# ГИГАНТСКИЙ МАГНИТОАКУСТИЧЕСКИЙ ЭФФЕКТ В КМnF<sub>3</sub>, ОБУСЛОВЛЕННЫЙ ЯДЕРНЫМИ СПИНОВЫМИ ВОЛНАМИ

X. Г. Богданова<sup>a\*</sup>, В. А. Голенищев-Кутузов<sup>a</sup>, М. И. Куркин<sup>b</sup>, В. Е. Леонтьев<sup>a</sup>, М. Р. Назипов<sup>a</sup>, С. В. Петров<sup>c</sup>, М. М. Шакирзянов<sup>a</sup>

> <sup>а</sup> Казанский физико-технический институт им. Е. К. Завойского Российской академии наук 420029, Казань, Россия

> > <sup>b</sup> Институт физики металлов Уральского отделения Российской академии наук 620219, Екатеринбург, Россия

<sup>с</sup> Институт физических проблем им. П. Л. Капицы - Российской академии наук 117334, Москва, Россия

Поступила в редакцию 16 октября 1998 г.

Предложено объяснение гигантского магнитоакустического эффекта, обнаруженному нами ранее в KMnF<sub>3</sub> [5]. Эффект заключается в десятикратном ослаблении амплитуды акустического импульса, которое наблюдалось при изменении магнитного поля в интервале значений 0-8 кЭ. Показано, что он обусловлен интерференцией двух ядерных магнитоупругих волн, распространяющихся в образце в условиях магнитоакустического резонанса, если этот резонанс приходится на область сильной пространственной дисперсии ядерных спиновых волн. Эффект назван гигантским, потому что он превосходит по величине магнитоакустические эффекты, наблюдавшиеся ранее в магнитоупорядоченных веществах, хотя и обусловлен ядерным магнетизмом, который в 10<sup>5</sup> раз слабее электронного. Одновременно обнаружена аномальная зависимость дисперсии скорости звука от внешнего магнитного поля.

#### 1. ВВЕДЕНИЕ

Под магнитоакустическими эффектами обычно понимается зависимость акустических параметров (амплитуды u, частоты  $\omega$ , скорости распространения V и поляризации акустической волны) от магнитного поля H. Большинство исследований посвящено влиянию поля на скорость звука и его поляризацию (вращение плоскости поляризации и эллиптичность) [1,2]. Обычно это влияние невелико даже в магнитоупорядоченных веществах и лишь в исключительных случаях изменения достигают 100% [3]. Еще менее заметно изменение амплитуды акустической волны u под действием поля H, что обусловлено малостью магнитоупругих взаимодействий по сравнению с ангармонизмом фононов, который в основном определяет затухание звука в твердых телах. Обычно зависимости u(H) изучаются при акустическом возбуждении ЭПР и ЯМР в парамагнетиках [4].

<sup>\*</sup>E-mail: bogdanova@dionis.kfti.kcn.ru

Отсюда понятно, насколько неожиданным для нас было обнаружение зависимости u(H), соответствующей десятикратному уменьшению амплитуды акустического импульса u в монокристаллах KMnF<sub>3</sub> [5]. Когда же выяснидось, что столь сильный магнитоакустический эффект обусловлен ядерным магнетизмом, который в 10<sup>5</sup> раз слабее электронного, мы не смогли устоять перед искушением назвать этот эффект гигантским. В нашей предыдущей работе [5] было показано, что обнаруженный эффект хорошо согласуется с условиями кристаллической и магнитной симметрии соединения KMnF<sub>3</sub> и поэтому не может быть обусловлен случайными факторами (загрязнением, погрешностью измерительной аппаратуры и др.). Кроме того, эффект наблюдался в диапазоне частот акустических волн 630–670 МГц, который попадает в полосу частот ядерных спиновых волн в KMnF<sub>3</sub> [6, 7]. А поскольку эта полоса  $\delta \omega_n$  лежит ниже частот АФМР, обнаруженная зависимость u(H) обусловлена ядерным, а не электронным магнетизмом.

Оставалось выяснить, каким образом столь слабое магнитоупругое взаимодействие, как связь упругих деформаций с колебаниями магнитных моментов ядер, может привести к таким большим эффектам в магнитоакустике. Поиск ответа на этот вопрос и является предметом исследований данной работы.

## 2. ПРИРОДА ОСЛАБЛЕНИЯ АКУСТИЧЕСКОЙ ПРОЗРАЧНОСТИ В КМпF<sub>3</sub>

Характер наблюдаемой зависимости u(H) в виде минимумов (см. рис. 3 и 4 в [5]) дает основание считать, что обсуждаемый эффект обусловлен магнитоупругим резонансом акустических колебаний с колебаниями ядерных спинов. Однако он не может быть связан с ядерной магнитной релаксацией, поскольку ее скорость гораздо меньше скорости затухания звука за счет фононного ангармонизма. В данном случае большим может быть вклад затухания фононов в ядерную магнитную релаксацию, но не наоборот.

