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A quasi-collinear and partially degenerate four-wave mixing model is proposed to explain the
optical phase-conjugation property of various backward stimulated scattering. According to this
model, after passing through a phase-disturbed medium or an aberration plate, the input pump
beam can be resolved into two portions: a stronger undistuibed regular portion and a weaker phase-
disturbed irregular portion. These two portions interfere with each other and create a volume
holographic grating in the pumped region of a scattering medium. Only the stronger undisturbed
portion of the pump field can excite an initial backward stimulated scattering beam with a regular
wavefront. When the latter (as a reading beam) passes through the induced holographic grating,
a'diffracted wave will be created and then amplified with the reading beam together. A rigorous
mathematical analysis shows that under certain conditions the combination of these two_portions
(the reading wave and the diffracted wave) of the backward stimulated scattering can be an
approximate phase-conjugate field of the input pump field. The 'major theoretical conclusions are
basically supported by the experimental results based on a specially designed two-beam interference
setup.

1. INTRODUCTION

Optical phase-conjugation is one of the most interesting research subjects in nonlinear
optics [1,2]. So far, there are two major technical approaches to generate optical phase-
conjugate waves: one is based on the degenerate or partially degenerate four-wave mixing [3-8],
the other is based on the backward stimulated Brillouin, Raman, or Rayleigh-wing scattering
[9-14]. In addition, under particular arrangements, the special three-wave mixing [15, 16],
photon echo technique [17, 18], and self-pumped photorefractlve effect can also be used to

. produce phase-conjugate waves [19-21].

Now backward stimulated scattering (BSS) is one of the most sophisticated techniques to
generate optical phase-conjugate waves. A considerable number of theoretical papers on this
specific issue have been published since the late 1970s [22-31]. Most of those theoretical studies
have been based on a particular assumption that there is a gain discrimination between the
phase-conjugate portion and non-phase-conjugate portion of backward stimulated scattering;

i
-

\
*E-mail: gshe@acsu.buffalo.edu

431



Dun Liu, Guang S. He XOT®D, 1999, 115, évin. 2

only the former can obtain the maximum gain and can be effectively amplified. However, for
a long time, there was the lack of a clear theoretical model or physical explanation to support
this assumption. Therefore, a better physical understanding of this effect is still necessary as
indicated by Ref. 32. Another feature of the most theoretical papers cited here is that both
the pump field and the BSS field were represented by an infinite series function [9, 22, 24-31].
In those cases, it was extremely difficult to obtain a rigorous analytical solution of the wave
equation.

In this paper we intend to propose an alternative physical model as well as a novel
mathematical approach to explain the phase-conjugation property of BSS. The suggested model
is based on a quasi-collinear and partially-degenerate four-wave mixing process, or equivalently,
a quasi-collinear holographic wavefront-reconstruction process. The proposed mathematical
approach is based on the assumption that both the pump field and the BSS field can be viewed
as composed of two portions: a portion of the regular-wave and a portion of the aberration-
wave. The advantage of the suggested approach is that an explicit analytic solution of the wave
equations can be obtained.

2. QUASI-COLLINEAR HOLOGRAPHIC INTERACTION MODEL

Before starting our theoretical discussions, it is helpful to describe briefly the typical
experimental setup for demonstrating the phase-conjugation property of the BSS from a given
medium. Figure 1a shows the typical experimental setup without using an aberration plate. In
this case, a quasi-plane pump beam is focused into the center of a scattering medium. Most
experimental observations show that the BSS exhibits nearly the same beam size and beam
divergence as that as the pump beam does. These facts can be explained by the following two
considerations. First, only those portions of initial BSS which are propagating within the solid
aperture angle (measured from the sample center to the focusing lens) of the pump beam can get
the maximum gain length. Second, the divergence angle of the collimated BSS is determined
by its spot size in the pumped region of the gain medium, which is limited by the spot size
of the pump beam. We can assume that near the focal point region the focused pump beam
exhibits a Gaussian transverse intensity distribution. Considering the threshold requirement
of the burst of stimulated scattering, the minimum spot size (beam waist) of the stimulated
scattering should be slightly smaller or quite closer to that of the pump beam. Therefore, after
passing back through the focusing lens the BSS output manifests a slightly smaller or nearly
the same beam divergence angle as the pump beam does.

Figure 15 shows the same experimental setup except that a transparent aberration plate is
placed between the beamsplitter and the focusing lens. In this case, after passing back through
the aberration plate the BSS may show a significantly reduced aberration influence. That is
the typical experimental evidence of the phase-conjugation property of the BSS [10-~14].

