НЕЛИНЕЙНЫЙ МИКРОВОЛНОВЫЙ ОТКЛИК МОНОКРИСТАЛЛА YBCO В ПОСТОЯННОМ МАГНИТНОМ ПОЛЕ

В. В. Больгинов, В. М. Генкин, Г. И. Левиев*, Л. В. Овчинникова

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 20 января 1999 г.

Исследована генерация второй гармоники микроволнового диапазона монокристаллом YBCO, помещенным в магнитное поле. Найдено, что сигнал связан с dc-током, экранирующим постоянное магнитное поле. Продемонстрировано, что полевая зависимость интенсивности гармоники дает непосредственно зависимость тока пиннинга от магнитного поля. Обнаружено, что экспериментальные данные могут быть поняты в рамках обобщенной модели критического состояния, учитывающей диффузию вихрей и отсутствие барьера для выхода вихрей из образца. Показано, что вблизи поверхности образца для уменьшающихся полей реализуется состояние, в котором плотность экранирующего тока значительно меньше критической плотности. Эксперимент показывает, что вихри не являются источниками излучения на удвоенной частоте. Обсуждается связь механизма излучения гармоники в мейсснеровской фазе с модуляцией параметра порядка микроволновым магнитным полем (нелинейностью Гинзбурга—Ландау). Отмечено, что измеряя температурную зависимость интенсивности излучения гармоники в мейсснеровском состоянии, можно с хорошей точностью получить температурную зависимость глубины проникновения магнитного поля.

1. ВВЕДЕНИЕ

Поведение сверхпроводника в сильном высокочастотном поле исследуется в последние годы достаточно интенсивно. Это связано не только с интересом к фундаментальному аспекту нелинейной электродинамики сверхпроводников, но и с тем, что одно из самых многообещающих приложений высокотемпературных сверхпроводников разрабатывается в области микроволновых устройств и нелинейность их отклика определяет параметры реальных приборов. Взаимодействие низкотемпературных сверхпроводников с сильным микроволновым полем исследовалось во многих работах. Горьков и Элиашберг [1] в рамках нестационарной теории сверхпроводимости показали, что излучение сверхпроводника на частотах гармоник определяется временем релаксации параметра порядка и это время может быть получено из измерений интенсивности гармоник. Соответствующий эксперимент был выполнен Амато и Маклином [2] на образцах LaCaSn. Расчет времени релаксации проводился на основе соотношений, учитывающих реальную геометрию эксперимента [3] на частоте облучения 11 ГГц. Позднее аналогичной методикой было определено время релаксации параметра порядка в высокотемпературном сверхпроводящем монокристалле YBCO [4, 5]. На более низкой частоте генерация гармоник в монокристалле YBCO изучалась недавно в работах Чикарелло и др. [6, 7]. Для интерпретации результатов привлекалась двухжидкостная модель

^{*}E-mail: leviev@issp.ac.ru

с концентрациями сверхпроводящих и нормальных электронов, специальным образависящими от амплитуды волны. Для расчета интенсивности гармоники из нелине" ной намагниченности кристалла в поле волны выделялась нужная фурье-компонеь. Комбинируя результаты нелинейных экспериментов и измерения поверхностного импеданса монокристалла в магнитном поле, авторы сумели извлечь температурные зависимости и численные значения верхнего и нижнего критических полей [7,8]. С точки зрения приложений наиболее важны эксперименты на пленках. Основной механизм нелинейности в таких образцах связан с джозефсоновскими связями между неоднородностями структуры [9–14]. Генерации гармоник в структурах со слабыми связями посвящены работы Джефриса и др. [15, 16]. Следует отметить, что подобные идеи развивались и при исследовании низкотемпературных сверхпроводников [17].