При поиске недиссипационных механизмов ослабления амплитуды акустического импульса u при прохождении через образец KMnF<sub>3</sub> решающую роль сыграло то, что нам не удалось обнаружить зависимости u(H) в другом слабом ферромагнетике FeBO<sub>3</sub>. Было известно, что KMnF<sub>3</sub> и FeBO<sub>3</sub> существенно различаются характером колебаний ядерных спинов. В KMnF<sub>3</sub> при гелиевых температурах имеет место достаточно сильное взаимодействие между ядерными спинами, расположенными в разных узлах кристаллической решетки, что обеспечивает формирование ядерных спиновых волн [8], аналогичных электронным спиновым волнам в магнитоупорядоченных веществах. Существенно, что в KMnF<sub>3</sub> имеются две ветви ядерных спиновых волн с частотами  $\omega_{n1}(q, H)$ и  $\omega_{n2}(q, H)$ , по-разному зависящими от H. Это приводит к тому, что условия ядерного магнитоакустического резонанса, т. е. равенства частот и волновых векторов акустической волны ( $\Omega(q)$ ) и ядерных спиновых волн ( $\omega_n(q)$ ),

$$\Omega(q) = \omega_{n1}(q, H_1), \quad \Omega(q) = \omega_{n2}(q, H_2), \tag{1}$$

достигаются при разных значениях поля H. Значения  $H_1$  и  $H_2$  соответствуют двум минимумам, наблюдаемым на кривых u(H) (см. рис. 3 и 4 в [5]).

Диапазон частот  $\delta\omega_n$ , в котором изменяются  $\omega_{n1}(q, H)$  и  $\omega_{n2}(q, H)$  в KMnF<sub>3</sub>, по данным работы [7] составляет примерно 100 МГц. По этой причине зависимость  $\omega_{n1}$  и  $\omega_{n2}$  от q (пространственная дисперсия) существенно проявляется во всех процессах



Рис. 1. Спектры ядерных магнитоупругих волн вблизи ядерного магнитоакустического резонанса: *а* — в отсутствие дисперсии в спектре колебаний ядерных спинов; *б* — когда ядерный магнитоакустический резонанс приходится на область сильной дисперсии в спектре ядерных спиновых волн



Рис. 2. Схема прохождения акустического импульса через образец KMnF<sub>3</sub> в условиях ядерного магнитоакустического резонанса

с участием ядерных спиновых волн, в том числе и при ядерном магнитоакустическом резонансе.

В FeBO<sub>3</sub> оценки диапазона  $\delta\omega_n$  по известным формулам [8] дают величину в 10<sup>5</sup> раз меньшую, чем в KMnF<sub>3</sub>, т.е. около 1 кГц. Это обусловлено сильным различием в величинах магнитных моментов ядер <sup>57</sup> Fe и <sup>55</sup>Mn, их естественной распространенности и частот  $\omega_n$  для FeBO<sub>3</sub> и KMnF<sub>3</sub>. При столь малых величинах  $\delta\omega_n$  в FeBO<sub>3</sub> (1 кГц гораздо меньше ширины линии ЯМР) пространственная дисперсия в спектре ядерных спиновых волн не должна приводить к каким-либо наблюдаемым эффектам.

Существование ядерных спиновых волн и является причиной сильной зависимости u(H) в KMnF<sub>3</sub>. Это видно на рис. 1*a*, *b*, на котором приведены дисперсионные кривые для акустических волн и ядерных спиновых волн в окрестности ядерного магнитоакустического резонанса в случае FeBO<sub>3</sub> (рис. 1*a*), в котором  $\omega_n(q)$  не зависит от *q*, и для KMnF<sub>3</sub>, для которого пересечение ветвей  $\Omega(q)$  и  $\omega_n(q)$  приходится на область сильной пространственной дисперсии ядерных спиновых волн (рис. 1*b*). Штриховыми линиями показаны дисперсионные кривые для магнитоупругих волн, содержащих упругую и магнитную составляющие. На этом рисунке видно, что в отсутствие ядерных спиновых волн (рис. 1*a*) на данной частоте  $\Omega_0$  в образце распространяется только одна магнитоакустическая волна с волновым вектором **q**<sub>1</sub>. Если же магнитоакустический резонанс приходится на область сильной зависимости  $\omega_n$  от *q* (рис. 1*b*), то в образце могут распространяться две магнитоупругие волны с одинаковой частотой  $\Omega_0$  и разными волновыми векторами **q**<sub>1</sub> и **q**<sub>2</sub>. По мере распространения этих волн через образец между их акустическими составляющими  $u_1$  и  $u_2$  будет накапливаться разность фаз  $\delta\varphi$ ,

7 ЖЭТФ, №5

которая в системе координат у  $\| \mathbf{q}_1 \| \mathbf{q}_2$  описывается выражением

$$\delta\varphi(y) = (q_1 - q_2)y. \tag{2}$$

Наличие  $\delta \varphi$  существенно сказывается на амплитуде акустического импульса  $u_0$ , проходящего в немагнитную среду (LiNbO<sub>3</sub>) через поверхность  $y = \mathscr{L}$  (рис. 2). Дело в том, что величина u зависит не только от амплитуд  $u_1$  и  $u_2$ , но и от разности фаз  $\delta \varphi(\mathscr{L})$ , с которыми они подойдут к поверхности  $y = \mathscr{L}$ . Если  $u_1$  и  $u_2$  окажутся в противофазе, т.е.

$$\delta\varphi(\mathscr{L}) = (q_1 - q_2)\mathscr{L} = 2(n+1)\pi,\tag{3}$$

(где n — целые числа), то амплитуда u будет определяться разностью  $|u| = |u_1 - u_2|$ , так что при  $u_1 = u_2$  поверхность  $y = \mathscr{L}$  становится непрозрачной для таких магнитоупругих волн.

