ДИАМАГНИТНЫЕ ВОСПРИИМЧИВОСТИ ТРЕТЬЕГО ПОРЯДКА ВОДОРОДОПОДОБНЫХ АТОМОВ

В. Д. Овсянников*, К. В. Халёв

Воронежский государственный университет 394693, Воронеж, Россия

Поступила в редакцию 13 апреля 1999 г.

Излагается метод расчета диамагнитных восприимчивостей, основанный на теории возмущений высших порядков для волновой функции и энергии возбужденных состояний атома водорода с вырождением произвольной кратности. Получены аналитические выражения для матричных элементов третьего порядка по сферическим состояниям $|nlm\rangle$ с фиксированными главным n и магнитным m квантовыми числами. Формулы для воспримчивостей двукратно вырожденных уровней представлены в виде дробно-радикальных соотношений, содержащих полиномы от главного квантового числа. Установлена монотонная взаимозависимость между абсолютными значениями восприимчивостей первых трех порядков. Приводятся результаты численных расчетов для смещиваемых полем состояний с $n \le 6, m \le 3$. Для ридберговских состояний с больщими n и малыми m обнаружены скачкообразные особенности во взаимозависимости восприимчивостей на границе между дублетной и эквидистантной областями спектра диамагнитных подуровней с противоположной четностью.

PACS: 32.60.+i; 32.70.Fw

1. ВВЕДЕНИЕ

Изучение эффектов взаимодействия атомов с электромагнитными полями является важным направлением современной атомной физики. Центральной проблемой этого направления является расчет эффектов Штарка и Зеемана в простейшей квантовой системе — атоме водорода. Последние достижения в решении этой задачи отражены в обзорных статьях и монографиях (см., например, [1–3]). Тем не менее ответы на ряд вопросов до настоящего времени не получены. К таким вопросам относится расчет поправок к энергии атома в магнитном поле в высших порядках теории возмущений. В отличие от эффекта Штарка, для расчета которого удобно использовать параболическую систему координат, а аналитические выражения для поправок высоких порядков в виде полиномов от параболических квантовых чисел уровня выведены более 20 лет назад [4], результаты, полученные к настоящему времени для эффекта Зеемана, ограничиваются первым и вторым порядками теории возмущений по диамагнитному взаимодействию [5], а также численными расчетами поправок высоких порядков [6, 7] или точных значений энергии [8, 9] только для конкретных уровней (основного и двух-трех возбужденных). Объективной причиной данной ситуации является то обстоятельство,

^{*}E-mail: vit@ovd.vsu.ru

что полный набор интегралов движения для атома в электрическом поле можно представить с помощью параболических квантовых чисел, являющихся интегралами движения и для свободного атома, тогда как в магнитном поле набор интегралов движения можно найти лишь приближенно, с точностью до второго порядка по диамагнитному взаимодействию [10]. Поэтому расчеты поправок третьего и более высоких порядков для многократно вырожденных возбужденных состояний водорода связаны с преодолением принципиальных трудностей.

Таким образом, большая часть информации о взаимодействии атома с магнитным полем, накопленной в современной литературе, представляется в виде таблиц численных значений энергии водородоподобных уровней в полях фиксированной напряженности [8, 9, 11] и не может быть использована при таких полях для других состояний атомов или для тех же уровней, но при других значениях напряженности поля. В связи с этим значительный интерес представляет получение замкнутых аналитических выражений, которые позволили бы достаточно просто рассчитать сдвиг и расщепление атомных линий в любых интересных для практики ситуациях.

Особый интерес к получению общих формул для электромагнитных восприимчивостей возник в последние годы в связи с исследованиями долгоживущих высоковозбужденных атомов в ридберговских состояниях. Огромное количество таких состояний и неограниченный набор внешних полей, которые могут на них действовать, не позволяют составить в какой-либо мере полные таблицы для определения энергий этих уровней и соответствующих им частот спектральных линий. Ридберговские состояния с высокими угловыми моментами l практически идентичны во всех атомах, поэтому формулы, полученные для водорода, применимы и для многоэлектронных атомов в высоковозбужденных состояниях с магнитными квантовыми числами m>3.

В широкой области напряженностей магнитных полей, встречающихся на практике, для расчета сдвига энергии связанных уровней (в том числе и ридберговских) оказывается достаточно теории возмущений по взаимодействию атома с полем. Анализ нелинейного эффекта Зеемана показывает, что ряды теории возмущений являются знакопеременными асимптотическими, коэффициенты в которых — диамагнитные восприимчивости — существенно зависят от структуры невозмущенного состояния. Знание таких восприимчивостей позволяет не только рассчитать численное значение энергии, но и определить также область применимости и погрешность такого расчета при заданном значении напряженности поля. Благодаря знакопеременности асимптотического ряда можно по его коэффициентам указать верхнюю и нижнюю границы интервала, внутри которого находится точное значение энергии атома в поле. Чем больше коэффициентов ряда известно, тем ближе верхняя и нижняя границы друг к другу и тем более точно можно определить энергию в области применимости теории возмущений. Таким образом, актуальность расчета поправок высших порядков теории возмущений связана с возможностью использования их не только для оценки сдвига и расщепления атомных уровней, но и для контроля точности других методов определения зеемановской энергии атома.

Значительное продвижение в расчетах коэффициентов ряда теории возмущений достигнуто в работе [7], где для нижних уровней водорода (с главным квантовым числом $n \leq 3$) рассчитаны первые 80 диамагнитных восприимчивостей, численные значения которых использованы для построения аппроксимант Паде, позволяющих просуммировать ряд для диамагнитной энергии в области напряженности магнитного поля вплоть до атомного. Однако невозможность применения полученных результатов к более вы-

соким уровням, тем более к ридберговским состояниям, и значительные технические трудности в использовании метода указанной работы для высоких состояний делают актуальным получение общих формул для высших восприимчивостей в виде функций главного и магнитного квантовых чисел.

В настоящей работе излагается метод расчета высших восприимчивостей, основанный на последовательном решении системы уравнений для волновой функции и энергии вырожденного состояния в соответствующих порядках по возмущению (разд. 2). В разд. 3 получены аналитические выражения для матричных элементов оператора диамагнитного взаимодействия в виде полиномов относительно главного п, орбитального l, и магнитного m квантовых чисел вырожденного водородоподобного состояния $|nlm\rangle$, которые используются как для аналитического, так и для численного расчетов диамагнитной восприимчивости третьего порядка $\chi^{(3)}_{nmp\lambda}$. Параметр λ нумерует зеемановские состояния, возникающие при перемешивании диамагнитным взаимодействием состояний с различными угловыми моментами $l = m + p, m + p + 2, \ldots, l_{max}$ и сохраняющие только магнитное квантовое число m и четность $P = (-1)^{m+p}$; $l_{max} = n-2$ (или $l_{max} = n-1$), если четности l и n одинаковы (или противоположны). Для четырех низших компонент набора зеемановских состояний с фиксированными m (невырожденные состояния), а именно: n = m+1 четности $P = (-1)^m$, n = m+3 четности $P = (-1)^{m+1}$ и n = m + 2 обеих четностей, восприимчивость определяется только диагональным матричным элементом; соответствующие выражения для $\chi_{nlm}^{(3)}$ получены в [12].

В разд. 4 данной работы мы приводим аналитические выражения диамагнитных восприимчивостей третьего порядка и для восьми последующих по энергии компонент с $n=m+3, P=(-1)^m, n=m+4, P=\pm 1, n=m+5, P=(-1)^{m+1},$ представляющих собой двукратно вырожденные (относительно диамагнитного взаимодействия) состояния с фиксированными n, m, P. Расчет восприимчивостей с кратностью вырождения 3 и более обсуждается в разд. 5. Численные данные, полученные для состояний с большими n и малыми m, обнаруживают скачкообразную особенность во взаимозависимости восприимчивостей, возникающую на границе между дублетными и расщепленными диамагнитными состояниями противоположной четности, а также различие относительных скоростей их монотонного возрастания в двух характерных областях диамагнитного спектра.