Особый интерес представляют исследования высокочастотного нелинейного отклика, в частности четных гармоник, в магнитном поле [18-26]. Без постоянного магнитного поля такое излучение запрещено законами симметрии, поэтому интенсивность на частоте гармоники определяется структурой поля (экранирующего тока) в приповерхностном слое и несет информацию об этой структуре. Наиболее часто для описания нелинейных эффектов в магнитном поле привлекается модель критического состояния. Механизм нелинейного поглощения или излучения на частотах гармоник связывается с вихрями, возникающими в образце в смешанном состоянии. Нелинейность электромагнитного отклика вихревой структуры обусловлена рядом причин — непараболичностью потенциала пиннинга [27], его зависимостью от тока [28] и другими факторами [29]. В нашем эксперименте нелинейность, связанная с вихрями, не наблюдалась. Такой вывод следует из температурной и полевой зависимостей интенсивности излучения. В этой работе мы не будем подробно останавливаться на механизме излучения в смешанном состоянии, а что касается мейсснеровской фазы, то мы обсудим возможность интерпретации излучения гармоники как проявления нелинейности Гинзбурга—Ландау — модуляции параметра порядка микроволновым магнитным полем. Независимо от механизма интенсивность излучения удвоенной частоты определяется током вблизи поверхности, экранирующим постоянное магнитное поле, и может использоваться для измерения величины этого тока. Ниже на основе этой идеи мы дадим интерпретацию экспериментальных результатов по генерации второй гармоники в монокристалле YBCO, предварительно описав постановку эксперимента.

2. ЭКСПЕРИМЕНТ

Образец монокристалла YBCO в форме пластины с размерами $4 \times 3 \times 0.2$ мм³ был выращен в ИФТТ РАН Г. А. Емельченко. Переход в сверхпроводящее состояние по измерениям импеданса на частоте 3 ГГц [30] происходит при температуре 91 К в интервале температур около 1 К. Образец помещался на дно бимодального цилиндрического резонатора, работающего на моде E_{010} на частоте падающей волны $\omega/2\pi = 9.2$ ГГц и на моде H_{111} на частоте второй гармоники. Для размещения образца выбиралось место, где магнитные поля мод можно было считать коллинеарными на размерах образца. Постоянное магнитное поле совпадало по направлению с микроволновыми полями. В качестве источника падающей волны использовался импульсный магнетрон с длительностью импульса 1 мкс. Скважность импульсов подбиралась так, чтобы не было зависимости от частоты повторения. Записывались зависимости интенсивности излучения

Рис. 1. Зависимость амплитуды волны удвоенной частоты $E_{2\omega}$ от постоянного магнитного поля H в интервале от 0 до 180 Э. На вставке — та же зависимость от 0 до 25 Э. Температура T = 78 К. Развертка поля от нуля

Рис. 2. Зависимость амплитуды волны удвоенной частоты $E_{2\omega}$ от постоянного магнитного поля H в интервале от 0 до 1200 Э. Температура T = 78 К. Развертка поля от нуля

на удвоенной частоте от постоянного магнитного поля, температуры и амплитуды падающей волны.

На рис. 1, 2 представлены зависимости амплитуды второй гармоники от постоянного магнитного поля. Образец охлаждался до нужной температуры в нулевом магнитном поле, затем поле медленно увеличивалось до максимального значения и менялось направление развертки поля. Скорость развертки выбиралась такой, чтобы при уменьшении скорости в несколько раз форма гистерезисной кривой не изменялась. Были сняты зависимости для нескольких температур, при этом поле H_x , при котором прекращается рост амплитуды гармоники, оказалось практически не зависящим от температуры.

Рисунок 3 демонстрирует зависимость интенсивности гармоники от температуры. Магнитное поле величиной 250 Э вводилось при температуре 78 К, затем образец нагревался до точки выше T_c и снова охлаждался в том же магнитном поле, в котором происходило нагревание. Видно, что при возвращении после охлаждения к исходной температуре, сигнал гармоники оказывается во много раз меньше. Температурная зависимость интенсивности излучения в мейсснеровской фазе (в поле 5.3 Э) показана на рис. 4.

Зависимость амплитуды гармоники от амплитуды падающей волны можно считать квадратичной во всем исследованном интервале микроволновых полей (рис. 5).

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Амплитуда гармоники. В кристаллах с центром инверсии генерации второй гармоники в нулевом магнитном поле не происходит, что можно понять из соображений симметрии [31]. При увеличении магнитного поля генерация возникает уже в мейсснеровском состоянии в полях заведомо меньших поля проникновения вихрей. В присутствии

Рис. 3. Зависимость амплитуды волны удвоенной частоты $E_{2\omega}$ от температуры T. Кривая *1* получена при отогреве до нормального состояния в поле 250 Э, введенном в сверхпроводящем состоянии в нижней температурной точке; кривая 2 соответствует охлаждению в том же поле (250 Э). На вставке показаны фрагменты кривых *1* и 2 в увеличенном масштабе

