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BOUND FERROMAGNETIC AND PARAMAGNETIC POLARONS ASAN ORIGIN OF THE RESISTIVITY PEAK IN FERROMAGNETICSEMICONDUCTORS AND MANGANITESE. L. Nagaev*Institute for High Pressure Physis142092, Troitsk, Mosow Region, RussiaSubmitted 16 June 1999A theory of resistivity is developed for ferromagneti semiondutors, inluding possibly manganites. It is basedon the interation of the free and bound harge arriers with the magnetization of the rystal. The temperaturedependene of free energy for nonionized donors and free eletrons is alulated for the spin-wave and param-agneti regions. In addition to the trapping by the ferromagneti �utuations (the ferromagneti polarons), theeletron trapping by the random magnetization �utuations as T !1 is taken into aount (the paramagnetipolarons). For the nondegenerate semiondutors, the theory makes it possible to explain a nonmonotonitemperature dependene of the ativation energy, with T = 0 value lower than its value for T !1. For degen-erate semiondutors, the theory explains a metal�insulator transition that ours in samples with relatively lowharge arrier density with inreasing temperature. If the density is larger, a reentrant metal�insulator transitionshould take plae, so that the rystal is highly ondutive as T !1.PACS: 75.50.Pp, 75.70.Pa1. INTRODUCTIONThe present paper deals with ferromagneti semi-ondutors, both degenerate and nondegenerate. Allthese semiondutors display a resistivity peak in theviinity of the Curie point TC . The heavily dopedsemiondutors displaying the metalli ondutivity atT = 0 an remain in the insulating state up to veryhigh temperatures after passing this peak; i.e., themetal�insulator transition takes plae with inreasingtemperature. Still more heavily doped semiondutorsreturn to a highly ondutive state after passing thepeak, i.e., the metal�insulator transition is reentrantin them. The nondegenerate semiondutors have atemperature-dependent ativation energy for the on-dutivity. This energy passes a maximum in the viin-ity of the Curie point. The high-temperature ati-vation energy exeeds its low-temperature value. Allthese materials display a olossal negative magnetore-sistane [1℄.In what follows, we talk about the donors and on-dution eletrons, although all the results obtained be-low remain in fore for the holes and aeptors. Asemiqualitative explanation of the properties of non-*E-mail: tsir�elh.hem.msu.ru

degenerate ferromagneti semiondutors was given inRefs. 1�3. The point is that the eletron levels de-rease with inreasing magnetization. But the loalmagnetization in the viinity of a nonionized donor ishigher than the average magnetization in the rystal,whih was �rst pointed out in Refs. 4 and 5. In fat,sine the indiret exhange via free harge arriers isexponentially small in nondegenerate semiondutors,the average ferromagneti ordering is supported onlyby the superexhange. In ontrast, the magnetizationnear the donor is supported also by the indiret ex-hange via the donor eletron. Hene, at �nite tem-peratures, the donor magnetization is destroyed to alesser degree than the average magnetization.The donor overmagnetization means that with in-reasing temperature, the donor level depth �rst in-reases, sine the ondution band bottom rises muhmore rapidly than the donor level. But, with furtherinrease in temperature, the loal ordering begins todisappear. The level depth will then derease with in-reasing temperature. As a result, the harge arrierdensity is minimal and the resistivity is maximal at aertain temperature (to avoid a misunderstanding, themagnetization dependene of the donor level depth andof the free harge arrier density was not investigated207



E. L. Nagaev ÆÝÒÔ, òîì 117, âûï. 1, 2000in Refs. 4 and 5).Unfortunately, the alulation [1�3℄ was arried outunder the assumption that the eletron dwells only atthe magneti atoms nearest to the donor atom, whihwas also assumed in Refs. 4 and 5. On the other hand,the orbital radius must depend on the magnetizationfor the same reason as in the antiferromagneti semi-ondutors [6℄: at �nite temperatures, the overmagne-tized region lose to the donor is a potential well forthe donor eletron. Hene, the eletron is attratedto the donor not only by the Coulomb potential, butalso by the magneti potential well. As a result, theorbital radius must be magnetization-dependent andshould be found by a self-onsistent alulation similarto that arried out for the antiferromagneti semion-dutors in Ref. 6. In omplete analogy with the donorsin the antiferromagneti semiondutors, where mag-netized regions arise lose to the nonionized impurities,one an use the term �the bound magneti polaron�,or �the bound ferron� for the overmagnetized donors.Calulations of the bound ferrons in the spin-waveregion will be arried out below. In this ase the over-magnetized region is determined by enhaned ferro-magneti orrelations in the viinity of the nonionizeddonor. The bound ferron radius and free energy are de-termined. This allows us to �nd the free harge arrierdensity and its ativation energy as funtions of tem-perature. In essene, this part of the paper developsideas set forth for antiferromagneti semiondutors inRefs. 1 and 2, although it requires a quite di�erentalulation proedure.In addition to the already known low-temperaturebound ferron, a new type of bound ferron will be on-sidered. It exists in the limit T ! 1 and an bealled the paramagneti bound polaron (ferron). Whilethe ferrons investigated so far are related to a self-onsistent enhanement of the ferromagneti orrela-tions in the region of the eletron loalization, the or-relations are absent here, and only the �utuating mag-netization of the region inreases with dereasing size;it is of the order of 1=N1=2I , where NI is the numberof magneti atoms over whih the donor eletron isspread.Although the mean loal magnetization remainszero, the eletron spin adjusts to the �utuating mag-netization, �utuating jointly with it and thus ensuringthe gain in the exhange energy between the eletronand the magneti atoms. This means that the ten-deny arises for the eletron to be onentrated insidea region as small as possible in size. This tendenyompetes with the Coulomb interation and kineti en-ergy in determining the equilibrium orbital radius. Theshrinking of the eletron orbit aused by the magneti-zation �utuations an lead to a onsiderable lowering