Как будет показано ниже, равенство  $u_1 = u_2$  имеет место при точном ядерном магнитоакустическом резонансе, т. е. сильное уменьшение u по сравнению с амплитудой падающей акустической волны  $u_0$  возможно лишь при одновременном выполнении условий (1) и (3). Хотя такое совпадение является случайным событием, тем не менее оно оказывается возможным, из-за того что величины, входящие в (1) и (3), зависят от величины магнитного поля H, его ориентации и частоты падающего акустического импульса  $\Omega_0$ . Вариация трех параметров уже обеспечивает одновременное выполнение двух условий с достаточно высокой степенью точности. Однако поиск нужного набора этих параметров требует большого числа измерений. Например, приведенные в [5] кривые зависимости

$$K(H) = u(H)/u_0,\tag{4}$$

соответствующие десятикратному уменьшению u(H) (в минимуме K(H)), составляют лишь несколько процентов от общего числа снятых кривых. Ниже будут получены формулы, позволяющие сделать некоторые количественные оценки параметров кривых K(H).

## 3. УРАВНЕНИЯ ДЛЯ МАГНИТОУПРУГИХ ВОЛН В ОБЛАСТИ ЯДЕРНОГО МАГНИТОАКУСТИЧЕСКОГО РЕЗОНАНСА НА ЯДЕРНЫХ СПИНОВЫХ ВОЛНАХ

В этом разделе приведены результаты расчетов величин косвенного взаимодействия упругих волн с ядерными спиновыми волнами через колебания электронных магнитных моментов  $M(r_j)$  и амплитуд колебаний магнитоупругих волн. Для описания упругих волн мы использовали стандартное уравнение теории упругости [9]:

$$\rho \frac{\partial^2 u_{\alpha}}{\partial t^2} = \frac{\partial \sigma_{\alpha\beta}}{\partial r_{\beta}},\tag{5}$$

где  $u_{\alpha}$  ( $\alpha = x, y, z$ ) — компоненты смещения точек упругой среды,  $\rho$  — ее плотность, t — время,  $r_{\alpha}$  — пространственные координаты,  $\sigma_{\alpha\beta}$  — тензор напряжений, который является вариационной производной от свободной энергии F по деформациям  $U_{\alpha\beta} = = \partial u_{\alpha} / \partial r_{\beta}$ :

$$\sigma_{\alpha\beta} = -\delta F / \delta U_{\alpha\beta}. \tag{6}$$

1



Рис. 3. Ориентация волнового вектора падающей упругой волны q, магнитного поля H, намагниченностей подрешеток M<sub>1</sub> и M<sub>2</sub>, векторов антиферромагнетизма L и ферромагнетизма M относительно осей кристалла в KMnF<sub>3</sub>

Для магнитоупорядоченной упругой среды со сверхтонким взаимодействием выражение для *F* может быть записано в виде [8, 10]

$$F = F_E + F_M + F_{ME} + F_{HF}, \tag{7}$$

где  $F_E$  — энергия упругих деформаций, которая определяет скорость акустических волн;  $F_M$  — энергия, ответственная за свойства упорядоченных магнитных моментов  $\mathbf{M}(r_j)$ (она включает в себя обменное взаимодействие, магнитную анизотропию, взаимодействие Дзялошинского, ответственное за слабый ферромагнетизм, и взаимодействие с магнитным полем H);  $F_{ME}$  — магнитоупругая энергия взаимодействия векторов  $\mathbf{M}(r_j)$ с упругими деформациями  $U_{\alpha\beta}$ ;  $F_{HF}$  — энергия сверхтонкого взаимодействия магнитных моментов ядер  $\mathbf{m}(r_j)$  и электронов  $\mathbf{M}(r_j)$ .

Для упругих волн с продольной поляризацией и волновым вектором  $\mathbf{q} \parallel \mathbf{y}$  (рис. 3) выражение для  $F_{ME}$  с учетом кристаллической симметрии KMnF<sub>3</sub> и его магнитной структуры [11, 12] может быть записано в виде [5]

$$F_{ME} = -\int dr \left\{ B_1 L_y^2(r) + B_2 \left[ L_x^2(r) + L_z^2(r) \right] + B_3 \left[ M_x(r) L_z(r) + M_z(r) L_x(r) \right] \right\} U_{yy}(r), \quad (8)$$

где  $U_{yy} = \partial u_y(r) / \partial y$  — единственная отличная от нуля компонента тензора деформаций для рассматриваемых упругих волн;

$$L = M_1 - M_2, \quad M = M_1 + M_2$$
 (9)

— векторы антиферромагнетизма и ферромагнетизма для двухподрешеточного антиферромагнетика;  $M_1$  и  $M_2$  — намагниченности подрешеток;  $B_1$ ,  $B_2$  и  $B_3$  — константы магнитоупругого взаимодействия. Отметим, что в формуле (8) взяты только первые два члена разложения по степеням M.