Рис. 4. Зависимость амплитуды волны удвоенной частоты от температуры в мейсснеровском состоянии (поле 5.3 Э). Черные точки, соединенные пунктирной кривой, соответствуют зависимости λ^5

Рис. 5. Зависимость амплитуды волны удвоенной частоты $E_{2\omega}$ от амплитуды падающей волны E_{ω} . Сплошная линия — квадратичная зависимость. Температура T = 78 K

магнитного поля вблизи поверхности образца появляется постоянный экранирующий ток, и именно с ним мы будем в соответствии с экспериментом связывать появление излучения на удвоенной частоте. Придерживаясь феноменологического подхода, запишем выражение для микроволнового тока j_{mw} сверхпроводящих электронов в присутствии экранирующего тока j и микроволновых полей на частотах ω и 2ω , описываемых компонентами векторного потенциала $A_{\omega}e^{-i\omega t}$ и $A_{2\omega}e^{-i2\omega t}$:

$$j_{mw} = -\frac{c}{4\pi\lambda^2}A_{\omega}e^{-i\omega t} - \frac{c}{4\pi\lambda^2}A_{2\omega}e^{-i2\omega t} + \chi(j)A_{\omega}e^{-i\omega t}A_{\omega}e^{-i\omega t}.$$
 (1)

Здесь $\chi(j)$ обозначает феноменологический коэффициент нелинейности, обращающийся в нуль вместе с постоянным экранирующим током j. Линейная часть микроволнового тока записана в обычном лондоновском виде, λ — глубина проникновения магнитного поля, *с* — скорость света. Эти члены отличны от нуля и без постоянного магнитного поля, и для анализа генерации вполне можно считать, что они не зависят от поля, и ограничиться зависимостью, определяемой нелинейным слагаемым. В эксперименте можно измерить падающую на резонатор мощность, добротности и коэффициенты связи обеих мод, геометрические размеры образца и резонатора. Используя эти параметры и материальное уравнение (1), можно с помощью теории возбуждения резонатора заданным током [32] определить амплитуду поля второй гармоники $E_{2\omega}$. Подробности расчета приведены в работе [33]. Такой способ вычисления интенсивности излучения, в отличие от использованного в работах [6, 7], дает правильную асимптотику при стремлении толщины образца к бесконечности (реально для толщин, много больших глубины проникновения λ). Амплитуда волны на частоте гармоники определяется интегралом взаимодействия заданного нелинейного источника

$$j^{nl}(2\omega) = \chi(j)A_{\omega}e^{-i\omega t}A_{\omega}e^{-i\omega t}$$

с полем резонансной моды, в которую происходит излучение:

$$E_{2\omega} \propto Q_{111} \int j^{nl} (2\omega) e_{111}(\mathbf{r}) d^3 r.$$
⁽²⁾

Интегрирование в (2) ведется по объему образца, $e_{111}(\mathbf{r})$ — электрическое поле моды H_{111} внутри кристалла, Q_{111} — добротность этой моды. Интеграл (2) сильно зависит от температуры, так как в подынтегральное выражение входят поля внутри образца. Зависимость от магнитного поля входит только через коэффициент нелинейности $\chi(i)$. т.е. в конечном счете определяется экранирующим током в скин-слое. Нам удобно считать величину χ зависящей от тока (а не от поля H) из-за наличия гистерезиса (рис. 1, 2). Предполагается, что зависимость амплитуды гармоники от экранирующего тока в скин-слое является однозначной, без гистерезиса. Эксперимент показывает (рис. 5), что интенсивность излучения на удвоенной частоте квадратично зависит от амплитуды падающей волны при всех исследованных интенсивностях (при температурах не слишком близких к T_c). Поэтому в (1) нелинейный источник квадратично зависит от векторного потенциала на основной частоте. Феноменологическая связь нелинейного источника и векторного потенциала не подразумевает конкретного механизма нелинейности. Мы вернемся к вопросу о механизме излучения при обсуждении температурной зависимости интенсивности генерации, но сначала обсудим полевые зависимости (гистерезисные кривые на рис. 1, 2), для чего необходимо провести тшательный анализ поверхностного тока в возрастающем и уменьшающемся полях. Возрастание сигнала и выход на слабую зависимость в возрастающем поле можно легко представить уже в модели Бина, модернизированной Портисом для рассмотрения микроволнового поглощения [34, 35]. Но в рамках этой модели сигнал гармоники при изменении направления развертки магнитного поля должен упасть до нуля и быстро вернуться к уровню, соответствующему возрастающему полю. Эксперимент показывает, что это не так: после падения сигнал остается малым в широком интервале магнитных полей. Далее мы опишем модель, позволяющую понять такое поведение интенсивности гармоники исходя из полевой зависимости экранирующего тока и представлений о генерации вихрей на поверхности, их диффузии в образце и выходе из образца без какого-либо барьера.

