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We analyze stability of а system which contains аn harmonic oscillator non-lineady coupled 
to its оосоnд harmonic, in the рсеооnсе of а driving force. lt is found that there always exists а 
critica1 amplitude of the длуing force аЬоуе which а loss of stability appears. ТЬе дереndei1се of 
the critical input power оп the phySical parameters is analyzed. Por а .дЛУing force with higher 
amplitude chaotic hehavior is obsetved. Generalization to interactions which include higher modes 
is discussed. 

1. INТRODUCTION 

@1999 

In а series of experiments the motion of thesurface of а superfluid liquid in а cylindrical 
vessel was studied. This motion was induced Ьу standing waves of second sound propagating in 
the bulk of the liquid. Above а critical value of the input power the motion has lost stability [5, 6]. 

То account for this 10ss ofstabilitywe analyzed а model that explained this phenomenon[8], 
and found it to Ье in а good agreement with the experimental results. The model is general 
enough to account for the loss of stability in other wave systems. 

2. ТНЕ MODEL 

The modеl consists of two non-linearly coupled harmonic oscillators, of which one is 
coupled to ап external driving force. First we would Шее to justify the use of two oscillators, 
with frequencies close to w and ш, for describing the physics of systems such as the опе аЬоуе 
(w would Ье the frequency of the driving force). We assume that in the linear approxirnation 
the free, non-dissip;1tive (classical) theory is given Ьу the Hamiltonian: . 
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where аn is the (complex) amplitude of the n th mоде, апд a~ is its complex conjugate. 
Dissipation апд driving force would ье аддед in the following. The modes are the eigenfunctions 
of the wave equation with the appropriate Sturm-Liouville boundary conditions. We neglect 
terms higher феп сиЫс from the Hamiltonian, as well as terms which are far from resonance, 
апд therefore have small coupling constant [1]. The Hamiltonian turns to: 

00 00 

н = L "",na~an + L (>Ik,l;mаkща;" + с.с.), 
n=1 k+l-m.::::o 

k,I,m=1 

(2) 

where с.с. stands for complex conjugate, апд "\k,l;m = "\l,k;m' We would like now to couple 
ап external drivmg force to опе of the modes. We keep in mind that, in order to describe 
а physical problem, attenuation should Ье аддед as well. The modes which are not strongly 
coupled to the excited mоде would десау. Again we assume that, for describing the onset of 
instability, а minimal number of modes is пеедед. Therefore we take the excited mоде апд 
the mоде with frequency which is closest to twice the frequency of the flfSt опе. With the 
harmonic driving force the Hamiltonian takes the form: 

(3) 

where "'" is the frequency of the driving force, which should ье close to ""'d in order to resonate 
it. 

We use: 

(4) 

which is Hamilton's equations in the amplitude formalism [1], to derive the equations ofmotion: 

The equations are invarant under the transformation: 

ad -аdеi(ф+IJ) , 

a2d -а2dеi(ф-lJ) , 

..\ -..\еi(-ф-ЗIJ) , 

f -fеi(Ф+IJ). 

(5) 

(6) 

(7) 

It is therefore possible to eliminate two independent phases from the equations, so we сап 
choose ..\ апд f to ье real. 

We адд now dissipative terms to the equation in the usual maner [1]. ТЬе equations now 
Ьесоmе: 

. . ( ') + 2 \ * + f i",t ~ad = ""'d - Z"/d ad лаdа2d ~, 

ia2d = (""'2d - i"/2d)a2d + ..\a~, 

where "/ are the dissipation constants. . 

(8) 

(9) 

The final stage before analyzing the equations is to introduce the «slow variables» to 
eliminate the time дерепдепсе. Under the transformation: 
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the equations get the form: 

ad -+ ade-i"Jt, 

аы -+ a2de- 2i",t 

iad = (dd - i,d)ad + 2ла~а2d + J, 

ia2d = (d2d - i,2d)a2d + ла~ 
(10) 

(11) 

where dd == U)d - U) and d2d == U)2d - 2U) are the frequeney detunings with respeet to the driving 
foree. 

We note that in deriving the Hamiltonian (3) we Ьауе negleeted оnе non-linear term which 
is ofthe same order with respect to ad as the оnе that we Ьауе kept, namely lI:a~ad2. We would 
like to justit)r it. For systems in whieh 11: « л2 /1JJ this term is small, but it tums out that even 
for 11: muсЬ larger the importance of this term is notcrucial. Note, that U) is absent in the 
equations. From dimensional eonsiderations 11: сап appear at the equations only as II:d, 11:" 

this is the term that Ьш to Ье of the order of л 2. Hereafter we analyze three aspects of the 
model: stationary solutions, stability, numerical calculations. For the stationary solutions it 
is easy to veritY that the effect of 11: is merely to renorma1ize d2d, '2d. This is {Ье well known 
effect of shifting the resonance [2]. We Ьауе seen that 11: is not of а big importance, еуеn for 
11: > л2 / d2d, л2 /,2d, in the stability analysis as well as in our numerica1 ca1culations. We will 
not include this term in what follows. 

