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А phase diagram for а 2D metal with ушаыe carrier density has Ьееп derived. It consists of 
а normal phase, where the order parameter is absent; а so-called .abnormal normal. phase where 
this parameter is also absent Ьи! the mеап number of composite bosons (bound pairs) exceeds 
the mеап number of [сее fermions; а pseudogap 'Phase where the absolute value оС the order 
parameter gradually increases Ьи! its phase is а random value, and [таНу а superconducting (here 
Berezinskй-Kosterlitz-Thouless) phase. The characteristic transition temperatures between these 
phases асе found. The chemical potential and paramagnetic susceptibility behavior as functions 
of the fermion density and the temperature are also studied. An attempt is made to qualitatively 
compare the resulting phase diagram with the features of underdoped high-Те superconducting 
compounds аЬоуе their critical temperature. 

1. INТRODUCTION 

ТЬе study of the crossover region between superconductivity of Cooper pairs and 
superfluidity of composite Ьозоnз is attracting much attention due to its close relationship.to 
the problem of describing high-temperature superconductors (HTSC) (зее, e.g., Refs. [1-3]). 
At present this region is understood for зп systems, both ~t zero and finite temperatures [4,5]. 
Thе crossover in quasi-2D systems has also Ьееn studied [6], a1beit on1y partially, whereas for 
2п systems on1y the сазе of Т = О has Ьееn studied thorougbly [4,7]. This is related to the 
fact that fluctuations of the charged сотр]ех order parameter in 2D systems are so large that 
they destroy long-range order at аnу finite temperature (Coleman-Mermin-Wagner-Hohenberg 
(CMWН) theorem [8]). In this сазе the appearance of an inhomogeneous condensate with 
а power-Iaw decay for the correlations (the so-ca11ed BerezinskiI-Коstеr1itz-Тhоu1еss (ВКТ) 
рЬазе) is possible. However аn adequate mathematica1 description for ВКТ phase formation 
is still lacking. 

Most previous analyses [9-11] ofthe behavior of 2D systems at Т =f о Ьауе Ьееn based оп 
the Nozieres-Schmitt-Rink approach [12]. This approach is simply а Gaussian approximation 
to the functional integra1, and this perhaps explains the difficulties faced in these ca1culations. 
Оп фе оnе hand, Gaussian fluctuations destroy long-range order in 2D, and if оnе searches 
for the Т-;П at which the order sets in, оnе should obtain zero in accordance with the 
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aforementioned theorems [8]. Оп the other hand, taking Gaussian ftuctuations into account 
is completely inadequate to describe the ВКТ transition [13]. 

Nonetheless, there has been some progress. For example, the ВКТ transition has been 
studied in relativistic 2 + 1-theory [14], and the crossover from superconductivity to superfluidity 
has been considered [15] as а function ofthe carrier density n! (see also Ref. [16]). However, 
the method employed in Ref. [15] to obtain the temperature Твкт Ьм several drawbacks. Most 
importantly, the equation for Твкт was obtained without considering the existence of а neutral 
(real) order parameter р, whose appearance at finite Т does not violate the CМWН theorem. 

As we show below, р defines the modulus of а multivalued complex order parameter Ф 
for а 2п system. As а result of allowing for а ne1.!tral order parameter, а region where р 
decays gradually to zero appears in the phase diagram of the system. This region separates 
the standard normal рЬме with р = О from the ВКТ phase, where the correlations exhibit 
power-law decay. Despite the exponential decay of correlations, this new region of states тау 
Ье expected to possess unusual properties, since р plays the same role as the energy gap д 
in th,e theory of ordinary superconductors' in many casesl). ТЬе possible existence of such а 
рЬме, which in some sense is also normal, тау shed light оп the anomalous behavior of the 
normal state of HTSC (see, for example, the reviews in Refs. [1,2] and [18]). In particular, 
the temperature dependencies ofthe spin susceptibility, resistivity, specific heat, photoernission 
spectra, and other quantities [2,19] сап Ье explained Ьу the formation of either а pseudogap 
or а spin gap in the region Т > Те. 

Using а уесу simple continuum 2п model, this approach was first attempted in а brief 
note [20], where we calculated Твкт and Тр (Тр is the temperature defined Ьу the condition 
р = о) self-consistently as functions of n!, and established the boundaries of this new pseudogap 
region, which lies between Твкт and Тр • 

The purpose ofthis article is to develop this approach further. Using the static paramagnetic 
susceptibilityas an example, we demonstrate that the pseudogap opens below Тр • Furthermore, 
we analyze the difference between the соттоniу used (see Refs. [3] and [4]) pairing temperature 
Тр and the temperature Тр ' introduced here. These temperatures turn out to Ье different if the 
chernical potential /.L < о. We also introduce here ап аЬnоrmаl nоrmаl phase, which lies 
between Тр and Тр , where preformed bosons exist. This more detailed study helps to clarify 
the physical import of Тр , as well as the nature of the transition at Тр • It was believed in 
the related model [14] that this is а second-order phase transition. We argue however, that 
fluctuations in th~ phase of the order parameter сап transform the transition to а crossover, 
as observed experimentally. 

In Sec. 2 we present the mode! and the relevant formalism. ТЬе equations for Твкт , р, 

Тр , and the chernical potentials /.L(TBKT ) and /.L(Tp ) are derived in Sec. 3. Since the technique 
employed to obtain the equation for Твкт is not widely used, we consider it useful to present а 
detailed derivation ofthis equation. (ТЬе details ofthe calculation ofthe effective potential and 
usefиl series are given in Appendix А.) The systems of equations for Твкт , Р(Твкт), /.L(TBKT) 

and Тр , /.L(Tp ) are analyzed in Sec. 4. ТЬе difference between pairing temperature Тр and the 
temperature Тр is discussed in Sec. 5. Also discussed is the physical import of Тр • Using the 
example ofthe static spin susceptibility, it is shown in Sec. 6 that the resulting pseudogap phase 
сап in fact ье used to explain the aforementioned anomalous properties of HTSC. 

