ЛАТЕРАЛЬНЫЕ СВЕРХРЕШЕТКИ В СИЛЬНОМ ЭЛЕКТРОМАГНИТНОМ ПОЛЕ: САМОИНДУЦИРОВАННАЯ ПРОЗРАЧНОСТЬ, МУЛЬТИСТАБИЛЬНОСТЬ, УМНОЖЕНИЕ ЧАСТОТЫ

Е. П. Додин*, А. А. Жаров, А. А. Игнатов

Институт физики микроструктур Российской академии наук 603600, Нижний Новгород, Россия

Поступила в редакцию 21 апреля 1998 г.

В рамках самосогласованного подхода теоретически исследованы процессы самовоздействия и генерации гармоник интенсивного электромагнитного излучения, взаимодействующего с квантовыми латеральными полупроводниковыми сверхрешетками. Расчеты проводились на основе квазиклассического описания электронного транспорта в минизоне проводимости в электродинамической модели эквивалентного токового экрана. Обнаружен многоступенчатый мультистабильный эффект самоиндуцированной прозрачности, связанный с явлением динамической локализации электронов в самосогласованном электромагнитном поле и возникающий лишь в условиях, когда концентрация свободных носителей тока в сверхрешетке превышает определенное критическое значение. Показано, что просветление структуры сопровождается эффективной генерацией нечетных гармоник излучения, пики интенсивности которых лежат вблизи порога прозрачности.

1. ВВЕДЕНИЕ

Исследование нелинейного взаимодействия квантовых периодических полупроводниковых структур — квантовых сверхрешеток — с электромагнитным излучением представляется важным направлением в современной квантовой электронике. В первую очередь это связано с последними достижениями технологии в изготовлении весьма совершенных периодических структур, демонстрирующих экстремально сильные нелинейные свойства в электромагнитных полях миллиметрового, субмиллиметрового, инфракрасного и оптического диапазонов [1-4]. Наличие дополнительного потенциала, вызванное периодическим изменением химического состава образца, в квантовых сверхрешетках приводит к перестройке энергетического спектра носителей тока. Энергетический спектр разбивается на совокупность достаточно узких разрешенных и запрещенных минизон [5,6]. Нелинейность сверхрешетки связана с ограниченностью энергии электрона в минизоне, приводящей, с одной стороны, к возникновению осцилляторного движения электронов в постоянном электрическом поле — блоховским осцилляциям, с другой стороны, — к существенно неквадратичному закону дисперсии, следствием которого является *N*-образность вольт-амперной характеристики [7]. Именно эти два обстоятельства фактически и определяют механизм нелинейности квантовых сверхрешеток. В быстропеременном электрическом поле динамика электронов в минизоне становится весьма сложной и может быть аналитически описана лишь в отдельных

*E-mail: dodin@ipm.sci-nnov.ru

Рис. 1. *а*) Пример латеральной полупроводниковой структуры GaAs/AlGaAs (одномерные системы связанных квантовых точек); *б*) геометрия модельной постановки задачи

специальных случаях, например, в пределе очень редких столкновений. Так, в частности, если частота поля значительно превышает частоты упругого и неупругого рассеяний электронов, имеет место эффект динамической локализации электронов [8, 9], в условиях которого сверхрешетка ведет себя как линейный диэлектрик. Макроскопическим проявлением динамической локализации является так называемый эффект самоиндуцированной прозрачности. В присутствии одновременно переменного и постоянного электрических полей на статической вольт-амперной характеристике могут появляться области абсолютной отрицательной проводимости [9], свидетельствующие о наличии активных свойств у сверхрешеток в этих областях. Таким образом, существует принципиальная возможность использования нелинейных и активных свойств квантовых сверхрешеток с целью преобразования частотного и пространственного спектров падающего на них излучения, его усиления, а также генерации вторичных волн в областях абсолютной отрицательной проводимости.