Если учесть, что в KMnF<sub>3</sub> вектор L (рис. 3) лежит в плоскости xz (плоскость (001)), то в (8) достаточно оставить лишь слагаемые с  $B_3$ , так как

$$\frac{d}{dy}(L_x^2 + L_z^2) = \frac{d}{dy}L^2 = 0$$

(с точностью до квадратичных по M членов). В этом приближении уравнение (5) может быть записано в виде

$$\left[\omega^2 - \Omega^2(q)\right] u_y(q,\omega) = iq\rho^{-1}B_3 \left[M_x(q,\omega)L_z(q,\omega) + M_z(q,\omega)L_x(q,\omega)\right],\tag{10}$$

7\*

где

$$u_y(q,\omega) = \int dy \int dt \, \exp(i\omega t + iqy)u_y(y,t) \tag{11}$$

— компонента фурье-образа для упругих смещений u(y,t) (аналогичным образом определяются и величины  $M_{x,z}(q,\omega)$  и  $L_{x,z}(q,\omega)$ ;  $\Omega(q) = Vq$  и V — частота и скорость продольных упругих волн.

Дальнейшее упрощение соотношения (10) связано с тем, чтобы выражения для  $M_x$ и  $L_x$  разложить по малым колебаниям, обусловленным их взаимодействием с упругими смещениями  $u_y(y,t)$  и колебаниями ядерных намагниченностей подрешеток  $m_{1,2}(y,t)$ . Для этого нужно перейти от L и M (9) к намагниченностям подрешеток M<sub>1</sub> и M<sub>2</sub>, записав их в системах координат  $(x_1, y_1, z_1)$  и  $(x_2, y_2, z_2)$ , связанных с равновесными ориентациями подрешеток M<sub>10</sub> и M<sub>20</sub> ( $z_1 \parallel M_{10}, z_2 \parallel M_{20}$ ). Тогда в первом приближении достаточно учесть лишь компоненты  $M_{x_j}$  и  $M_{y_j}$ , где j — индекс подрешетки (j = 1, 2). В результате уравнение (10) примет вид

$$\begin{bmatrix} \omega^2 - \Omega^2(q) \end{bmatrix} u_y(q,\omega) = iq\rho^{-1}B_3M_0 \sin 2\varphi \left\{ \cos\psi \left[ M_{y_1}(q,\omega) - M_{y_2}(q,\omega) \right] - 2\sin\psi \left[ M_{x_1}(q,\omega) + M_{x_2}(q,\omega) \right] \right\},$$
(12)

где

$$M_{\alpha_j}(q,\omega) = \int dy \int dt \, \exp(i\omega t + iqy) M_{\alpha_j}(y,t), \tag{13}$$

 $\alpha = x, y, M_0$  — равновесное значение M (9),  $\psi$  — полярный угол поля H (рис. 3),  $\varphi$  — азимутальный угол вектора L в плоскости xz. Величина  $\varphi$  находится из решения достаточно сложного тригонометрического уравнения (10) и зависит от напряженности поля H и его ориентации относительно осей кристалла. В данной работе мы не будем касаться анализа этих зависимостей, поскольку для объяснения гигантского ослабления акустической прозрачности KMnF<sub>3</sub> они не существенны.

Компоненты  $M_{x_j}$  и  $M_{y_j}$  в (12) находились из условия минимума магнитной части (7) в линейном приближении по  $F_{ME}$  (8) и

$$F_{HF} = -\int dr \, A \sum_{j=1}^{2} M_j(r) m_j(r).$$
(14)

Для компонент  $M_{\alpha_{j}}(q,\omega)$  (13),  $u_{y}(q,\omega)$  (11) и

$$m_{\alpha_j}(q,\omega) = \int dy \int dt \, \exp(i\omega t + iqy) m_{\alpha_j}(y,t) \tag{15}$$

получились следующие соотношения:

$$M_{x_{1}}(q,\omega) = M_{x_{2}}(q,\omega) = \chi_{1}(q,H) \bigg\{ A \big[ m_{x_{1}}(q,\omega) + m_{x_{2}}(q,\omega) \big] - 2B_{3}M_{0}\sin 2\varphi \sin \psi u_{y}(q,\omega) \bigg\},$$
(16)

$$M_{y_{1}}(q,\omega) = -M_{y_{2}}(q,\omega) = \chi_{2}(q,H) \bigg\{ A \big[ m_{y_{1}}(q,\omega) + m_{y_{2}}(q,\omega) \big] + B_{3}M_{0} \sin 2\varphi \cos \psi u_{y}(q,\omega) \bigg\},$$
(17)

где  $\chi_1(q, H)$  и  $\chi_2(q, H)$  — компоненты восприимчивостей подрешеток, которые зависят от тех же величин, что и  $\varphi$  [5]. Как и для  $\varphi$ , эти зависимости в данной работе не анализировались. Тем не менее мы выделили зависимости от q и H, поскольку для дальнейшего важно, что такие зависимости имеют место.