of the donor level as ompared with its depth at T = 0.Hene, the low-temperature ativation energy for theresistivity is less than the high-temperature ativationenergy. The unorrelated �utuations possibly also antrap the free harge arriers, but the binding energy ofthe free �utuation polarons, if it is nonzero, should bevery small.Calulations arried out for nondegenerate ferro-magneti semiondutors are generalized for the de-generate semiondutors in the following way. The freeenergy of the impurity metal onsisting of the ionizeddonors and eletrons is alulated and ompared withthe free energy of separate donors. If the former atT = 0 is lower than the latter, then an inrease inT an ause a rossover, whih means that there is atransition to the insulating state. As for the reversetransition at elevated temperatures, it an our onlyfor those systems in whih the donor density markedlyexeeds the density of the metal�insulator transition atT = 0. If this is not the ase, the reverse transition isprohibited due to the paramagneti ferrons. This re-sult agrees with the experimental data on degenerateferromagneti semiondutors presented in Ref. 1.It should be pointed out that earlier explanationof the temperature-indued metal�insulator transitionin degenerate ferromagneti semiondutors was givenin terms of a modi�ed Mott theory, in whih only thestability of the metalli state was investigated [1; 7℄.But this approah seems to be less fruitful than thatused here. In partiular, it does not lead to the in-sulating state as T ! 1, i.e., it does not allow toexplain some essential features of the degenerate ferro-magneti semiondutors. In addition, it an be usedif only the donor density is very lose to the densityat whih the Mott transition takes plae at T = 0.The approah used here is more general, allowing tooverome these limitations and to prove the similarityof the physial mehanisms leading to the resistivitypeak in the nondegenerate ferromagneti semiondu-tors and to the metal�insulator transitions in degener-ate ferromagneti semiondutors. But some problemstreated in Refs. 1 and 7 remain beyond the sope ofour paper (e.g., the harge arrier mobility). Thus, thepresent approah and that adopted in Refs. 1 and 7 areomplementary.2. INDIRECT EXCHANGE HAMILTONIANFOR A NONIONIZED DONORTo analyze the magneti properties of the nonion-ized donors, it is advisible to begin with onstrutionof the magneti Hamiltonian desribing the indiret ex-hange via the donor eletron. It must di�er stronglyfrom the RKKY indiret Hamiltonian sine the latter208



ÆÝÒÔ, òîì 117, âûï. 1, 2000 Bound ferromagneti and paramagneti polarons : : :assumes that the ondution eletrons are ompletelyspin-depolarized to the zero approximation. Certainly,the situation with a sole donor eletron is quite oppo-site.As usual, the s-d model is used. The Hamiltonianof the system in the oordinate representation is givenby H = Hs(r) +Hsd(r) +Hdd;Hs = � �2m � e2"r ;Hsd = �AXg (Sgs)D(r� g); (1)Hdd = �I2Xg;�(SgSg+�);where Sg is the d-spin of the atom g, s is the ondu-tion eletron spin, D(r � g) is equal to unity insidethe unit ell g and zero outside it, m is the eletrone�etive mass, " is the dieletri onstant, � is thevetor onneting the nearest neighbors, ~ = 1. Thes-d exhange integral A is assumed to be positive.In what follows, the inequality AS �W is assumedto be met where S is the d-spin magnitude, W is theondution band width. This inequality is ertainlymet in rare-earth semiondutors (EuO, EuS, and oth-ers) [1℄ and an also be satis�ed in transition metalompounds. In partiular, it an possibly be met inolossal magnetoresistane manganites, although theexperimental situation is not lear about them yet.Many investigators believe that the holes in them movenot over the Mn ions but over the oxygen ions [8�10℄.In this ase the s-d exhange is relatively weak and theband width is relatively large, in ontrast with to thedouble-exhange ase where holes move over the Mnions.As usual, in the theory of the indiret exhange,the adiabati approximation is used when, in dealingwith the s-eletron, the d-spins are onsidered as thelassial vetors. In the �rst approximation in AS=W ,the wave funtion of the system an be separated intothe orbital part and the spin part:	(r; fSzg; �) =  (r)�(fSzg; �); (2)where the normalized magneti wave funtion � of theset of the d-spin variables fSzg and s-eletron spinvariable � will be spei�ed below as a funtional ofthe donor ground-state orbital wave funtion  . Afteronstruting the wave equation with the Hamiltonian(1) and wave funtion (2), multiplying it by  (r) from