Настоящая работа посвящена изучению эффектов самовоздействия и генерации гармоник излучения, связанных с динамической локализацией электронов, при отражении и прохождении плоской электромагнитной волны через латеральную сверхрешетку. Латеральные (планарные) сверхрешетки, где дополнительный потенциал создается для двумерных электронов, локализованных вблизи некоторой поверхности полупроводника, привлекают в настоящее время значительное внимание. В данной ситуации движение электронов локализовано в направлении, перпендикулярном поверхности, и в то же время дополнительный потенциал приводит к образованию минизонного спектра при движении электронов вдоль плоскости их локализации. Среди различных латеральных структур особое место занимают сверхрешетки, представляющие собой одномерные цепочки идентичных и идентично связанных квантовых точек GaAs/AlGaAs (рис. 1*a*), в данной геометрии называемые иногда квантовыми ящиками [10] и являющиеся разновидностью квантовых проволок. Движение электронов в такой одномерной системе происходит вдоль проволок, периодический потенциал которых образует минизонный энергетический спектр. В работе [10] показано, что такие структуры проявляют уникальные свойства, связанные с возможностью подавления как внутриминизонного, так и межминизонного рассеяния на оптических фононах при комнатных температурах, из-за чего соответствующие частоты релаксации электронной скорости могут достигать аномально малых значений $\simeq 3 \cdot 10^{11} \text{ c}^{-1}$. Также оказывается значительно подавленным и упругое рассеяние электронов. Как будет показано, латеральные квантовые сверхрешетки данного типа в поле падающей волны демонстрируют сложное динамическое поведение, приводящее к многоступенчатой и мультистабильной самоиндуцированной прозрачности, сопровождающейся эффективной генерацией нечетных гармоник. В отличие от цитированных выше статей [8,9], а также [11], где в рамках квазиэлектростатики использовалось приближение заданного монохроматического поля, в настоящей работе развивается самосогласованный волновой подход, учитывающий влияние нелинейного экранирующего тока, текущего вдоль оси латеральной сверхрешетки.

2. ГИДРОДИНАМИКА ЭЛЕКТРОНОВ В МИНИЗОНЕ ПРОВОДИМОСТИ. МАТЕРИАЛЬНЫЕ УРАВНЕНИЯ

Уравнения движения электронов в энергетической минизоне сверхрешетки могут быть получены с помощью квазиклассического описания электронного транспорта на основе кинетического уравнения Больцмана [9]

$$\frac{\partial f}{\partial t} + eE\frac{\partial f}{\partial p} = \mathrm{St}(f),\tag{1}$$

где f(p,t) — функция распределения, p — квазиимпульс электрона, E — электрическое поле, приложенное вдоль оси (перпендикулярно слоям) сверхрешетки, St(f) — интеграл столкновений, и закона дисперсии электрона в приближении сильной связи:

$$\epsilon(p) = \frac{\Delta}{2} \left(1 - \cos \frac{pd}{\hbar} \right),\tag{2}$$

 Δ — энергетическая ширина минизоны, d — период сверхрешетки. При написании выражения (2) мы полагали, что все электроны сосредоточены в нижней минизоне (критерий для концентрации приведен в [5]). Квазиклассическими уравнениями можно пользоваться при выполнении ряда условий, имеющих следующий вид:

$$\hbar\omega < \Delta_a, \quad eEd < \Delta_a, \quad eEd < \Delta,$$

где Δ_g — ширина запрещенной минизоны. Первые два условия позволяют пренебречь межминизонными переходами, а также межминизонным туннелированием под воздействием интенсивного поля. Последнее из приведенных условий дает возможность квазиклассиически рассматривать движение электронов в пределах одной минизоны, хотя, как показано в недавней работе [12], в некоторых случаях (sequential tunneling) данное условие не является обязательным.

Для учета процессов упругого и неупругого рассеяний введем интеграл столкновений в модельной форме:

$$St(f) = -\nu_{\epsilon} \left\{ f(p,t) - f_0(p) \right\} - \frac{\nu_{\epsilon l}}{2} \left\{ f(p,t) - f(-p,t) \right\},$$
(3)

где

$$f_0(p) = \frac{d}{2} \left\{ \pi \hbar I_0 \left(\frac{\Delta}{2kT} \right) \right\}^{-1} \exp \left\{ \frac{\Delta \cos(pd/\hbar)}{2kT} \right\}$$

— равновесная функция распределения, T — температура решетки, ν_{ϵ} — эффективная частота релаксации энергии, ν_{el} — эффективная частота упругих столкновений, $I_0(x)$ — модифицированная функция Бесселя, k — постоянная Больцмана. Квазиклассическая мгновенная скорость электронов v(p) в направлении оси сверхрешетки,

$$v(p) = \frac{\partial \epsilon}{\partial p} = \frac{d\Delta}{2\hbar} \sin\left(\frac{pd}{\hbar}\right), \qquad (4)$$

является периодической функцией квазиимпульса.

