
ÆÝÒÔ, 2000, òîì 117, âûï. 3, ñòð. 644�652 © 2000ADIABATIC INVARIANCE AND SEPARATRIX: SINGLESEPARATRIX CROSSINGB. V. Chirikov*, V. V. Veheslavov**Budker Institute of Nulear Physis Siberian Brauh of Russian Aademy of Sienes630090, Novosibirsk, RussiaSubmitted 22 June 1999Detailed numerial experiments on the dynamis and statistis of a single rossing the separatrix of a nonlinearresonane with a time-varying amplitude are desribed. The results are ompared with a simple approximatetheory �rst developed by Timofeev and further improved and generalized by Tennyson and oworkers. Themain attention is paid to a new, ballisti, regime of separatrix rossing in whih the violation of adiabatiity ismaximal. Some unsolved problems and open questions are also disussed.PACS: 05.45.+b 1. INTRODUCTIONAny onservation law, if only approximate, is of agreat importane in physis. One of those is the adia-bati invariane that is the onservation of the ationvariables (J) under a slow parametri perturbation. Inthe simplest ase of a single arbitrarily large variation ofthe latter the orresponding hange in J is well knownto be exponentially small in an appropriate adiabatiparameter (ǫ → 0) provided the perturbation is an ana-lyti funtion of time or of any other dynamial vari-able.However, in the theory of dynamial systems amuh more interesting and important ase is a sta-tionary variation of the perturbation (e.g., periodi,quasiperiodi or even haoti). In this ase the adia-batiity is violated, for su�iently long time, no matterhow slow is the adiabati perturbation. Generi me-hanism of suh a nonadiabatiity are resonanes, bothdriving and oupling ones, whih always determine thelong-term dynamis of Hamiltonian osillator systems.This was �rst disovered and explained in 1928 by An-dronov, Leontovih and Mandelshtam [1℄. Remarkably,it was su�ient, for this purpose, to arefully examine,from the standpoint of physis, the well-known Math-ieu equation and its solutions. Indeed, the instabilityzones (�stop bands�) exist for speial but arbitrarilysmall values of the parameter ǫ where the adiabati-*E-mail: hirikov�inp.nsk.su**E-mail: veheslavov�inp.nsk.su

ity is ompletely destroyed in a su�iently long time.This leads to an additional ondition for the adiabatiinvariane: the perturbation must be not only slow butalso nonresonant.At a separatrix � the asymptoti trajetory within�nite period of motion � both onditions are vio-lated (see, e.g., Refs. [2, 3℄). This is exatly the plaewhere the dynamial haos is born, the ultimate originof haos. In a Hamiltonian system the separatrix istypially assoiated with nonlinear resonanes. The vi-olation of adiabatiity results in the formation of a nar-row haoti layer around the unperturbed separatrix.The set of all resonanes is everywhere dense in phasespae, and forms the so-alled �Arnold web�. For thenumber of freedoms N > 2 (in a onservative system)the united haoti omponent of motion is formed alongwhih a haoti (but nonergodi!) trajetory is overingthe whole energy surfae. This very intriate proesswas termed the �Arnold di�usion� whih is an univer-sal instability of many-dimensional nonlinear osilla-tions [3�5℄. However, the rate of this di�usion as well asthe total measure of the web is typially exponentiallysmall in perturbation parameter ǫ. For large N or for adriving quasiperiodi perturbation with many frequen-ies these nonadiabati e�ets deay with ǫ as a powerlaw but only within a �nite range ǫcr . ǫ ≪ 1 (theso-alled fast Arnold di�usion [6℄). Asymptotially, as
ǫ → 0 the deay is always exponential [7℄, the rossovervalue being the smaller the larger is the number of theunperturbed frequenies.644