2246

Экранирующий dc-ток и гистерезисная кривая интенсивности гармоники. Намагниченность и вместе с ней экранирующий ток сверхпроводника в равновесном состоянии определяются только внешним магнитным полем и температурой. Для пластины сверхпроводника второго рода в магнитном поле H, параллельном поверхности, мейсснеровское состояние стабильно для $H \leq H_{c1}$, где H_{c1} — первое критическое поле. Если поле увеличивается, так что $H > H_{c1}$, мейсснеровское состояние становится метастабильным и вихри могут входить в образец. В магнитном поле $H = H_{c1}$ плотность тока у поверхности j_s порядка $j^*\xi/\lambda$, где j^* — плотность тока распаривания Гинзбурга— Ландау, ξ — длина когерентности. Известно, что мейсснеровское состояние метастабильно, и только в поле $H = H_s$, когда плотность тока $j_s \simeq j^*$, безвихревое состояние становится абсолютно неустойчивым. Здесь H_s — поле поверхностного барьера Бина— Ливингстона [36]. Итак, мы можем считать, что на микроскопическом уровне процесс вхождения вихря в сверхпроводник контролируется величиной тока. Обычно предполагается, что эту роль играет магнитное поле [37, 38].

В реальной экспериментальной ситуации вихрь может войти в сверхпроводник в поле меньшем, чем H_s . Это может произойти из-за неоднородности на поверхности, где локальная плотность тока достигает значения j^* . С этой точки зрения, вихри входят в образец, когда плотность тока на поверхности превышает некоторую критическую величину \tilde{j} . Эта величина определяется реальной морфологией поверхности и удовлетворяет условию $j^*\xi/\lambda \leq \tilde{j} \leq j^*$. В реальном образце необходимо учитывать пиннинг вихрей, что и сделано в теории критического состояния [39]. Считается, что намагниченность равновесная, и поверхностные токи не учитываются. Однако они могут играть важную роль в магнитном моменте образца и микроволновом отклике.

Плотность критического тока пиннинга j_p зависит от взаимодействия вихрей с объемными статическими дефектами. Мы можем представить две возможности: $j_p > \tilde{j}$ и $j_p < \tilde{j}$. В первом случае сильный пиннинг маскирует поверхностный барьер и можно считать, что вихри появляются в образце, только если $j_s > j_c$. Реально именно этот случай рассматривается теорией критического состояния. Последний случай более интересен.

Плотность вихрей около поверхности может быть малой из-за поверхностных токов, которые эффективно «проталкивают» вихри в объем. Такого рода неоднородное распределение вихрей рассматривалось в [40] в связи с «геометрическим» барьером для пластины в нормальном магнитном поле. Для термодинамически равновесного состояния плотность вихрей ρ вблизи поверхности отличается от плотности в объеме. В объеме величина $\rho < H/\phi_0$ (ϕ_0 — квант магнитного потока), потому что магнитная восприимчивость сверхпроводника $\mu < 1$ и имеется скачок магнитной индукции на границе сверхпроводника. В результате возникает поверхностный ток, двигающий вихри от поверхности.

Обсудим распределение тока и плотности вихрей в пластине в параллельном магнитном поле. Будем считать, что проникновение вихрей в сверхпроводник контролируется плотностью тока. Мы покажем, что различие поверхностных токов в нарастающем и убывающем магнитных полях является результатом перераспределения вихрей в образце без изменения их общего числа. Рассмотрим сверхпроводящую пластину толщиной 2d во внешнем параллельном магнитном поле H и введем систему координат с осью x, нормальной к пластине, и осью z, параллельной внешнему магнитному полю. Плоскость x = 0 выберем в середине пластины. В линейном приближении имеем уравнение для векторного потенциала:

$$\Delta \mathbf{A} = (\mathbf{A} - \phi_0 \sum_i \nabla \phi(\mathbf{r} - \mathbf{r}_i)/2\pi)/\lambda^2, \qquad (3)$$