To describe how can we employ the quasi-collinear holographic interaction model to
explain the basic experimental results mentioned above, it is worth returning to the original
idea of Gabor’s holography principle. In that case, a coherent light wave passing through a
transparent object (phase object), the object is assumed to be such that a considerable part of
the wave penetrates undisturbed through it, and a hologram is formed by the interference of
the secondary wave arising from the presence of the object with the strong background wave as
clearly described by Ref. 33. According to this principle, after passing through a phase object
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Puc. 1. Experimental setups for observation of a phase-conjugate backward stimulated
scattering: (a) without using an aberration plate and () with an aberration plate

the total optical field can be expressed as a superposition of two portions [33]:
U =UD+UY = A9 exp(ip;)+ A expliy;) = exp(ip:) { A? + A exp[i(ps — ¢:)1} . (1)

Here, U™ is the undisturbed part of the transmitted field, U‘®) the secondary wave arising
from the presence of the object; A and A(*) are their amplitude functions; ¢; and ¢, are the
corresponding phase functions, respectively.

The Gabor’s principle as described above is just applicable to the most phase-conjugation
experiments based on BSS. In this cases, as schematically shown in Fig. 2, E(w) is a quasi-
plane pump wave; after passing through an aberration plate, the pump field manifests itself
as a superposition of two portions: a stronger undisturbed wave FE(w) and a weaker distorted
wave E,(w). After passing through a focusing lens, these two portions interfere with each other
in the focal region inside a gain medium and create an induced volume holographic grating
that is due to the intensity-dependent refractive index change of the gain medium. Only the
E,\(w) wave is strong enough to fulfill the threshold requirement and to generate an initial
BSS wave E3(w'), the latter exhibits a regular wavefront as that as the former does. While
the E;(w') wave backward passing through the induced holographic grating region, a diffracted
wave E;(w') is created. Here we see a typical holographic wavefront-reconstruction process:
the induced grating is formed by the regular E;(w) wave (reference beam) and the irregular
E,(w) wave (signal beam); the initial backward stimulated scattering E;(w') wave is a reading
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Puc. 2. Schematic illustration of Gabor’s holographic model for the phase-conjugation
formation of a backward stimulated scattering

beam with a regular wavefront as the E;(w) wave does; therefore, the diffracted wave E,(w’),
as a reconstructive beam, will be the phase-conjugate replica of the F,(w) wave.

Furthermore, the E4(w') wave will experience a further amplification with the F3(w’) wave
together because both waves have the same signal frequency. In the case of stimulated Brillouin
scattering, w = w’, it is a nearly degenerate quasi-collinear four-wave mixing (FWM) process
in the sense of phase-conjugate formation. In the case of stimulated Raman scattering, w > /',
there is a partially degenerate and frequency down-converted FWM process. In the case of anti-
Stokes stimulated scattering, w < ', there is a partially degenerate and frequency up-con-
verted FWM process. Based on the explanations described above, one can see that there is
a common mechanism (pump field-induced holographic grating) playing the same key role
for phase-conjugation formation by using FWM or BSS method. This common mechanism
is applicable to any types of backward stimulated scattering processes including stimulated
Brillouin, Raman, Rayleigh-wing [34, 35], and Kerr scattering [36-38], even though the spec1f1c
scattering mechanisms are totally different among them.

3. PUMP FIELD-INDUCED HOLOGRAPHIC GRATING AND STIMULATED SCATTERING GAIN

<

Let us consider an isotropic scattering medium. Assuming w and ' are the frequencies
of pump wave and stimulated scattering wave, both of which are linearly polarized along the x
axis. The induced refractive index change expenenced by the stimulated scattering wave can
be expressed as :

D(-u';0', —w,w) |[EW)[, ©)

An(w') = Ina@) X

where no(w’) is the linear refractive index, x{* = x{)__ is a real matrix element of the third-
order nonlinear susceptibility tensor, E(w) is the electric field function of the incident pump
beam. In the focal region inside the gain medium, the values of local intensity of the pump
field, I(z,y, z,w) « |E(z,y, z,w)|?, can be quite high with a spatial intensity fluctuation that
is due to the interference between the two portions (disturbed and undisturbed) of the pump
beam. As a result, an intensity-dependent holographic grating can be formed based on the

mechanism described by Eq. (2).
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If the local pump intensity is high enough, the stimulated scattering and subsequent
stimulated amplification may occur in the focal region of the pump beam inside the medium.
Similar to the case of one-photon pumped lasing, in steady-state and small-signal approximation
the growth of an initial stimulated scattering signal can be described as

I, w'") = I1(0,w")e =¥, ' 3)

where W' is the frequency of the stimulated Stokes scattering, I(l = 0,w') is the initial intensity,
« is the linear attenuation coefficient, G is the exponential gain coefficient (in units of cm™!),
and [ is the effective gain length (in units of cm) of the medium. The threshold requirement
for the burst of a really observable stimulated scattering can be written as

G-l > 1, @)

The exponential gain coefficient G is assumed to be proportional to the local intensity of the
pump field, i.e., '

G@) =gh(z,w). )

Here, the pump intensity Io(z,w) is in units of MW/cm?, and g is the exponential gain factor
in units of cm/MW.