1) То calculate the observed single-particle spectrum, of course, сaпiег losses due to scattering of сaпiеrs 
Ьу fluctuations of the phase of the order parameter (and in real systems Ьу dopants) must Ье taken 'into 
account; see Ref. [17). 
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2. THEOREТICAL FRAМEWORK 

The simplest model Hamiltonian density for fermions confined to а 2D volume v is [4,7,9] 

(2.1) 

where х == r, т; 'Ij;,,(x) is а fermion field, m is the effective fermion mass, jL is the chernical 
potential, and V is ап effective lосаl attraction constant; we take h = k в = 1. 

The Hubbard-Stratonovich method, which is standard for these problems [21], сап Ье 
applied to write the partition function Z(v, М, Т) as а functional integral over Fermi fields 
(Nambu spinors) and the auxiliary field Ф = V 'lj;i 'Ij; 1. In contrast to the usual method for 
calculating Z in Ф, Ф* variables, the parametrization Ф(х) = р(х) ехр [-iВ(х)] is more 
appropriate for presenting the corresponding integral in two dimensions [22] (see also Refs. [23] 
and [24]). When this replacement Ьу modulus-phase variables is implemented, it is evident that 
опе must also replace 'Ij;,,(x) = х.,.(х) ехр [iB(x)j2]. Physically, this amounts to replacing the 
charged fermion 'lj;Ax) with а neutral fermion х,,(х) and spinless charged boson ei8(x)/2. Note 
that while one rnaу formally use any self-consistent definition of the new variables, the physical 
condition that the rnacroscopic variable Ф(х) Ье single-valued under 271' rotations fixes the 
parametrization. This was not taken into account in Ref. [20], where а different parametrization 
was used. 

As а result, one obtains 

Z(v,jL,T) = J p1i'p1i'BeXP[-'вЩV,jL,Т,р(х),дВ(х»], (2.2) 

where 

rз 

,ВЩv,jL, Т,р(х), дВ(х» = ~ J dT J drp2(x) -ТrlпG- 1 +TrlnGo1 (2.3) 

о 

is the one-Ioop effective action, which depends оп the modulus-phase variables. The 
action (2.3) сап Ье expressed in terrns of the Green function of the initial (charged) fermions, 
which in the new variables has the operator form 

-1 А (V'2) G = -Iат +1'3 2т + jL +TIP(T,r)-

_ [iaTB(T,r) + (V'B(T,r»2] + IA [iV'2B(T,r) + iV'B(T,r)V'] 
тз 2 8т 4т 2т' (2.4) 

Тhe free fermion Green function СО = GIJL,p,8=O provides а convenient regularization in the 
process of calculation. It is important that neither the smallness nor slowness of the variation 
of the phase of the order parameter is assumed in obtainirig expression (2.3). In other words, 
it is forrnally exact. 

Since the low-energy dynarnics of phases for which Р =j о is govemed mainly Ьу long­
wavelength fluctuations of В(х), only the lowest-order derivatives ofthe phase need ье retained 
in the expansion of ЩV, М, Т, р(х), дВ(х»: 

1245 



v. Р. Gusynin, V. М. Loktev, S. G. Sharapov ЖЭТФ, 1999, 115, выn. 4 

ЩV, /1, р(х), дО(х» ~ Qkin(V, /1, Т, р, дО(х» + Qpot(V, /1, Т, р), (2.5) 

where 

00 1 I Qkin(V, /1, Т, р, дО(х» = TTr L ;(з~)n 
n=l р=соnst 

(2.6) 

and 

Qpot(v,/1,T,p) = (~Jdrр2-ттrlпЗ-l+ттrlПGОl)l. (2.7) 
. p=const 

The kinetic Qkin and potential Qpot parts сап Ье expressed in terms of the Green function of 
the neutral ferrnions, which satisfies the equation 

(2.8) 

and the operator 

(дО) - [iBrO ('V0)2] [А [i'V2() i'VO(T,r)'V] 
~ =ТЗ --+-- - --+ . 

2 8т 4т 2т 
(2.9) 

The representation (2.5) enables one to obtain the full set of equations necessary to find 
Твкт , Р(Твкт), and /1(Твкт) at given f.p (or, for example, р(Т) and /1(Т) at given Т and f.p), 

While the equation. for Твкт will Ье written using the kinetic part (2.6) of the effective action, 
the equations for Р(Твкт) and J.t(TBKT) (or р(Т) and /1(Т» сап Ье obtained using the mean field 
potential (2.7). It turnsout thatat а phase forwhich р =f О, the mean-field approximation forthe 

\ 

modulus variable describes the system quite well. This is mainly related to the nonperturbative 
character ofthe Hubbard-Stratonovich method, i.e., most effects carry over for а nonzero Уа1ие 
of р. 

It is clear that the CMWH theorem does not preclude nonzero (р) and, as а consequence, 
an energy gap for ferrnion Х, since по continuous symmetry is broken when such а gap appears. 
Despite strong phase fluctuations in the two-dimensional case, the energy gap in the spectrum 
of the neutral ferrnion Х сап still persist in the spectrum of the charged ferrnion 'Ф [22], even 
well аЬоуе the critical temperature2). We believe that the pseudogap widely discussed in high -Те 
cuprates might ье attributable to the energy gap of а neutral ferrnion introduced in the way 
described аЬоуе, so that the pseudogap itself сап ье considered а remnant ofthe superconducting 
gap. The condensate of neutral ferrnions has nothing to do with the superconducting transition; 
the latter is only possible when the superfluid density of bosons becomes large enough to stiffen 
the phase О(х). The temperature Тр at which nonzero (р) develops should Ье identified in this 
approach with the pseudogap onset temperature [2,19]. The strategy of treating charge and 
spin degrees of freedom as independent seerns to Ье quite useful, and at the same time а very 
genera1 feature of two-dimensional systems. 