Компоненты  $m_{\alpha_i}$  находились из уравнений Блоха [10]

$$\partial m_i / \partial t = \gamma_n [\mathbf{m}_i \mathbf{H}_i], \tag{18}$$

где  $H_j = \delta F_{HF} / \delta m_j$  — эффективные поля, действующие на  $\mathbf{m}_1$  и  $\mathbf{m}_2$  со стороны  $\mathbf{M}_1$  и  $\mathbf{M}_2$ . В линейном приближении по  $m_{\alpha_j}$  эти уравнения имеют вид

$$\partial m_{x_j} / \partial t = \gamma_n A M_0 m_{y_j} - \gamma_n A m_0 M_{y_j},$$
  

$$\partial m_{y_j} / \partial t = -\gamma_n A M_0 m_{x_j} + \gamma_n A m_0 M_{x_j},$$
(19)

где  $M_0$  и  $m_0$  — равновесные значения  $\mathbf{M}_j$  и  $\mathbf{m}_j$ ,  $\gamma_n$  — ядерное гиромагнитное отношение. Подстановка (16) и (17) в (12) и (19) приводит к следующей системе уравнений:

$$\left[\omega^{2} - \Omega^{2}(q, H)\right] u_{y}(q, \omega) - i\rho^{-1}q\alpha_{2}(q, H)l(q, \omega) - i\rho^{-1}q\alpha_{1}(q, H)m(q, \omega) = 0,$$
(20)

$$\left[\omega^{2} - \omega_{n1}^{2}(q, H)\right] m(q, \omega) + 2iq\gamma_{n}m_{0}\alpha_{1}(q, H)u_{y}(q, \omega) = 0,$$
(21)

$$[\omega^2 - \omega_{n2}^2(q, H)] l(q, \omega) + 2iq\gamma_n m_0 \alpha_2(q, H) u_y(q, \omega) = 0,$$
(22)

$$l(q,\omega) = m_{y_1}(q,\omega) - m_{y_2}(q,\omega), \quad m(q,\omega) = m_{x_1}(q,\omega) + m_{x_2}(q,\omega),$$
(23)

где

$$\Omega(q,H) = q \left\{ V + \rho^{-1} B_3^2 M_0^2 \sin^2 2\varphi \left[ \chi_2(q,H) \cos^2 \varphi + 4\chi_1(q,H) \sin^2 \psi \right] \right\}^{1/2}$$
(24)

— частота продольной акустической волны с учетом магнитоупругого взаимодействия  $F_{ME}$  (8),

$$\omega_{n1}(q,H) = \gamma_n \left\{ AM_0 \left[ AM_0 - 2A^2 m_0 \chi_1(q,H) \right] \right\}^{1/2}, \tag{25}$$

$$\omega_{n2}(q,H) = \gamma_n \left\{ AM_0 \left[ AM_0 - 2A^2 m_0 \chi_2(q,H) \right] \right\}^{1/2}$$
(26)

— частоты двух ветвей ядерной спиновой волны. Вторые слагаемые в (25) и (26) описывают так называемые динамические сдвиги частот ЯМР. Благодаря множителям  $\chi_1$  и  $\chi_2$  они зависят от магнитного поля H, что позволяет настраиваться на частоту ядерного магнитоакустического резонанса (1), меняя напряженность поля H;

$$\alpha_1(q,H) = 2AB_3 M_0 \chi_1(q,H) \sin 2\varphi \sin \psi, \qquad (27)$$

$$\alpha_2(q,H) = AB_3 M_0 \chi_2(q,H) \sin 2\varphi \cos \psi \tag{28}$$

 параметры, определяющие величину косвенного взаимодействия продольных упругих волн с первой и второй ветвями ядерной спиновой волны.

#### 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Некоторые свойства зависимости K(H) (4) можно получить, даже не решая уравнений (20)–(22).

1) Условие ядерного магнитоакустического резонанса (1) может быть достигнуто за счет изменения H при неизменной частоте падающего акустического импульса  $\Omega_0$ . Это обеспечивается достаточно сильной полевой зависимостью частот  $\omega_{n1}(q, H)$  и  $\omega_{n2}(q, H)$  (25), (26), которые экспериментально исследовались в [6].

2) Как следует из (28), при  $\psi = 90^{\circ}$  исчезает магнитоупругое взаимодействие звука со второй ветвью ядерной спиновой волны, которая описывается переменной  $l(q, \omega)$  (23). Выполнимость этого требования специально проверялась в [5] (см. рис. 3 и 4 в [5]).

3) Согласно (27), (28) магнитоупругая связь  $u_y(q, \omega)$  с обеими ветвями ядерной спиновой волны должна исчезать при  $\sin 2\varphi = 0$ . Поскольку угол  $\varphi$  зависит от величины азимутального угла  $\Phi$  поля H, на кривых  $u(\Phi)/u_0$  должны быть точки, в которых  $u(\Phi)/u_0 = 1$ . Этот вывод также согласуется с экспериментальными данными работы [5] (см. рис. 5 и 6 в [5]).

4) Величина косвенного взаимодействия упругих колебаний  $u_y(q, \omega)$  с ядерной спиновой волной, как и динамические сдвиги частот ЯМР (25), (26), пропорциональна величинам  $m_0$  и  $\chi_{1,2}(q, H)$ . Это означает, что магнитоупругие эффекты, обусловленные ядерными спинами, должны убывать вместе с уменьшением динамического сдвига. Отсутствие заметных магнитоакустических эффектов в FeBO<sub>3</sub>, в котором ширина полосы ядерных спиновых волн (совпадающая с величиной динамического сдвига частоты [4]) в 10<sup>5</sup> раз меньше, чем в KMnF<sub>3</sub>, согласуется с этим выводом.