2. ТЕОРИЯ ВОЗМУЩЕНИЙ ДЛЯ ВЫРОЖДЕННЫХ УРОВНЕЙ ВОДОРОДА В МАГНИТНОМ ПОЛЕ

Основная трудность в расчетах поправок высоких порядков к энергии водородоподобного атома возникает из-за n^2 -кратного вырождения состояния с заданным главным квантовым числом n. Взаимодействие атомного момента с магнитным полем расщепляет каждое состояние на подуровни с фиксированными магнитными квантовыми числами m. Магнитное квантовое число вместе с четностью $P = (-1)^{m+p}$ (p = 0 или 1) остаются интегралами движения в магнитном поле. Поэтому оператор магнитодипольного взаимодействия¹⁾

$$V_m = -\mathbf{m}\mathbf{B}$$

¹⁾ Мы используем атомную систему единиц $e=m=\hbar=1$ с напряженностью магнитного поля **B**, выраженной в единицах $B_0=2.35\cdot 10^5~{\rm Tr}$.

где $\mathbf{m} = -(\mathbf{l} + 2\mathbf{s})/2$ — магнитный момент (s — спиновый момент электрона), можно включить в невозмущенный гамильтониан, оставив в качестве возмущения только оператор диамагнитного взаимодействия

$$V(\mathbf{r}) = \frac{1}{8} [\mathbf{B}\mathbf{r}]^2 = \frac{B^2}{12} r^2 [1 - C_{20}(\theta, \varphi)]$$
 (1)

и ограничившись подпространством состояний с фиксированными n и m. Здесь $C_{20}(\theta,\varphi)=\sqrt{4\pi/5}Y_{20}(\theta,\varphi)$ — модифицированная сферическая функция.

Волновая функция вырожденного состояния атома в поле может быть записана в виде [13]

$$\psi_{nmp}(\mathbf{r}) = \sum_{l=m+p}^{l_{max}} a_l \varphi_{nlm}(\mathbf{r}) - G'_E(\mathbf{r}, \mathbf{r}') V(\mathbf{r}') \mid \psi_{npm}(\mathbf{r}') \rangle, \tag{2}$$

где суммирование проводится по всем состояниям φ_{nlm} одинаковой четности из заданной nm-оболочки,

$$G'_{E}(\mathbf{r}, \mathbf{r}') = G_{E}(\mathbf{r}, \mathbf{r}') - \sum_{l=m+p}^{l_{max}} \frac{\varphi_{nlm}(\mathbf{r})\varphi_{nlm}^{*}(\mathbf{r}')}{E_{n} - E}$$
(3)

— редуцированная функция Грина. Полная функция Грина $G_E(\mathbf{r}, \mathbf{r}')$ является решением уравнения Шредингера с δ -образной неоднородностью

$$\left[\hat{H}(\mathbf{r}) - E\right] G_E(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') \tag{4}$$

и может быть представлена в виде спектрального разложения по полному набору собственных функций невозмущенного атома (включая непрерывный спектр):

$$G_E(\mathbf{r}, \mathbf{r}') = \sum_{n \mid m} \frac{\varphi_{nlm}(\mathbf{r})\varphi_{nlm}^*(\mathbf{r}')}{E_n - E}.$$
 (5)

Таким образом, первое слагаемое в правой части выражения (2), представляющее суперпозицию всех состояний вырожденного базиса с заданными nmp, ортогонально второму слагаемому, учитывающему вклад состояний из подоболочек с другими главными квантовыми числами $n' \neq n$. С помощью итераций волновую функцию (2) можно представить в виде ряда Бриллюэна—Вигнера:

$$\psi_{nmp}(\mathbf{r}) = \sum_{l=m+p}^{l_{max}} a_l \sum_{s=0}^{\infty} \left[-G'_E(\mathbf{r}, \mathbf{r}')V(\mathbf{r}') \right]^s |\varphi_{nlm}(\mathbf{r}')\rangle, \tag{6}$$

с функцией Грина, зависящей от точной энергии E. Подставляя эту функцию в уравнение Шредингера и проектируя последнее на состояния невозмущенного сферического базиса с фиксированными главным n и магнитным m квантовыми числами, можно получить систему алгебраических уравнений для коэффициентов линейной суперпозиции a_l :

$$(E_n - E)a_l + \sum_{l'=m+p}^{l_{max}} a_{l'} \langle \varphi_{nlm}(\mathbf{r}) \mid \hat{W}(\mathbf{r}, \mathbf{r'}) \mid \varphi_{nl'm}(\mathbf{r'}) \rangle = 0, \quad l = m+p, \dots, l_{max}, \quad (7)$$

где

$$\hat{W}(\mathbf{r}, \mathbf{r}')(E) = V(\mathbf{r}) \sum_{s=0}^{\infty} [-G_E'(\mathbf{r}, \mathbf{r}')V(\mathbf{r}')]^s = V(\mathbf{r})[1 + G_E'(\mathbf{r}, \mathbf{r}')V(\mathbf{r}')]^{-1}$$
(8)

представляет собой интегральный оператор взаимодействия атома с полем, включающий все порядки теории возмущений по $V(\mathbf{r})$. Чтобы получить теперь ряд Рэлея— Шредингера для энергии, необходимо разложить и функцию Грина в (6) в степенной ряд по B^2 , используя соотношение [13]

$$G'_{E}(\mathbf{r}, \mathbf{r}') = \sum_{N=0}^{\infty} [G'_{E_n}(\mathbf{r}, \mathbf{r}')]^{N+1} (E - E_n)^{N}.$$
(9)

Разложив таким образом в ряд по степеням $V(\mathbf{r})$ оператор (8), найдем соответствующее разложение для матричного элемента $W_{ll'}$ системы линейных уравнений (7):

$$W_{ll'} = \langle \varphi_{nlm}(\mathbf{r}) | \hat{W}(\mathbf{r}, \mathbf{r}') | \varphi_{nl'm}(\mathbf{r}') \rangle.$$

Дальнейший расчет энергии можно проводить двумя способами [14]:

1) разложением в ряд по параметру B^2 детерминанта секулярного уравнения для системы (7),

$$D(E) = \det \|\alpha_{ll'}(E)\| = 0, (10)$$

элементы которого

$$\alpha_{ll'}(E) = (E_n - E)\delta_{ll'} + W_{ll'}$$

представляются рядами:

$$\Delta E = (E - E_n) = -\sum_{N=1}^{\infty} \frac{\chi_{nm}^{(N)}}{(2N)!} B^{2N}, \quad W_{ll'} = -\sum_{N=1}^{\infty} \frac{w_{ll'}^{(N)}}{(2N)!} B^{2N}, \tag{11}$$

где $\chi_{nm}^{(N)}$ и $w_{ll'}^{(N)}$ — не зависящие от поля B диамагнитная восприимчивость [15] и диамагнитный матричный элемент N-го порядка;

2) разложением в ряд (наряду с энергией и матричным элементом) коэффициентов суперпозиции в системе уравнений (7):

$$a_l = \sum_{N=0}^{\infty} a_l^{(N)} B^{2N}, \tag{12}$$

и последовательным решением в каждом порядке по B^2 получающихся отсюда уравнений для поправок к коэффициентам, которые затем используются для определения энергии.

Мы будем использовать второй способ, который оказывается проще на практике, поскольку объем вычислений в данном способе пропорционален числу матричных элементов (11), т. е. K^2 , независимо от порядка теории возмущений, тогда как теория возмущений для матриц, используемая в первом подходе, требует объема вычислений, пропорционального квадрату этого числа, т. е. K^4 , во втором порядке, кубу, т. е. K^6 , в третьем и т. д., где $K=(l_{max}-m-p)/2+1$ — размерность пространства состояний, в котором отыскивается собственное значение оператора (8). Кроме того, подход с последовательным определением диамагнитных восприимчивостей и коэффициентов ряда (12) оказывается полезным также и в расчетах зависящих от магнитного поля поправок не только для энергии, но и для волновых функций. При этом восприимчивость первого порядка $\chi^{(1)}_{\lambda}$ и коэффициенты нулевого приближения $a^{(0)}_{l}(\lambda)$ определяются как собственные значения и собственные векторы матрицы $w^{(1)}_{ll'}$. Дискретный параметр $\lambda=1,2,\ldots,K$, который мы в дальнейшем будем называть диамагнитным квантовым числом, нумерует состояния атома в поле, полученные в результате смешивания и перестройки K вырожденных состояний свободного атома. Представление всех величин, входящих в систему уравнений (7), в виде рядов (11), (12) позволяет убрать из (7) фактор B^2 в любом порядке N.