ÆÝÒÔ, òîì 117, âûï. 3, 2000 Adiabati Invariane and Separatrix. . .A more serious violation of adiabatiity was foundfor the rossing of separatrix by a trajetory. In thisase, the hange of J is always a power law in ǫ, andmoreover the measure of haoti omponent does notdepend on ǫ at all and is always large. This is truefor the slow resonane rossing [8, 9℄ as well as for therossing of a single separatrix [9�13℄. Interestingly, forthe linear osillator with the frequeny value rossingzero, the hange of J may be large independent of ǫ[14℄.In this paper, we present the results of numerialexperiments for a single rossing of a single separatrix.The present work was stimulated by an interestingstudy of the orresponding quantum adiabatiity [15℄.We use the same lassial model desribed in the nextSetion. 2. MODELThe model in Ref. [15℄ we use here is determined bythe Hamiltonian
H(x, p, t) =

p2

2
+ A0 sin (ωt) cosx =

=
p2

2
+

A0

2
[sin (x + ωt) − sin (x − ωt)] . (2.1)The �rst expression desribes a single nonlinear re-sonane in the pendulum approximation (see, e.g.,Refs. [3, 5℄) with a time-varying amplitude
A(t) = A0 sin (ωt). (2.2)Alternatively, the model represents the interation oftwo stationary resonanes (the seond expression inEq. (2.1)) as suggested in Refs. [16, 17℄. In the lat-ter ase, the formal resonane overlap parameter [5℄

s =
(∆p)r

ω
(2.3)inde�nitely ineases as ω → 0. Here, (∆p)r is the widthof eah resonane, and 2ω is the distane between them.The adiabati limit ω → 0 orresponding to in�niteresonane overlap was suggested in Ref. [17℄ as a newparadigm of the �pure� haos. However, this haos isnot ergodi generally.Below we keep to the �rst interpretation of themodel as a single pulsating nonlinear resonane.The dimensionless adiabatiity parameter is de�nedin the usual way as the ratio of perturbation/osillationfrequenies. Atually we an introdue two suh pa-rameters:

ǫ =
ω√
A0

and ǫ̃ =
ω

√

|A(t)|
. (2.4)

Here√A0 is aonstant frequeny of the small resonaneosillation for the maximal amplitude while √A(t) isthe urrent frequeny, partiularly at the instant ofseparatrix rossing. Correspondingly, we all ǫ theglobal parameter of adiabatiity, and ǫ̃ the loal one.Two branhes of the instant, or �frozen�, separatrixat some t = onst is de�ned by the relation
ps(x̃; t) = ±2

√

|A(t)| sin (x̃/2),

x̃ =

{

x, A(t)>0,
x − π, A(t)<0. (2.5)Following previous studies of the separatrix rossing,we restrit ourselves to this frozen approximation inwhat follows. As we shall see the latter provides quitegood auray of rather simple theoretial relations.In this approximation, the ation variable is de�nedin the standard way as

J =
1

2π

∮

p(x)dx, (2.6)where the integral is taken over the whole period for xrotation (o� the resonane) and over a half of that for
x osillation (inside the resonane). This distition isneessary to avoid the disontinuity of J at the sepa-ratrix where the ation is given by a simple expression

J = Js(t) =
4

π

√

|A(t)| ≤ Jmax =
4

π

√

A0. (2.7)At ωt = 0 (mod π), the ation is J = |p|, and the on-jugated phase is θ = x. Note that unlike p, the ation
J ≥ 0 is never negative.It is onvenient to set A0 = 1 and to intro-due the dimensionless ation by the transformation
J/Jmax → J . The rossing region then is the unitinterval, and J is simply related to the rossing time
t = tcr by

|A(tcr)| = J2, 0 ≤ J ≤ 1 , (2.8)while the adiabatiity parameters beome
ǫ = ω and ǫ̃ = ǫ/J. (2.9)Numerial integration of the equations of motionfor Hamiltonian (2.1) was performed in (x, p) variablesusing the so-alled bilateral sympleti algorithm sug-gested in Ref. [18℄ and based on the sympleti fourth-order Runge-Kutta method in Ref. [19℄. A typial num-ber of iterations was ∼ 100 per the minimal motion(osillation) period 2π. This provides the onservationof the Hamltonian in extended phase spae [3℄ betterthan 10−6.645



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 117, âûï. 3, 2000As is well known the variation of J under an adia-bati perturbation onsists of one to two qualitativelydi�erent parts: (i) the average ation, whih is nearlyonstant between the rossings up to exponentiallysmall orretions, and whih is of primary interest inour problem, and (ii) the rapid osillations with themotion frequeny (see, e.g., Fig. 7 in Ref. [20℄). Theratio of the two time sales is ∼ ǫ̃ ≪ 1, whih allowse�iently suppress the seond unimportant part of the
J variation by simply averaging J(t) over a long timeinterval ∼ 1/ǫ, the suppression fator being ∼ 1/ǫ̃ ≫ 1fairly large.3. DYNAMICS OF SEPARATRIX CROSSING:DIFFUSIVE REGIME, J &&& ǫ