Для анализа других свойств K(H) (4) необходимо иметь явный вид решений уравнений (20)–(22). Они будут получены для случая, когда частоты ядерной спиновой волны  $\omega_{n1}(q, H)$  (25) и  $\omega_{n2}(q, H)$  (26) существенно различаются по величине (невырожденный случай). Тогда условие ядерного магнитоакустического резонанса (1) с каждой из ветвей ядерной спиновой волны будет достигаться при разных значениях H, так что уравнения (20)–(22) можно решать, полагая

$$\omega_{n1}^2(q,H) = \Omega_0^2(q,H), \quad l(q,\omega) = 0$$
<sup>(29)</sup>

в случае ядерного магнитоакустического резонанса с первой ветвью ядерной спиновой волны и

$$\omega_{n2}^2(q,H) = \Omega_0^2(q,H), \quad m(q,\omega) = 0$$
(30)

для резонанса со второй ветвью.

Характеристическое уравнение для системы (20)–(22) определяет значения волновых векторов  $\mathbf{q}_1$  и  $\mathbf{q}_2$  для двух ветвей магнитоупругих волн в каждом из указанных вариантов ядерного магнитоакустического резонанса (29) и (30). Соответствующие уравнения при условиях (29) имеют вид

$$\left[\Omega_0^2 - \Omega^2(q, H)\right] \left[\Omega_0^2 - \omega_{n1}^2(q, H)\right] - q^2 \alpha_1^2(q, H)(2\rho^{-1}\gamma_n m_0) = 0, \tag{31}$$

$$\left[\Omega_0^2 - \Omega^2(q, H)\right] \left[\Omega_0^2 - \omega_{n2}^2(q, H)\right] - q^2 \alpha_2^2(q, H)(2\rho^{-1}\gamma_n m_0) = 0.$$
(32)

Каждое из этих уравнений имеет два корня:  $q_1$  и  $q_2$ . Их анализ выходит за рамки данной работы, поскольку мы не исследовали свойства параметров  $\alpha_{1,2}(q, H)$  (27), (28). Для

дальнейшего будет важно только одно свойство этих корней:

$$\Delta q/q_0 = |q_1 - q_2|/q_0 \ll 1, \tag{33}$$

где  $q_0$  — значение q, удовлетворяющее условиям (29) или (30). Неравенство (33) следует из условия малости вторых слагаемых (31) и (32) по сравнению с  $\Omega^2(q, H)$ .

С помощью величин  $q_1$  и  $q_2$  выражение для упругой составляющей магнитоупругих волн в образце может быть записано в виде

$$u_{\nu}(y,\omega) = u_1(\omega) \exp(iq_1y) + u_2(\omega) \exp(iq_2y), \tag{34}$$

где коэффициенты  $u_1$  и  $u_2$  должны находиться из граничных условий для уравнений (5) и (19). Применительно к нашим экспериментам эти условия следует задавать в форме, соответствующей задаче Коши для поверхности образца y = 0, на которую падает акустический импульс. Строго говоря, нужно учесть еще и начальные условия. Но мы решили для простоты пренебречь переходными процессами и работать с фурье-образами по времени t. Для них граничные условия при y = 0 имеют вид

$$m(0,\omega) = l(0,\omega) = 0, \quad u_1(\omega) + u_2(\omega) = u_y(0,\omega) \exp(i\varphi_0),$$
 (35)

где  $m(0,\omega)$  и  $l(0,\omega)$  — значения  $m(y,\omega)$  и  $l(y,\omega)$  при y=0,

$$u_y(0,\omega) = \int dt \, e^{i\omega t} u_y(0,t) \tag{36}$$

— фурье-образ падающего импульса, из которого вычтен отраженный,  $\varphi_0$  — начальная фаза волны, прошедшей в образец. Центральная частота спектра  $u(0,\omega)$  совпадает с частотой акустического генератора  $\Omega_0$ , а ширина этого спектра  $\delta\omega$  определяется длительностью импульса  $\tau$ :

$$\delta\omega = 2\pi/\tau. \tag{37}$$

В условиях ядерного магнитоакустического резонанса (29) или (30) из (20)-(22) и (35) получаем

$$u_1(\omega) = u_2(\omega) = \frac{1}{2} u_y(0,\omega) \exp(i\varphi_0).$$
 (38)

После подстановки (38) в (34) для  $u_y(y,\omega)$  на второй торцевой поверхности образца  $(y = \mathscr{L})$  находим выражение

$$u_{y}(\mathscr{L},\omega) = u_{y}(0,\omega)\exp(i\varphi_{0})\left[\exp(iq_{1}\mathscr{L}) + \exp(iq_{2}\mathscr{L})\right]/2.$$
(39)

Регистрируемый акустический сигнал определяется функцией  $u_y(\mathscr{L}, t)$ , связанной с  $u_y(\mathscr{L}, \omega)$  (снова за исключением отраженной волны) обратным преобразованием Фурье:

$$u_{y}(\mathscr{L},t) = \frac{1}{2\pi} \int d\omega \, e^{-i\omega t} u_{y}(\mathscr{L},\omega). \tag{40}$$

Результат интегрирования в (40) зависит от того, насколько сильна частотная дисперсия скоростей магнитоупругих волн

$$V_1(\omega) = \omega/q_1(\omega), \quad V_2(\omega) = \omega/q_2(\omega)$$
(41)

в пределах частотного спектра падающего импульса  $\delta \omega$  (37). Если зависимостью  $V_1$  и  $V_2$  от  $\omega$  можно пренебречь, то формула (40) может быть записана в виде

$$u_{y}(\mathscr{L}, t) = \frac{1}{2} \left\{ u_{y} \left[ 0, (t - \mathscr{L}/V_{1}) \right] + u_{y} \left[ 0, (t - \mathscr{L}/V_{2}) \right] \right\},$$
(42)

где u(0, t) — амплитуда упругих смещений на поверхности образца y = 0, возбуждаемых падающим импульсом (см. (36)), а

$$t_1 = \mathscr{L}/V_1, \quad t_2 = \mathscr{L}/V_2 \tag{43}$$

— времена распространения первой и второй магнитоупругих волн через образец.