Although the model we use is а very simplified one, it still eontains five parameters in 
addition to the driving force amplitude J. Not а11 the parameters are important. The amplitude 
J ofthe driving force is an effective expression which in faet is а function of dd, moreover, the 
driving foree couples to all other modes as well, and we mау щ~glесt all other eouplings only 
when the оnе that we are left with is the dominant one. For this {о ье the сше we must Ьауе 
U) := iJ.)d, that is, dd is srnall 'compared to аН other parameters with dimensions of frequency. 
ТЬе уаluе of .:l2d will ье dictated Ьу geometry. Both, our ana1ytieal, as well as numerieal results 
depend оп this assumption. In most physica1 systems there. is а relation between ,d and '2d. 
We shall assume that this two parameters are of the same order of magnitude. 

З. STATIONARY SOLUТIONS 

We begin Оur analysis Ьу finding the fIXed points ofthe equations, i.e., solving the equations: 

(.:ld - i,d)ad + 2лаdа2d + J = О, 
(d2d - i,2d)a2d + ла~ = О,. 

We eliminate аы from the second equation, and substitute in the first one to get: 

(dd - i,d)(d2d - i,2d)ad - 2л2аdlаdl2 = -(d2d - i'2d)J. 

ТЬе equation for ( == 2л2IаdI2/I,d'У2d - dd.:l2d1 tums now to: 

«( ± 1)2 + /3)( = h 

where: 
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is the scaled force, and 

h = 2('Y~d + ~~d»,2 12 
- l'Yd1'2d - ~dД2d13 

(3 == (~d'Y2d +Д2d'У d ) 2 

'Yd'Y2d - Дd~2d 

The sign in equation (15) coincides with the sign of 'Yd'Y2d - Дd~2d' 
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(16) 

(17) 

This equation has either опе or three solutions. For а given Уа1ие of h the equation would 
have three solutions if and оnlу if: 

'Yd'Y2d - ~d~2d < О, 
1 

05, (3 < 3' 

~7 [1 + 9(3 - (1 - 3(3)3/2] 5, h 5, ~7 [1 + 9(3 + (1 - 3(3)3/2]. 

(18) 

. (19) 

(20) 

In the following, it would'be illustrated that, when three solutions are present, the middle 
опе is non-stable, as тау ье expected. 

We note that the situation of three solutions is, in а sense, non-physica1. 'Yd, 'Y2d are 
positive, ,we сап therefore use (17)-(19) to deduce: 

( 'Yd )2 < ('Y2d + 'Yd)2 < !. 
дd д2d дd 3 

(21) 

But this suggests that 'Yd < ~d, which contradicts our assumptions. In this region ofparameters 
our model is not adequate. 

4. STAВILIТY 

То check whether the stationary solutions are stable we Нпеате the equations around these 
solutions, and check whether small perturbations grow or decay. То simplify the calculations, 
we recall the symmetry (7) and use it with Ф + 38 = О to redefine the stationary value of the 
first mode, a~), to ье r~al, without altering л. Тhe change of 1 is not important since 1 will 
ье absent from the linearized equations. We substitute in ,the linearized equations: 

а(О) = 
2d 

ла(о)2 
d (22) 

The stability is now determined Ьу a~). Also, to simplify the notations, we will use ad. a2d 
rather then 8ad, 8a2d for the deviations f{om the stationary solution. 

Тhe linearized equations are: 

(23) , 

(24) 
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multiplying Ьу -i and separating to real and imaginary parts, we get the ditтerential equation: 

(25) 

where р = 2а(О)2,\2/(",,2 + /12 ) d f2d 2d . 
Т0 ensure stаЬШtу we shall require that the real part of all the eigen-values of this matrix 

is negative. We find the coefficients of the characteristic polynomial и4 + аиЗ + Ьи2 + си + d, 
~~ . 

(26) 

(27) 

(28) 

(29) 

То ensure that all the'roots ofthis polynomial have negative real part we use the Hurwith-Routh 
criterion [3,4]: 

а>О 

Ь> О, 

d> О, 

аЬс > с2 + a2d. 