the left side, and integrating over r, we obtain the waveequation for the magneti subsystemHav� = (E �EI)�; EI = Z d3r Hs ;Hav = �AXw(g)(Sgs); w(g) =  2(g)a3; (3)where EI is the energy of the s-eletron bound to theimpurity, and a is the lattie onstant.The eigenfuntion of Hav is represented in the form�(fSzg; �) = �(fSzg)Æ(�; 1=2) + �(fSzg)Æ(�;�1=2);(4)where Æ(�;�1=2) is the s-eletron spin wave funtionwith Æ(x; y) = 1 for x = y and Æ(x; y) = 0 for x 6= y,(�; �) is the two-omponent wave funtion of the d-sys-tem.Using Eqs. (3) and (4), we an represent the waveequation in the form (EI is omitted)AL+2 �+�E � ALz2 �� = 0;AL�2 �+�E + ALz2 �� = 0; (5)L =Xw(g)Sg ; L� = Lx � iLy:In the partiular ase of w(g) = 1=NI , the systemof equations (5) an be solved exatly. Aordingly,we use the following relations, whih are valid for anyfuntion f(Sz) of Sz:S�f(Sz) = f(Sz+1)S�; L�L+ = L2�Lz(Lz+1):They follow from the de�nition of the S� operator andfrom the ommutation rules for the spin operators. Theexat result for w(g) = onst � 1=NI is�E + A2NI�2 � = � A2NI�2�L2 + 14��;whih orresponds to the e�etive magneti Hamilto-nian HmI = A2NI  12 �rL2 + 14 ! : (6)The double sign in Eq. (6) orresponds to two pos-sible spin projetions of the ondution eletron ontothe total moment L of the d-spins. As should be thease, the exat eigenvalues of the Hamiltonian (6) are(�AL=2) and A(L+ 1)=2.For an arbitrary w(g), the system of equations (5)an be solved with auray of 1=2SNI , where NIis the number of magneti atoms over whih the lo-alized eletron is spread. The terms of this orderomitted below arise as a result of ommuting L� and14 ÆÝÒÔ, âûï. 1 209



E. L. Nagaev ÆÝÒÔ, òîì 117, âûï. 1, 2000(E � ALz=2)�1 after exlusion of � from the seondequation in (5). In this ase, one obtains the followingrelation with the auray pointed out above:HmI = �A2sXg;f w(g)w(f)(SgSf ): (7)In ontrast with the RKKY Hamiltonian, theHamiltonians (6) and (7) are linear and not quadratiin A. More importantly, they desribe not only thebilinear exhange but also the multispin exhange inwhih up to NI(NI�1) spins take part simultaneously.The Hamiltonian (7) ontains also the biquadratiterms and terms of higher orders in the salar produtof the spins, as well as terms of still more ompliatedstruture. This is seen from Eq. (7), if one separates thediagonal terms with g = f and then expands Eq. (7) interms of the nondiagonal terms with g 6= f .The strength of the indiret exhange between thespins does not depend on the distane between them,but depends on the distane of eah d-spin from thedonor atom. Obviously, the Hamiltonians (6) and(7) are isotropi, and there is no gap in the spe-trum for the uniform spin rotation, as should be thease. At T = 0, the Hamiltonians (6) and (7) or-retly reprodue the s-d exhange energy for the om-plete ferromagneti ordering (the latter with aurayof 1=2SNI).3. DONOR STATES AND THE RESISTIVITYPEAK IN NONDEGENERATEFERROMAGNETIC SEMICONDUCTORS(SPIN-WAVE REGION)In this setion our �rst task is to alulate the freeenergy for a ferromagneti system ontaining nonion-ized donors. This alulation is inappliable to themanganites sine the undoped manganites are antifer-romagneti, and only the heavily doped manganites areferromagneti. The problem an be solved by using avariational proedure for the free energy under ondi-tion that the donor eletron is in the ground state withthe wave funtion (r) =s x3�a3B exp�� xraB� ; aB = "me2 ; (8)where x is the variational parameter.In addition to the eletroni energy, the total freeenergy inludes ontribution from the magnons, whosefrequenies are renormalized as a result of their inter-ation with the donor eletron, realizing the indiretexhange between the d-spins in the viinity of thedonor atom. The state of the magnon subsystem is

determined from the spin-wave Hamiltonian, inludingthe diret d-d exhange from Eq. (1) and indiret ex-hange (7). It is obtained from these equations afterthe Holstein�Primako� transformationSzg = S � b�gb�g; S+g = p2Sbg; S�g = p2Sb�g; (9)where the eletron distribution w(g) orresponds toEq. (8):Hmg = ISXg;�(b�gbg � b�gbg+�) ++ A2 Xg;f w(g)w(f)(b�gbg � b�gbf ): (10)The last term � b�gbf in Eq. (10) is basially impor-tant to ensure the absene of the gap in the magnonspetrum. But it does not in�uene the bulk of themagnon frequenies. For example, if w(g) = 1=NI ,only the q = 0 magnon has the zero frequeny. In theabsene of the d-d exhange,NI�1magnons with otherwave vetors have the same frequeny A=2NI . Hene,in alulating the free energy we an use the followingHamiltonian for the magnon frequenies:Hmg = ISXg;�(b�gbg � b�gbg+�) +H(g)b�gbg;H(g) = A 2(g)a32 : (11)But the Hamiltonian (11), written with allowane forEq. (8), is still too ompliated to be diagonalized ex-atly. The perturbation theory also annot be usedhere. To arry out an approximate alulation, wemust replae the magnon potential hump H(g) of aompiated shape in Eq. (11) by a retangular poten-tial hump with the height h and radius � equal to themean height of the hump (11) and the mean radius ofthe eletron wave funtion:h =XH(g) 2(g) = Ax316�b3 ;� =X g 2(g) = 3aB2x ; b = aBa : (12)This means that the magnon frequeny in the regionlose to a nonionized donor is given by!Iq(x) = 
q + h; (13)
q = J(1� q); J = zIS; q = 1zX� exp(iq�);where z is the oordination number.To alulate the density of the ondution eletronsin a nondegenerate semiondutor, it is neessary to210