Чтобы построить теорию взаимодействия излучения со сверхрешеткой, необходимо из уравнения Больцмана (1) получить материальные уравнения для электромагнитного поля или, другими словами, связь тока, текущего по сверхрешетке, с электрическим полем. Наиболее простой путь в этом направлении — переход к гидродинамическим уравнениям. Средние (гидродинамические) значения скорости V и энергии W электронов находятся путем вычисления соответствующих моментов функции распределения:

$$V(t) = \int v(p)f(p,t)dp,$$
(5)

$$W(t) = \int \epsilon(p) f(p, t) dp, \qquad (6)$$

где интегралы берутся по зоне Бриллюэна $-\pi\hbar/d \le p \le \pi\hbar/d$, а возмущенная и невозмущенная функции распределения удовлетворяют условиям нормировки $\int f dp = 1$, $f_0 dp = 1$. Уравнения для V(t) и W(t) получаются путем прямого интегрирования уравнения (1) с учетом (4), а также еще одного соотношения, непосредственно вытекающего из (4):

$$\frac{\partial v(p)}{\partial p} = \frac{\Delta d^2}{2\hbar^2} \left[1 - \frac{2\epsilon(p)}{\Delta} \right]. \tag{7}$$

В результате, после несложных вычислений, имеем

$$\frac{dV}{dt} = \frac{eE}{m(W)} - \nu_V V,$$

$$\frac{dW}{dt} = eEV - \nu_\epsilon (W - W_T),$$
(8)

где $W_T = \Delta(1 - \mu_0)/2$ — средняя тепловая энергия электрона в отсутствие электрического поля, $\mu_0 = I_1(\Delta/2kT)/I_0(\Delta/2kT)$, $\nu_V = \nu_{\epsilon} + \nu_{el}$ — частота релаксации средней скорости за счет соударений, $m(W) = m_0/(1 - 2W/\Delta)$ — энергетическая зависимость эффективной массы электрона, $m_0 = 2\hbar^2/d^2\Delta$ — эффективная масса на дне минизоны. Энергетическая зависимость эффективной массы электрона определяется законом дисперсии (2) и физически связана с брэгговским отражением. В дальнейшем будем считать, что концентрация минизонных электронов проводимости не слишком мала и поляризуемость сверхрешетки полностью определяется соответствующими электрическими токами, плотность которых пропорциональна гидродинамической скорости V:

$$j = en_e V, \tag{9}$$

где *e*, *n_e* — заряд и концентрация электронов, пересчитанная на всю поверхность структуры. Таким образом, уравнения (8) могут рассматриваться как материальные уравнения для электромагнитного поля, поляризация которого совпадает с осью сверхрешетки.

3. ПОСТАНОВКА ЗАДАЧИ. ИСХОДНЫЕ УРАВНЕНИЯ

Рассмотрим латеральную сверхрешетку толщиной h, расположенную на диэлектрической подложке с проницаемостью ε_s (дисперсией в подложке будем в дальнейшем

пренебрегать, полагая $\varepsilon_s = \text{const}$), на которую из вакуума нормально падает плоская электромагнитная волна с вектором электрического поля, ориентированным вдоль оси сверхрешетки (схематически геометрия задачи показана на рис. 16). Будем считать, что толщина сверхрешетки h значительно меньше характерного масштаба электромагнитного поля в среде. Как показывают простейшие оценки, данное условие с запасом выполняется практически для любой реальной структуры в миллиметровом, субмиллиметровом и дальнем инфракрасном диапазонах длин волн. Выберем для определенности ось z декартовой системы координат совпадающей с направлением волнового вектора падающей волны \mathbf{k} , а ось x — с направлением оси сверхрешетки. Точку z = 0совместим с «освещенной» поверхностью сверхрешетки. Электромагнитное поле будем описывать с помощью уравнений Максвелла

rot
$$\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$
, rot $\mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j}$, (10)