2) We note that the specific heat experiments [2] dещопstrated tite loss of entropy that оссив at 
temperatures muchhigher than Те. This сап Ье considered indicative of а degenerate normaJ state, 
consistent with the existence ос. а nonzero order parameter (р). 
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З. DERIVATION OF SELF-CONSISTENТ EQUATIONS FOR TBI.Т, NEUТRAL ORDER 
PARAМETER, AND CHEMICAL POTENТIAL 

If the model under consideration is reduced to some known model describing the ВКТ 
phase transition, one сап easily write the equation for Твкт , which in the present approach 
сап Ье identified with the superconducting transition temperature Те. Indeed, in the lowest 
orders the kinetic term (2.6) coincides with the classical spin ХУ -model [25,26], which has 
the continuum Hamiltonian 

(3.1) 

Here J is some coefficient (in the original classical discrete ХУ -model it is the stiffness of the 
relatively small spin rotations) and е is the angle (phase) ·of the two-component vector in the 
plane. 

The temp6rature of the ВКТ transition is, in fact, known for this model: 

1г 

Твкт = "2/' (3.2) 

Despite the уесу simple fоrmЗ) of Eq. (3.2), it Was derived (see, e.g., Refs. [25] and [26]) using 
the renormalization group technique, which takes iпtо account the· non-single-valuedness of 
the phase е. Thus, fluctuations of the phase are taken into account in а higher approximation 
than Gaussian. The ХУ -model was assumed to Ье adequate for а qualitative description of 
the underdoped cuprates [27] (see also Ref. [28]),; and the relevance of the ВКТ transition to 
Bose- and BCS-like superconductors was recent1y discussed in Ref. [16]. 

То expand пkin uр to ......, ("\le)2, it is sufficient to restrict ourselves to terms with n = 1,2 
in the expansion (2.6). The caIculation is sirnilar to that employed in Ref. [29], where only high 
densities n f were considered at Т = О. Thus, to obtain the kinetic part, one should directly 
calculate the first two terms ofthe series (2.6), which сап Ье formally written п~11n = ТТг(~~) 
and n~21n = (1/2)ТТг(~~~~). We note that ~ has the structure~ = ТзОl + 102, where 01 and 
02 are differential operators (see (2.9». One сап see, however, that the part of ~ proportional 
to the unit matrix 1 does not contribute to Q~ln. Hence, 

~ = 2 

(1) - J J т '" J . (ia,e ("\le») 
Qkin - т dT dr (21Г)2 ~ dkТГ[~(l'-<.ln, k)тз] -2- + 8т ' 

о n--= ( 
(3.3) 

where 

~(' k) = _ i'-<.ln I + тз~(k) - Т1Р 
l'-<.ln, '-<.I~ + ещ + р2 (3.4) 

is the Green function of neutral feгmions in the frequency-momentum representation, with 
~(k) = c:(k) - J.t and c:(k) = k2/2m. 

The summation over the Matsubara frequencies '-<.In = 1Г(2n + I)Т and integration over k 
in (3.3) сап Ье easily performed using the sum (А.7); thus one obtains 

3) An exponentially small correction is omitted here. 
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~ 2 

(1) J J (i81'8 (V78») Qki", = Т dr drnF(/-L, Т, Р) -2- + --g;;- , (3.5) 

о 

where 

nF(/-L, Т, р(м, Т» = ;;. { J м2 + р2 + /-L + 2Т ln [1 + ехр ( -7) ] } . (3.6) 

This has the form' of а Fermi quasiparticle density (for р = о the expression (3.6) is simply the 
density of free fermions). 

For the case Т = О [23,,29], in which real time t replaces imaginary Нте т, оnе сап argue 
from Galilean invariance that the coefficient of 8t 8 is rigorously related to the coefficient of 
(V78)2. It therefore does not appear in o~1n. We wish, however, to stress that these arguments 

cannot Ье used to eliminate the term (V78)2 from o~1n when Т =f о, so we must calculate it 
ехрIiсitIу, . 

The 01 term in I: yields 

(3.7) 

Using (А 11) to compute the sum overthe Matsubara frequencies, we find that 

(3.8) 

where 

_m(' /-L ~) К(м, Т, р(м, Т» - 87Т 1 + J м2 + р2 th 2Т . (3.9) 

Obviously, the 01 term does not affect the coefficient of (V78)2. Further, it is easy to make 
sure that Фе cross term involving 01 and 02 in o.~21n is absent. Finally, сщсulаtiоns of the 02 
contribution to 0.(2) vield4) k.n J& 

(3.10) 

Thus, summing over the Matsubara frequencies (see Eq. (АI2», оnе obtains 

4) Derivatives higher than ('i78)2 were not computed here. 
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~ 2 

o~21n(02) = - J dr J dr 128 \ 2 J dk k ('\78)2. 
11" т 2 y{2(k) + р2 

О сЬ 2Т ' 
(3.11) 

As expecteci, this term vanishes when Т -+ О, but at finite Т it is ~oтpaтЫe with (3.5). 
Combining (3.5), (3.11), and (3.8) we finally obtain 

~ 

Qkin = f J dr J dr [nF(J,L, Т, p)iar () + J(J,L, Т, р)('\7()2 + K(J,L, Т, Р)(дт8)2] , 
о 

where 

00 

J( ( 1 (Т) Т J dx х + J,L/2T 
J,L,T,p J,L,T» = 4mnР J,L, ,р - 47Г ~ 

-J1./2T сь2 х2 + ~ 
, 4Т 

(3.12) 

(3.13) 

chamcterizes the phase stiffness and govems the spatial variation of the phase ()(r). One сап 
see that our value of the phase stiffness J(T = О) coincides with, the nonrenormalized stiffness 
used in Ref. [27]. 

ТЬе quantity J(J,L, Т, р) vanishes at р = О, which means that аЬоуе Тр the modulus-phase 
variables are meaningless; to study the model in this region one must use the old variables Ф 
and ф*. Near Тр one сап obtain from (3.13) in the high-density limit (see below) 

7(3) р2 р2 
J(J,L ~ Ер, Т -+ Тр , Р -+ О) = 167Г3 Т; Ер ~ 0.016 Т; Ер. (3.14) 

Direct comparison of(3.12) with the Hamiltonian ofthe ХУ -model (3.1) makes it possible 
to write Eq. (3.2) for ТВКТ directly: 

(3.15) 

Although mathematically this reduces to а well-known probJem, the analogy is incomplete. 
Indeed, in the standard ХУ -model (as well as the nonlinear u-model) tlli~ vector (spin) subject 
to ordering is assumed to Ье а unit vector with по dependence оп Т5). In our case this is definitely 
not the case, and а self-consistent caJculation of ТВКТ as а function of n! requires additiona1 
equations for р and J,L, which together with (3.15) form а complete set. 