1/3To the best of our knowledge, the �rst analytial es-timates for the hange in J due to separatrix rossinghave been alulated in Ref. [11℄ followed shortly by amore aurate [12℄ and, later, by a more general [9℄ ap-proximate (asymptoti in ǫ) theory. For model (2.1) un-der onsideration here these results (see also Ref. [21℄)an be represented in the form:
∆J(J, M, ǫ) = F (J)Φ(M). (3.1)Here ∆J = Jf − Ji is the di�erene between the �naland initial averaged values of J ,

F (J) = − ǫ

2

√
1 − J4

J2
sign(Ȧ(t)) (3.2)is the dependene on the averaged ation (usually butnot neessarily initial one), and

Φ(M) = ln |2 sin (πM)|, (3.3)where M is the �rossing parameter�. It looks like aphase anonially onjugated to the ation J [21℄ but itis not. Peuliarity of the separatrix rossing is in thatthe onjugated phase θ annot be even introdued onthe frozen separatrix beause the motion frequeny inthis approximation is zero, and hene θ ≡ onst. In-stead, a di�erent variable � the rossing parameter �is used in the theory [12, 9℄ whih is determined by anyof the following approximate relations
M ≈ wx

A
3/2
x

4Ȧx

≈ wp
A

3/2
p

4Ȧp

≈ sin2

(

x̃s

4

)

. (3.4)Here
wx =

|δH(tx)|
Ax(tx)

, wp =
|δH(tp)|
Ap(tp)

(3.5)are dimensionless losest approahes of the trajetoryto the unstable �xed point (x̃ = 0 (mod 2π), p = 0) just

before or after separatrix rossing at time tx and tp, re-spetively (for details see Refs. [9, 12℄). The absolutevalues are assumed for all quantities with subindies.In the latter expression (3.4) the oordinate x̃s(tcr) istaken at the instant tcr of separatrix rossing.The physial meaning of seemingly ompliatedEq. (3.4) is atually very simple: the main hange in
J does our just at the most lose approah to theunstable �xed point where the motion is very slow al-lowing for the moving separatrix to onsiderably pushor pull the trajetory along. The existing theory an-not distinguish between the three relations (3.4) withrespet to their auray. However, our numerial ex-periments revealed that taken by itself the third one(M = M3) proved to be most aurate. On the otherhand, if we make use of the �rst two and take the mini-mal one of them (M = Mmin ≤ 0.5) the auray doesfurther inrease. In this ase, it is important to takeall the quantities at the orresponding instants tx and
tp as indiated in Eqs. (3.4) and (3.5), and not, e.g., atthe rossing time tcr. All quantities in Eqs. (3.4) and(3.5) were omputed using the linear interpolation overa single numerial iteration.A omparison between the numerial results andthe simple theory is presented in Fig. 1.The empirial data (points) represent 4 separatrixrossings over one period of the adiabati perturba-tion A(t) in Eq. (2.1) for eah of 2500 trajetorieswith random initial onditions in the full interval of
θ = x = (0, 2π) and of J = πp/4 = (0, 1) at t = 0. Thenormalized deviation from the theory is presented as afuntion of initial J = Ji (prior to a rossing), and ofparameter M . In both ases the optimal M = Mminis used. The best auray of the theory roughly or-responds to the interval 0.7 . J . 0.9 (Fig. 1a). Thelatter is separately shown in Fig. 1b. Beyond this in-terval, the deviation inreases at both sides.For J → 1, the hange in J beomes very small(3.1) whih inreases the theoretial errors. More in-teresting is the opposite limit (J → 0) where the theorybeomes singular. It simply means that suh a theoryis no longer appliable here. This new and interestingregion of maximal nonadiabatiity will be onsidered inSetion 4 below. Right here we notie only that the ab-sene of any points for J . 0.2 in Fig. 1a has a very sim-ple explanation: using the best parameter M = Mminbeomes inappliable in this region beause only one ofthe two lose approahes remains here while the otherone is never realized. If, instead, one uses a less au-rate parameter M = M3, whih is always appliable,the deviations exeed 1 whih means that the theory(3.1) has nothing to do with suh small J .646
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MminFig. 1. Normalized deviation of numerial data for se-paratrix rossing from the simple theory (3.1) in model(2.1): 4 rossings ×2500 trajetories; ǫ = 0.001.(a) Deviation dependene on J in the whole availableinterval: 0.2 . J < 1 (see text). (b) Same data as afuntion of the rossing parameter M in the best de-sribed interval: 0.7 . J . 0.9; the auray (3.6)
σ ≈ 0.01The highest auray ahieved in our numerial ex-periments σ ≈ 0.01 (see Eq. (3.6) and Fig. 1b) is om-parable with the minimal theoretial errors ∼ ǫ ln ǫ [9℄.In a very narrow interval of Mmin ≈ 0 the auraybeomes somewhat worse but is still surprisingly goodfor suh a simple theoretial relation as Eq. (3.1). Afew points in this region are learly seen also in Fig. 1asattered over a wide interval in J .A high numerial auray ahieved reveals a om-pliated struture of the deviations from the theory.Besides irregular sattering of the points there is a lear