4. GENERALIZED DEFINITIONS OF AN OPTICAL PHASE-CONJUGATE WAVE

The term of «optical phase-conjugation» is specially used to described the wavefront reversal
property of a backward propagating optical wave with respect to a forward propagating optical
wave. Suppose there is an input quasi-monochromatic wave with a certain phase-distortion
deviated from an ideal plane wavefront, i.e.,

E(z,7,y,w) = E(z,z,y)e” " = Ay(z, 7, y)e'lbremmlg=ivt ©(6)

Here, z is the longitudinal variable along the propagation direction, x any y are the transverse
variables along the bean section, w is the frequency of the field, k = 2mng/ X is the magnitude of
the wave vector; F(z, z, ) is the complex amplitude function, Ay(z, z, ) is the real amplitude
function, and, finally, ¢(z,z,y, k) is a phase-distortion functlon If there is a backward
propagatmg wave which can be expressed as

E'(z,3,y,w) = aE*(z,z,y)e™™" = aAy(z,z,y)e F=+elmevllg=iwt - )

where a is any real constant, the field of E'(z,z,y,w) is called the frequency-degenerate
phase-conjugate wave of the input field of E(z,x,y,w). This type of optical phase-conjugate
wave can be experimentally generated by using the well-known degenerate four-wave mixing
technique [3-7].

In a more general case, if there is an backward propagating optical field with a different
frequency of w', which can be written as

E"(z,2,y,w') = aAo(z, T, y)e K 2ozl g—i't ®8)

then E"(z,z,y,w') can be termed the frequency-nondegenerate phase-conjugate wave of the
" same original field of E(z, z, y,w). This type of phase-conjugate waves can be experimentally
generated by using (i) various BSS with a considerable frequency-shift [12, 13], or (ii) a pama]ly
degenerate FWM [8, 39-42].
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Pue. 3. Schematic illustration of the optical-path geometry for the formation
of a phase-conjugate backward stimulated scattering

5. DESCRIPTION OF A FOCUSED INPUT PUMP FIELD

A detailed schematic illustration for the beam-path geometry of the BSS in a scattering
medium is shown in Fig. 3. In this case, a quasi-parallel pump beam (thick lines) passes through
an aberration plate and is focused into the center of the medium. After passing through an
aberration plate, the pump beam can be imagined as composed of two portions. One is a
relatively strong undisturbed quasi-plane wave (middle-thick lines); the other is a relatively
weak distorted wave (thin lines). These two portions of the input pump beam can interfere
with each other in the mutually overlap region (double-crossed area) and create a volume
holographic grating. For the undistorted portion of the input pump beam, the optical field in
the focal region can be approximately treated as the fundamental mode of a Hermite-Gaussian
beam, i.e. [25,43]

— Wo 2 2 1 ik L1 4
E e e"p{_(‘” ) [wz(z) B 2R<z)] e (E)} x
x exp [i(kz — wt)], v ©)

where C), is a real amplitude constant, and the parameters w, R and §z are determined by

2 ) 2 2
wA(z) = w? [1 + (é) ] , R(z)=z2 [1 + ({;) ] , b= k—’;’" (10)
Here, w(z) represents the change of pump-beam size along the > axis near the focal point
region, wo is the minimum spot size of the beam at the focal plane, 6z is the focal depth of
the focused beam, and R(z) describes the change of the radius of curvature as a function of
z. In writing Eq. (9), we simply neglect the amplitude depletion of the pump field within a
distance comparable to 6z.
According to Gabor’s principlevand Eq. (1), the total pump field near the focal point
region can be expressed as a combination of two portions:
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E(zvxaya CU) = El(Z,l', y,w)'*'Ez(Z,Ea Y, (.U) = [A!(Z,IE, y)"'Az(Z,fE, y)] €Xp [Z(kz—wt)] =

w, 1 ik L1 2 .
= {Clwi)em (—(z?fyz) et _27%"(7)] —itg™! 3;) +Crexp [zB(z,ar,y)]} x
x exp [i(kz — wt)]. ‘ (11)

Here, C; and C, are the real amplitude constants for normalization, and 6(z,z,y) is an
unknown function depending on the aberration plate. The first term with C) in the braces
of Eq. (11) represents the undistorted portion of the pump field; the second term with C,
represents the distorted portion of the pump field. It is assumed that the later manifests a
nearly uniform amplitude distribution near the focal point with a section considerably larger
than wy. As shown in Fig. 3, this assumption is based on the fact that the aberration plate causes
a wide and diffuse halo in the focal plane compared to the small focal spot of the undistorted -
wave. Nevertheless, apart from the focal plane these two portions are considerably overlapping
with each other and can induce a holographic grating.