ÆÝÒÔ, òîì 117, âûï. 1, 2000 Bound ferromagneti and paramagneti polarons : : :write the spin-wave Hamiltonian with allowane forthe ondution eletrons. The relative number of thedonors � is assumed to be small.This makes it possible to disregard the interationbetween s-eletrons. We an divide all regular mag-neti atoms into those whih enter spheres of radius �surrounding donors and those whih are outside thesespheres (the number of the latter greatly exeeds thetotal number of the former). Using the expressionfor the ondution-eletron-magnon Hamiltonian Hmg(11), (13), we an represent the total eletron-magnonHamiltonian in the formH =XnI;i �EI +X!Iqmq;i�++X (1� nI;i) 
qmq;i +XEknk ++XBqnkmq +X
qmq � �X (nI;i + nk) ; (14)where mq;i and mq are the magnon operators for thei-th sphere and outside the spheres that surroundsdonors, respetively. Sine the magnon number oper-ators for di�erent donor regions and outside them areonstruted of magnon operators b�g and bg with di�er-ent g, all the operators mq;i and mq are independent.Further, nI;i and nk are the operators for an ele-tron in the loalized state at the donor i and for the de-loalized eletrons with the quasimomentum k, respe-tively, The spin index is absent from the eletron oper-ators sine the eletrons are ompletely spin-polarizedin the spin-wave region. For the same reason, the s-dexhange energy (�AS=2) is the same for all the ele-troni states onsidered and therefore an be omittedas an additive onstant. The quantity � is the hemialpotential.The energy EI of an eletron at the donor is givenby Eqs. (3) and (8). At low temperatures we anset x =1 in Eq. (8), so that EI = �EB = �e2=2"aB.The quantity Bq, whih desribes the s-d interation ofthe deloalized eletrons with magnons when the ele-tron quasimomenta are small ompared to the magnonquasimomenta, has the form [1; 11℄Bq = Aq22N(p2 + q2) ; p2 = 2mAS; (15)where m is the s-eletron e�etive mass, and N is thetotal number of atoms.With allowane for mutual independene of mq;iand mq, the mean number of eletrons at a donor isgiven by the expression (the index of the donor is omit-

ted)hnIi =Xm exp[�(EI � �)=T �Xq !Iqmq=T ℄�� Xm ( exp[�(EI � �)=T �� Xq !Iqmq=T ℄ + exp[�Xq 
qmq=T ℄)!�1 : (16)In Eq. (16) the summation over m denotes summa-tion over mq. Carrying out the summation, we �ndhnI i == (1 + exp�EI � �T � Qq[1� exp(�!Iq=T )℄Qq[1� exp(�
q=T )℄)�1 == �1 + exp�EI + ÆFmI � �T ���1 ; (17)ÆFmI = FmI � F 0mI = NI(fI � f0);where FmI and F 0mI are the magnon free energies fora region of radius � ontaining the nonionized and ion-ized donor, respetively,fI = T a3(2�)3 Z d3q ln"1� exp �!IqT !# ;f0 = T a3(2�)3 Z d3q ln �1� exp��
qT �� ;NI = 4��33a3 : (18)A similar alulation is arried out for the meannumber hnki of eletrons with the quasimomentum k:hnki = (1 + exp�Ek � �T ���Qq[1� exp(�
q=T �Bq=T )℄Qq[1� exp(�
q=T )℄ )�1 == �1 + exp�Ek + ÆFmC � �T ���1 ; (19)ÆFmC = FmC � F 0mC = N(fC � f0);fC = T a3(2�)3 Z d3q ln �1� exp��
qT � BqT �� : (20)Keeping in mind the fat that Bq � 1=N , we an writeÆFmC = Aa32(2�)3 Z d3q q2p2 + q2 1[exp(
q=T )� 1℄ : (21)Equating the number of ionized donors with thetotal number of the ondution eletrons, we �nd211 14*



E. L. Nagaev ÆÝÒÔ, òîì 117, âûï. 1, 2000an expression for the harge arrier density n forEk = k2=2m:n = pnneff exp(�EB + ÆFm=2T );neff = (mT )3=22p2� ÆFm = ÆFmI � ÆFmC ; (22)where neff is the e�etive density of states in the on-dution band, and n = �=a3 is the donor density.It an be asertained that the ativation energy inEq. (22) inreases with temperature in the spin-wa-ve region. It is su�ient to onsider the ase ofJ � h; p2 � 1. Using Eqs. (17)�(22), we �ndÆFm = � 7Aa332(2�)3 Z d3q 1[exp(
q=T )� 1℄ : (23)In other words, ÆFm is negative, and its absolute valueinreases with temperature. This onlusion is on-�rmed by numerial alulations. For example, forA = 2, I = 0:02 (in the EB units), ÆFm = �0:022at T = 0:01, but ÆFm = �0:214 at T = 0:03. Thefat that the ativation energy inreases with temper-ature in the spin-wave region suggests that the resis-tivity peak at elevated temperatures is aused by aminimum in the harge arrier density.4. TEMPERATURE-INDUCEDMETAL�INSULATOR TRANSITION(SPIN-WAVE REGION)In this setion we investigate the transition of adegenerate ferromagneti semiondutor into the insu-lating state, whih ours with inreasing temperature.We will ompare the free energy of the highly ondu-tive state with that of the insulating state. First, usingEqs. (1), (8), (12), and (13), we will write the total freeenergy of a separated nonionized donor in the EB units:FI(x) = (x2 � 2x) + ÆFmI (x): (24)If one onsiders the term ÆFmI (x) in Eq. (24) as a smallperturbation, the optimal value of x isx = 1� 12 dÆFmIdx (1) (25)and, to a �rst approximation, the optimal free energyis F optI = �1 + ÆFmI (1): (26)Sine ÆFmI(x) [Eqs. (17) and (18)℄ dereases with de-reasing x and, hene, the last term in Eq. (25) isnegative, the parameter x inreases with temperature,and, aordingly, the eletroni radius dereases. Thisis a manifestation of the ferroni e�et: the eletron