regular �splitting� symmetri with respet to zero devi-ation whih is determined by the sign of Ȧ(t). It mightbe a result of insu�ient J averaging (for disussion seeRef. [12℄). This part of the regular deviations ould beexluded by the expliit omputation of the �rst or-retion to the adiabati invariant (2.6) as in Ref. [10℄.However, it would hardly derease appreiably the de-viations as those are already of the order of the termsommited in the theory. In any event, we inluded this�splitting� into the de�nition of the auray of ournumerial data in Fig. 1b for all the 4 suessive sepa-ratrix rossings:
σ2 =

〈(∆J − ∆Jth)2〉
F 2

. (3.6)Here ∆J is empirial and ∆Jth is theoretial (Eq. (3.1))values of the J hange per rossing.Another way to demonstrate agreement (or dis-agreement) of the existing theory with the empirialdata is to look at the behavior of a transformed
∆J → (∆J)+ = −∆Jsign(Ȧ(t)). (3.7)As far as the relation (3.1) holds true this new quantityhas a strit upper bound

(∆J)+ ≤ |F (J)|Φ(1/2). (3.8)The results are shown in Fig. 2a.The upper bound of points losely follows the theo-retial dependene (3.8) down to Ji ≈ 0.2 (f. Fig. 1a).Remarkably, for small Ji a lear upper bound does alsoexist even though the unknown underlying dynamisis apparently ompletely di�erent here. In partiular,the upper bound in this region does not depend on Jand forms a harateristi �plateau�. The rossoverbetween the two regions in Fig. 2a is at J = Jcro ≈ 0.1,and sales as Jcro ∼ ǫ1/3 (see Eq. (4.5) below). Weshall all the well understood behavior for J & Jcro thedi�usive region, and the other domain J . Jcro, to beonsidered in some detail below, the ballisti region forreasons explained in the next Setion.4. STATISTICS OF SEPARATRIX CROSSING:BALLISTIC REGIME, J ... ǫ
1/3For small J . ǫ1/3, not only any theory is as yet ab-sent but also the onstruting empirial relations seemsto us a hard nut. Partiularly, as is seen in Fig. 2b, thestruture in this region is rather ompliated.Surprisingly, statistial properties here turned outto be fairly simple. To our knowledge, Mirbah was the�rst to study this problem numerially in 1998 [22℄.647



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 117, âûï. 3, 2000
2(∆J)+/ǫ a
0.01 0.50.02 0.05 0.1 0.2 1