6. FORMATION OF PHASE-CONJUGATE WAVE BY BACKWARD STIMULATED SCATTERING

As shown in Fig. 3, the two portions of the input pump beam can interfere with each
other in the overlapping region (double-crossed area) and create a volume holographic grating.
However, on the other hand, since the focused undisturbed portion of the pump beam has a
much smaller focal spot size and much higher local intensity than that of the distorted portion,
an initial BSS (middle-thick dashed lines) with a regular wavefront can be excited only by the
stronger undisturbed pump field. In its backward propagation this initial BSS experiences the
further amplification, and creates a diffracted wave through the induced holographic grating.
This diffracted portion (thin dashed lines) can be viewed as a secondary seeded signal and,
therefore, will get further amplification with the initial BSS signal together. The remained
issue is that whether or not the combination of these two portions of the backward emission
can be a phase-conjugate replica of the combination of the two portions of the input pump
field.

6.1. Description of the BSS field: E;(w') wave

According to the proposed model, it is assumed that the backward stimulated emission
field is also consisting of two portions and can be expressed as

E'(z,z,y,w") = E{(2,3,y,w") + E}(2,2,y,0') =
= [Al(z,2,y) + A)(z,2,y)] exp [i(=K'z2—w't)] (12)

where Aj(z,z,y) is the complex amplitude function of the initial BSS wave and A4}(z,z,y)
is the complex amplitude function of the diffracted wave created by the former through the
induced holographic grating.

According to the physical model described in Sec. 2, the Aj field is generated by the A;
field through the BSS process. Therefore, the electric polarization component corresponding
to A} field can be formally written as (in SI units)

Pl(W') = icoxL|Ai]? Al exp [i(—K'z — w't)] =
Ciwg o [ 207 +97)
w2(z) wi(z)
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where ¢ is the permittivity of vacuum, and x/ is a phenomenologically introduced effective
third-order susceptibility coefficient (a real coefficient) that is employed to describe the gain
behavior of BSS process. The above expression is based on the assumption that the initial BSS
experiences an exponential gain, and the exponential gain coefficient is proportional to the
intensity of the A, field [see Eq. (5)]. The wave equation of E| can be written as

n(w') O*E) - 0*Pl(W')
2 o Map

- where p is the permeability in vacuum, c the speed of light in vacuum, and ny(w') the linear
refractive index at the frequency of w’. In the slowly-varying-amplitude approximation, the
solution of Eq. (14) obeys the following equation:
AI : 102 2 2 + 2
2 9'Ci x [_ (z* +y%) :

2
8z kV A= 21 +(z/62) w(2)

VE| - (14)

(15)

where g’ = k'Y’ is the exponential gain factor of the stimulated emission for a given medium.
In order to solve this equation, we could seek the solution of the Fourier transform of A{, then
obtain the solution of A} through the reverse Fourier transform [25]. Omitting the intermediate
mathematical procedure, the final solution of A} is given by

/

1 2R
4= ()“"[29 0‘2(2_20)]°xp{_(x2+y2) [w'2<z)+#(z)] e lgz‘} o

Here, C] is a real amplitude constant, the first exponential term represents the amplitude
gain effect, the second exponential term describes the behavior of the transverse intensity and
wavefront curvature, and 2 is the starting position of the initial backward stimulated emission.
The other new parameters in the above equation are defined as

’ 2
' — ”_ 120,y =o' |1+ (2
6z' =nbz, w'i=(k/K w2, w'(z) = w'} [1 <_6z’) ] ,

5 , an
R’(z)—zl1+( z)]
z
and
='l ' 2 z\3 20\3
n=39Cidz [(3;) -(5) ] ‘ 18
In the condition of
‘ 1, ., z\3 z20\% . ’
\ = 39/Cloz [(E) - (57) ] ~ 1, 9

we have 6z’ 6z w2 =~ wi, w'?(z) ~ w?(z) and R'(z) = R(z). Compared Eq. (16) to
Eq. (11), one can see that only in that condition the E] field can be approximately the phase-
conjugate replica of the input E,; field. Later, we will discuss the real experimental conditions
to fulfill the above requirement and will also consider the influence of the difference between
k' and k.
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Now, let us consider the gain behavior of the backward stimulated emission described by
the first exponential term in Eq. (16). Actually, we have already chosen z=0 at the focal point
position in the sample center, and assume that the initial backward stimulated emission starts
roughly from —z, = —62z/2 position. If the optical path length of the gain medium is much

-longer than 6z, the effective single-path amplitude gain can be written as

A(d) = exp ( % g'cféz> . ' (20)

If the sample’s thickness is much shorter than the focal depth, i. e. d < 6z, then we have

!