Из (42) следует, что падающий акустический импульс возбуждает в образце два магнитоупругих импульса, которые совпадают по форме с падающим и имеют равные амплитуды. Это обстоятельство уже использовалось выше (см. разд. 2). Однако такое равенство имеет место только в условиях ядерного магнитоакустического резонанса (29) и (30) (см. также (1)), когда выполняется соотношение (38). По мере удаления от резонанса обсуждаемые две магнитоупругие волны становятся все более неэквивалентными, так что они имеют даже разные названия: упругоподобная и спиноподобная волны. Эта неэквивалентность проявляется, в частности, в том, что амплитуда упругоподобной волны, возбуждаемая падающим акустическим импульсом, оказывается больше, чем спиноподобной, и это различие возрастает по мере удаления от резонанса. Мы не приводим здесь соответствующие выражения для  $u_y(\mathscr{Z}, \omega)$  по двум причинам. Во-первых, они имеют гораздо более сложный вид, чем (42). Во-вторых, ими можно воспользоваться ваться только в том случае, если известен явный вид функций  $\chi_1(q, H)$  и  $\chi_2(q, H)$  (см. формулы (16), (17)). Такой анализ нам еще предстоит провести, а пока мы ограничились анализом только формулы (42) для двух случаев:  $|t_1 - t_2| \ll \tau$  и  $|t_1 - t_2| > \tau$ .

а) В случае

$$|t_1 - t_2| \ll \tau \tag{44}$$

импульсы магнитоупругих волн, возбуждаемые падающим акустическим импульсом, выходят на поверхность образца ( $y = \mathscr{L}$ ) практически одновременно, так что различие в скоростях  $V_1$  и  $V_2$  проявится только в разности фаз их колебаний. В этом приближении формула (42) может быть записана в виде

$$u_{y}(\mathscr{L},t) = u_{y}\left[0, (t - \mathscr{L}/V_{0})\right] \cos(\Delta q \mathscr{L}/2), \tag{45}$$

где  $\Delta q = q_1 - q_2$ ,  $V_0 = \omega/q_0 = (V_1 + V_2)/2$  — средняя скорость распространения магнитоупругих волн. Из (45) следует, что через время  $t_0 = \mathscr{L}/V_0$  после падения возбуждающего импульса на противоположной поверхности образца ( $y = \mathscr{L}$ ) формируется акустический импульс, совпадающий по форме с падающим  $u_y(0,t)$ , но отличающийся от него по амплитуде из-за множителя  $\cos(\Delta q \mathscr{L}/2)$ . Этот множитель описывает влияние тех интерференционных эффектов, которые обсуждались в разд. 2 (его аргумент  $\Delta q \mathscr{L}$  совпадает с выражением для разности фаз  $\delta \varphi(\mathscr{L})$  (3)).

Разумеется, формулу (45) нельзя использовать для описания экспериментальных зависимостей отношения  $K(H) = u(H)/u_0$ , приведенных в [5]. Это связано с тем, что она справедлива только для частоты магнитоупругого резонанса (1). Поскольку его положение зависит от H, (45) может описать лишь одну точку на кривой K(H). Но эта

точка может попасть в такую область, где  $\Delta q \mathscr{L} \approx \pi$  и, следовательно,  $\cos(\Delta q \mathscr{L}/2) \approx 0$ . Таким образом, формула (45) демонстрирует возможность достижения большого магнитоакустического эффекта за счет интерференционного механизма.

б) Случай

$$|t_1 - t_2| > \tau \tag{46}$$

интересен прежде всего тем, что при этом условии магнитоакустические импульсы, возбужденные на поверхности образца с y = 0, полностью разделяются при выходе на поверхность  $y = \mathscr{L}$ . После такого разделения они перестают интерферировать, поэтому их можно изучать раздельно. Чтобы оценить возможность реализации неравенства (46) в наших экспериментальных условиях, мы воспользовались формулами (41) и (43), а также значениями параметров  $\tau \approx 10^{-6}$  с,  $V \approx 10^5$  см/с,  $\mathscr{L} \approx 10$  мм. Это позволило записать неравенство (46) в виде

$$\Delta q/q_0 > 0.1, \tag{47}$$

где величина  $q_0$  определяется так же, как в (33). Из сравнения (47) и (33) видно, что (47) не противоречит (33) в очень узком интервале значений  $\Delta q$ . Кроме того, значения  $\Delta q$ , удовлетворяющие (47), должны быть достаточно большими, чтобы начала сказываться зависимость  $V_1$  и  $V_2$  (41) от  $\omega$ . Как известно, такая зависимость приводит к искажениям формы и размеров импульсов. Мы полагаем, что именно эти эффекты не позволили нам надежно наблюдать расщепление прошедшего через образец KMnF<sub>3</sub> акустического импульса в экспериментах, обсуждаемых в следующем разделе статьи.