Квадратичная диамагнитная восприимчивость $\chi_{\lambda}^{(2)}$ появляется в (7) во втором порядке по B^2 . После подстановки (11) и (12) мы получаем систему уравнений для коэффициентов $a_l^{(1)}$, зависящую от найденных собственного значения $\chi_{\lambda}^{(1)}$ и соответствующего собственного вектора, составленного из коэффициентов $a_l^{(0)}(\lambda)$:

$$\sum_{l'=m+p}^{l_{max}} a_{l'}^{(1)}(\lambda) \left(w_{ll'}^{(1)} - \chi_{\lambda}^{(1)} \delta_{ll'} \right) = \sum_{l'=m+p}^{l_{max}} a_{l'}^{(0)}(\lambda) \left(\chi_{\lambda}^{(2)} \delta_{ll'} - w_{ll'}^{(2)} \right). \tag{13}$$

Величины, стоящие в правой части, известны все, за исключением восприимчивости $\chi_{\lambda}^{(2)}$, которую нетрудно определить, домножив (13) на $a_l^{(0)*}(\lambda)$. Просуммировав полученные таким образом уравнения по всем l, мы обращаем в нуль левую часть, поскольку $\chi_{\lambda}^{(1)}$ является собственным значением, соответствующим собственному вектору $\{a_l^{(0)}(\lambda)\}$ матрицы $w_{ll'}^{(1)}$. Учитывая условие полноты базиса $\sum |a_l^{(0)}(\lambda)|^2 = 1$, получим выражение для восприимчивости второго порядка:

$$\chi_{\lambda}^{(2)} = \sum_{l,l'=m+p}^{l_{max}} a_l^{(0)*}(\lambda) a_{l'}^{(0)}(\lambda) w_{ll'}^{(2)}, \tag{14}$$

представляющее собой диагональный матричный элемент [16] второго порядка по диамагнитным состояниям с фиксированным λ , записанным в виде суперпозиции волновых функций сферического базиса, диагонализующей диамагнитный гамильтониан (1).

В третьем порядке по B^2 неизвестными системы алгебраических уравнений (7) становятся коэффициенты $a_l^{(2)}$ из разложения (12). Уравнения для $a_l^{(2)}$ имеют вид, аналогичный (13). Используя операцию, подобную проделанной выше при получении уравнения (14), мы обращаем в нуль левую часть этой системы и получаем выражение для восприимчивости третьего порядка [14]:

$$\chi_{\lambda}^{(3)} = \sum_{l,l'=m+p}^{l_{max}} \left[a_l^{(0)*}(\lambda) a_{l'}^{(0)}(\lambda) w_{ll'}^{(3)}(\lambda) + a_l^{(0)*}(\lambda) a_{l'}^{(1)}(\lambda) w_{ll'}^{(2)} \right]. \tag{15}$$

Первое слагаемое в правой части содержит квадратичную комбинацию коэффициентов $a_l^{(0)}$ с матричными элементами $w_{ll'}^{(3)}(\lambda)$ (которые в отличие от $w_{ll'}^{(1)}$ и $w_{ll'}^{(2)}$, зависят от восприимчивости $\chi_{\lambda}^{(1)}$). Второе слагаемое представляет собой билинейную форму коэффициентов нулевого $a_l^{(0)}$ и первого $a_l^{(1)}$ порядков, коэффициентами в которой являются матричные элементы $w_{ll'}^{(2)}$.

Таким образом, переход от второго порядка к третьему требует выполнения двух операций:

- 1) решения системы уравнений (7) во втором порядке по B^2 , приводящей к неоднородным уравнениям (13) для $a_1^{(1)}(\lambda)$;
- 2) расчета матричных элементов третьего порядка по диамагнитному взаимодействию $w_{ll'}^{(3)}(\lambda)$, в которых появляется вклад от поправок к матричным элементам второго порядка, связанный с разложением функции Грина в ряд (9).

3. ДИАМАГНИТНЫЕ МАТРИЧНЫЕ ЭЛЕМЕНТЫ ВОДОРОДОПОДОБНОГО АТОМА

Расчет энергии диамагнитного взаимодействия в вырожденных состояниях связан с диагонализацией матрицы оператора (1) по состояниям оболочки водородоподобного атома с заданными главным n и магнитным m квантовыми числами. В первом порядке такая диагонализация выполнялась как в сферическом базисе состояний $|nlm\rangle$, так и в базисе с фиксированными параболическими квантовыми числами (см. например, [3]). В сферическом базисе выражения для матричных элементов первого порядка имеют вид

$$w_{l,l}^{(1)} = -\left(\frac{n}{2Z}\right)^2 \frac{l^2 + l - 1 + m^2}{(2l - 1)(2l + 3)} \left[5n^2 + 1 - 3l(l + 1)\right],\tag{16}$$

$$w_{l,l+2}^{(1)} = w_{l+2,l}^{(1)} = \frac{5}{2} \left(\frac{n}{2Z}\right)^2 \left[\frac{(l+1-m)_2(l+1+m)_2(n-l-2)_2(n+l+1)_2}{(2l+1)(2l+3)^2(2l+5)} \right]^{1/2}.$$
 (17)

Здесь использовано стандартное обозначение символа Похгаммера [17]

$$(c)_n = c(c+1) \dots (c+n-1).$$

Впервые расчет матричных элементов второго порядка проводился с помощью эффективного гамильтониана, использующего дополнительную симметрию водородоподобных состояний в магнитном поле и выписанного в явном виде в работе [18]. Диагонализация этого гамильтониана в базисе состояний с фиксированными параболическими квантовыми числами выполнена в [5]. При этом поправки к энергии для невырожденных состояний совпадают с соответствующими диагональными матричными элементами. Для состояний с кратностью вырождения 2 выражение для диамагнитной энергии также может быть получено аналитически с использованием корней соответствующего квадратного уравнения.

Расчет диамагнитных матричных элементов второго порядка выполнен также с помощью штурмовского разложения редуцированной кулоновской функции Грина в базисе состояний с фиксированным моментом [14, 15] без использования эффективного гамильтониана. Отделив ориентационную зависимость в матричных элементах $w_{ll'}^{(2)}$ интегрированием по угловым переменным, удобно выразить их через неприводимые части в виде

$$w_{ll}^{(2)} = \beta_{nl}^{(0)} + \frac{3m^2 - l(l+1)}{l(2l-1)} \beta_{nl}^{(2)} + \frac{3(l^2 + 2l - 5m^2)(l^2 - 5m^2 - 1) - 10m^2(4m^2 - 1)}{l(2l-1)(2l-2)(2l-3)} \beta_{nl}^{(4)},$$
(18)

(20)

$$w_{ll+2}^{(2)} = -\sqrt{\frac{(l+1-m)_2(l+1+m)_2(n-l-2)_2(n+l+1)_2}{(2l-1)^2(2l+1)(2l+3)^2(2l+5)(2l+7)^2}} \times \frac{n^6}{32Z^6} \left[\gamma_{nl}^{(0)} + m^2 \gamma_{nl}^{(2)}\right],$$

$$w_{ll+4}^{(2)} = \sqrt{\frac{(l+1-m)_4(l+1+m)_4(n-l-4)_4(n+l+1)_4}{(2l+1)(2l+3)^2(2l+5)^2(2l+7)^2(2l+9)}} \frac{205n^6}{128Z^6}.$$
(20)

Неприводимые части eta_{nl} и γ_{nl} выражаются через радиальные матричные элементы вто-

рого порядка оператора r^2 , $\langle nl|r^2g_{l''}^{(n)}(r,r')r'^2|nl'\rangle$, которые вычисляются в аналитическом виде с помощью штурмовского разложения кулоновской функции Грина [12, 14]:

$$g_{l}^{(n)}(r,r') = \frac{4Z}{n} \left\{ \sum_{k \neq n_{r}}^{\infty} \frac{k!}{(k+2l+1)!} \frac{f_{kl}\left(\frac{2Zr}{n}\right) f_{kl}\left(\frac{2Zr'}{n}\right)}{k+l+1-n} + \frac{n_{r}!}{(n+l)!n} \left[\frac{5}{2} f_{n_{r}l}\left(\frac{2Zr}{n}\right) \times f_{n_{r}l}\left(\frac{2Zr'}{n}\right) + r \frac{df_{n_{r}l}\left(\frac{2Zr}{n}\right)}{dr} f_{n_{r}l}\left(\frac{2Zr'}{n}\right) + f_{n_{r}l}\left(\frac{2Zr'}{n}\right) r' \frac{df_{n_{r}l}\left(\frac{2Zr}{n}\right)}{dr'} \right] \right\}. \quad (21)$$

Благодаря взаимной ортогональности функции Штурма

$$f_{kl}(x) = e^{-x/2} x^l L_k^{2l+1}(x)$$
(22)