(30) 

(31) 

(32) 

(33) 

The condition (30) is trivial for а. physical problem. Тhe condition (31) is а quadratic 

equation with respect to a~)2, and is_ easily solved to give: 

(34) 

The third condition, (32), is again а quadratic equation with respect to a~)2, but with 
positive, rather then negative coefficient of a~. ' 

It is easily seen that for а negative d to occur at the physical region: a~)2 > О, we need 
to have: 

(35) 

When this condition is fulfilled, an unstable regionappears when: 
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(36) 

Щrееt solution of the quadratie equation then shows that the eentral region of solutions 
eoineides exaetly with this unstable region (20). As mentioned аЬоуе, this region is not physieally 
important. 

We еотЫпе (26)-(29) Ilnd (33), and define: 

to get the last inequality: 

where: 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

It is seen that for all parameter values there еЮsи ап ореп neighborhood of zero in whieh 
the stationary solution is stable. It is very tedious to solve the inequality for the genera1 еше. 
We solve it for two speeial eases, the one-dimensional geometry, and the eylindrieal wave with 

. а large Q-faetor. Both with ref1eeting boundary eonditicJnS. 
We remind the assumption: 8d «rd. It is natural to assume that rd and r2d are of the 

same order of magnitude. In а wide elass of eases r сх ( .• Р, апд therefore: 

(44) 

We shall eonsider this еме for both ge·ometries. The Уа1uе of 82d is dictated Ьу geometry. 
For the опе dimensional geometry the dth mode is еоs(d7ГХ/ L), where L is the length of 

the vessel. This dependenee gives: 

82d = 1.V2d - 21.V = 28d - (21.Vd - 1.V2d) = 28d - c(2kd - k2d ) = 
= 28d - с(27Гd/ L - 7Г2d/ L) = 28d. 

We therefore; have for the one-dimensional ease: 

We define: 

х = z/r~, 
s = r2d/rd' 
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We use (46) to get the inequality: 

1 1 1 
х4 - 8(1 + 8)2х3 - 282(1 + 8)2х2 + 483(1 + 8)4х + 1684(1 + 8)4> О. (49) 

Тhe solution of this inequality combined with (34) gives the final result: 

(50) 

from which оnе easily finds аn expression for the critical input power: 

"'/d + "'/2d 
'Y2d 2 (51) 

or, using (44): 

(52) 

We now substitute 'Yd = а",,2 to get: 

22а2 
f ...., 4 
с - Т"'" (53) 

А full description ofthe 10ss of stability for the specific рroЫет сап ье obtained if we take 
into account the dependence of а and л оп the relevant physical parameters, i.e. temperature. 

For а cylindrical vessel of radius R the modes are given Ьу Jn(kr) cos(n(J), where Jn is 
the n th Bessel function, and k = ",,/е where е is the wave velocity. ТЬе boundary conditions 
force the relation kn,mR = Хn,т where Хn,т is the m th zero of J~(X). For simplicitywe shall 
consider here only the Jo modes. 

ТЬе value of ~2d is dictated Ьу the Bessel asymptotics: 

Хт= ХО,т := щг + 7r/4, (54) 

using which we get: 

~2d= ""ы - 2"" = 2~d - (2""d - ""ы) = 2~d - e(2kd - k 2d ) := 

:= 2~d - ~ (2Xd - X2d) = 2~d - ~ (2 ( d7r + ~) - (2d7r + ~)) = 
. 7re ' ""d 
= 2~d - 4R := 2~d - 4d + l' (55) 

Since ""d = 2Q'Yd, the higher is Q, the higher are the values of d for which the inequality 

(56) 

holds. 
We solve now equation (38) for ihe сме: 

(57) 

We define 8 as before, but now: 
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(58) 

and get the equation: 

4 (1 + s)2 3 1 2 (1 + s)2 1 О 
х - х + -х + х + - > . 

s 2 4s 16 
(59) 

When this condition is combined with (34) we get: 

х < ~ (v + V2UV) (60) 

where и = (1 + S)2 / s, and v = и - уu2 - 4. We use (44) to get: х < 0.59. For other values 
of s there are only small changes in the result. In all cases the critical value is in the range: 
0.5 < хо < 0.65. ТЬе maximal value is attained at s = 1, and the Цlinima are at х = о, 
х --t 00 (note that xo(s) = xo(1/s». ТЬе critical input power fc mау ье calculated now: 

2112 1.5 ,2 
f = 2dxO '" О 56_С_ 
е >. -. >.R2· (61) 

А [шl description of the loss of staЬility in this geometry сап Ье obtained if we take into 
ассоипиЬе dependence of >. and с оп the relevant physical parameters. 