A(d) =~ exb ( 2

g’cfd) : (21)
This indicates that the BSS glows up exponentially along the whole optical path length within
the medium. '

6.2. Description of the BSS field: Ej wave

Next we shall consider the diffracted E} wave created by the E| wave through the induced

" holographic grating near the focal region. Similar to a partial degenerate FWM process, the

nonlinear polarization component P;, which corresponds to the E} wave, can be written
as [44,45]

Pj(w') = icox) A1 As Al exp [i(—k'z — w't)], A (22)

where x" is a nominally introduced effective third-order susceptibility (a real coefficient) that
is used to characterize the gain behavior of a FWM or a grating diffraction process. Assuming
that the condition of Eq. (19) is satisfied and the .F] field is phase-conjugated with the E; field,
then, based on Egs. (11), (16), and (19), we can obtain an explicit expression for P;:

, C1C,Clwk 2(z? + ¢?) .
Py(w') = teox. 7 exp wi2) exp(—if) x
X exp [-;—g'Clz(z - zo)] exp [i(—k'z — w't)] . (23)

Substitutiﬁg Eq. (23) into a nonlinear wave equation like Eq. (14), it can be found that the
complex A} function is governed by the following equation:

04y | i _ 9" GO0 2(z* + )
0z 2k

1 1

+ -2 A= il o J7 —i Zd'C¥z — 24
LT Y TH /62 0 (z) ] exp(—i0) exp [29 Ciz - )|, 24

where g"” = k'x". Since A} does not apper on the right-hand side of Eq. (24), we can give a

trial solution of A} as

(25)

QY 2(z? +y?) |
[ 1 _ "
A . ex [ T ) Ay,

where % is an unknown function to be solved. Substituting Eq. (25) into Eq. (24) leads to
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o4y 2 LAY L oMY\ | i (9AY | Ay
8z ‘6z[1+ (/o] \" 0z oy ) 2w \ow oy
1 4(3"2 + yz) " 4(352 + y2) "
— — + =
6z [1 +(2/62)? [1 w(z) & 6z w?(2) A2
1 1 1 .
= Eg"CfW exp [Eg'Cf(z - zo)] exp(—1i0). (26)

This is a rather complicated partial differential equation; however, it can be greatly simplified
with the following considerations. First, since there is an exponential term on the right-hand
side of Eq. (26), we may expect that the solution of A} should also involve a corresponding
exponential gain term. As a result, the condition A% /92 > AY/éz should be fulfilled;
therefore, compared to the first term, the fourth and the fifth terms on the left-hand side
of Eq. (26) can be neglected. Second, the focal depth is much larger that the beam size, i.e.,
6z > x,v; the longitudinal variation of the beam intensity is faster than the transverse variation
of the beam intensity, i.e. dAY/dz > OAY/dz, OAY [0z > dAY /dy. Therefore, the second
term on the left-hand side of Eq. (26) can also be neglected. Then Eq. (26) can be finally
simplified as

,2’ 1’ 2 n _— g’/ l2 1 1,42 .
04 + — ___gc¢ —d'C*¥z — —i0). 27
Oz 2k 1412 2 [1 (z/&z)z] exXp 2g 1(2 Z()) CXp( 10) ( )

To solve this equation we can further assume a trial solution,
A;I(za z, y) = Agl(z) €xXp [—iol(z, x, y)] . * (28)

Here the A}’(z) term represents the real amplitude as a function of 2z, and the exponential term
represents the phase front as a function of z, x, and y. Substituting Eq. (28) into Eq. (27), we
obtain the following pair of equations:

oM A ' Lo
+ = = < —_ —_
5z "2k VA0 T AT ey O |29 C1E T )| cost,

00" 1 |roe\* [o6\? g"c? 1, ., sin 660 @
5t [(67) + (a—y) } = mexp [Eg Ci(z - Zo)] AT
where
50=6-9"
In the small aberration approximation, the second-order spatial derivative or thé square of the

first-order spatial derivative of the function #’ can be neglected, then Egs. (29) can be simplified
as

aAIZI, gIIC12 1 Vs
- 3 - 6

9z 2[1+(z/82)7] exp | 59'Ci(z — 20)| cos 69, o

30’ _ gllcl2 Sinae

1 12
Bz 21+ G/ T [59 Citz Z")] Ay
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As mentioned in Sec. 5, the distorted portion of the input pump field manifests an uniform
amplitude distribution near the focal point region [see Eq. (11)]. This assumption is based on
the fact that the beam waist of this portion is considerably larger than that of the undistorted
portion of the pump field (see Fig. 3). In Fig. 3 one can also see that for the distorted portion
of the pump field, the variation of the shape of the beam waist along the z axis is negligible
within the focal depth range. Hence we can further assume that the longitudinal variation of
the wavefront of the distorted portion of the pump field within the focal depth range can be
neglected, i. e.,