где $\nabla \phi(\mathbf{r} - \mathbf{r}_i)$ — градиент фазы, создаваемый *i*-м вихрем в точке $\mathbf{r}(x, y)$. Уравнение (3) линейное, поэтому можно усреднить его в плоскости x = const и ввести среднюю плотность вихрей $\rho(x)$:

$$\partial^2 A / \partial x^2 = (A - \phi_0 N(x)) / \lambda^2, \tag{4}$$

где

$$N(x)=\int\limits_0^x\rho(x)dx.$$

Уравнение (4) не предполагает какого-либо усреднения вдоль оси x. Решение этого уравнения с граничными условиями $\partial A / \partial x = H$ при x = d; -d имеет вид

$$A = \left(H\lambda + \phi_0 \exp\left(-\frac{d}{\lambda}\right) \int_0^d \operatorname{sh}\left(\frac{x}{\lambda}\right) \frac{N(x)}{\lambda} dx\right) \frac{\operatorname{sh}(x/\lambda)}{\operatorname{ch}(d/\lambda)} + \phi_0 \int_0^d \left(\exp\left(-\frac{|x-x'|}{\lambda}\right) - \exp\left(-\frac{|x+x'|}{\lambda}\right)\right) \frac{N(x')}{2\lambda} dx'.$$
(5)

Если N(x) изменяется слабо на лондоновской длине и $2d \gg \lambda$ (x > 0), то для векторного потенциала A и плотности сверхпроводящего тока j можно написать приближенные выражения:

$$A = \phi_0 N(x) + \phi_0 \lambda^2 \frac{\partial \rho}{\partial x} + \lambda \left(H - \phi_0 \rho(d) \right) \exp\left(-\frac{d-x}{\lambda} \right), \tag{6}$$

$$j = -\frac{c}{4\pi} \left[\phi_0 \frac{\partial \rho}{\partial x} + \left(\frac{H}{\lambda} - \phi_0 \frac{\rho(d)}{\lambda} \right) \exp\left(-\frac{d-x}{\lambda} \right) \right].$$
(7)

Первый член в (7) дает плотность тока, которая используется в теории критического состояния, если рассматривать величину $\phi_0 \rho$ как магнитную индукцию. Зная ток, можно определить магнитный момент образца:

$$M = \phi_0 \left(1 + \operatorname{th} \frac{d}{\lambda} \right) \exp\left(-\frac{d}{\lambda} \right) \int_0^d \frac{N(x)}{2\pi\lambda} \operatorname{sh}\left(\frac{x}{\lambda} \right) dx - \frac{H}{2\pi} \left(d - \lambda \operatorname{th} \frac{d}{\lambda} \right).$$
(8)

Непосредственное вычисление функциональной производной $-\partial(MH)/\partial\rho(x)$ показывает, что эта величина становится равной нулю при x = d. Это означает, что барьер для выхода вихрей не существует, потому что уничтожение вихря ведет к понижению свободной энергии. Итак, если нет какого-то поверхностного тока, играющего роль стенки для вихрей, они будут покидать образец. В результате плотность вихрей на поверхности окажется равной нулю в уменьшающемся поле, когда сила Лоренца старается вытолкнуть вихри из образца. В этом отличие от теории критического состояния, в которой плотность вихрей на поверхности может принимать любые значения.

Для величины N(x) мы имеем уравнение непрерывности:

$$\frac{\partial N}{\partial t} + V \frac{\partial N}{\partial x} + D \frac{\partial^2 N}{\partial x^2} = Q(j), \tag{9}$$

где V — средняя скорость вихрей, D — коэффициент диффузии и Q(j) описывает генерацию вихрей сверхпроводящими токами в образце. Член со второй производной в левой части (9) учитывает диффузию вихрей. Для Q(j) мы используем модель, в которой предполагаем, что генерация вихрей возникает, если плотность тока превышает некоторую критическую величину \tilde{j} [41]:

$$Q(j) = -\gamma \int_{0}^{x} (|j| - \tilde{j}) \Theta(|j| - \tilde{j}) \operatorname{sign}(j) dx, \qquad (10)$$

где γ — феноменологический параметр, $\Theta(x)$ — функция Хевисайда.