5. BEYOND-NUМЕRlСAL CALCULATIONS 

Some questions arise. Does the system always reach the stationary solution in the stable 
region? What happens аЬоуе the stable region? In what way would,the theory ье modified if 
we include the full Hamiltonian (2)? 

We solved the equation numerically with parameters suitable to describe the cylindrical 
geotnetry: 

with initial conditions: 

I1d = о, 112d = 1500, 
"/d = 30, "/2d = 120, 
>. = 5400 

ad(t = о) = о, a2d(t = о) = о. 

(62) 

(63) 

ТЬе results for other values of parameters mау Ье very similar due to the scaling properties of 
the equation discussed аЬоуе. 

For small enough values of f the system reaches the stationary solution after эоmе travelling 
in phase space (Fig. 1). For f == 0.3fe with the initial conditions аЬоуе, the system escapes 
the basin of attraction of the fixed point, and rather approaches а limit сусlе (Fig. 2). Тhe 
ba.sin of attraction of the stationary soltition shrinks to zero as the instability is approached. 
This lirnit cycle is not unique. Ву choosing various initial conditions other limit cycles сап Ье 
approached. In the higher f regime the behavior is harder to determine. 

It is easy to рroуе that the mоНоп of the system is bounded in its phase space, and that 
the volume in phase space decays exponential1y with decay factor 2("/d + "/и), 
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Рис. 2 

Fig. 1. The system approaches the fIXed point for f = 50, the position ofthe fIXed point is indicated 

Fig.2. Тhe system approaches а limit сус1е for f = 100 which is below the critical value 

А necessary condition for chaos to evolve is that the system will ье unstable locally. Oиr 
analysis shows that the рlШse of ad, аи is irrelevant to this question. Given the value of 
the parameters, the potentially chaotic regions are defined in the (ladI2, la2dl 2) plane. Our 
calculations show that the region 

(64) 

is always locally unstable. The numerical calculations show that when f is increased the system 
enters this region, bifurcations appear, as in the usual root towards chaos. For large enough 
f chaos мll evolve. 

In Fig. 3 we see the bifurcations for f = 500. 
Chaos evolves for f ~ 506 as we see in Fig. 4. 
When more modes are аддед to the system the behavior changes. The projection of, say, the 

3-тоде system оп the (4 diт) phase space of2 modes gives, in general, trajectories which are 
very different from the original ones. Yet, we argue that the main conclusion does not change. 
Indeed, ifwe examine the original set of equations (10), (11) we note that the transformation: 

ad -+ aad, 

a2d -+ ааи, 

f -+ af, 
1 . 

>. -+ ~>., 

(65) 

which is а generalization of (7), leaves the equations invariant. We could дедuсе from here 
that fe СХ: 1/>'. From dimensional considerations f should ье proportion/il to "'(2, /},2. It is seen 
that for the опе dimensional case the leading behavior is: fe СХ: ,. .. ?, while for the large Q-factor 
case fe СХ: /},~d' Аll oиr calculations were in fact пеедед just to illustrate that there is only опе 
transition from stability to instability (i.e. по instable windows), to validate the assumption 
that the largest constant with frequency dimensions is not absent from the expression for' fe, 
anд to calculate Хо. When we add new modes, new constants are added to the system. Since 
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Рис. 3 Рис. 4 

Fig. 3. For f = 500. One of the limit cycles which bifurcates towards chaos 

Fig. 4. For f = 507 the system is chaotic 

from (54) we get that for аН j tlj сх: с/ R; these constants до not cause а problem. ТЬе same 
is true for the one-dimensional case. As for the new >.' в, if they scale in some way, e.g. if 

Лk,l;m = f(T, R, ... )h (~, ~) kU (66) 

where ЛТ, R, ... ) is апу fиnction of аН physical parameters, but the wave length, h(l! k, т/ k) 
are constants, апд и is ап exponent, then the symmetry still holds апд then, given that the 
general picture remains the same, аН that we пеед to change is the value of Хо. тhis necessary 
modification of Хо, plus the shrinking ofbasin ofattraction, which efТectively lowers Хо, suggests 
that this part of our calcu1ations is not reliable. Yet, the дерепдепсе of the critical input power 
оп all physical parameters remains the same еуеп for the fиH Hamiltonian (2). There are values 
of и, h(l/k, m/k) for which other predictions, such as the distributionof the chaotic regions 
ofthe 2-тоде system would not ье dramaticaHy changed as well. More extensive investigation 
of 'this system is, therefore, highly desirable. 
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