Ji

10−3

10−2

10−1

10 0

10 1

10 2

0.1 0.2 0.3 0.4 0.50−100

−200

01002002∆J/ǫ

Ji

b

Fig. 2. The set of empirial ∆J for the ensemble oftrajetories as in Fig. 1 in the full range Ji = (0, 1).(a) Transformed quantity (∆J)+, Eq. (3.7): solid urveis theory (3.8) shifted upwards by 20% to be seen; ho-rizontal line is empirial upper bound 2(∆J)+/ǫ ≈ 150in the region where there is as yet no theory; rossoveration Jcro ≈ 0.1. (b) Atual ∆J with orretsigns: oblique straight line is empirial lower bound
∆J ≥ −Ji (see text)Sine in this paper the properties of the single sepa-ratrix rossings are onsidered we need some statisti-al ensemble of trajetories before to turn to statistialnumerial experiments. As the motion driven by sepa-ratrix rossing is known to be ergodi, or at least verylose to that, within the rossing domain it would benaturally to make use of the ergodi ensemble. In thisase, the distribution of the rossing parameter M inEq. (3.1), whih determines all the statistial propertiesof the single separatrix rossing, was shown to be ho-mogeneous [9, 23℄. Partiularly, the two �rst moments
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Fig. 3. Distribution ρ(M) in number of rossings perbin: ǫ = 0.01; Jcro = 0.215. Top to bottom:(i) M = Mmin, Ji = (0.3, 1), di�usive region, 6928rossings, 100 bins; (ii) same for M = M3, 7312 ross-ings; (iii) M = M3, Ji = (0, 0.2), ballisti region, 1634rossings, 50 binsof the M -distribution are
µ1 = 〈Φ(M)〉 = 0,

µ2 = 〈Φ2(M)〉 =
π2

12
.

(4.1)Both numerial values hold in the di�usive region only.Moreover, it is insu�ient to �x initial J0 even for thefull range of θ0 = (0, 2π). For M -distribution were ho-mogeneous the width of initial distribution ∆0J0 mustexeed some ritial value given by a simple approxi-mate relation
∆0J0

J0
> ǫ

√

1 − J4
0

J3
0

ln

(

8

ǫ

J3
0

√

1 − J4
0

)

≈

≈ J3
cro

J3
0

ln

(

8
J3

0

J3
cro

)

. (4.2)This relation is obtained from the ondition that theinitial strip ∆0J0 is transformed in suh a strip nearunstable �xed point (see Eq. (3.4)) whih provides thefull range of parameter M = (0, 1). In most of our sta-tistial numerial experiments we used the full range of
J0 = (0, 1).In Fig. 3 the M -distribution is shown for both def-initions of this parameter.Two upper distributions in the di�usive region arefairly homogeneous within statistial �utuations. Un-like this, the lower one in ballisti region shows a learslope whih mehanism remains unlear.648



ÆÝÒÔ, òîì 117, âûï. 3, 2000 Adiabati Invariane and Separatrix. . .The statistial properties we studied are harate-rized by the two �rst moments of the distribution fun-tion in ∆J (see Eq. (3.1)) de�ned as follows
(∆J)22 ≡ 〈(∆J)2〉 = F 2(J)µ2 =

=
ǫ2

4

(

1

J4
− 1

)

µ2, (4.3)
(∆J)1 ≡ 〈∆J〉 =

d

dJ

〈(∆J)2〉
2

= −µ2ǫ
2

2J5
.Both analitial expressions are valid in the di�usive re-gion only. Moreover, the seond one annot be deduedfrom the existing �rst-order theory as 〈∆J〉 ∼ ǫ2 isa seond-order e�et. Instead, one an use the well-known relation between the two moments (see, e.g.,Ref. [3℄) whih generally holds true for a haoti Hamil-tonian system (for disussion see Ref. [2℄). This relationas well as the seond-order moment 〈∆J〉, whih mayseem to be negligible at the �rst glane, are in fatvery important for derivation of the orret di�usionequation

∂f(J, τ)

∂τ
=

∂

∂J

D(J)

2

∂f

∂J
. (4.4)Partiularly, this equation entails the relaxation to ahomogeneous steady state (f(J, τ) → fs(J) = onst)as it should be for the ergodi system.In Eq. (4.4) τ is the disrete time measured in thenumber of separatrix rossings, and D(J) = 〈(∆J)2〉denotes a �di�usion rate� [23, 21℄. Atually, this is notthe real di�usion rate whih inludes the orrelation be-tween suessive rossings. This may be important inthe problem under onsideration aording to numeri-al data in Ref. [21℄ (for further disussion see Seion5 below).The results of our numerial experiments on the sta-tistial properties for the single separatrix rossing arepresented in Fig. 4a. We used the same numerial dataas in Fig. 2b whih upon ordering in J were averagedby the standard method of the moving window of width500 points, or ∆wJ ≈ 0.05. The transition from di�u-sive to ballisti regime is surprisingly sharp, espeiallyfor (∆J)1 (lower urve). The rossover value