где **j** — плотность электрического тока, текущего в соответствующей среде (**j** = 0 при z < 0 (вакуум); согласно (9), **j** = $en_e V$ при $0 \le z \le h$,

$$\mathbf{j} = rac{1}{c} rac{\partial \mathbf{P}}{\partial t} = rac{arepsilon_s - 1}{4\pi} rac{\partial \mathbf{E}}{\partial t}$$
 при $z > h$,

— ток поляризации в подложке; среды считаются немагнитными, $\mathbf{B} = \mathbf{H}$). Прежде чем перейти к выводу уравнений, описывающих динамику электронов в сверхрешетке в самосогласованном поле и определяющих коэффициенты отражения и прохождения электромагнитного поля, перейдем для удобства в (8), (10) к следующим безразмерным переменным:

$$au = \omega t, \quad \eta = \frac{\omega z}{c}, \quad U = \frac{E}{E_C}, \quad w = \frac{V}{V_0}, \quad E_C = \frac{\hbar \omega}{ed}, \quad V_0 = \frac{d\Delta}{2\hbar}, \quad \zeta = \frac{2(W - W_T)}{\Delta}$$

 ω — частота падающего поля. Учитывая одномерность задачи, запишем в новых переменных волновое уравнение, определяющее высокочастотное электрическое поле во всем пространстве:

$$\varepsilon(\eta)\frac{\partial^2 U}{\partial \tau^2} - \frac{\partial^2 U}{\partial \eta^2} = -\theta \frac{\partial w}{\partial \tau},\tag{11}$$

где $\theta = \omega_{pe}^2 / \omega^2$, $\omega_{pe}^2 = 4\pi e^2 n_e / m_0$ — квадрат плазменной частоты электронов в минизоне; $\varepsilon(\eta < \omega h/c) = 1$, $\varepsilon(\eta > \omega h/c) = \varepsilon_s$, $\theta(\eta < 0, \eta > \omega h/c) = 0$. Для получения связи между полями падающей, отраженной и прошедшей волн, принимая во внимание малую толщину сверхрешетки, в пренебрежении дифракционными эффектами, обусловленными дискретностью структуры в *y*-направлении, будем рассматривать ее в виде эквивалентного токового экрана бесконечно малой толщины, переходя от объемных электрических токов, текущих по сверхрешетке, к эквивалентным поверхностным. Положим правую часть в (11) равной

$$\theta \frac{\partial w}{\partial \tau} = \theta_0 \frac{\partial w}{\partial \tau} \,\delta(\eta),\tag{12}$$

где $\theta_0 = \theta \omega h/c$, $\delta(\eta)$ — дельта-функция Дирака. Безразмерный параметр θ_0 является ключевым параметром теории, определяющим роль нелинейных экранирующих токов

в сверхрешетке и, как будет показано ниже, существенно влияющим на процессы самовоздействия и генерации гармоник излучения. Численная оценка величины параметра θ_0 , пропорционального поверхностной электронной концентрации ($N_s = n_e h$), для $n_e = 10^{17}$ см⁻³, $h = 10^{-5}$ см, $\Delta = 100$ мэВ, $d = 10^{-6}$ см, $\omega = 10^{13}$ с⁻¹ дает значение $\theta_0 \sim 1$. Из уравнения (11) с учетом (12) можно получить граничные условия для электрического поля на токовом экране:

$$[U]_{\eta=0} = 0, \quad \left[\frac{\partial U}{\partial \eta}\right]_{\eta=0} = \theta_0 \frac{\partial w}{\partial \tau} \tag{13}$$

(квадратные скобки обозначают скачки соответствующих величин), отвечающие непрерывности электрического поля и скачку магнитного поля на поверхностном токе. Чтобы подставить в граничные условия (13) падающее (U_i) , отраженное (U_r) и прошедшее (U_t) электромагнитные поля будем описывать их по отдельности с помощью волновых уравнений первого порядка:

$$\frac{\partial U_i}{\partial \tau} + \frac{\partial U_i}{\partial \eta} = 0,$$

$$\frac{\partial U_r}{\partial \tau} - \frac{\partial U_r}{\partial \eta} = 0,$$

$$\frac{\partial U_t}{\partial \tau} + \frac{1}{\sqrt{\varepsilon_s}} \frac{\partial U_t}{\partial \eta} = 0,$$
(14)