86/02 = 0. @D

Subtracting the second equation of Eq. (30) from Eq. (31), we obtain a new pair of coupled
equations as

o4y _ _ ¢'C} Lo
5z 2 [1+(2/62)?] P59 Ci(z = ) | cos b, G2
8(86) §"C? 1, 4 sin 60
=_ ~g'CHz — 20)| ——r.
3z Z[+(e/6an] P (29 C1C )| T
Dividing the first equation by the second in Egs. (32), we find
04y _ ,, coséb |
266) - 2 snes (33)
This implies that
AY'(2)siné0(z) = A (—2) sin66(—z) = B, (34)

where B is a constant considerably smaller than A%’. Substituting cos 66 = /(A%')? — B2/AY’
into the first equation of Egs. (32), we have

Alzll : aAgl _ gIICIZ
VAN —B? 9z 21+ (2/62)
~ Considering that B2 < (A4%")?, Eq. (35) can be approximately rewritten as
aAIZH _ gnclz

Oz 2 [1 + (z/6z)2]

1 ,
exp [ig’Cf(z - zg)] ) (35)

1
exp [5 g CHz~ zo)] . (36)

Now let us consider the physical meaning of the factor g’C? and the factor g” C?. The
former is used to describe the gain behavior of the A} field by stimulated scattering amplification,
the latter is nominally employed to describe the growth of the A} field through the holographic
grating diffraction (or the equivalent four-wave mixing). It is important to point out that the
initial A} field can be viewed as a secondary seed signal, which will experience an additional
gain from the stimulated scattering amplification as that the A} field does. Under most BSS
experimental conditions, the subsequent gain of the A} field comes mainly from the stimulated
amplification rather than the equivalent FWM or the grating diffraction. Hence, in Eq. (36)
we can replace the g” C? term by the g’C? term, and rewrite Eq. (36) as

Ay _ g'C}
0z 2 [1 + (z/éz)z]

441

exp [%g'Cf(z - zo)] . 37



Dun Liu, Guang S. He | o XOT®, 1999, 115, ewn. 2

The final solution of this equation is. ‘
1
AY = exp [ig’Cf(z — zo)] . (38)
To obtain this solution, we have assumed that 1/,/1 + (2/6z)? = 1, which is valid within the
range of z < §z. From Eq. (38) one can find the initial value of A}’ at 2 = —z,
‘ ' Al (=z) = 1. 4 (39)

Next, the remaining issue is to consider the phase function §'(z,z,y) of the A} field
expressed by Eq. (28). From Eq. (34) we have

) i A"'(—z )
sin 66(z) = mn&&(—z@%. ‘ (40)
Substituting Eqgs. (38) and (39) into Eq. (40) leads to
N 1
sin 66(2) = sin [6(2) — 8'(2)] = sin 68(—zo) exp [—ig'Cf(z - zo)] . (41)

It is indicated by Eq. (41) that during backward propagation the phase front of the A field is
getting closer and closer to the phase front of the A, field. Specifically, if the stimulated gain
is high enough, i. e., \

%g'C’f(z —2) > 1, , (42)
we find ‘
sin [0(2) - 0'(z)] =0, 6'(2)— 6(2). - (43)

Based on Egs. (25), (28), (38) and (43), the diffracted portion of the backward stimulated
scattering field can be finally obtained as
_ C,C

1
A; —a—l— eXp [-ig'Cf(z - Z())] €Xp |:°—

2a? +9?)
wi(2)
6.3. The total BSS field: E| + E} wave
Based on Egs. (12), (16) and (44), the total BSS field can be finally written as
El(z’ z, y,w) = [All(zvxv y) + A’Z(Z,xv y)] €Xp [7'(_klz - wlt)] =

R By Yo SCTIPY (P S N B S L B3
c, exp [2901(2 20)] {Clw(z)er( (@ +y9) 02(2) +'2R(z) +itg 52 +

] exp(—1i0). (44)

2(:1:2 + y2)
w(2)

The above expression is obtained under the conditions that the requirements described by
Egs. (19) and (42) are fulfilled. Here we can combine these two requirements together as

-docis: () - ()] =

g'CHz—2) > 1.