Чтобы получить замкнутую систему уравнений, нужно добавить соотношение между скоростью вихря V и плотностью тока j. Мы предполагаем, что V зависит от j в духе модели Бина:

$$V = 0, \quad j < j_p; \quad V = \text{const}(j - j_p), \quad j > j_p,$$
 (11)

где j_p — плотность тока пиннинга.

Имеется решение уравнений (4), (9) с нулевым током и постоянной плотностью вихрей $\rho = H/\phi_0$ везде в образце. Это есть стационарное, но не равновесное состояние. Для термодинамически равновесного состояния с $\rho_0\phi_0 < H$ плотность вихрей на поверхности равна нулю как результат действия поверхностных токов, выталкивающих вихри в объем. Здесь ρ_0 — равновесная плотность вихрей в объеме. Образование безвихревой зоны в неравновесном состоянии обсуждалось в работах [38, 42].

Имеется скачок плотностей тока и вихрей из-за пренебрежения любыми процессами диффузии. Можно записать приближенное выражение для плотности тока на поверхности для равновесного состояния во внешнем магнитном поле *H*:

$$j_s = cH(3.06976 - 2.78577\mu - 0.428182\mu^{-1} + 0.216499\mu^{-2})/4\pi\lambda$$
(12)

для $0.35 < \mu < 0.95$ и $\lambda/d < 0.05$.

В рамках этой модели различие между интенсивностями второй гармоники в нарастающем и убывающем магнитных полях может быть понято следующим образом. Экспериментальные данные показывают, что генерация гармоники контролируется dc-током вблизи поверхности. В нарастающем магнитном поле плотность тока у поверхности порядка j, потому что вихри не входят в образец при меньших токах. Этот ток толкает вихри в образец и формирует безвихревую зону вблизи поверхности. В убывающем поле поверхностный ток изменяет знак, выталкивает вихри из образца и формирует безвихревую зону вблизи поверхности. Имеется скачок плотности вихрей для обоих этих случаев. Ток имеет разный знак, но почти одну и ту же величину. Диффузия вихрей исключает скачки и уменьшает плотность тока на поверхности до нуля для убывающего поля, потому что только в этом случае диффузионные процессы и сила Лоренца действуют в одном направлении. В нарастающем поле диффузия старается вытолкнуть вихрь из образца, т.е. действует против силы Лоренца. На рис. 6 показаны примеры распределения токов в скин-слое в нарастающем и убывающем полях с учетом и без

Рис. 6. Распределение плотности экранирующего тока, полученное при решении модельных уравнений. Кривые 1 и 2 рассчитаны для нарастающего поля соответственно без учета и с учетом диффузии. Кривые 3 и 4 рассчитаны для убывающего поля соответственно без учета и с учетом диффузии

Рис. 7. Сравнение экспериментальной полевой зависимости с гистерезисными кривыми, рассчитанными по модельным уравнениям. Треугольники — экспериментальные точки, сплошная линия — расчет без учета диффузии, светлые кружки — расчет с учетом диффузии

учета диффузии. Различие токов в нарастающем и убывающем полях приводит к различию интенсивности излучения второй гармоники. Теоретическая кривая на рис. 7 была получена следующим образом. Амплитуда второй гармоники согласно уравнению (2) пропорциональна

$$P = \int_{d}^{0} j(x) \exp(3(x-d)/\lambda) dx, \qquad (13)$$

где мы предполагаем, что глубина проникновения высокочастотного поля не зависит от частоты и нелинейная восприимчивость пропорциональна dc-току в образце. Сначала параметр P вычислялся без учета диффузии (D = 0), однако зависимость тока пиннинга от магнитного поля учитывалась. Мы полагаем, что экспериментальные данные по зависимости амплитуды второй гармоники от магнитного поля в нарастающем поле точно воспроизводят зависимость тока пиннинга от магнитного поля $j_p(H)$. Подстановка этой функции в уравнение (13) дает хорошее согласие теории с экспериментом для нарастающих полей, но большое расхождение в убывающих полях. На следующей стадии распределение вихрей в некотором магнитном поле бралось как нулевое приближение и вычислялось новое распределение для $D \neq 0$. Мы видим, что для возрастающего поля диффузия не изменила сколь-нибудь серьезно амплитуду второй гармоники, тогда как для убывающего поля изменения значительные и видно, что учет диффузии позволяет сблизить теоретические и экспериментальные полевые зависимости интенсивности излучения в убывающем поле. Оценка для коэффициента диффузии дает $D \leq (10^{-12} - 10^{-14})$ см²/с.