Using the definition (2.;'), опе сап derive the effective potentia1 Qpot(v, J,L, Т, р) (see 
Appendix А). Then the desired missing equations are the condition aQpot(p)/ap = О that 

S) There is по doubt that in certain situations (for example, very high Т) it also сап Ьесоте а 
thermodynamic variabIe, i.e., оnе dependent оп Т, as happens in probIems of phase transitions between 
ordered (magnetic) and disordered (paramagnetic) phases when the spin itself vanishes. Specifically, for 
quasi-2D spin systems it is obvious that as оnе proceeds from high-T regions, а spin modulus first forms 
in 2D clusters of finite size and only then does global ЗD ordering occur. We note, however, that this 
dependence was neglected in Ref. [27], where the nonrenormalized phase stiffness J(T = О) was used to 
write Eq. (З.15). 
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the potential (А.I0) ье minimized, and the equality v-1ао.роtjаJ.L = -щ, which Пхеs nf. 
These are, respectively 

1 J dk 1 J~2(k) + р2 
V = (271-)2 2Je(k) + р2 th . 2Т ' 

(3.16) 

(3.17) 

where nF(J.L, Т, р) is dеПпеd Ьу (3.6). 
Equations (3.16) and (3.17) comprise а self-consistent system for determining the modulus 

р ofthe order parameter and the chemical potential J.L in the mеап-Пеld approximation for flXed 
Т and nf. 

While Eqs. (3.16) and (3.17) seem to yield а reasonable approximation at high densities n f' 
since they include condensed boson pairs in а nonperturbative way via nonzero р, they must 
certainly Ье corrected in the strong coupling regime (low .densities n,f) to take into account 
the contribution of noncondensed bosons (this appears to Ье important also for Eq. (3.15), 
which deterrnines ТВ кт ). ТЬе extent to which this alters the present results is not completely 
clear. Previously, the best way to incorporate noncondensed pairs seerns to have Ьееп the self­
consistent T-matrix approximation [10,30-32],which allows опе to account for the feedback 
ofpairs оп the self-energy offerrnions. However, the T-matrix approach, at least in its standard 
form [10,30-;32], fails to describe the ВКТ phase transition, for which опе must consider the 
equation for the vertex. Оп the other hand, in our approach the ВКТ phase transition is realized 
Ьу the condition (3.2), while ап analog of the ,Т -matrix аррrшdmatiоп in terrns of propagators 
of the p-particle and the neutral [еrrniоп Х has yet to Ье elaborated. 

ТЬе energy of two-pa~icle bound states in vacuum 

С:Ь = -2Wexp (-~~ ) (3.18) 

(see Refs: [4,7] and [33]) is тосе convenient to use than the four-ferrnion constant V (here 
W is the conduction bandwidth). For example, опе сап easily take the limits W -+ 00 and 
V -+ о in Eq. (3.16), which after this renormalization becomes 

Thus, in practice, we solve Eqs. (3.15), (3.17), and (3.19) numerically to study Твкт as function 
of n! (ос equivalently, of the Ferrni energy Ер = 1ГЩ jm, as it should Ье [ос 2D metals with 
the simplest quadratic dispersion law). 

It is easy to show that at Т = О, the system (3.17), (3.19) transforrns into а previously 
studied sуstещ (see Ref. [4] and references therein). Its solution is р = J21C:bIEF and J.L = 
= -1C:blj2 + Ер. This will Ье useful in studying the concentration dependencies of 2!J.jTBKT 

and 2!J.jTp , where !J. is the zero-temperature gap in the quasiparticle excitation spectrum. It 
should ье Ьоrnе in mind that in the local pair regime (J.L < О), the gap !J. equals J J.L2 + р2 
rather than р (as in the case J.L > О) [4]. 

Setting р = О in Eqs. (3.16) and (3.17), we <:>btain (in the same approximation) the equations 
for the critical tem~erature Тр and the corresponding value of J.L: 
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~/1&bl 
6Г-~------------------~ 

Р(Твкт) .................................... . 

: /////0_. NP 

:"" 

Pseudogap phase forтation in the crossover . .. 

Fig.l. Твкт and Тр versus the noninteracting 
fеnпiоп density. Dots represent the function 
p(f.F) at Т = Твкт . Тhe regions of nonnal 
phase (NP), pseudogap phase (РР), and ВКТ 

phase are indicated 

(-у = 1.781), (3.20) 

. (3.21) 

Note that these equations coincide with the systern that determines the rnean-field ternperature 
Т~Ш)М F (= Тр ) and J.l(TPD) м F) [7], evidentlyas а result ofthe rnean-fteld approxirnation for 
the variable р used here. There is, however, ап irnportant difference between the ternperatures 
Т;п and Тр • Specifically, if опе takes fluctuations into account, Т;п goes to zero, while the 
value of Тр rernains finite. The crucial point is that the perturbation theory in the variables р 
and О does not contain апу infrared singularities [22,34], in contrast to the perturbation theory 
in Ф, ф*; thus the fluctuations do not reduce Тр to zero. This is why the ternperature Тр has 

. its own physical rneaning: incoherent (local or Cooper) pairs begin to forrn (at least at high 
enough n! (see Sec. 5» just below Тр • At higher ternperatures, only these pair fluctuations 
exist; their influence w~ studied in Ref. [35]. 

4. NUMERICAL RESULTS 

А пиrnепсal investigation of the systerns (3.15),. (3.17), (3.19), and (3.20), (3.21) yields 
the following results, ,which are displayed graphically as the phase diagrarn of the systern. 