и радиальной волновой функции

$$R_{nl}(r) = \frac{2Z^{3/2}}{n^2} \sqrt{\frac{n_r!}{(n+l)!}} f_{n_r l} \left(\frac{2Zr}{n}\right), \tag{23}$$

следующей из свойств ортогональности полиномов Лагерра $L^{\mu}_{\mu}(x)$ [17], штурмовский ряд в (21) обрывается. В частности,

$$\langle f_{kl} \left(\frac{2Zr}{n} \right) \mid r^2 \mid f_{k'l} \left(\frac{2Zr}{n} \right) \rangle =$$

$$= \left(\frac{n}{2Z} \right)^5 \int_0^\infty e^{-x} x^{2l+4} L_k^{2l+1}(x) L_{k'}^{2l+1}(x) dx = \left(\frac{n}{2Z} \right)^5 \frac{(k+2l+1)!}{k!} \left\{ -(k-2)_3 \, \delta_{k'k-3} + 6(k+l)(k-1)_2 \, \delta_{k'k-2} - 3k[5k(k+2l+1) + 4l(l+1) + 2] \, \delta_{k'k-1} + (k+2l+2)_3 + 9k(k+2l+2)_2 + 9(k-1)_2(k+2l+2) + (k-2)_3] \delta_{k'k} - 3(k+2l+2)[5k(k+2l+3) + 4l^2 + 14l + 12] \, \delta_{k'k+1} + (k+2)(k+2l+2)_2 \, \delta_{k'k+2} - (k+2l+2)_3 \, \delta_{k'k+3} \right\}.$$

$$(24)$$

Здесь $\delta_{k'k}$ — символ Кронекера.

Таким образом, неприводимые части в (18)—(20) могут быть представлены в виде полиномов от главного и орбитального квантовых чисел [14]:

$$\beta_{nl}^{(0)} = \frac{n^6}{240Z^6} \left\{ 5n^2 [97n^2 - 33l(l+1) + 365] - 12(21l^4 + 42l^3 + 179l^2 + 158l + 60) \right\}, \tag{25}$$

$$\beta_{nl}^{(2)} = \frac{ln^6}{336Z^6(2l+3)} \left\{ n^2 [802n^2 - 1005l(l+1) + 2000] + \frac{3(175l^4 + 350l^3 + 523l^2 + 348l - 480)}{3(175l^4 + 350l^3 + 523l^2 + 348l - 480)} \right\}$$
(26)

$$3(175l^4 + 350l^3 + 523l^2 + 348l - 480)\}, (26)$$

$$\beta_{nl}^{(4)} = \frac{l(l-1)n^6}{1120Z^6(2l+3)(2l+5)} \{15n^2[41n^2 + 22l(l+1) - 185] -$$

$$-1001l^{3}(l+2) + 3421l^{2} + 4422l - 2160)\}, (27)$$

$$\gamma_{nl}^{(0)} = n^2 [429l(l+3) - 802] + 237l^3(l+6) + 3145l^2 + 3036l - 2484, \tag{28}$$

$$\gamma_{nl}^{(2)} = 5(41n^2 + 37l^2 + 111l - 75). \tag{29}$$

Все записанные выше выражения существенно упрощаются, когда l и m принимают конкретные численные (или буквенные, определяющиеся через n) значения. Решение системы уравнений (7) тоже упрощается, если размерность матрицы K невелика. Соответствующие аналитические формулы для невырожденных (K=1) и дважды вырожденных (K=2) состояний получены в [14, 15]. Следует заметить, что сферический базис имеет важное преимущество перед параболическим, поскольку оператор (1) является четным, и, следовательно, волновые функции $|nlm\rangle$, обладающие определенной четностью, автоматически учитывают симметрию состояний атома в магнитном поле. Эта особенность диамагнитных состояний, по-видимому, явилась причиной того, что в работе [5], использующей эффективный гамильтониан в параболическом базисе, из четырех наборов двукратно вырожденных состояний п-оболочки рассмотрены только три.

В расчетах энергии третьего порядка необходимо учитывать поправки к коэффициентам разложения (12), определяющие их зависимость от амплитуды магнитного поля В. Для определения $a_l^{(1)}(\lambda)$ достаточно решить систему уравнений (13), зависящую от матриц $w_{ll'}^{(1)}$ и $w_{ll'}^{(2)}$. Поскольку ранг матрицы, составленной из коэффициентов левой части системы (13), на единицу меньше числа неизвестных, для разрешения системы следует использовать условие нормировки для $a_{I}^{(1)}(\lambda)$:

$$\sum_{l=m+n}^{l_{max}} a_l^{(0)*}(\lambda) a_l^{(1)}(\lambda) = 0.$$

Принципиальным отличием матрицы $w_{ll'}^{(3)}$ от матриц первого и второго порядков является зависимость от $\chi_{\lambda}^{(1)}$ — собственного значения матрицы $w_{ll'}^{(1)}$. После вычисления интегралов по угловым переменным элементы матрицы $w_{ll'}^{(3)}$ выражаются через линейные комбинации радиальных матричных элементов

$$p_{l;l_1,l_2;l'}^{2q2} = \langle nl|r^2g_{l_1}^{(n)}r^qg_{l_2}^{(n)}r^2|nl'\rangle$$

и восприимчивость первого порядка $\chi_{\lambda}^{(1)}$:

$$\begin{split} w_{ll}^{(3)}(\lambda) &= -\frac{45}{4} \bigg\{ \mathcal{Q}_{l-2,m} \mathcal{P}_{l-2,m}^2 p_{l;l-2,l-2;l}^{222} + 2 \mathcal{Q}_{l,m} \mathcal{P}_{l-2,m}^2 p_{l;l-2,l;l}^{222} + \mathcal{Q}_{l,m}^3 p_{l;l,l;l}^{222} + \\ &\quad + 2 \mathcal{Q}_{l,m} \mathcal{P}_{l,m}^2 p_{l;l+2,l;l}^{222} + \mathcal{Q}_{l+2,m} \mathcal{P}_{l,m}^2 p_{l;l+2,l+2;l}^{222} + \\ &\quad + 2 \chi_{\lambda}^{(1)} \left[\mathcal{P}_{l-2,m}^2 p_{l;l-2,l-2;l}^{202} + \mathcal{Q}_{l,m}^2 p_{l;l,l;l}^{202} + \mathcal{P}_{l,m}^2 p_{l;l+2,l+2;l}^{202} \right] \bigg\}, \end{split}$$
(30)

$$w_{ll+2}^{(3)}(\lambda) = -\frac{45}{4} \mathcal{P}_{l,m} \left\{ \mathcal{P}_{l-2,m}^{2} p_{l;l-2,l;l+2}^{222} + \mathcal{Q}_{l,m}^{2} p_{l;l,l;l+2}^{222} + \mathcal{Q}_{l,m} p_{l;l,l;l+2}^{222} + \mathcal{Q}_{l,m} \mathcal{Q}_{l+2,m} p_{l;l,l+2;l+2}^{222} + \mathcal{P}_{l+2,m}^{2} p_{l;l+2,l+2;l+2}^{222} + \mathcal{P}_{l+2,m}^{2} p_{l;l+2,l+4;l+2}^{222} + 2\chi_{\lambda}^{(1)} \left[\mathcal{Q}_{l,m} p_{l;l,l;l+2}^{202} + \mathcal{Q}_{l+2,m} p_{l;l+2,l+2;l+2}^{202} \right] \right\},$$

$$(31)$$

$$w_{ll+4}^{(3)}(\lambda) = -\frac{45}{4} \mathcal{F}_{l,m} \mathcal{F}_{l+2,m} \left\{ \mathcal{Q}_{l+2,m} p_{l;l+2,l+2;l+4}^{222} + \mathcal{Q}_{l,m} p_{l;l,l+2;l+4}^{222} + \mathcal{Q}_{l+4,m} p_{l;l+2,l+4;l+4}^{222} + 2\chi_{\lambda}^{(1)} p_{l;l+2,l+2;l+4}^{202} \right\},$$

$$(32)$$

$$w_{ll+6}^{(3)}(\lambda) = -\frac{45}{4} \mathcal{F}_{l,m} \mathcal{F}_{l+2,m} \mathcal{F}_{l+4,m} p_{l;l+2,l+4;l+6}^{222} =$$

$$= \frac{25n^{10}}{2^{17} Z^{10} (l+3/2)_5} \sqrt{\frac{(n-l-6)_6 (n+l+1)_6 (l+1-m)_6 (l+1+m)_6}{(2l+1)(2l+13)}} \times$$

$$\times (902n^2 + 88l^2 + 616l + 7125). \tag{33}$$

Множители $\mathcal{Q}_{l,m}$ и $\mathcal{F}_{l,m}$ в этих выражениях представляют собой интегралы по угловым переменным:

$$\mathcal{Q}_{l,m} = \frac{1}{3} \langle lm | 1 - C_{20}(\theta, \varphi) | lm \rangle = \frac{l^2 + l + m^2 - 1}{(2l - 1)(2l + 3)},$$

$$\mathcal{P}_{l,m} = \frac{1}{3} \langle lm | 1 - C_{20}(\theta, \varphi) | l + 2m \rangle = -\sqrt{\frac{[(l + 1)^2 - m^2][(l + 2)^2 - m^2]}{4(2l + 1)(2l + 3)^2(2l + 5)}}.$$
(34)