# 5. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ СКОРОСТИ МАГНИТОУПРУГИХ ВОЛН ВБЛИЗИ ЯДЕРНОГО МАГНИТОАКУСТИЧЕСКОГО РЕЗОНАНСА

В экспериментах использовались монокристаллические образцы  $KMnF_3$ , изготовленные в форме параллелепипеда размерами  $4 \times 4 \times 7$  мм<sup>3</sup>. Кристаллическая структура и геометрия эксперимента описаны в нашей работе [5].

Для определения абсолютных значений скорости звука V измерялся временной интервал t между радиоимпульсом передатчика и первым прошедшим через составной резонатор [13] ультразвуковым импульсом. Время однократного прохождения ультразвукового импульса через образец определялось как  $t_{sample} = t - 2t_{trans}$ , а  $V = \mathscr{L}/t_{sample}$ , где  $t_{trans}$  — время прохождения импульса через одинаковые по длине пьезопреобразователи.

Ошибка измерений абсолютных значений скорости звука была не более 20% и зависела от таких параметров, как толщина связывающего слоя между образцом и пьезопреобразователем, степень согласования их акустических импедансов, длительность и форма импульса.

На рис. 4 приведен набор осциллограмм, который демонстрирует эволюцию амплитуды и скорости прошедшего акустического импульса при изменении магнитного поля *H*. Слева приведена нумерация осциллограмм, а справа — величина поля, соответствующая каждой из приведенных осциллограмм. По оси абсцисс отложено время.

Осциллограмма 1 соответствует первому прошедшему через образец акустическому импульсу со временем прохождения  $t_{sample}$ , скоростью V и амплитудой  $u_0$  при H = 0.



Рис. 4

Рис. 5

**Рис. 4.** Осциллограммы, характеризующие динамику прохождения ультразвукового импульса через образец в зависимости от величины *H* 

Рис. 5. Зависимости скоростей V<sub>1</sub> (1) и V<sub>2</sub> (2) от значения H (V — скорость звука без магнитного поля)

В полях  $H \ge 3000$  Э (осциллограммы 2–9) становится заметным существенное уменьшение амплитуды этого импульса. При  $H \approx 5200$  Э (осциллограммы 10, 11) амплитуда спадает до уровня шумов. В полях  $H \ge 5200$  Э (осциллограммы 12–22) наблюдается обратный процесс восстановления амплитуды импульса.

На осциллограммах отчетливо просматривается изменение времени прохождения сигнала через образец, которое связано с изменением скорости звука V. Так, на осциллограммах 2–11 наблюдается увеличение скорости звука, а на осциллограммах 11–13 — ее уменьшение.

Осциллограммы 14–22 показывают восстановление времени прохождения. Зависимость V(H) представлена на рис. 5. Уширение прошедшего акустического импульса (осциллограммы 2–22) и изменение его формы свидетельствуют о значительной частотной дисперсии скорости звука в пределах частотного спектра импульса. Если бы эта дисперсия была слабее, так что прошедший импульс имел заметную амплитуду в точке магнитоупругого резонанса, возможно, удалось бы наблюдать расщепление акустического импульса, о котором говорилось в предыдущем разделе. Авторы благодарны В. И. Гребенникову, В. В. Меньшенину, В. В. Николаеву и И. А. Гарифуллину за дискуссию и ряд ценных замечаний при обсуждении этой работы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 96-02-16489).

# Литература

- 1. В. И. Ожогин, В. Л. Преображенский, ЖЭТФ 73, 988 (1977).
- 2. В. Г. Барьяхтар, Б. А. Иванов, А. Л. Сукстанский, ЖЭТФ 78, 1509 (1980).
- 3. В. И. Ожогин, В. Л. Преображенский, УФН 155, 593 (1988).
- 4. Х. Г. Богданова, В. А. Голенищев-Кутузов, М. И. Куркин и др., ЖЭТФ 103, 163 (1993).
- 5. Х. Г. Богданова, В. А. Голенищев-Кутузов, М. И. Куркин и др., ЖЭТФ 112, 1830 (1997).
- 6. A. M. Portis, G. L. Witt, and A. G. Heeger, J. Appl. Phys. 34, 1052 (1963).
- 7. W. J. Ince, Phys. Rev. 184, 574 (1969).
- 8. Е. А. Туров, М. П. Петров, Ядерный магнитный резонанс в ферро- и антиферромагнетиках, Наука, Москва (1969), с. 260.
- 9. Л. Д. Ландау, Е. М. Лившиц, Теория упругости, Наука, Москва (1987).
- М. И. Куркин, Е. А. Туров, *ЯМР в магнитоупорядоченных веществах и его применения*, Наука, Москва (1990), с. 244.
- 11. K. Gezi, J. D. Axe, G. Shirane, and A. Linz, Phys. Rev. B 5, 1933 (1972).
- 12. Ю. А. Изюмов, Ф. А. Кассан-Оглы, В. Е. Найш, ФММ 51, 500 (1981).
- 13. Х. Г. Богданова, В. А. Голенищев-Кутузов, В. Е. Леонтьев и др., ПТЭ № 4, 60 (1997).