а) For low carrier densities, the pseudogap phase area (see Fig. 1) is cornparable with the 
ВКТ area. For high carrier densities (fF ~ 103Iebl), опе easily finds that the pseudogap region 
shrinks asyrnptotically as 

(4.1) 

This behavior qualitatively restores the BCS lirnit observed in overdoped sarnplt;s. 
Ь) For fF ~ (10':"15)lebl, the function TBKT(fF) is linear, as also confirrned Ьу the ana1ytic 

solution of the systern (3.15), (3.17), and (3.19), which yields ТВКТ = fF /8. Rernarkably, 
such а behavior of Tc(fF) is observed for all farnilies of HTSC cuprates in their underdoped 
region [3,27], though with а srnaller coefficient ofproportionality (0.01-0.1). This indicates· 
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the importance of including а contribution due to noncondensed pairs in Eq. (3.15), which 
defines Твкт . 

It has been shown that for an optimal doping, the dimension1ess ratio Ер /Iebl '" 3 ·102-103 
[36]. Thus it is quite natural to suppose that in the underdoped region one has Ер /Iebl '" 10-
102, where we find linear behavior. 

We note that in this lirnit, the temperature Те of formation of а homogeneous order 
parameter for the quasi-2D model [3,6] сап easily Ье written in the form 

. т ,...., 4Твкт 
е'" lnCtFleb l/4tp' 

(4.2) 

where tll is the interplane hopping (coherent tunneling) constant. This shows that when Те < 
< Твкт , the weak three-dimensionalization сап preserve (in any сше, at 10w nf) the regions 
of the pseudogap and ВКТ phases, which, for example, happens in the relativistic quasi-2D 
model [34]. At the same time, as the three-dimensionalization parameter tll increases, when 
Те > Твкт the ВКТ phase сап vanish, provided, however, that the anomalous phase region 
and both temperatures Тр and Те ~ nf/т are preserved. 

с) Figure 2 shows the values of n f for which J.l differs substantially from f. р, or in other 
words, the Landau Fermi-liquid theory becomes inapplicable to metals (also called bad metals) 
with 10w or intermediate carrier density. As expected, the kink J.l at Т = Тр , which has been 
observed experimentally [37] and interpreted for the 1-2-3 cuprates [38], becomes less and less 
pronounced as Ер increases. But in the present сше it is interesting that in the hydrodynarnic 
approximation employed here, it happens at the normal-pseudogap phase boundary or before 

. superconductivity really appears. It would therefore Ье of great interest to perform experiments 
that rnight reveal the temperature dependence J.l(T), especially for strongly anisotropic and 
relatively weakly doped cuprates. 

d) It follows from curve 3 in Fig. 2 that the crossover (sign change in J.l) from local to 
Cooper pairs is possible not only as Ер increases, which is more or less obvious, but also (for 
some n f) as Т increases. 

е) Finally the calculations showed (see Fig. 3) that the ratio 2!:!./Твкт is greater than 4.7 
in the region under study. The value 2!:!./Тр (= 2!:!./ТеМ р) is, however, somewhat lower and 
reaches the BCS theory lirnit of 3.52 on1y for Ер » lebl. It is interesting that this concentration 
behavior is consistent with numerous measurements of this ratio in HTSC [39,40]. Note that 
the divergence of 2!:!./Твкт and 2!:!./Тр at Ер --+ О is directly related to the definition of!:!. at 
J.l < о. 

5. PAIRING TEMPERAТURE Тр VERSUS CARRIER DENSIТY 

There is по disagreement conceming the asymptotic behavior of Твкт (or Те) '" Ер in the 
region of low carrier densities. In contrast, the behavior of the temperature Тр , below which 
pairs are formed, cannot ье considered to Ье generally accepted. For example, in Refs. [3] 
and [27], based оп qualitative arguments, this temperature is taken to Ье the temperature Тр 
of local uncorrelated pairing, which in contrast to Тр Increases with decreasing n f 6). Randeria 

6) In fact, in Refs. [3] and [27] (see a1so Ref. [5]) this temperature was plotted as ап increasing function оС 
coupling constant V, which for 3D systems сопеsропds, to some extent, to the carrier density decreasing. 
In 2D systerns, however, where, as is well known, two-particle bound states are fопned without апу 
threshold, similar conclusions about the behavior оС Тр(Щ) are questionable, and must Ье checked 
independently. 
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Thе thick lines delimit regions of ВКТ, pseudogap (РР), and norma! (NP) phases 

Fig. 3. 2/j,/TBKT and 2/j,/Tp versus the non-interacting fermion density 

(see Ref. [4] and references therein), to define the pairing temperature Тр , uses the system of 
equations for the mean-field transition temperature and the corresponding chemical potential, 
which is essentially identical to the system (3.20), (3.21). Thus his Тр ~ О as n! -+ О. 

It is also w.ell known [4,5,9] that in the low-density limit, it is vital to include quantum 
fluctuations, at least in the number equation [12], in the calculation ofthe critical temperature 
at which а long-range order forms in 3D. In 2D these fluctuations in fact reduce the 
critical temperature to zero [11]. Certainly quantum fluctuations are also important in the 
calculation of Тр in the limit n! ~ О апд, in particular, in the number equation. However, 
as already stressed in Sec. 3, these corrections are quite different from \vhat we obtain using 
the variables Ф, ф*, since perturbation theory in the variables р and О does not contain апу 
infrared singularities [22,34], and the fluctuations do not yield Тр == О. In fact, even including 
quantum fluctuations, Тр must exceed ТВКТ (р(Твкт) =f О), so that the pseudogap phase is 
always present. 

In our opinion, the temperature Тр has its own physical interpretation: this is the 
temperature of а smooth transition to the state in which the neutral order parameter р =f О, 
and below which опе сап observe pseudogap manifestations. There is also а very interesting 
and important question about the character of the transition. Certainly in the simplest Landau 
theory опе appears to have а second-order phase transition, since р takes а nonzero value оnlу 
below Тр [14]. However this kind oftransition is only possible for neutral fermions. Fluctuations 
of the O-phase will transform the pole in the Green function of the neutral fermions into а 
branch cut in the Green function for charged particles in the ВКТ phase. Indeed, the CМWН 
theorem conceming the absence of spontaneous breaking of а continuous symmetry means that 
symmetry-violating Green functions must vanish. However, it says nothing about the gap in 
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the spectrum of excitations, as is sometimes incorrectly stated. 
The correct eKplanation is that if the symmetry is unbroken, and the ferrnion excitation 

appears as а pole in the 'Ф two-point function, then the ferrЫon must Ье gapless. If the ferrnion 
does not have the same quantum numbers as 'Ф (like our ferrnion х) and so does not appear 
in the 'Ф two-point function as а one-particle state, then the symmetry does not tel1 whether 
the ferrnion (х) will Ье gapless or not. 