Только максимально удаленные от диагонали матричные элементы $w_{ll'}^{(3)}(\lambda)$ с $l'=l\pm 6$ не зависят от $\chi_{\lambda}^{(1)}$ и могут быть представлены в замкнутом виде (33). Матричные элементы $w_{ll'}^{(3)}(\lambda)$ с $|l'-l|\leq 4$ зависят от $\chi_{\lambda}^{(1)}$ и представлены в (30)–(32) в виде линейных комбинаций радиальных матричных элементов $p_{l;l_1,l_2;l'}^{2q2}$, где q=0 или 2. Эти величины, как и матричные элементы второго порядка, могут быть вычислены в аналитическом виде с помощью штурмовского разложения функции Грина (21) и свойства ортогональности функций Штурма (24).

Обратим внимание на следующие закономерности зависимости этих величин от главного и орбитального квантовых чисел, которые обнаруживаются в полученных аналитических выражениях.

- 1) Во всех матричных элементах выделяется один и тот же общий фактор n^{8+q} .
- 2) Семь диагональных элементов $p_{l;l_1,l_2;l}^{222}$ (четыре из них попарно равны друг другу) и три элемента $p_{l;l_1,l_2;l}^{202}$ не содержат радикалов. Недиагональные элементы $p_{l;l_1,l_2;l+k}^{222}$ (шесть из них с k=2, три с k=4 и один с k=6) и $p_{l;l_1,l_1;l+k}^{202}$ (два с k=2 и один с k=4) содержат радикальные факторы от произведения двух символов Похгаммера с индексом равным k, аналогичные соответствующим факторам в (17), (19), (20) и (33).
- 3) Радиальные элементы удовлетворяют соотношению симметрии $p_{l;l_1,l_2;l'}^{2q2} = p_{l';l_2,l_1;l}^{2q2}$, соответствующему симметрии матрицы $w_{ll'}^{(3)}(\lambda) = w_{l'l}^{(3)}(\lambda)$, которая позволяет все ненулевые элементы представить четырьмя общими выражениями (30)–(33).

Таблица 1 Коэффициенты полиномов $P^{(q)}_{\nu_1,\nu_2,k} = \sum c_{ss'} n^s l^{s'}$, определяющих диагональные (k=0) радиальные матричные элементы $p^{2q2}_{l;l+\nu_1,l+\nu_2;l}$ согласно (35)

$c_{ss'}$	$P_{-2,-2,0}^{(2)}$	$P_{-2,0,0}^{(2)}$	$P_{0,0,0}^{(2)}$	$P_{0,2,0}^{(2)}$	$P_{2,2,0}^{(2)}$	$P_{-2,-2,0}^{(0)}$	$P_{0,0,0}^{(0)}$	$ ilde{P_{2,2,0}^{(0)}}$
C ₈₀	4510	4510	4510	4510	4510	0	0	0
C ₆₂	7346	-5066	-6066	-5066	7346	0	0	0
c ₆₁	-126818	-60736	-6066	50604	141510	0	0	. 0
C ₆₀	261905	231967	204882	287637	396069	1804	1804	1804
C44	-13958	-3654	966	-3654	-13958	0	0	0
C43	108832	95478	1932	-110094	-164664	0	. 0	0
C42	113737	-270404	-200658	-578762	-296507	4424	-1344	4424
C41	-1405413	-608068	-201624	-233790	1250559	-39368	-1344	48216
C40	1455860	1154248	944994	1392780	2852220	55098	37528	98890
c ₂₆	1550	2930	530	2930	1550	0	0	0
C ₂₅	28110	-36300	1590	53880	-18810	0	0	0
C ₂₄	-428465	80495	22070	305945	-545765	-4340	-420	-4340
c ₂₃	1409120	557700	41490	185880	-3373080	16600	-840	-33960
c_{22}	-809656	-1025439	-594154	-1808619	-7865656	44760	-20700	-31080
c_{21}	-1563937	-766264	-614634	-2436654	-6127845	-181100	-20280	203460
c_{20}	1039645	771363	654758	74213	-70219	111626	49516	316546
c ₀₈	840	1280	60	1280	840	0	0	0
C ₀₇	-14940	-1130	240	11370	21660	0	0	0
c ₀₆	87055	-12490	3802	31260	215155	-1600	-40	-1600
c ₀₅	-138135	-86480	10566	106950	1021245	19920	-120	-29520
C ₀₄	-329132	215159	34108	589359	2249068	-88570	-4012	-212170
c ₀₃	1107453	262372	50886	1324494	1268409	158340	-7824	-743820
c_{02}	-651797	-345051	-183410	895807	-2924513	-87274	-19420	-1316914
c ₀₁	-175392	-190332	-207132	-50640	-4442784	-12912	-15528	-1100136
c ₀₀	31680	33912	36360	-91620	-1640340	2592	3024	-340200

⁴⁾ Асимптотическая (для $n\gg 1,\ n\gg l$) зависимость от главного квантового числа для всех радиальных матричных элементов одна и та же: $p_{l;l_1,l_2;l'}^{222}\sim 2255n^{18}/576;$ $p_{l;l_1,l_2;l'}^{202}\sim 451n^{14}/288.$

Перечисленные свойства позволяют записать для радиальных матричных элементов из (30)–(33) общее выражение вида

$$p_{l;l+\nu_1,l+\nu_2;l+k}^{2q^2} = \frac{n^{8+q}}{1152Z^{8+q}} \sqrt{(n-l-k)_k(n+l+1)_k} P_{\nu_1,\nu_2,k}^{(q)}(n,l), \tag{35}$$

где $P_{\nu_1,\nu_2,k}^{(q)}(n,l)$ представляют собой полиномы (6+q-k)-го порядка относительно главного и орбитального квантовых чисел:

$$P_{\nu_{l},\nu_{2},k}^{(q)}(n,l) = \sum_{s=0}^{S} \sum_{s'=0}^{S'} c_{ss'} n^{s} l^{s'}, \qquad (36)$$

где s принимает только четные значения от нуля до S=6+q-k, а s' пробегает все целые значения (четные и нечетные) от нуля до S'=6+q-k-s. Таким образом, число слагаемых (а следовательно, и коэффициентов $c_{ss'}$) полинома равно $[4+(q-k)/2]^2$. Численные значения коэффициентов $c_{ss'}$ представлены в табл. 1–3. Таблицы группируют полиномы по значению числа k в соответствии с выражениями (30)–(32) для матричных элементов $w_{ll+k}^{(3)}$, в которых они появляются. В табл. 1 представлено по 25 коэффициентов для полиномов $P_{\nu_1,\nu_2,0}^{(2)}(n,l)$ и по 16 коэффициентов для $P_{\nu_1,\nu_2,2}^{(0)}(n,l)$, в табл. 2— по 16 коэффициентов для полиномов $P_{\nu_1,\nu_2,2}^{(2)}(n,l)$ и по 9 для $P_{\nu_1,\nu_2,2}^{(0)}(n,l)$, в табл. 3— по 9 коэффициентов для полиномов $P_{\nu_1,\nu_2,4}^{(2)}(n,l)$ и по 4 для $P_{2,2,4}^{(0)}(n,l)$. Полином $P_{2,4,6}^{(2)}(n,l)$ представлен в явном виде в выражении (33).

Расчеты радиальных матричных элементов (35) и представляющих их полиномиальных факторов (36) выполнялись с помощью стандартных процедур преобразования полиномиальных выражений (факторизации и приведения подобных), имеющихся в арсенале современных компьютерных математических сред типа «МАРLE» и «МАТНЕМАТІСА».