где поля U_i , U_r , U_t связаны при $\eta = 0$ условием (13). В случае однородных линейных сред переход от исходного уравнения (11) к уравнениям (14) является полностью корректным. Подставляя соответствующие величины $U_{i,r,t}$ в (13) и выражая пространственные производные через производные по времени из уравнений (14), получаем явный вид граничных условий при $\eta = 0$:

$$U_i + U_r = U_t, \tag{15}$$

$$-\sqrt{\varepsilon_s}\frac{\partial U_t}{\partial \tau} - \frac{\partial U_r}{\partial \tau} + \frac{\partial U_i}{\partial \tau} = \theta_0 \frac{\partial w}{\partial \tau}.$$
 (16)

Уравнение (16) может быть проинтегрировано по времени, и мы получаем

$$-\sqrt{\varepsilon_s} U_t - U_r + U_i = \theta_0 w + C. \tag{17}$$

Произвольная постоянная интегрирования определяется из начальных условий. В дальнейшем будем полагать C = 0, что соответствует нулевым начальным условиям. Заметим, что величина электрического поля, фигурирующая в уравнениях (8), совпадает с полем прошедшей волны, отвечающим в перенормированных переменных величине U_t (индекс t в дальнейшем будет опущен $U_t \equiv U$). Выражая U_r из уравнения (15) и подставляя в (17), окончательно имеем

$$\frac{2U_i(\tau)}{1+\sqrt{\varepsilon_s}} = U + \frac{\theta_0}{1+\sqrt{\varepsilon_s}} w, \tag{18}$$

что вместе с уравнениями (8), которые в безразмерных переменных выглядят следующим образом:

$$\frac{\partial w}{\partial \tau} = U(\mu_0 - \zeta) - \nu_1 w,$$

$$\frac{\partial \zeta}{\partial \tau} = Uw - \nu_2 \zeta,$$
(19)

 $(\nu_{1,2} = \nu_{V,\epsilon}/\omega)$ полностью описывают самосогласованное взаимодействие нормально падающей плоской электромагнитной волны с тонкой латеральной сверхрешеткой. Падающее поле $U_i(\tau)$ считается заданной функцией времени. После замены

$$\frac{2U_i(\tau)}{1+\sqrt{\varepsilon_s}} \equiv \overline{U}_i(\tau), \quad \frac{\theta_0\mu_0}{1+\sqrt{\varepsilon_s}} \equiv \overline{\theta}_0, \quad \zeta = \mu_0\overline{\zeta}, \quad w = \mu_0\overline{w}$$

(в дальнейшем черточки убираем) уравнения (18) и (19) переписываются в наиболее простом виде:

$$\dot{w} = U(1 - \zeta) - \nu_1 w,$$

$$\dot{\zeta} = U w - \nu_2 \zeta,$$

$$U_i(\tau) = U + \theta_0 w,$$
(20)

исследование решений которых и составляет основную цель данной работы. Как видно из системы (20), приближению заданного поля, использованному в работах [9, 11], отвечает значение параметра $\theta_0 = 0$, когда отсутствует влияние нелинейного экранирующего тока ~ $\theta_0 w$.

4. ВЗАИМОДЕЙСТВИЕ ПЛОСКИХ ЭЛЕКТРОМАГНИТНЫХ ВОЛН С КВАНТОВОЙ ЛАТЕРАЛЬНОЙ СВЕРХРЕШЕТКОЙ

Линейное взаимодействие. Пусть на рассматриваемую структуру падает из вакуума плоская монохроматическая волна

$$U_i(\tau) = U_0 e^{i\tau} + \mathrm{c.c.},$$

амплитуда которой U_0 достаточно мала, так что уравнения (20) могут быть линеаризованы (соответствующий критерий для амплитуды будет получен ниже). После очевидных преобразований имеем выражения для энергетических (по плотности потока энергии) коэффициентов отражения и прохождения:

$$R = \frac{\left[1 - \sqrt{\varepsilon_s} - \nu_1 \frac{\theta_0 \left(1 + \sqrt{\varepsilon_s}\right)}{1 + \nu_1^2}\right]^2 + \frac{\theta_0^2 \left(1 + \sqrt{\varepsilon_s}\right)^2}{1 + \nu_1^2}}{\left[1 + \sqrt{\varepsilon_s} + \nu_1 \frac{\theta_0 \left(1 + \sqrt{\varepsilon_s}\right)}{1 + \nu_1^2}\right]^2 + \frac{\theta_0^2 \left(1 + \sqrt{\varepsilon_s}\right)^2}{1 + \nu_1^2}},$$

(21)

Латеральные сверхрешетки...

$$T = \frac{4\sqrt{\varepsilon_s}}{\left(1 + \sqrt{\varepsilon_s}\right)^2} \frac{1 + \nu_1^2}{(\nu_1 + \theta_0)^2 + 1}.$$
 (22)

Формулы (21), (22) показывают, что в линейном приближении сверхрешетка ведет себя как обыкновенная плазменная пленка (плазменная частота которой определяется концентрацией и эффективной массой электронов проводимости) на поверхности диэлектрика с проницаемостью ε_s . Пленка дает основной вклад в отражение, если параметр θ_0 достаточно велик:

$$\theta_0^2 > (1+\nu_1^2) \left(\frac{1-\sqrt{\varepsilon_s}}{1+\sqrt{\varepsilon_s}}\right)^2 = \theta_0^{*2},$$

и при $\theta_0 \gg \theta_0^*$ становится практически идеальным экраном для излучения.

Переходные процессы в сильных полях. Рассмотрим возбуждение сверхрешетки из нулевых начальных условий падающим гармоническим полем. Выражая U из последнего соотношения системы (20) и подставляя в два других уравнения, получаем

$$\dot{w} = U_i(1-\zeta) +_i \theta_0 \zeta w - (\nu_1 + \theta_0) w,$$

$$\dot{\zeta} = U_i w - \theta_0 w^2 - \nu_2 \zeta.$$
(23)

Для определенности рассмотрим ситуацию, представляющую наибольший интерес: $\theta_0 \gg 1, \nu_1$. На начальной стадии процесса, когда $\theta_0 \langle \zeta \rangle \ll \theta_0$ ($\langle \zeta \rangle$ — среднее за период значение энергии электронов), электроны не разогрелись и в первом уравнении (23) можно пренебречь производной по времени (время установления скорости $\tau_w \sim 1/\theta_0 \ll 1$ определяется радиационными потерями). В результате имеем

$$w \approx \frac{U_i(1-\zeta)}{\nu_1 + \theta_0(1-\zeta)}.$$
(24)

Подставим (24) во второе уравнение (23), дающее закон изменения (

$$\zeta = \frac{\nu_1 U_0^2 (1 - \zeta)}{\left\{\nu_1 + \theta_0 (1 - \zeta)\right\}^2} - \nu_2 \zeta.$$
(25)

Поскольку по условию $\zeta \ll 1$, выражение (25) упрощается:

$$\zeta \approx \frac{\nu_1 U_i^2(\tau)}{\theta_0^2} - \nu_2 \zeta, \qquad (26)$$

где U_i выберем в виде $U_i(\tau) = U_m \sin \tau$. Из (26) следует закон изменения средней за период энергии электронов:

$$\langle \zeta \rangle = \frac{\nu_1 U_m^2}{2\nu_2 \theta_0^2} \left[1 - \exp(-\nu_2 \tau) \right].$$
 (27)

Таким образом, характерное время разогрева электронов $\tau_{\zeta} \sim 1/\nu_2 \gg \tau_w$. Можно приближенно оценить пороговую амплитуду падающего поля, начиная с которой проявляются нелинейные эффекты. Максимальное значение средней энергии электронов, следующее из (27), должно быть близко к единице:

$$\langle \zeta \rangle_{max} = \frac{\nu_1 U_m^2}{2\nu_2 \theta_0^2} \sim 1.$$
⁽²⁸⁾