This very general argument' [22] suggests the following plausible scenario. At low 
temperatures (Т < Твкт), х, р, and (j should Ье treated as physical quasiparticles (х, р having 
а gap and () being а gapless excitation), while а straightforward computation ofthe 'Ф two-point 
function [22] reveals its branch-cut structure. 

Оп the other hand, at temperatures аЬоуе Твкт , we should consider 'Ф and Ф true 
quasiparticles, since ТВКТ is а phase transition point and фе spectrum of physical excitations 
changes precisely at this point. Тhe 'Ф two-point function at Т > ТВКТ should ье 
studied separately due to the presense of vortices which change the form of the correlator 
(exp[i8(x)] exp[i8(0)]) аЬоуе Твкт . In this temperature region the 'Ф two-point function 10ses 
its branch-cut structure; instead, it acquires the form suggested in Refs. [30] and [31] with 
а pseudogap originating froin the superconducting gap below Твкт , which preserves «BCS-li­
ke. structure as well as the diagonal component of the single-particle Green function. In this 
picture the Ferrni-liquid description breaks down, evidently below Тр , due to the formation of 
nonzero р. 

We note, however, that the decisive confmnation of this picture demands further detailed 
study probably based оп а differe~t approach, [or ехатрlе the self-consistent Т -matrix (see 
Ref. [30] and references therein), which enables опе to directly obtain the full ferrnion Green 
function. 

То define the temperature Тр properly, one should study the spectrum ofbound states either 
Ьу solving the Bethe-Salpeter equation [7] or Ьу analyzing the corresponding Green functions 
as we do here. It tums out that there is по difТerence between Тр and Тр in the Cooper pair 
regime (J.L > О), while in the)ocal pair region (J.L < О) these temperatures exhibit difТerent 
behavior. 

Indeed, let us study the spectrum ofbound states in boththe normal (р = О) and pseudogap 
(р =f О) phases. We are especially interested in deterrnining the conditions under which real 
bound states (with zero tota1 momentum К = О) Ьесоте unstable. For this purpose оnе сап 
100k at the propagator of the p-particle in the pseudogap phase: 

г 7' r - - :...-.-_..:......:,.:.....:.--.:..~....:,..,.:....:,..,.-.:~~ 
-1( ) _ 1 {382Q(v, J.L, Т, Р(7', r), 88(7', r» I 

, 2 8р(7', r)8p(0, О) P=PmJn=const' 
(5.1) 

where Pmin is defined Ьу the rninimum condition (3.16) (or (3.19» ofthe potential part (А.I0) 
of the efТective action (2.3). In the momentum representation, the spectrum of bound states 
is usually deterrnined Ьу the condition 

(5.2) 

where ГR(W, К) is the retarded Green function obtained directly from the temperature Green 
function Г(Юn , К) using the analytic continuation ЮN -+ w + iO. Recall that such an analytic 
continuation must Ье performed after evaluating the sum over the Matsubata frequencies. In 
cas~ of vanishing total momentum К = О, one arrives at the energy spectrum equation 
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. ТlIEbl 
1.25 г--------N-Р-.. -.... -.... -... -,.··..---, 

1.0 .. : ................ . 

о 0.25 0.50 

Fig. 4. Phase diagram of the 2D-metal 
at low concentrations. The dotted liпе 

corresponds to J.L = О, and the temperature 
Тр separates abnormal normal phase (ANP) 
from normal phase. The criticaltemperature 

ТВКТ is not shown 

(5.3) 

From tlle explicit expression (5.3) for rR(W, О), this function obviously has а branch cut at 
frequencies 

(5.4) 

Thus, bound states сап exist below this cut . 
. Real bound states decay into two-fermion states when the energy of the former reaches 

the. branch point 2 min J ~2(k) + р2. Since r R 1 is а monotonously decre3$ing function of w2, it 
has theunique solution 'С:Ь(Т)I = 2р(Т), at which Eq. (5.3) coincides exactly with the mean­
field equation (3.16) for р(Т). It also becomes clear that for J1, < О we have reaI bound states 
with energy с:ь(Т) below the two-particle scattering continuum at w = 2у' J1,2 + р2, while at 
J1, ~ О there are по stable bound states. The line J1,(T, € р) = О in the Т -€p plane at р =f О 
separates the negative J1, region where local pairs exist from that in which only Cooper pairs exist 
(positive J1,). This line (see Fig. 4) begins at the point Т = (е'У /1г)Iс:ы� :::::: 0.61C:bl, €p :::::: о.391с:ы� 
and ends at Т = О, Ер = lC:bl/2. (The latter follows directly fromthe solution at Т = О, 
J1, = -1C:bl/2 + Ер [4,7].) 

То find а similar line in the normaI phase with р = О, we consider the сопеsроnding 
equation for the bound states. Тhe propagator of these states (in imaginary Нте formaIism) is 
defined to Ье 

. -1( )_ jЗб2n(v,J1"Т,Ф(т, г),Ф*(т,г»I 
Г T,r - . 

БФ*(т, г)БФ(О, О) ф-ф •• о 
(5.5) 

(In the normal phase, where р = О, we must again use the initial а,uхШаry fields Ф and ф* (see 
Secs. 2 and 3).) Then in the momentum representation(after summing over the Matsubara 
frequencies) we have 

(5.6) 
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,where k is the relative momentum оС the pair. The spectrum оС bound states is given again 
Ьу Eq. (5.2). Using the energy с:ь (see Eq. (3.18» of the bound state at Т = О, for К = О we 
obtain the following equation for the energies оС these states in the normal phase: 

00 

JdX [ 1 _ th(x - J-L)/2T] = О 
x+lC:bl/2 x-J-L-VJ/2 . 