is dragged in by the region of the enhaned magne-tization and simultaneously supports it, realizing theindiret exhange inside it. Temperature-indued de-rease in the eletron radius points to the tendenyof the temperature-indued transition from the metal-li to the insulating state if at T = 0 the system ismetalli. In fat, if at T = 0 the orbit overlapping ofneighboring atoms is su�ient for metallization, at �-nite temperatures this overlapping is insu�ient, andthe transition to the insulating state should take plae.To prove the possibility of suh a transition, one shouldompare the free energy of separated nonionized donorsand that of the impurity metal whih onsists of ionizeddonors and deloalized eletrons.Under typial onditions for degenerate ferromag-neti semiondutors, due to a relatively small eletrondensity in them, the ondition � < AS is met (here �is the Fermi energy [1℄). In other words, the eletrongas is ompletely spin-polarized in the spin-wave re-gion. Using expressions for the energy of the eletrongas from Refs. 12 and 13, we �nd the following expres-sion for the donor metal energy per donor atom (unlikethe �magneti� index m, the index M denotes metal):EFM = E(k = 0) + 3(6�2n)2=310m + Eex(n); (27)where E(k = 0) is the eletron energy at the ondu-tion band bottom, Eex is the exhange energy betweenondution eletrons, and n is the eletron (or donor)density. Under ondition of the omplete spin polariza-tion, Eex(n) an be easily obtained by generalization ofthe orresponding Bloh expression for the ompletelyspin-depolarized eletron gas, e. g., in Ref. 12:Eex(n) = �34 �6n� �1=3 e2" : (28)To alulate the energy E(k = 0), we will usethe Wigner�Seitz proedure (see, e. g., Ref. 13).Eah ionized donor is surrounded by a sphere of radiusL = (3=4�n)1=3. Inside of eah Wigner�Seitz shell,the eletron wave funtion � orresponding to k = 0,satis�es the wave equation�� �2m � e2"r �E(k = 0)��(r) = 0 (29)with the boundary onditiond�dr (L) = 0: (30)As is well known from the theory of metal adhesion,the wave funtion � should be almost onstant withthe boundary ondition (30). A speial analysis showsthat for relative densities � between 0.001 and 0.1 the212



ÆÝÒÔ, òîì 117, âûï. 1, 2000 Bound ferromagneti and paramagneti polarons : : :� = onst approximation ensures an auray in en-ergy higher than 1%. With su�ient auray, we antherefore setE(k = 0) = �3�4�n3 �1=3EB : (31)With allowane for Eqs. (28) and (31), the energy (27)in the EB units takes the formEFM = 35(6�2�)2=3b2 � (36��)1=3 � 32 �6�� �1=3 b; (32)where � = na3, and b = aB=a.At �nite temperatures, the free energy of the donormetal with the volume V is given by the expressionGF (n) = nV EFM (n) +NfM ;fM = T a3(2�)3 Z d3q ln"1� exp �!MqT !# ; (33)where, with allowane for the non-RKKY indiret ex-hange in our ase (sine � < AS), the magnon fre-quenies are given by the expression [1; 11℄, see alsoEq. (15)!Mq = 
q + Aq2�p2 + q2 ; p2 = 2mAS: (34)Equating the energy EFM (n) (32) with the donor en-ergy EI = �EB , we �nd that the density n0, at whihthe eletron deloalization takes plae at T = 0, obeysthe relation n1=30 aB = C, where C = 0:208, whih isslightly lower than the value of 0.25 found by Mott.To �nd the transition temperature from the thehighly ondutive state to the insulating state for amaterial with n exeeding n0, one should equate themetal free energy GF (33) with the free energy of theloalized state found with the use of Eqs. (26) and (17):F I = �N(EI +NIfI) +Nf0(1� �NI):For n su�iently lose to n0, we then obtain the follow-ing impliit expression for the transition temperature:(� � �0)d(nEFM )dn = �NI (fI � f0) + (f0 � fM ) (35)�0 = n0a3:Numerial alulations based on Eq. (32) show thatthe quantity d(nEFM )=dn is negative for � < 0:2. Thisdoes not mean that the system is unstable sine thisderivative is not the eletron Fermi energy. It doesmean that the energy of the donor metal hanges as aresult of the hange in the number of the donor atomsby unity. The expression on the right-hand side of Eq.