Температурная зависимость интенсивности генерации. Температурная зависимость интенсивности генерации, представленная на рис. 3, позволяет сделать важный вывод: вихри не являются излучателями гармоники. Действительно, рис. 3 позволяет сравнить интенсивности излучения при одинаковых температуре и магнитном поле, но при разных способах введения поля в образец — в нормальном состоянии и в сверхпроводящем. Видно, что в последнем случае интенсивность значительно выше, хотя число вихрей вблизи поверхности при таком способе введения поля меньше. (Такой же вывод о несущественной роли вихрей как излучателей следует и из анализа полевой зависимости амплитуды гармоники.) Слабая интенсивность излучения при охлаждении в магнитном поле означает малость поверхностного тока. С некоторой натяжкой можно сказать, что это достигается за счет компенсации экранирующего мейсснеровского тока током вихрей (строго говоря, при наличии вихрей нельзя разделить ток на мейсснеровский и вихревой).

Обсудим температурную зависимость интенсивности генерации гармоники в слабом поле, когда на большом температурном интервале нет проникновения вихрей (рис. 4). Для микроволнового диапазона вполне можно воспользоваться связью тока и векторного потенциала, полученной в теории Гинзбурга—Ландау для статического однородного случая:

$$j = -\frac{c}{4\pi\lambda^2} A \left(1 - \frac{c^2}{108\pi^2\lambda^4 j^{*2}} A^2 \right).$$
(14)

Представив векторный потенциал в виде двух слагаемых — на частоте падающей волны ω и на нулевой частоте — $A = A_0 + A_\omega$, получим нелинейный источник j^{nl} , входящий в выражение для интенсивности излучения (2):

$$j^{nl} \propto K A_0 A_{\omega}^2$$
.

Коэффициент пропорциональности K в этом соотношении не зависит от температуры. Учитывая, что $A_{\omega} \propto \zeta \propto \lambda$, где ζ — микроволновый импеданс образца и $A_0 \propto \lambda$, получим для амплитуды гармоники:

 $E_{2\omega} \propto \lambda^5$. (15)

На рисунке 4 видно, что экспериментальная температурная зависимость интенсивности генерации в мейсснеровской фазе и рассчитанная из соотношения (15) неплохо коррелируют при температурах не слишком близких к T_c . Температурная зависимость глубины проникновения λ бралась из работы [43], где она получена при измерениях поверхностного импеданса на монокристалле YBCO. Ближе к T_c соотношение (15) несправедливо уже хотя бы потому, что нарушается квадратичный режим генерации. Такие рассуждения позволяют думать, что в мейсснеровской фазе механизм излучения гармоники связан с модуляцией параметра порядка микроволновым магнитным полем, т.е. с нелинейностью Гинзбурга—Ландау. Если это действительно так, то соотношение (15) может быть использовано для получения температурной зависимости глубины проникновения.

4. ЗАКЛЮЧЕНИЕ

Подытожим основные результаты работы. Экспериментально и теоретически исследована генерация излучения удвоенной частоты сверхпроводящим монокристаллом YBCO, помещенным в сильное микроволновое поле. Излучение возникает только в присутствии постоянного магнитного поля. Зависимость интенсивности излучения от внешнего магнитного поля, параллельного поверхности кристалла, имеет гистерезисный характер, и ее удается понять в рамках модели, учитывающей диффузию вихрей; при этом сами вихри, как показано, не являются источниками излучения. Имеются веские основания считать, что в мейсснеровской фазе механизм излучения связан с нелинейностью Гинзбурга—Ландау.

Авторы признательны Е. С. Боровицкой, М. В. Фейгельману, Д. В. Шовкуну за детальное обсуждение работы и М. В. Голубкову за помощь в проведении эксперимента. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 97-02-17981).