J = Jcro = αǫ1/3, α ≈ 1.08 (4.5)where empirial fator α was found from the plateau(upper bound) for (∆J)2 (upper urve). To this endwe substitute Jcro for J in Eq. (4.3) to obtain
(∆J)2 ≤

√
µ2

2α2
ǫ1/3. (4.6)Remarkably, the empirial data follow with a rea-sonable auray the di�usive theory literally down to
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5Fig. 4. Statistis of 104 separatrix rossings; windowwidth ∆wJ ≈ 0.05. (a) (∆J)2 (upper thik urve),and (∆J)1 (lower urve) vs. J for ǫ = 0.001; twothin solid urves represent the di�usive theory (4.3);the horizontal line is the empirial upper bound for
2(∆J)2/ǫ ≈ 78. (b) Same data for ǫ = 0.001 and0.01 in ballisti normalization: J̃ = J/ǫ1/3; empirialupper bound 2(∆J̃)2 ≈ 0.78the very rossover. This allowed us to numerially dis-ern the very small but important �rst moment, andeven to hek its agreement with the theory.Even though there is as yet no theory for the ballis-ti regime the underlying physial mehanism of thetransition is rather simple and omprehensible [22℄.This transition is determined by the kinetis param-eter

κ ∼ (∆J)2
J

∼ ǫ

J3
≪ 1 (4.7)whih is a redued dynamial sale in J . The latter649



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 117, âûï. 3, 2000strong inequality is a neessary ondition for the dif-fusion approximation to the exat integro-di�erentialkineti equation to hold. Hene the term di�usive re-gion for J & Jcro ∼ ǫ1/3. In the opposite limit (κ & 1)the trajetory jumps over the whole region ∼ J in oneseparatrix rossing. This is usually alled the ballistiregime.Sine the ation J ≥ 0 annot be negative thehange ∆J is neessarily restrited for any J . In bal-listi region the restrition beomes very strong as thestrit lower bound in Fig. 2b demonstrates. It simplymeans that Jf ≥ 0 as well as Ji. Also, there existsthe strit upper bound J ≤ 1 but it orresponds to avery big ∆J unless J → 1 is lose to the upper borderof separatrix rossing. Near this border there is alsothe seond ballisti region but its width is very small.Again, it is determined by the kinetis parameter (4.7)whih now takes the form
κ ∼ (∆J)2

J1
∼ ǫ√

J1

, J1 = 1 − J (4.8)whene a new rossover J
(cro)
1 ∼ ǫ2.In di�usive normalization used in Fig. 4a, the quan-tities 2(∆J)1,2/ǫ do not depend on ǫ in the di�usive re-gion but do so in the ballisti domain. Instead, one mayuse a di�erent, ballisti, normalization by introduinga new variable J̃ = J/ǫ1/3. The result is presented inFig. 4b for the two values of ǫ. Instead of Eq. (4.3) wehave now the relations:

(∆J̃)22 =
µ2

4

(

1

J̃4
−ǫ4/3

)

, (∆J̃)1 = − µ2

2J̃5
. (4.9)The seond one is independent of ǫ in the full rangeof J . Some di�erene between two lower urves is ap-parently due to �utuations, espeially for the smaller

ǫ. The �rst relation slightly depends on ǫ but this isimportant near the upper border (J ≈ 1) only. Thedi�usive theory (4.9) is shown in Fig. 4b for ǫ = 0.01(upper thin urve).Even though there is as yet no theory for the ballis-ti region, some statistial properties an be preditedhere from a general onsideration. One of those is thesurvival probability P (τ) for a trajetory to stay in theballisti region during a time > τ . Namely, this proba-bility is expeted to deay exponentially
P (τ) ≈ exp

(

− τ

〈τ〉

)