4 C, exp [— ] exp(—ie)} exp [i(—k'z —w't)]. (45)

(46)
1
2
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On the other hand, the total input pump field is given by Eq. (11) and can be rewritten here. -
-as '

E(z,7,y,w) = [A1(z,3,y) + Ax(z, 3, 9] expilkz — wt)] =

(L we N T . .
= {Clmexp (——(z +y°) [wz(z) —2R(z)]‘ 1 tg 6Z)+Cz exp(ze)}exp [i(kz—wt)]. (47)

Compared Eq. (45) to Eq. (47), if we neglected the difference between k and k', and only
consider the central portion of the field within the region of

[2(% + ) [ (2)] < 1, (48)

we have
[Al(z,2,9) + A4z, 3,0)]  [Ai(2,3,9) + As(z, s, ). (49)

Based on the above relationship, one can conclude that the total BSS field can be approximately
phase-conjugated to the total input pump field provided that certain preconditions can be
fulfilled.

7. DISCUSSIONS

. The conclusion that a BSS field can be an approximate phase-conjugate wave of the input
pump field is obtained under certain conditions. First, the gain requirements expressed by Eq.
(46) should be fulfilled. Assuming that the effective gain length of the nonlinear medium is
nearly determined by the focal depth of the focused pump beam, e.g., z = (0.4 = 0.5)6z and
2o = —(0.4 +0.5)8z, it turns out that according to the first requirement expressed by Eq. (46)

g'C2%z ~ 12 + 23, B (50)
therefore, the required gain of the intensity of a small BSS signal should be
exp [9'CH(z — z0)] = exp(g'C}6z) ~ exp(12 <+ 23) ~ 1-10° = 1- 10%. (51) -

In this case, the second requirement of Eq. (46) is automatically fulfilled. The high gain
requirement can be readily fulfilled in most experiment conditions for observing the backward
stimulated scattering without using any optical feedback devices. For example, the values
of exponential gain factor gg of stimulated Brillouin scattering for the common transparent
solvents (such as acetone, benzene, and toluene) are estimated to be 0.01 <+ 0.03 cm/MW
[32,44]. Assuming the typical pump intensity is I, ~ 500 MW/cm? and the effective gain
length (focal depth) is 6z ~ 1.5 cm, the exponential gain should be

exp(gplpbz) ~ exp(8 + 22). (52)

Compared Eq. (52) to Eq. (51) we see that the requirements for observing the phase-conjugate
property of a BSS wave can be basically fulfilled by common experimental conditions.

It should be pointed out that the phase-conjugation property. of the BSS from a gain
medium, in general, is not perfect owing to the following reasons. First, all mathematical
derivations described above are based on the small aberration approximation, so that we can
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Puc. 4. Experimental setup for measuring the phase-conjugation property of
the backward stimulated Brillouin scattering with two-beam interference method

assume the considerable part of the distorted pump wave may overlap with the undisturbed pump
wave in the focal region to generate a holographic grating. Second, only the major (central)
part of the BSS may manifest a high-fidelity phase-conjugation property as indicated by the
requirement of Eq. (48). One can expect that under a larger aberration influence, the fidelity
of phase-conjugation behavior should become poorer. -

So far the difference between k and k' has been ignored, which brings a certain influence
on the fidelity of the phase-conjugation of a BSS wave. This influence should be essentially the
same as it happens when we create a hologram by using two beams of wavelength A, and then
read this hologram by using another beam of wavelength \’. Nevertheless, compared Eq. (45)
to Eq. (47) one can see that the difference between k and k' leads to no influence to the
relationship of §'(z) = 6(z) that is the most essential requirement for distortion compensation.
But the difference between & and &' does affect the radius of curvature of the undistorted part
of a BSS field and causes slightly an apparent displacement of the focal point of the BSS wave.

It should also be noted that the holographic model employed in this work is qualitatively
compatible with the existing theoretical explanation for phase-conjugate formation of the
backward stimulated Brillouin scattering, which is based on the assumption that there is a
highly nonuniform pump intensity distribution, i.e. a volume speckle pattern in the focal region.
Only the phase-conjugate portion of the BSS field, whose intensity distribution best matches
the nonuniform gain distribution, experiences the maximum exponential gain coefficient that is
two-time greater than that of the non-phase-conjugate portion [24, 44]. In terms of holographic
model the volume speckle is a result of interference between the undistorted part and distorted
part of the pump field.

Finally it is important to indicate that the Gabor’s holographic interaction model and the
theoretical treatment presented in this paper are suitable not only for various BSS processes
but also for other kinds of backward coherent emission processes provided that there is a high
exponential gain mechanism for small initial backward coherent signal as well as an effective
holographic grating induced by the pump field [46]. Recently, we have observed a nearly
perfect phase-conjugation property of the backward frequency-upconverted stimulated emission
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Puc. 5. Photographs of (a) the pump beam II, (b) the pump beam I after passing through

an aberration plate, (c¢) the interference pattern of the two pump beams without inserting

an aberration plate, and (d) the interference pattern of the two pump beams with inserting .
an aberration plate in position A shown in Fig. 4

froni a two-photon pumped lasing medium [47]. This observation may suggest a new technical
approach to generate optical phase-conjugate waves and can be explained very well based on
the same theoretical model as we described here [48-50].

