Ref. [21]). In addition, we
neglect the temperature dependence of © p because the
corresponding correction is inessential for the tempera-
ture range where the relevant effects take place. We put
O©p = 17.3 K in accordance with Ref. [21]. This value
of © p provides the best agreement with the experimen-
tal data [1, 2] above T ~ 0.3 K, where the contribution
C)at prevails.

The present calculations are compared with the
EMD experimental data in Figs. 1 and 2. As can be
seen from the figures, the agreement between the the-
ory and experiment is very good. To make the theory
fit the data in [1, 2|, the parameters of potential (3)
must be specified. The potential is determined by the
intensity Vy and the effective interaction radius Rg (or
by z directly related to Rp). Both quantities must be
treated as adjustable parameters. We note, however,

that it is appropriate to choose the first fitting param-
eter as the product Vpz = v(0) rather than V4. This

I

T

7

4

I

=) | 6o

3 , I
Ceac—z(l"'o') < _T
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Fig.1. Heat capacity of dilute *He—"He solid mixtures
as a function of temperature. The solid curves corre-
spond to the present theory
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Fig.2. Heat capacity of concentrated *He-*He solid
mixtures as a function of temperature. The solid curves
correspond to the present theory

choice is dictated by the following reasons. At low tem-
peratures, the impurity heat capacity can be obtained
as a low-temperature series expansion [12, 22| with-
out using any theoretical approximations. The leading
term of this expansion is given by

2

Cimp = <%> exp <—%> . (31)
Expression (31) is valid for all the mixtures irrespec-
tive of their concentration. It follows from Eq. (31)
that the quantity Cj,, depends only on the product
Voz. Furthermore, as shown in Refs. [1, 2], the thermo-
dynamics of the system at T' < T can be satisfactorily
described within the MFA, which corresponds to the
limit as 2z — oo and Vy — 0 with Vpz — const (see,
e.g., Refs. [11,12]). In this approximation, the quan-
tity Vpz is also the only parameter determining the be-
havior of the system at T' < Ts. Thus, it is evident
that the product Vyz plays the role of a universal pa-
rameter of the theory!). For all the mixtures, the value
Vo z is assumed to be equal to 1.51 K, which is deter-
mined by the condition that the impurity heat capac-
ity (31) fit the experimental data. The magnitude of
Vo z is in complete agreement with the Edwards—Balibar
constant A = Vpz/2 that was found empirically to be
0.76 K [2-4]. The theoretical value of A and its pressure
dependence were calculated by Mullin [8].

As the second independent adjustable parameter,
we choose the value z. Precisely this parameter char-
acterizes the spatial correlation scale between impuri-
ties. Numerical analysis shows that the heat capacity
Cimp(T) is highly sensitive to the magnitude of z in the
fluctuation region (at 7' > Tj). This makes it possible
to unambiguously determine the value of the effective
coordination number for both dilute and concentrated
mixtures.

Our analysis shows that the entire concentration
interval (ng < 50%) considered in Refs. [1,2] can be
conveniently divided into two parts: large concentra-
tions ng > 4.7% and small concentrations ng = 0.11%,
0.28%. The fitting parameter z is equal to 250 for
all mixtures of the first group. This implies that the
nearest-neighbor approximation is inadequate for in-
terpreting the thermodynamics of mixtures with large
concentrations. In this case, the long-range interaction
is therefore very significant. The value z = 250 im-
plies that the radius of interaction between impurities
spreads over four or five coordination spheres. Within
the QCA, the critical temperature T is equal to [12]

Vo VbZ

T,=——————~—"~038K
¢ 21n(1 — 2/2) 4 ’

1 1t is remarkable that in considering various approximations
for the theory of solid mixtures, Fowler and Guggenheim intro-
duce the parameter w = Vpz/2 (called the energy of unmizing)
from the outset. They denote the pair interaction energy by
2w/z (see Ref. [13, p. 570]).

112



KITD, Tom 119, Bem. 1, 2001

Correlation effects . ..

which is in excellent agreement with the experimental
value.

For mixtures with small concentrations, the agree-
ment between the theory and the experimental data
can be reached for a unique choice of z, namely z = 3
for n = 0.11% and z = 5 for n = 0.28%. We note
that these values of z do not correspond to any regular
three-dimensional crystal structure. This suggests that
solid *He—*He mixtures with small ny separate to yield
the second (*He-rich) phase in the form of a fractal
(dendritic) structure.

There are several arguments supporting this as-
sumption. The analysis shows that for low-concent-
ration mixtures, the contribution AC of fluctuations
is negligible. Thus, the heat capacity Co(T') obtained
in the QCA can be considered as a rather accurate re-
sult for these mixtures. On the other hand, QCA is a
precision method for structures of the Bethe lattice (or
Cayley tree) type [11, 12]. It is therefore reasonable
to assume that at low concentrations, the separation
of the mixture occurs with formation of a new phase
in the form of a fractal structure. For concentrated
mixtures, the second phase nuclei are formed as three-
dimensional precipitates.

In our opinion, this is not surprising because the
difference between the effective coordination numbers
z corresponding to the mixtures with small and large
concentrations is related to the specific character of the
impurity-impurity interaction. As mentioned above,
the potential V (r) decreases as 1/r® at large distances
r and has a complicated angular dependence [16-18].
In particular, it is attractive along some directions and
repulsive along others. For small ng, with the average
distance between impurities by far exceeding the lattice
parameter, the new phase can therefore grow as a frac-
tal structure of the Cayley tree type such that the order
of a node is determined by both the concentration and
the number of crystallographic directions along which
attraction occurs. In the opposite case of concentrated
mixtures, elastic fields of impurities overlap and the ef-
fective interaction becomes essentially isotropic. As the
result, the nuclei of the new phase grow in a compact
form.

5. CONCLUSIONS

The results of the present work clearly demonstrate
that thermodynamic properties of quantum solid *He—
4He mixtures can be successfully interpreted within the
quasi-chemical approximation. The QCA has an es-
sential advantage over the MFA because it accounts

8 ZKIOT®, Beim. 1

for the details of short-range correlations along with
the long-range order. The QCA is therefore of pri-
mary importance for the description of the tempera-
ture region above Ty, where the main contribution to
the heat capacity is due to fluctuations in the impu-
rity subsystem. Another important point of the theory
is that it takes the long-range nature of the impurity—
impurity interaction into account, which is crucial for
understanding the behavior of the system. It is signifi-
cant, however, that we must not know this interaction
in every detail. Rather simple model (3) is quite suffi-
cient to properly describe the thermodynamics of solid
3He—*He mixtures.

The theory is in good agreement with the experi-
mental data in [1, 2] for both dilute and concentrated
solutions.  Unfortunately, we do not know works
where the heat capacity of mixtures with intermediate
concentrations (0.3% < ng < 5%) has been measured.
The availability of these results would provide more
distinctive conclusions about the change of nucleation
mechanisms as a function of the solid mixture compo-
sition.

We would like to express our thanks to Prof.
D. O. Edwards for discussions that led to the appear-
ance of this work. We are indebted to Prof. G. Frossati,
Prof. A. F. Andreev, Prof. V. N. Grigor’ev, and Prof.
E. Ya. Rudavskii for helpful conversations.
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