(5.7) 

о 

Such states сап exist provided -2J.L - lC:bl < VJ < -2J-L. The left-hand side оС Eq. (5.7) is 
positive at VJ = -2J-L - lC:bl and tends to +00 (J-L > О) or -00 (J-L < О) when VJ -> -2J-L. This 
equation always has а solution at J-L < О, so bound states with zero total momentum exist for 
negative J-L. 

For J-L > О, analytic analysis becomes more complicated, and requires numerical study. 
One сап easily find from (5.7) that at Т = О, stabIe bound states exist ир to J-L < k:bl/8. In 
fact, numerical study for Т ~ Тр shows that the trajectory J-L(T, Ер) = О (or Т = Ер /In 2, see 
(3.21)) approximately divides the normal phase into two qualitatively difТerent regions: with 
(J-L < О) and without (J-L > О) stabIe (long-Iived) pairs. This also holds for other phases, which 
enabIes one to draw the whole line J-L(T, Ер) = О (Fig. 4). 

Knowing the two-particle binding energy, it is natural to define pairing temperature Тр as 
Тр ;:::: lC:b(Tp , J-L(Тр , Ер »1. This equation сап Ье easily analyzed in the region Ер « lC:bl, for 
which we directly obtain Тр ;:::: lC:bl, which clearly coincides with the standard estimate [3,41]. 
This means in tum that the curve Тр(Ер) starting at Тр(О) ;:::: lC:bl will Ье reduced, ир to the 
point Тр(0.39ц) ;:::: 0.61C:bl, which Iies оп the line Тр(Ер) (see Fig. 4). It is important that 
this line is not the phase transition curve; it merely divides the fermion system diagram into 
temperature regions with а prevailing теап number оflосаl pairs (Т ;s Тр ) or unbound carriers 
(Т ;::: Тр). This is the region оС the abnormal normal phase where one has preformed boson 
pairs. It is widely accepted, however, that this case is only of theoretical interest, since there 
is по Fermi surface (J-L < О) in the phase. The phase area or the difТerence Тр(ЕР) - Тр(ЕР) is 
ап increasing function as Ер -> О, which сопеsропds to the behavior'usually assumed [3,27]. 

When J-L > О there are по stabIe bound states (с:ь(Т) = 2р(Т) = О) for the normal phase, 
where they are short-lived. Formally, using р(Т) = О in Eq. (5.3), we immediately obtain (3.20) 
or, in other words, here Тр = Тр • Such а conclusion is in accordance Witll the generally accepted 
definition of Тр in the BCS case [41]. 

Thus the phase diagram of а 2В metal above Те acquires the form shown in Fig. 4. It 
is interesting that if the line Тр(ЕР) cannot Ье defined exactly, the temperature Тр(ЕР) is the 
line below which pairs reveal some signs of collective behavior. Moreover, at Т < Тр one сап 
speak of а real pseudogap in the one-particle spectrum, while in the region Тр < Т < Тр only 
strongly developed pair f1uctuations (some number of pairs) exist, though they probabIy suffice 
to reduce the spectral quasi-particle weight, and to produce other observed manifestations that 
mask pseudogap (spin gap; see Ref. [35]) formation. 

6. PARAМAGNETIC SUSCEPТIBILIТY OF ТНЕ SYSTEM 

It would Ье very interesting to study how а nonzero value of the neutral order parameter 
afТects the observabIe properties оС the 2В system. Does this really resembIe the gap opening 
in the traditional superconductors, except that it happens in the normal phase? Or, in other 
words, does the pseudogap ореп? 
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We shall demonstrate this phenomenon, taking the paramagnetic susceptibi1ity of the 
system as the simplest case in point. То study the system in the magnetic field Н опе must 
add the paramagnetic terrn 

(6.1) 

to the Hamiltonian (2.1) where Мв = еп/2mс is the Bohr rnagneton. Note that, using the 
isotropy in the problem, we chose the direction of field Н to Ье perpendicular to the plane 
containing the vectors r. 

Adding the corresponding terrn to Eq. (2.8) for the neutral ferrnion Green fиnction, it is 
easy to show that in the momentum representation (compare with (3.4» 

~(iwn, k, Н) = (iwn + MBH)j + тз~(k) - T1P. 

(zwn + мвН)2 - e(k) - р2 
(6.2) 

The static paramagnetic susceptibi1ity сап Ье expressed in terrns of the magnetization, 

( Т) = ам(м, Т, Р, Н) I 
хм, ,р ан ' 

н-о 

(6.3) 

which in the mean-field approximation сап Ье derived from the effective potential: 

М( Т Н) = _~ апроt'(v,м,Т,р,Н) 
• М, ,р, V ан . (6.4) 

Thus from (6.4) опе obtains 

00 J dk • м(м, Т, р, Н) = мвТ L (21Г)2 Тr[Э'(iwn , k, H)I]. 
n=-оо 

(6.5) . 

Then using the definition (6.3) опе arrives at 

J dk 00 e(k) + р2 - w2 

Х(М, Т, р) = м1. (21Г)2 2Т L [w2 + ~2(k) + р;]2' 
n=-оо n 

(6.6) 

The sum in (6.6) сап easily Ье calculated with the help of Eq. (А.ll); thus, we obtain the final 
result 

00 

1 J dx х(м,Т,р) = XPauii 2 ~' 

-JL/2T ch2 V х2 + '{Г2 
(6.7) 

where ХРаиН == мkm/1Г is the Pauli paramagnetic susceptibility for the 2D system. 
То study Х as а function of Т and n f (or Ер), Eq. (6.7) should Ье used together with 

Eqs. (3.17) and (3.19). 
For the case of the norrnal phase (р = О) опе сап investigate the system analytically. 

Thus (6.7) takes the form 

1 
Х(М, Т, р = О) = XPauJi 1 + ехр( -м/Т)' (6.8) 
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where J.L is determined Ьу (3.21). This system has the solution 

X(€p, Т, Р = О) = XPauJi[l- exp(-€p/T)], 

which is identical to а solution known from the literature [42]. 