8. SOME RECENT EXPERIMENTAL RESULTS

- So far, most experimental studies of phase-conjugation fidelity of BSS have been based
on measurements of the near-field and far-field distributions. We present here some recent
experimental results of phase-conjugation property of backward stimulated Brillouin scattering
(BSBS), based on measuring the fidelity of wavefront reconstruction by using two-beam
interference technique. The advantage of this method is that it can provide both the near-
field and the wavefront information of the tested beams.

The experimental setup is shown schematically in Fig. 4. A 532-nm master pump laser
beam was provided by a Q-switched and frequency-doubled pulsed Nd:YAG laser source; the
pulse duration, beam size and divergence angle of this beam were 10 ns, 4 mm, and 1 mrad,
respectively. After a beamsplitter and a reflecting mirror, that master beam was divided into
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Puc. 6. Photographs of (a) the BSBS beam excited by the pump bea‘m II, (b) the BSBS beam

excited by the pump beam I passing through an aberration plate, (c) the interference pattern

of the two BSBS beams without inserting an aberration plate, and (d) the interference pattern
of the two BSBS beams with inserting an aberration plate in position B shown in Fig. 4

two separated beams, which were finally focused into two 10-cm-long CS;, liquid cells through
two f = 10 cm focusing lenses. The intensities of these two pump beams could be adjusted
separately and were high enough to generate BSBS in both liquid cells. Furthermore, by means
of two-edge beamsplitters and a 10x beam expander, the interference pattern of the two incident
pump beams could be observed on a screen and recorded by a camera. In the same manner, the
interference pattern of the two BSBS beamis from these two liquid cells could be also observed in
another screen. In order to test the wavefront-reconstruction ability, a hydrofluoric acid-etched
glass slide was used as an aberration plate, which could introduce an aberration influence of
10-15 mrad on the pump beam (I). This aberration plate can be placed either at position A or
position B.

Figure 5a shows the photograph of the pump beam II; here we see a relatively uniform
intensity distribution in the beam section. Figure 55 shows the photograph of the pump beam I
after passing through an aberration plate placed at position A; here we see a random transverse
intensity fluctuation caused by the aberration plate. Figure Sc shows the photograph of the
interference pattern formed by the two incident pump beams without inserting an aberration
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plate; here we can see the regular and straight fringes that indicate a nearly ideal plane wavefront
for both beams. Finally, Fig. 5d shows the photograph of the interference pattern when the
aberration plate was placed at position A; here we can no longer see any clear and regular
fringes because of the severe aberration influence on one beam. To obtain the photographs
shown in Fig. 5¢ and d, the intensities of the two interfering beams were kept nearly the same.
Under the same conditions, a set of photographs can be obtained for the BSBS beams from
the two CS; liquid cells. Figure 6a shows the photograph of the BSBS beam excited by the
pump beam II; here we see a relatively uniform intensity distribution without a-discrete-spot
structure. Figure 65 shows the photograph of the BSBS beam excited by the pump beam I
when the aberration plate was placed at position A. Here we see a randomly fluctuated intensity
distribution, which is analogous to that shown in Fig. 5b. Figure 6¢c shows the photograph of
the regular interference pattern formed by two BSBS beams without inserting an aberration
plate. Compared Fig. 6¢ to Fig. 5c, one can find that the two backward stimulated scattering
beams exhibit the nearly ideal plane wavefront, when no aberration plate is inserted. Finally,
Fig. 6d shows the photograph of the interference pattern formed by the two BSBS beams, when
the aberration plate was placed at position B. In this case we can still see the clear fringes,
although there is a small irregularity among those in comparison with that shown in Fig. 6c.
Both results shown in Fig. 6¢ and d can be well explained based on the two basic theoretical
conclusions given in Sec. 7. The first conclusion is that if the stimulated scattering gain is
high enough and the aberration influence is small, one can expect a nearly perfect wavefront
reconstruction. The result shown in Fig. 6¢ has basically supported this conclusion. The second
conclusion is that under a large aberration influence, the wavefront reconstruction will not be
perfect. The result shown in Fig. 6d has basically supported that conclusion. In the latter case,
when the BSBS beam from the second liquid cell passed through the aberration plate at position
B, the original wavefront of the pump beam I can be basically, but not perfectly, reconstructed.
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