4. ВОСПРИИМЧИВОСТИ ДВУКРАТНО ВЫРОЖДЕННЫХ СОСТОЯНИЙ

Для состояний $|nmp\rangle$ с $n=m+1,\ p=0,\ n=m+2,\ p=0,1$ и $n=m+3,\ p=1$ («невырожденные» состояния) матрица $w_{ll'}^{(N)}$ состоит из одного элемента, который и определяет соответствующую восприимчивость. Таким образом, соотношения (16), (18) и (30) после подстановки в них соответствующих значений l и m дают готовые аналитические выражения для $\chi^{(N)}$ этих состояний до третьего порядка включительно, совпадающие с известными из литературы [3, 5, 12, 15].

В состояниях с n=m+3, p=0, n=m+4, p=0,1 и n=m+5, p=1 («двукратно вырожденные» состояния), для которых диамагнитная матрица имеет размерность 2×2 , также можно получить аналитические формулы для восприимчивостей в виде, содержащем квадратные корни из полиномов, составленных из матричных элементов (16) и (17), (18) и (19), (30) и (31). Все такие выражения для $\chi^{(N)}$ можно представить в общем виде:

$$\chi_{nmp\pm}^{(1)} = -\frac{n^2}{4Z^2} \left[Q_2^{(m,p)}(n) \pm \sqrt{R_2^{(m,p)}(n)} \right], \tag{37}$$

Таблица 2 Коэффициенты полиномов $P^{(q)}_{\nu_1,\nu_2,k}$, определяющих недиагональные (k=2) радиальные матричные элементы $p^{2q2}_{l;l+\nu_1,l+\nu_2;l+2}$ согласно (35)

$c_{ss'}$	$P_{-2,0,2}^{(2)}$	$P_{0,0,2}^{(2)}$	$P_{0,2,2}^{(2)}$	$P_{2,0,2}^{(2)}$	$P_{2,2,2}^{(2)}$	$P_{2,4,2}^{(2)}$	$P_{0,0,2}^{(0)}$	$P_{2,2,2}^{(0)}$
c ₆₀	4510	4510	4510	4510	4510	.4510	0	0
C42	9680	930	-3732	-5820	930	9680	0	0
C41	-97800	-50880	-11196	-17460	56460	155880	0	0
C40	144320	123047.5	193063	188365	284057.5	524840	1804	1804
C ₂₄	-8930	-1270	-1650	-210	-1270	-8930	0	0
c ₂₃	36020	7068	-9900	-1260	-22308	-143180	0	0
c_{22}	128820	49369	-100140	-252060	-82823	-677580	1380	1380
c_{21}	-504230	-338505	-255870	-750510	306723	-659830	-11988	20268
c_{20}	315990	256130.5	661135	282865	1422260.5	1292190	15884	64268
c_{06}	-940	-210	-280	-5680	-210	-940	0	0
c_{05}	21340	924	-2520	-51120	-4704	-38260	. 0	0
C ₀₄	-120620	-2658.5	-8395	-80665	-44868.5	-567620	200	200
c_{03}	209780	8697	-12570	282810	-237159	-4085420	-2064	4464
c_{02}	-12210	80199.5	-145543	617135	-646262.5	-15317610	5320	34696
c_{01}	-156510	-170328	-414084	-111360	-550812	-28620990	-13560	122808
c_{00}	30780	32976	107172	-99540	437976	-20914740	3024	163512

$$\chi_{nmp\pm}^{(2)} = \frac{n^6}{16Z^6} \left[Q_4^{(m,p)}(n) \pm \frac{R_4^{(m,p)}(n)}{\sqrt{R_2^{(m,p)}(n)}} \right], \tag{38}$$

$$\chi_{nmp\pm}^{(3)} = -\frac{5n^{10}}{64Z^{10}} \left[Q_6^{(m,p)}(n) \pm \frac{R_8^{(m,p)}(n)}{[R_2^{(m,p)}(n)]^{3/2}} \right], \tag{39}$$

где $Q_k^{(m,p)}(n)$ и $R_k^{(m,p)}(n)$ — полиномы k-го порядка относительно главного квантового числа n. Явные выражения для полиномов четырех дублетных состояний, определяемых конкретными наборами квантовых чисел m и p, приведены в табл. 4. Коэффициенты при старших степенях полиномов одинаковы для всех четырех наборов и возрастают вместе с порядком полинома. Обратим внимание также на одинаковый порядок чередования знаков: у полиномов Q две старшие степени имеют положительный знак, у последующих степеней знаки меняются; у полиномов R знаки любых двух соседних членов противоположны друг другу.

Таблица 3 Коэффициенты полиномов $P^{(q)}_{\nu_1,\nu_2,k}$, определяющих недиагональные (k=4) радиальные матричные элементы $p^{2q2}_{l;l+\nu_1,l+\nu_2;l+4}$ согласно (35)

$C_{ss'}$	$P_{0,2,4}^{(2)}$	$P_{2,2,4}^{(2)}$	$P_{2,4,4}^{(2)}$	$P_{2,2,4}^{(0)}$
C 40	4510	4510	4510	0
c_{22}	2574	-514	2574	0
c_{21}	-31476	_2570	57216	0
c_{20}	45962	96269	267692	1804
C ₀₄	116	504	116	0
c_{03}	-4334	5040	6654	0
c_{02}	15493	-3299	97903	176
c_{01}	-43015	-79495	580995	880
c ₀₀	10170	27405	1226820	11610

Составленные из полиномов $Q_2^{(m,p)}(n)$, $R_2^{(m,p)}(n)$, $Q_4^{(m,p)}(n)$ и $R_4^{(m,p)}(n)$ формулы для $\chi^{(1)}$, $\chi^{(2)}$ совпадают с известными из литературы [5, 14].

Явные выражения для полиномов $Q_6^{(m,p)}(n)$ и $R_8^{(m,p)}(n)$ позволяют выявить общие свойства диамагнитной энергии третьего порядка. В частности, зависимость $\chi^{(3)}$ дважды вырожденных уровней от главного квантового числа n имеет такую же асимптотическую структуру, как и для невырожденных состояний [12], так что для $n \gg 1$ главный член этой асимптотики

$$\Delta E^{(3)} \approx \frac{3}{128} n^{16} B^6 \tag{40}$$

оказывается одинаковым для всех подуровней водородоподобной оболочки с фиксированным главным квантовым числом и проекцией момента от m=n-5 до m=n-1. Общий сдвиг сопровождается расшеплением на подуровни, определяющимся членами полиномов в (39), следующими за старшим.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ И ОБСУЖДЕНИЕ

Аналитические выражения для восприимчивостей невырожденных и дважды вырожденных диамагнитных состояний с заданным n позволяют выписать общую для всех подуровней асимптотику при $n\gg 1$:

$$\chi_{nm\lambda}^{(1)} \sim -\frac{n^4}{4Z^2}, \qquad \chi_{nm\lambda}^{(2)} \sim \frac{3n^{10}}{4Z^6}, \qquad \chi_{nm\lambda}^{(3)} \sim -\frac{135n^{16}}{8Z^{10}},$$
 (41)

которая определяет следующее соотношение между энергией связи E_n и диамагнитными поправками первых трех порядков:

Таблица 4 Полиномы $Q_k^{(m,p)}(n)$, $R_k^{(m,p)}(n)$, определяющие диамагнитные восприимчивости (37)–(39) двукратно вырожденных состояний с фиксированными n,m,p

m,p	Полином
n - 3, 0	$Q_2 = n^2 + 3n - 7$
	$R_2 = 16n^2 - 48n + 41 .$
	$Q_4 = 12n^4 + 117n^3 - 315n^2 + 597n - 714$
	$R_4 = 480n^4 - 1776n^3 + 3948n^2 - 6477n + 4734$
	$Q_6 = 216n^6 + 3915n^5 - 8631n^4 + 32871n^3 - 69750n^2 + 76812n - 65736$
	$R_8 = 237312n^8 - 1547904n^7 + 6033408n^6 - 18774360n^5 + 43218888n^4 - 68241357n^3 + 72834702n^2 - 49979076n + 17036568$
	$Q_2 = n^2 + 2n - 11$
	$R_2 = 16n^2 - 88n + 136$
n-4,1	$Q_4 = 12n^4 + 96n^3 - 488n^2 + 1192n - 2100$
	$R_4 = 480n^4 - 2968n^3 + 8872n^2 - 19960n + 23880$
	$Q_6 = 216n^6 + 3366n^5 - 17408n^4 + 61238n^3 - 177212n^2 + 302016n - 350064$
	$R_8 = 237312n^8 - 2954176n^7 + 17745808n^6 - 73238368n^5 + 234785744n^4 - 567694784n^3 + 959084336n^2 - 1034609184n + 557701488$
n-4,0	$Q_2 = n^2 + 6n - 19$
	$R_2 = 16n^2 - 40n + 40$
	$Q_4 = 12n^4 + 216n^3 - 840n^2 + 1920n - 3108$
	$R_4 = 480n^4 - 1768n^3 + 4360n^2 - 7624n + 7656$
	$Q_6 = 216n^6 + 7074n^5 - 27408n^4 + 102306n^3 - 283860n^2 + 435072n - 476684$
	$R_8 = 237312n^8 - 1173568n^7 + 3714448n^6 - 11527840n^5 + 31965008n^4 - 65148608n^3 + 93301808n^2 - 84091488n + 39910896$
n-5, 1	$Q_2 = n^2 + 5n - 27$
	$R_2 = 16n^2 - 80n + 145$
	$Q_4 = 12n^4 + 195n^3 - 1147n^2 + 3295n - 7182$
	$R_4 = 480n^4 - 2960n^3 + 10444n^2 - 28835n + 43578$
,	$Q_6 = 216n^6 + 6525n^5 - 43303n^4 + 177725n^3 - 600754n^2 + 1257900n - 1789128$
	$R_8 = 237312n^8 - 2579840n^7 + 14262784n^6 - 61089320n^5 + 243111464n^4 - $ $-794683915n^3 + 1801819010n^2 - 2490302340n + 1689045624$

$$|E_n|: \Delta E_{nm\lambda}^{(1)}: |\Delta E_{nm\lambda}^{(2)}|: \Delta E_{nm\lambda}^{(3)} = 1: \left(\frac{n^3 B}{2Z^2}\right)^2: \left(\frac{n^3 B}{2Z^2}\right)^4: 3\left(\frac{n^3 B}{2Z^2}\right)^6. \tag{42}$$

Поправка третьего порядка в этом соотношении делает очевидным, в частности, асимптотический характер ряда теории возмущений для диамагнитной энергии — асимптотический фактор для нее втрое превышает подобный фактор у поправки второго порядка, совпадающий с фактором для первого порядка.

Вследствие асимптотичности, последний учитываемый член ряда определяет точность, с которой теория возмущений аппроксимирует истинное значение энергии $E_{nm\lambda p}^{exact}(B)$, а также позволяет установить область применимости поправок предыдущих порядков. Знакопеременный характер ряда позволяет определить верхнюю и нижнюю границы точного значения энергии, подчиняющегося соотношению

$$E_{nm\lambda p}^{(2N)}(B) < E_{nm\lambda p}^{exact}(B) < E_{nm\lambda p}^{(2N+1)}(B),$$
 (43)

где

$$E_{nm\lambda p}^{(s)}(B) = E_n - \sum_{k=1}^{s} \frac{\chi_{nm\lambda p}^{(k)}}{2k!} B^{2k}$$
 (44)

— значение энергии, полученное в s-м порядке теории возмущений. Энергия связи E_n наряду с собственной энергией свободного атома включает и парамагнитную энергию $E_{par} = B(m+2m_s)/2$.

В табл. 5 приводятся численные значения диамагнитных восприимчивостей вырожденных состояний водорода с $n \leq 6$. Значения параметра λ выбраны в соответствии с абсолютными значениями восприимчивостей $\chi^{(1)}$: минимальному значению $|\chi^{(1)}|$ соответствует $\lambda=1$, с добавлением по единице к λ при переходе к каждому последующему по $|\chi^{(1)}|$ состоянию, так что $|\chi_1^{(1)}|<|\chi_2^{(1)}|<\ldots<|\chi_K^{(1)}|$. Данные табл. 5 вместе с информацией, приведенной в работе [12] для невырожденных подуровней из этих же n-оболочек, составляют полный набор данных по эффекту Зеемана первых шести уровней водородоподобного атома с точностью до поправок порядка B^6 включительно.

Обратим внимание на строгую корреляцию между абсолютными значениями восприимчивостей диамагнитных подуровней: состояниям с большим $|\chi^{(1)}|$ соответствуют большие значения $\chi^{(2)}$ и $|\chi^{(3)}|$, т.е. для $\lambda > \lambda'$ имеем $|\chi^{(N)}_{\lambda}| > |\chi^{(N)}_{\lambda'}|$ при N=1,2,3. Максимальное значение восприимчивости при заданном n соответствует одному из четных состояний с m=0 (выделены в табл. 5 жирным шрифтом для n=4,5,6). При этом различие между максимальным и минимальным абсолютными значениями восприимчивости для состояний с заданным n возрастают как с ростом n, так и с ростом порядка теории возмущений N, следуя приближенному соотношению $|\chi^{(N)}_{nmpK}/\chi^{(N)}_{nmpl}| \sim 2^{N-1}(n-m-p)$.

С помощью данных табл. 5 можно определить границы применимости по напряженности поля конкретных порядков теории возмущений в расчетах энергии атома в магнитном поле. При этом оказывается, что граница применимости для диамагнитных поправок первого порядка B_1 примерно вдвое превышает границу для второго порядка B_2 , то есть $B_1 > B_2$, как это и должно быть для асимптотического ряда.

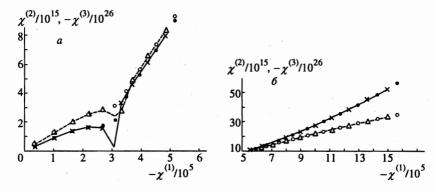
Сравнение численных значений энергии дважды вырожденных уровней, представляющих суперпозицию 3s- и 3d-состояний, а также 4p- и 4f-состояний с m=0, рассчитанных по теории возмущений первого, второго и третьего порядков согласно (44), с

$nmp\lambda$	$-\chi_{nmp\lambda}^{(1)}$	$\chi^{(2)}_{nmp\lambda}$	$-\chi_{nmp\lambda}^{(3)}$	$nmp\lambda$	$-\chi^{(1)}_{nmp\lambda}$	$\chi^{(2)}_{nmp\lambda}$	$-\chi_{nmp\lambda}^{(3)}$
3001	1.034(1)	2.442(4)	5.315(8)	6011	1.043(2)	1.254(7)	1.012(13)
3002	3.916(1)	1.918(5)	7.165(9)	6012	2.300(2)	4.136(7)	5.240(13)
4011	2.670(1)	2.776(5)	2.602(10)	6013	5.027(2)	1.322(8)	2.153(14)
4012	7.730(1)	1.809(6)	2.717(11)	6001	1.152(2)	2.168(7)	2.463(13)
4001	3.736(1)	8.116(5)	1.035(11)	6002	3.420(2)	8.350(7)	1.172(14)
4002	1.306(2)	3.299(6)	6.143(11)	6003	7.038(2)	1.884(8)	3.638(14)
4101	4.301(1)	5.623(5)	6.487(10)	6101	1.643(2)	1.614(7)	1.439(13)
4102	1.250(2)	3.121(6)	5.763(11)	6102	3.330(2)	7.787(7)	1.090(14)
5001	5.668(1)	2.141(6)	6.368(11)	6103	6.907(2)	1.843(8)	3.541(14)
5002	1.375(2)	1.023(7)	4.863(12)	6111	2.113(2)	4.141(7)	5.047(13)
5003	3.308(2)	3.045(7)	2.035(13)	6112	4.907(2)	1.275(8)	2.067(14)
5011	6.849(1)	4.860(6)	2.041(12)	6211	2.109(2)	2.536(7)	2.709(13)
5012	2.190(2)	1.954(7)	1.077(13)	6212	4.551(2)	1.133(8)	1.808(14)
5111	8.876(1)	3.435(6)	1.220(12)	6201	3.025(2)	6.375(7)	8.665(13)
5112	2.112(2)	1.836(7)	1.007(13)	6202	6.515(2)	1.717(8)	3.251(14)
5101	1.282(2)	9.593(6)	4.455(12)	6301	2.598(2)	3.864(7)	4.782(13)
5102	3.218(2)	2.945(7)	1.956(13)	6302	5.862(2)	1.500(8)	2.764(14)
5201	1.176(2)	5.867(6)	2.494(12)				
5202	2.948(2)	2.640(7)	1.719(13)				

данными точных расчетов, выполненных по методу *B*-сплайнов в работе [8], полностью подтверждает справедливость соотношений (43): энергии второго и третьего порядков дают нижнюю и верхнюю границы, между которыми располагается точное значение. При этом значение энергии в третьем порядке значительно ближе к точному, чем в первом (в области применимости теории возмущений).