(35) is also negative for x lose to unity, whih is seenfrom numerial alulations. The proof of this state-ment is espeially simple in the ase S � 1 if one on-siders the region TC=S � T � TC and uses Eqs. (12),(13), (15), (18), and (33) (TC is the Curie point). Thismeans that the equality (35) an be met for � that ex-eeds �0 only moderately, and the transition from themetalli state to the insulating state should take plaewith inreasing temperature. But for large densities,� > 0:2, this transition is prohibited at least in thespin-wave region whih agrees with the experimentaldata ited in the Introdution.5. FLUCTUATION TRAPPING IN THEPARAMAGNETIC REGION ANDRESISTIVITY OF NONDEGENERATESEMICONDUCTORSCalulations arried out in this setion and in thenext possibly are also appliable to the manganites.First, the expression (7) will be analyzed in the limitT !1. Although the orrelations between the d-spinsare absent, the s-d exhange energy remains nonzero inthe �rst order in AS=W . We see from Eq. (6) that inthis ase EmI = �A2sS(S + 1)NI : (36)The physial meaning of result (36) is lear if we reallthat, aording to the mathematial statistis, a sys-tem of N noninterating spins should possess the totalmoment on the order of N�1=2 of their maximal mo-ment NS. The diretion of this moment is not �xedbut �utuates freely, so that its mean value should van-ish. But the spin of the s-eletron adjusts to the dire-tion of the �utuating moment and �utuates jointlywith it, providing the maximum gain in the s-d ex-hange energy for the energetially favored diretion ofthe s-eletron spin relative to the total spin of its loal-ization region. This gain should be on the order of thetotal moment per atom, i.e., � AS=N1=2, as is the asefor Eq. (36). The term of order AS=W is essential onlyfor orbital radii that are su�iently small. For largerradii, the terms of the next order in AS=W should betaken into aount.Let us now onsider the bound ferron at T � TC ,taking into aount the �utuation lowering of the en-ergy disussed above. When the orrelations betweenthe d-spins are weak, the donor magneti Hamiltonian(7), jointly with the diret d-d exhange Hamiltonian213



E. L. Nagaev ÆÝÒÔ, òîì 117, âûï. 1, 2000(1), an be represented in the Heisenbergian formHmP = �A2pP +HH ;HH = �12Xg 6=f ItI (g; f)(SgSf );ItI(g; f ) = A2pP w(g)w(f) + I(g� f );P = S(S + 1)Xw2(g): (37)
The free energy of the system is obtained by the high-temperature expansion to the �rst order in 1=T :FPI = EI � A2pP + FmP ;FmP = �T lnTr exp��HHT � == �NT ln(2S + 1)� S2(S + 1)212T X I2tI(g; f ):(38)Calulating the eletron energy EI using the Hamilto-nian Hs (1) and the trial wave funtion (8), and keep-ing in mind that the diret exhange integral I(g � f)is nonzero only in the nearest-neighbor approximation,we an write the x-dependent portion of the free energy(38) in the form (for z = 6)FPI(x) = (x2 � 2x)EB � Lx3=2 � Q(x)T ; (39)where L = A2rS(S + 1)8� b�3=2; b = aBa ;Q(x) = L2x312 ++AIS3=2(S+1)3=2rx3b332� �1 + 2xb+ 4x2b23 �e�2xb:In writing Eq. (39), we alulate the integralXw(g)w(g +�)in Q(x) in ellipti oordinates. The entropy term�NT ln(2S + 1) is omitted from the free energy hereand below.Minimizing the free energy (39) with respet to x,we obtain its optimal value and inverse orbital radiusin the limit T !1 (in the EB and 1=aB units, respe-tively)F1 = �83 l3[l+p1 + l2℄� 83 lp1 + l2 � 4l2 � 1; (40)

x1 = [l +p1 + l2℄2; l = 3L8EB � AS(We2="a)1=2 :(41)If one sets aB = a, then for AS=EB varying from 1 to 5,the energy F1 varies from �1:104 to �1:659, and theradius x1 from 1.077 to 1.1445. Hene, the eletroninteration with random (unorrelated) magnetization�utuations leads to a marked derease in the donorionization energy and in the orbital radius; this ap-plies to any type of magneti ordering at T = 0 . Theorresponding eletron state an be alled the boundparamagneti �utuation polaron (ferron).Formally, random �utuations ould ause the trap-ping of a harge arrier in the absense of the impuritypotential (the free paramagneti ferron). In ontrastwith the ferron self-trapping, whih ours in the re-gion of the enhaned magnetization, no ferromagnetiorrelations between d-spins appear in the region of theeletron loalization. Mathematially, jointly with thesolution x = 0 orresponding to a free eletron, solu-tion of Eq. (39) with x = 4l2 exists. The orrespondingfree energy of the trapped eletron isFt = �16l43 � AS�ASW �3 : (42)Aording to Eq. (42), the depth of the levels orre-sponding to these trapped states is very small: it isbeyond the auray in AS=W adopted here. For thisreason, the free �utuation ferrons will not be onsid-ered in what follows. In the limit T !1, we then ob-tain the following equation for the harge arrier den-sity similar to Eq. (22):n = pnneffexp�F12T � : (43)We see from omparison of Eqs. (43) and (22) that thehigh-temperature ativation energy of the ondutiv-ity (�F1=2) exeeds the low-temperature ativationenergy. 6. TEMPERATURE-INDUCEDMETAL�INSULATOR TRANSITION IN THEPARAMAGNETIC REGIONAt �nite temperatures, from Eqs. (38) and (39) weobtain the total free energy of a system of N magnetiatoms and nV donors,F (T ) = nF1 � nV Q(x1) +NS2(S + 1)2I2=2T ��NT ln(2S + 1); (44)and for the donor orbital radius we havex(T ) = x1 + 12T (1� lx�1=21 ) dQdx (x1); (45)214