Литература

- 1. Л. П. Горьков, Г. М. Элиашберг, ЖЭТФ 99, 612 (1968).
- 2. J. S. Amato and W. L. McLean, Phys. Rev. Lett. 37, 930 (1976).
- 3. W. L. McLean and J. S. Amato, Phys. Lett: A 45, 289 (1973).
- 4. Г. И. Левиев, А. В. Рыляков, М. Р. Трунин, Письма в ЖЭТФ 50, 78 (1989).
- 5. M. Trunin and G. Leviev, J. Phys. III France 2, 355 (1992).
- 6. I. Ciccarello, M. Guccione, M. Li Vigni et al., Phys. Rev. B 49, 6280 (1994).
- 7. A. Gallitto and M. Li Vigni, Physica C 305, 75 (1998).
- 8. A. Gallitto, I. Ciccarello, M. Guccione et al., Phys. Rev. B 56, 5140 (1997).
- 9. G. Hampel, B. Batlog, K. Krishana et al., Appl. Phys. Lett. 71, 3904 (1997).
- 10. P. P. Nguen, D. E. Oates, G. Dresselhaus et al., Phys. Rev. B 51, 6686 (1995).
- 11. J. McDonald, J. R. Clem, D. E. Oates, Phys. Rev. B 55, 11823 (1997).
- 12. Y. M. Habib, C. J. Lehner, D. E. Oates et al., Phys. Rev. B 57, 13833 (1998).
- 13. A. Philipp, Solid State Comm. 86, 719 (1993).
- 14. Yu. V. Artemov, V. M. Genkin, G. I. Leviev et al., Supercond. Sci. Technol. 10, 590 (1997).
- 15. C. D. Jeffries, Q. H. Lam, Y. Kim et al., Phys. Rev. B 37, 9840 (1988).
- 16. Q. H. Lam and C. D. Jeffries, Phys. Rev. B 39, 4772 (1989).
- 17. B. P. Wilfley, H. Suhl, and S. Schults, Phys. Rev. B. 30, 2649 (1984).
- 18. I. Ciccarello, C. Fazio, M. Guccione et. al., Physica C 159, 769 (1989).
- 19. L. Ji, R. H. Sohn, and M. Tinkham, Phys. Rev. B 40, 936 (1989).
- 20. И. Ф. Волошин, Н. М. Макаров, Л. М. Фишер и др., Письма в ЖЭТФ 51, 225 (1990).
- 21. Г. И. Левиев, Р. С. Папикян, М. Р. Трунин, ЖЭТФ 99, 357 (1991).
- 22. A. S. Shaulov, Phys. Rev. B 43, 3760 (1991).

- 23. P. Chaddah, S. B. Roy, and S. Kumar, Phys. Rev. B 46, 11737 (1992).
- 24. M. Coffey, Phys. Rev. B 47, 15298 (1993).
- 25. S. Sridhar, Appl. Phys. Lett. 65, 1055 (1994).
- 26. F. Gunea and Yu. Pogorelov, Phys. Rev. B 53, 6725 (1996).
- 27. C. J. van der Beek, V. B. Geshkenbein, and V. M. Vinokur, Phys. Rev. B 48, 3393 (1993).
- 28. G. Blatter, M. Feigel'man, V.Geshkenbein et al., Rev. Mod. Phys. 66, 1147 (1994).
- 29. M. Golosovsky, M. Tsindlekht, and D. Davidov, Supercond. Sci. Technol. 9, 1 (1996).
- 30. A. A. Golubov, M. R. Trunin, S. V. Shulga et al., Physica C 213, 139 (1993).
- 31. Н. Бломберген, Нелинейная оптика, Мир, Москва (1967).
- 32. Л. А. Вайнштейн, Электромагнитные волны, Наука, Москва (1988).
- 33. Е. С. Боровицкая, В. М. Генкин, Г. И. Левиев, ЖЭТФ 110, 1081 (1996).
- 34. A. M. Portis, K. W. Blasey, K. A. Muller et al., Europhys. Lett. 5, 467 (1988).
- 35. A. M. Portis, K. W. Blasey, and F. Waldner, Physica C 153-155, 308 (1988).
- 36. C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964).
- 37. Ф. Ф. Терновский, Л. Н. Шехата, ЖЭТФ 62, 2297 (1972).
- 38. J. R. Clem, J. Appl. Phys. 50, 3518 (1979).
- 39. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
- 40. E. Zeldov, A. I. Larkin, V. B. Geshkenbeim et al., Phys. Rev. Lett. 73, 1428 (1994).
- 41. E. S. Borovitskaya, V. M. Genkin, and G. I. Leviev, IEEE Trans. on Applied Supercond. 7, 1220 (1997).
- 42. L. Burlachkov, Phys. Rev. B 47, 8056 (1993).
- 43. М. Р. Трунин, УФН 168, 931 (1998).