'(6.9) 

The results of а numerical study of the system (6.7), (3.19), and (3.17) are presented in 
Fig.5. One сап see that the kink in Х occurs at Т = Тр as in the dependence of J.L оп Т. Below 
Тр the value of Х(Т) decreases, although the system is still normal. This 'Сап Ье interpreted 
as а spin-gap (or pseudogap) opening. The size of the pseudogap region depends strongly 'on 
the doping (€F/le:bl), as observed for real HTSC [2,18,19]. For small values of €F/le:bl this 
region is уесу large (Тр > 6Твкт), while for large €F/le:bl '" 5-30 it is slightly larger than the 
region сопеsроnding to the ВКТ phase. 

7. CONCLUSION 

То sumrnarize, we have discussed the crossover in the superconducting transition between 
BCS- and Bose-like behavior for the simplest 2D model, with s-wave nonretarded attractive 
interaction. 

While there is still по generally accepted microscopic theory 01' HTSC compounds and 
their basic features (including the pairing mechanism), it seems that this approach, although in 
а sense phenomenological, is of great interest since it is аЫе to cover the whole range of carrier 
concentrations (and thus the whole range of coupling constants) and temperatures. As we tried 
to demonstrate, it enables one to propose both а reasonable interpretation for the observed 
phenomena caused Ьу doping and to describe new phenomena; for example, pseudogap phase 
formation as а new thermodynamically equilibrium normal state of low-dimensional conducting 
electronic systems. 

EvidentIy there are а number of important open questions. They тау Ье divided into two 
classes: the first concerns the problem of а better and more complete treatment of the models 
themselves. The second class relates to the extent to which this model is applicable to HTSC 
compounds, and what the necessary ingredients are for а more realistic description. 

Regarding the microscopic Hamiltonian' as а given model, our treatment is obviously still 
incomplete. In particular,there exists an unconfirmed numerical result [43] based оп а fully 
self-consistent determination of а phase transition to а superconducting state in а conserving 
approximation, which states that the superconducting transition is neither the simple mean­
field transition nor the ВКТ transition. (See, however, the discussion preceding Eq. (3.18).) 
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Besides, it would Ье уесу interesting to obtain the spectrum of both the anornalous normal and 
pseudogap phases. It is important also to take into consideration the effects of noncondensed 
bosons, which rnight help to obtain а srnaller slope in the dependence of Твкт оп €p. 

As for the extent to which the models considered are really applicable to HTSC, most 
of the complexity of these systerns is obviously neglected here. Por example, we did not take 
into account the indirect nature of attraction between the ferrnions, d-wave pairing, inter­
layer tunneling, etc. Nevertheless, опе rnaу hope that the present simple model сап explain 
the essential featиres of pseudogap formation. 

We thank Drs. Е. У. Gorbar, 1. А Shovkovy, О. Tchemyshyov, and V. М. Tиrkowski 
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Department of Physics of the University of Pretoria, especially Prof. R. М. Quick and Dr. 
N, J. Davidson, for уесу useful points and hospitality. S. G. S. also acknowledges the financial 
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APPENDIXA 

CALCULATION OF ТНЕ EFFECТIVE POTENТIAL 

Here we skefch the derivation of the effective·potential. То obtain it опе must write 
Eq. (2.7) in the momentum representation: 

+00 J dk } 1+ Т '"' __ Tr[ln G- 1 (iu.l k)e io",n Т'] L..J (27r-)2 оп, , 
_-00 •. 

{j -+ +0, (Аl) 

where 

are the inverse Green functions. The exponential factor еiЙ",n т, is added to (Аl) to provide 
tne correct regularization which is necessary to perform the calculation with the Green 
functions [44]. Por instance, опе obtains 

liт ~ Тr[lп.:1'-I(iu.ln ,k)еiЙ"'n Т,]= liт { ~ Тr[lп.:1'-I(iu.lщk)]соs{ju.ln + й --+ +0 L..J й --+ +0 L..J 
n=-QO n==-оо 

+i L siп{ju.lnТr[(lп.:1'-I(iu.ln ,k) -lП.:1'-I(-iu.ln,k))ТЗ]} = 
"'n>О 

_ +00 -1 . ~(k) - I: Tr[ln.:1' (zu.ln,k)] - Т' (АЗ) 
n=-оо 
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where 

and 

00 
L sinoVJn 1 / d sinox 1. ~ --::::: -- х-- = -slgnu. 

VJn 21ГТ Х 4Т 
W.>O о 

А А 

То calculate the sum in (АЗ), опе must first use the identity TrlnA = IndetA, so that 
(Аl) takes the form 

Calculating the determinants of the Green fиnctions (А2), опе obtains 

(А5) 

where the role of Go(iVJn , k) in the regularization of Qpot is now evident . The summation 
in (А5) сап Ье done if опе uses the representation 

ln VJ;' + а2 = /00 dx ( 1 _ ----::-_1:-=-_) 
VJ;' + Ь2 . VJ;' + а2 + х VJ;' + Ь2 + Х ' 

(А6) 

о 

and then 

~ 1 = ~th 1ГС 
L.J (2k + 1)2 + с2 4с 2' 
k=O 

(А7) 

We find 

VJ2 +а2 /00 (1 уЬ2+х 1 уа2+Х) ln n= . dx th _. th . 
VJ;' + Ь2 2уЬ2 + х 2Т 2уа2 + х 2Т 

о 

(А8) 

Integrating (А8) over х, опе thus obtains 

. +00 / dk VJ;' + e(k) + р2 _ / dk ch[ J e(k) + р2 j2T] 
Т?: (21Г)2 IП VJ;' + e2(k) - 2Т (21Г)2 IП ch[e(k)j2T] . 
n--оо 

(А9) 

Finally, substituting (А9) into (А5), 
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_ {р2 J dk [ ch[Ve(k) + р2/2Т] ] } 
o.pot(v,J.t,T,p)-v v- (2'11-)2 2Tl~ ch[s(k)/2T] -[~(k)-s(k)] . (А.I0) 

It is ему to show that at Т = О, the expression (А.I0) reduces to that obtained in Ref. [7]. 
Fina1ly,we give formulas for the summation over the Matsubara frequencies used'in Secs. 3 

and 6: 

(A.l1) 

(А.12) 

where the Green function Э'(jI.l.Jп. k) is given Ьу (3.4). Both formulas сап easily Ье calculated 
using Eq. (А. 7) and its derivative with respect to с. 
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