ÆÝÒÔ, òîì 117, âûï. 1, 2000 Bound ferromagneti and paramagneti polarons : : :where x1 is given by Eq (41). We an prove that theseond term on the right-hand side of Eq. (45) is pos-itive if the parameter =p32�S(S + 1)b3 IAis in the range between �1 and 40. With I > 0, forany atual parameter values, the inequality  < 40 isguaranteed. On the other hand, it an be satis�ed evenif I < 0 but dominates the indiret exhange, ensur-ing the total ferromagneti ordering at T = 0. In fat,the intensity of the indiret exhange is proportionalto A2S2�1=3=W , whih an exeed the intensity of thed-d exhange, zIS2, if the latter quantity is small om-pared with A2S2=W . The fat that the seond termin Eq. (45) is positive means that the radius of thedonor orbital state dereases with dereasing temper-ature. This points to the tendeny for the eletronloalization at lower temperatures if the eletrons aredeloalized in the limit T !1.Let us now investigate in more detail thetemperature-indued transition from the metallito the insulating state, whih an our with dereas-ing temperature. In the high-temperature limit, thetotal free energy of the donor metal is given byGPM = nV EPMM + ÆGPM : (46)The energy of a nonmagnetized rystal per donor atom,instead of Eq. (32), is given by the following expression,whih inludes the orrelation ontribution [12℄:EPMM = 35(3�2�)2=3b2 � (36��)1=3b�� 32 �3�� �1=3 b� 0:113�1=3b0:1216+ �1=3b ; (47)where � = na3 and b = aB=a.In omplete analogy with Eq. (38), the magnetifree energy is given byÆGPM = �NT ln(2S + 1)� S2(S + 1)2P I2tM (q)12T ;(48)ItM (q) = I(q) + Iin(q); I(q) = Iq:The struture of the indiret exhange integral Iin(q)orresponds to the RKKY theory whih an be usedbeause eletron gas is fully spin-depolarized in theparamagneti region:Iin(q) = 3nA2a38� �1 + 4k2F � q24kF q ln 2kF + qj2kF � qj� ; (49)� = (3�2n)2=32m ; kF =p2m�:

First, it will be proved that a sample whih wasin the highly ondutive state at T = 0 an beomeinsulating at an elevated temperature and remain non-metalli up to arbitrarily high temperatures. Thisstems from the fat that the �utuations lower thedonor level strongly, and, for deloalized eletrons, suhlowering is absent. As a result, aording to Eq. (32 ),at T = 0 the deloalization of the donor eletrons o-urs at the density n0 whih orresponds to the Mott-like equality n1=30 aB = 0:208. But, equating the energy(47) to the energy F1 (40), we �nd that the deloaliza-tion density n1 as T !1 exeeds the T = 0 value n0if the ratio AS=EB exeeds 1.27. Normally, this ratiois essentially larger, and for AS=EB = 5 the Mott-likerelation takes the form n1=31 aB = 0:378. Hene, nor-mally, n1 exeeds n0 onsiderably.This fat results in a nontrivial temperature de-pendene of the eletri properties of a degenerate fer-romagneti semiondutor. For the donor density nin the range between n0 and n1 at low temperaturesthe system behaves like a metal, but remains insulat-ing up to arbitrarily high temperatures after its transi-tion from the metalli state to the insulating state. Ifthe density n exeeds n1, then the reentrant metal�insulator transition takes plae with inreasing temper-ature. This suggests a high resistivity peak at elevatedtemperatures of the order of the Curie point. UsingEqs. (44), (46), and (48), we �nd the following expres-sion for the temperature at whih the temperature-indued metal�insulator transition ours when thedonor density n exeeds n1:1T = � (� � �1)�Q�R d(nEPMM )dn ;R = S2(S + 1)212(2�)3 Z d3qI2in(q): (50)In writing Eq. (50) we took into aount thatd(nEPMM )=dn is negative. This fat was establishedby numerial alulations, whih show that at least to� = 0:2 this derivative is about �2 in the EB units.Numerial alulations show also that at I = 0 and� = �1 the denominator in Eq. (50) for 1=T is positive,whih aounts for the positive transition temperatureTtr. It dereases with inreasing density � and dependson the diret exhange integral I . For example, forAS=EB = 5, the di�erene �Q�R is equal to 0.008 forI = 0.02, to 0.005 for I = 0, and to 0.001 for I = �0:02(a negative I value orresponds to initially antiferro-magneti systems suh as the manganites whih meansthat in them the transition from the metalli state tothe insulating state is also possible).215