(4.10)with some average survival time 〈τ〉 ∼ 1. This is be-ause for large jumps of a trajetory aross the wholeballisti region there is a ertain probability w ∼ 1 for a
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Fig. 5. Survival probability P (τ ) in ballisti region for
ǫ = 0.001 (irles), and ǫ = 0.01 (rosses); 104 tra-jetories homogeneously distributed initially over theballisti region; straight line is the �t with 〈τ 〉 = 4.35,

w = 0.79trajetory to remain within this region after eah sepa-ratrix rossing. Moreover, the suessive probabilitiesare expeted, for a haoti motion, to be equal andstatistially independent. This implies the exponential(4.10) with 〈τ〉 = −1/ lnw independent of ǫ. The latteris espeially lear in the ballisti normalization (4.9).The results of numerial experiments are presentedin Fig. 5.Curiously, the di�usion equation (4.4) with on-stant D ≈ 0.16 (in ballisti normalization, see Fig. 4b)also leads to the exponential deay (4.10) with the av-erage survival time
〈τ〉 ≈ 2

Dk2
≈ 5, (4.11)where k ≈ π/2 is the parameter of the �rst(main) eigenfuntion of the di�usion equation:

f1(J̃) ≈ cos(kJ̃). This is surprisingly lose to theempirial value 〈τ〉 ≈ 4.4 (Fig. 5) in spite of the formalinappliability of the di�usion approximation in theballisti region! 5. DISCUSSIONIn the present paper, we reported the results of ex-tensive numerial experiments aimed to the detailedstudy of dynamis and statistis of separatrix rossingin lassial model (2.1). Our work was stimulated byan interesting investigation of the quantum behavior ofthis model [15℄.650



ÆÝÒÔ, òîì 117, âûï. 3, 2000 Adiabati Invariane and Separatrix. . .First of all we arefully heked the agreement ofthe empirial data with the existing fairly simple �rst-order theory [12, 9℄ and found it surprisingly good,lose in fat to the formal limiting auray of thetheory (Fig. 1). Besides, we were able to disern oneseond-order e�et � the behavior of the �rst moment
〈∆J〉(J) �whih is beyond the theory but very impor-tant for the di�usion equation. Our numerial resultson�rm the expeted relation between the twomoments(Eq. (4.3) and Fig. 4).On the other hand, we have found that suh a nieagreement rudely breaks down in the ballisti region
J < Jcro ≈ ǫ1/3 (Fig. 4) whih is qualitatively di�er-ent from the omplementary di�usive region J > Jcro.The new regime of separatrix rossing was �rst notiedand partly explained in Ref. [22℄. It is a peuliarity ofmodel (2.1) in whih pulsating separatrix rosses zero.In many other models studied numerially (see, e.g.,Refs. [10, 11, 20, 21℄) the authors tended to avoid thetheoretial singularity at J → 0 (3.2). This is moresimple, of ourse, but less interesting. Partiularly, thelargest violation of adiabatiity (∆J ∼ ǫ1/3) is reahedjust in the ballisti region (Fig. 2 and 4).Even though the dynamial theory in this regionseems to be a hard nut, and has not yet developedthe statistial properties of the motion here look rathersimple. Surprisingly, even a simpli�ed di�usion equa-tion, whih must not hold in the ballisti region, stillallows for some reasonably aurate estimates (Fig. 5).In the present paper, we onsider the dynamis andstatistis of a single separatrix rossing only. Of ourse,this is insu�ient for the full-sale statistial desrip-tion of the separatrix rossing. As is well known (see,e.g., Refs. [20, 21℄) the orrelations in multiple rossingsare generally very essential. In onlusion of our dis-ussion we present in Fig. 6 the ommulative e�et of 4suessive rossing over one period of the perturbation.Both moments are normalized as follows:
(∆J)1 → (∆J)1/τ ; (∆J)22 → (∆J)22/τ ≡ D(τ)where disrete time τ = 4 is the rossing multipliityin this ase (see Eq. (4.3)). In the di�usive regionboth urves oinide within �utuations whih meansthat the orrelations, if any, are small over 4 rossings.This is in agreement with the results in Ref. [21℄ (fora di�erent model). Whether they will rise with τ , andwhy, is an interesting open question. Aording toRef. [21℄, they do so but it may depend on the methodof measuring the di�usion rate. In the ballisti regionthe orrelation e�et is strong from the beginning,espeially for the seond moment. This is also inagreement with numerial data in Ref. [22℄. Aordingto data in Fig. 6, the normalized seond moment
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