Все диамагнитные поправки до третьего порядка включительно, рассчитанные в работе [7], согласуются с нашими данными, за исключением поправки третьего порядка для двукратно вырожденной суперпозиции 3s- и 3d-уровней: и меньшее, и большее из двух значений, приписываемых в [7] соответственно 3s- и 3d-состояниям, дают абсолютные значения для восприимчивостей $\chi^{(3)}$, меньшие значений, приведенных в табл. 5, примерно на 10%.

Закономерности взаимозависимости диамагнитных восприимчивостей, указанные выше на основании данных из табл. 5, остаются в общем справедливыми и для состояний с высокими n (ридберговских состояний), где также наблюдается корреляция между численными значениями диамагнитных восприимчивостей первого, второго и третьего порядков. Всюду, кроме границы между дублетной [3] (вырожденные состояния противоположной четности, восприимчивости которых совпадают друг с другом во всех трех порядках теории возмущений) и расщепленной (численные значения воспри-



Взаимозависимость восприимчивостей первого, второго и третьего порядков для первой, $\lambda=1\div 10$ (a), и для второй, $\lambda=11\div 20$ (б), половин диамагнитных состояний уровня с $n=40,\ m=0$. Треугольники (соединены штрихами) и пустые кружки соответствуют восприимчивости второго порядка, крестики (соединены сплошной линией) и сплошные кружки — восприимчивости третьего порядка для четных (треугольники, крестики) и нечетных (кружки) состояний

имчивостей четных и нечетных состояний чередуются) частями диамагнитного спектра, возрастание $\chi_{\lambda}^{(1)}$ с изменением номера подуровня λ сопровождается возрастанием $\chi_{\lambda}^{(2)}$ и $\chi_{\lambda}^{(3)}$. Ниже указанной границы относительная скорость роста $\chi_{\lambda}^{(3)}$ ниже, чем скорость роста $\chi_{\lambda}^{(2)}$. Число дублетных состояний составляет примерно одну четвертую часть от всего набора диамагнитных подуровней (одну пятую энергетической полосы, занимаемой набором). Выше указанной границы картина меняется на противоположную: $\chi_{\lambda}^{(3)}$ растет быстрее, чем $\chi_{\lambda}^{(2)}$. На самой границе монотонный характер зависимости между восприимчивостями нарушается: сначала наблюдается резкое уменьшение, а затем возрастание относительного значения высших восприимчивостей, причем скачок тем резче, чем выше порядок восприимчивости, и выражен ярче для нечетных состояний. Для пограничного состояния соотношение $|\chi_{\lambda}^{(N)}| < |\chi_{\lambda+1}^{N}|$ для N=2,3 может быть нарушено. Различие между максимальной $\chi_{K}^{(N)}$ и минимальной $\chi_{1}^{(N)}$ по абсолютному значению восприимчивостями в диамагнитном наборе возрастает с ростом n, так что для состояний с m=0 отношение этих величин согласуется с приводившейся выше приблизительной формулой: $\chi_{K}^{(N)}/\chi_{1}^{(N)} \approx 2^{N-1}n$.

В качестве иллюстрации на рисунке представлены диаграммы зависимости между абсолютными значениями восприимчивостей первого, второго и третьего порядков диамагнитных подуровней с $n=40,\ m=0$. До $\lambda=5$ численные значения восприимчивостей четных и нечетных состояний практически совпадают во всех трех порядках. Резкий скачок наблюдается при $\lambda=6$, после которого абсолютные значения всех восприимчивостей нечетных состояний (соединены сплошной линией для третьего порядка и штриховой линией для второго порядка) становятся меньше соответствующих восприимчивостей для четных состояний. При этом, однако, точки зависимости восприимчивости старшего порядка (второго или третьего) от восприимчивости первого порядка для четных и нечетных состояний при $\lambda>7$ ложатся на одну и ту же гладкую кривую (см. рис. δ).

Абсолютные значения восприимчивостей, приведенных на рисунке, показывают, в частности, что использование теории возмущений для расчета диамагнитной энергии состояний с n=40 ограничивается полем $B\approx 4$ Тл. В таком поле соотношение (42) для состояния с максимальными восприимчивостями ($\lambda=20,\ p=0,1$) таково:

$$|E_n|: \Delta E_{nm\lambda p}^{(1)}: |\Delta E_{nm\lambda p}^{(2)}|: \Delta E_{nm\lambda p}^{(3)} \approx 1: 0.72: 0.63: 0.62.$$

6. ЗАКЛЮЧЕНИЕ

Представленный здесь подход к задаче о расчете диамагнитных поправок третьего порядка к энергии водородоподобных состояний позволил получить наиболее полное решение по сравнению со всеми ранее предпринятыми аналогичными расчетами (см., например, [6, 12]). Вместе с общими формулами, позволяющими не только достаточно просто определять численные значения диамагнитных восприимчивостей для произвольных состояний, получена новая информация о структуре диамагнитного спектра высоковозбужденных ридберговских атомов. В частности, обнаружены две особенности взаимной зависимости восприимчивостей различных порядков: скачок, разделяющий две области монотонного возрастания на границе между дублетными и расшепленными диамагнитными состояниями, выраженный более ярко для восприимчивостей более высокого порядка и для состояний отрицательной четности, а также изменение относительной скорости монотонного роста восприимчивостей при переходе между двумя характерными областями диамагнитного спектра.

Метод расчета волновых функций и энергий в высших порядках теории возмущений, представленный в разд. 2, является достаточно общим, и его основа может быть использована в расчетах эффектов высоких порядков теории возмущений в поле, изменяющем симметрию вырожденных состояний так, что интегралы движения невозмущенного атома перестают существовать.

Представляется вполне реальной возможность достаточно быстрого перехода на основе этого метода к расчетам диамагнитных восприимчивостей более высоких порядков, подобно тому как это произошло в расчетах эффекта Штарка [19, 4], поскольку как расчет матричных элементов на основе штурмовского разложения функции Грина (21), так и выражения для восприимчивостей типа (14), (15) вместе с решением систем уравнений типа (13) вполне могут быть автоматизированы с помощью современных компьютерных средств.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 97-02-16407) и Министерства образования РФ (грант № 97-0-5.1-63).

Литература

- 1. В. С. Лисица, УФН 153, В. 3, 379 (1987).
- 2. H. Friedrich, Theoretical Atomic Physics, Springer-Verlag, Berlin (1991).
- 3. P. A. Braun, Rev. Mod. Phys. 65, 115 (1993).
- 4. H. J. Silverstone, Phys. Rev. A 18, 1853 (1978).
- 5. T. P. Grozdanov and H. S. Taylor, J. Phys. B 19, 4075 (1986).

- 6. M. R. M. Witwit and J. P. Killingbeck, J. Phys. B 26, 1599 (1993).
- 7. В. М. Вайнберг, В. А. Гани, А. Е. Кудрявцев, **ЖЭТФ 113**, 550 (1998).
- 8. J.-H. Wang and C.-S. Hsue, Phys. Rev. A 52, 4508 (1995).
- 9. Yu. P. Kravchenko, M. A. Liberman, and B. Johansson, Phys. Rev. A 54, 287 (1996).
- 10. Е. А. Соловьев, ЖЭТФ 82, 1762 (1982).
- 11. T. P. Grozdanov, L. Andric, C. Manescu, and R. McCarroll, Phys. Rev. A 56, 1865 (1997).
- 12. V. D. Ovsiannikov, Phys. Rev. 57, 3719 (1998).
- 13. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys. Rep. 141, 319 (1986).
- 14. V. D. Ovsiannikov and S. V. Goossev, Physica Scripta 57, 506 (1998).
- 15. S. V. Goossev and V. D. Ovsiannikov, J. Phys. B 28, 5251 (1995).
- 16. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Наука, Москва (1974), § 39.
- 17. Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции, Наука, Москва (1973), т. 1, гл. 5; (1974), т. 2, гл. 10.
- 18. D. Delande and J. C. Gay, J. Phys. B 17, L335 (1984).
- 19. С. П. Аллилуев, И. А. Малкин, ЖЭТФ 66, 1283 (1974).