E. L. Nagaev ÆÝÒÔ, òîì 117, âûï. 1, 20007. DISCUSSION OF THE RESULTSThe main results of the present treatment an beformulated as follows. For the nondegenerate semion-dutors it is established that the ativation energy ofthe ondutivity in the spin-wave region is determinednot only by the depth of the donor level, but also by thedi�erene in the magnon free energies for a deloalizedeletron and for a loalized eletron. As this di�ereneinreases with temperature, the ativation energy EAalso inreases. In the paramagneti region the ativa-tion energy dereases with temperature. Qualitatively,the ativation energy behaves like the di�erene be-tween the loal magnetization in the viinity of a non-ionized donor and the mean magnetization over therystal: with inreasing temperature, it �rst inreasesand then dereases, passing through a maximum at atemperature omparable with the Curie point. The re-sistivity peak for the nondegenerate semiondutors isloated at the temperature at whih dEA(T )=dT = 0.A very important result is the fat that the high-temperature ativation energy exeeds its low-tempe-rature value. This is a onsequene of the �utuationlowering of the donor level whih is aused by the fatthat the moment of a region in whih the loalizedeletron dwells remains �nite even when T !1. Thediretion of this moment �utuates in spae so thatits mean value vanishes. But the s-eletron spin ad-justs to the diretion of the moment of the region and�utuates jointly with the moment. The gain in thes-d exhange energy therefore remains �nite for the lo-alized eletron, although it diminishes with inreasingsize of the region. For a deloalized eletron suh a �u-tuation lowering is absent. Obviously, the trapping byrandom �utuations is possible not only in ferromag-neti semiondutors but also in all magneti semion-dutors independently of their ground-state magnetiordering.Let us now disuss in greater detail the more heav-ily doped ferromagneti semiondutors whih are inthe metalli state at T = 0. The same reason as fornondegenerate semiondutors�inrease in the stabil-ity of the loalized states as ompared with the deloal-ized states�leads to their transition from the metallistate to the insulating state with inreasing tempera-ture. The high-temperature �utuation lowering of thedonor levels again plays an important part. Beause ofthis irumstane, the low-temperature eletron delo-alization density n0 turns out to be less than than thehigh-temperature deloalization density n1.There are two possible senarios of thetemperature-indued metal�insulator transition.The �rst orresponds to the ase where the donordensity exeeds n0 but is less than n1. Then, with

inrease in temperature, the system undergoes a tran-sition from the metalli state to the insulating stateand remains in the latter state as the temperatureis raised arbitrarily high. The seond senario orre-sponds to the ase where the donor density exeedsboth n0 and n1. Then, with inrease in temperature,�rst, the transition from the highly ondutive stateto the insulating state takes plae and then the reversetransition ours. Obviously, the temperature rangeof the insulating state should derease with inreasingdensity. Then the reentrant metal�insulator transitionshould manifest itself as a resistivity peak, whoseheight dereases with inreasing density [14℄.The following remark is likely to be appropriatehere. Many investigators use the terms �insulating�or �semionduting� to denote the high-temperaturestate of heavily doped ferromagneti semiondutors,sine the resistivity � dereases with inreasing tem-perature. In doing so, they ignore the fat that theresistivity exeeds the typial values for nondegener-ate semiondutors by many orders of magnitude; itis on the of order the resistivity typial of degener-ate semiondutors. If one aepts this terminology,the state of a nondegenerate semiondutor in the por-tion of the resistivity peak where d�=dT > 0 shouldbe alled metalli, despite its giant value. Hene, thisterminology is misleading.Stritly speaking, these results orrespond to thematerials whih are ferromagneti when undoped. Asituation is more ompliated in the ase where theundoped rystal is antiferromagneti and beomes fer-romagneti as a result of doping (e.g., the manganites).The di�ulty in �nding n0 is attributed to the forma-tion of bound magneti polarons (ferrons) in the viin-ity of the donors when eletrons are loalized, and tothe ferromagneti�antiferromagneti phase separationin the deloalized state of the eletrons whih oursat T = 0. It is still more di�ult to investigate thetemperature dependene of the ritial density at lowtemperatures.A diret analysis of suh materials is therefore ar-ried out here only in the high-temperature limit. It isestablished on the basis of Eq. (50) that as the tem-perature is lowered, suh materials an undergo a tran-sition from the metalli state to the insulating state.The fat that the eletron deloalizes at T = 0, issu�ient to onlude that the resistivity peak shouldexist at intermediate temperatures in these materials.Moreover, one an state that in the materials with theinitial antiferromagneti ordering the resistivity peakshould be very lose to TC , in ontrast with the ma-terials with the initial ferromagneti ordering, wherethey an be well separated. In fat, in the former theloalization of harge arriers leads to disappearane216



ÆÝÒÔ, òîì 117, âûï. 1, 2000 Bound ferromagneti and paramagneti polarons : : :of the indiret exhange produing the ferromagnetilong-range order. Thus, after the harge arrier lo-alization in the initially ferromagneti materials theferromagneti order is supported by the d-d exhange,and it is destroyed only due to the thermal �utuationsof the magnetization. In the initially antiferromagnetimaterials the ferromagneti exhange disappears simul-taneously.These theoretial results whih disregard the po-laroni e�ets and whih are based only on the s-dmodel make it possible to explain eletri propertiesof degenerate ferromagneti semiondutors presentedin Ref. 1, inluding doped manganites. Many inves-tigators believe that one should take into aount theJahn�Teller (JT) and lattie polarization e�ets to de-sribe properties of the manganites adequately. As forthe former, it should pointed out that the resistivitypeak in the viinity of TC and ollossal magnetoresis-tane are observed in several tens of the non-JT sys-tems [1℄, so that the JT e�et annot be the origin ofthe spei� features of ferromagneti semiondutors.The same mehanisms as in other ferromagneti semi-ondutors funtion in the manganites, leading to thesame spei� features.Searh for additional mehanisms in the mangan-ites would be justi�ed, if the the resistivity peaks in theviinity of TC in them had been onsiderably higherthan in other ferromagneti semiondutors. Theresistivity peak height in the manganites, however, ismany orders of magnitude lower than in suh ferro-magneti semiondutors as EuO, EuS, and others.Formally, therefore, one should onlude that the JTand polaroni e�ets rather hinder the manifestationof the partiular properties of these materials. I donot insist on this onlusion but am ertain that thespei� features of the ferromagneti semiondutorsare not related to the lattie e�ets. The role of thepolaroni e�ets in manganites is disussed in moredetail in Ref. 15.This investigation was supported in part by theGrant No. 98-02-16148 of the Russian Foundation forBasi Researh.
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