Выражение (28) дает нам соответствующую оценку амплитуды падающего поля:

$$U_m = U_m^{(C)} = \sqrt{\frac{2\nu_2}{\nu_1}} \,\theta_0.$$
⁽²⁹⁾

В процессе разогрева энергия электронов в минизоне испытывает малые осцилляции около среднего значения на удвоенной частоте поля накачки, амплитуду которых легко получить из уравнения (26):

$$\zeta_{\sim} = \frac{\nu_1 U_m^2}{4\theta_0^2}.$$
(30)

В рамках использованных приближений можно учесть изменение коэффициента прохождения излучения через структуру, связанное с электронным разогревом. Для этого в формуле (22) необходимо сделать следующую замену:

$$\theta_0 \to \theta_0 \left(1 - \frac{U_m^2}{\left(U_m^{(C)} \right)^2} \right). \tag{31}$$

Из (22) с учетом (31) вытекает, что при $U_m \to U_m^{(C)}$ экранирующее действие сверхрешетки становится несущественным и имеет место эффект самоиндуцированной прозрачности, связанный с явлением динамической локализации электронов [8]. Строго говоря, приведенные оценки не годятся для амплитуд полей падающего излучения близких к $U_m^{(C)}$, однако они правильно описывают тенденцию увеличения коэффициента прохождения с увеличением U_m и характерные времена установления соответствующих режимов взаимодействия. Установившиеся режимы взаимодействия мы рассмотрим более. строго.

Установившиеся периодические нелинейные режимы взаимодействия. Вернемся снова к уравнениям (20), в которых амплитуда падающего поля может быть достаточно большой, так что рассматриваемая динамическая система может демонстрировать существенно нелинейное поведение. Будем считать также, что система «забыла» о начальных условиях (к чему приводят столкновения, разрушающие когерентность движения электронов) и совершает периодические движения в гармоническом поле падающей волны. Изучим приближенную ситуацию, когда времена релаксации скорости и энергии равны друг другу ($\nu_1 = \nu_2 \equiv \nu$). (Это даст нам возможность, не нарушая качественно динамику системы, получить некоторые аналитические соотношения. К тому же, реально, частоты ν_1 и ν_2 , как правило, близки, $|\nu_1 - \nu_2| \ll \nu_{1,2}$.) Тогда из первых двух уравнений (20) может быть получено точное выражение для скорости *w* для произвольной зависимости $U(\tau)$:

$$w(\tau) = \nu \int_{-\infty}^{\tau} \exp\left[\nu(\tau' - \tau)\right] \sin\left(\int_{\tau'}^{\tau} U(\tau'') d\tau''\right) d\tau'.$$
 (32)

Подставляя (32) в последнее уравнение (20) и делая в подынтегральном выражении очевидную замену переменных, имеем

$$U_i(\tau) = U(\tau) + \nu \theta_0 \int_0^\infty e^{-\nu\xi} \sin\left(\int_{\tau-\xi}^\tau U(\xi')d\xi'\right) d\xi.$$
(33)

В результате мы свели исходную задачу к интегральному уравнению (33) относительно поля в сверхрешетке $U(\tau)$. В общем случае аналитическое решение уравнения (33) не представляется возможным. Однако, если предположить, что в периодическом поле падающей во́лны $U_i(\tau)$ функция $U(\tau)$ также является периодической и амплитуды высших гармонических составляющих $U(\tau)$ достаточно малы по сравнению с основной, можно получить решение уравнения (33), подставляя в подынтегральное выражение первую гармонику $U(\tau)$, которую для определенности выберем в виде

$$U_1(\tau) = U_1 \cos \tau. \tag{34}$$

Полное выражение для $U(\tau)$ представим в виде гармонического ряда Фурье:

$$U(\tau) = U_1(\tau) + \sum_{k=1}^{\infty} a_{2k+1} \sin(2k+1)\tau + \sum_{k=1}^{\infty} b_{2k+1} \cos(2k+1)\tau.$$
(35)

Запишем интеграл в правой части (33) также в виде ряда Фурье:

$$\nu\theta_0 \int_0^\infty e^{-\nu\xi} \sin\left\{\int_{\tau-\xi}^\tau U_1(\xi')d\xi'\right\} d\xi = \sum_{p=1}^\infty A_p \sin p\tau + \sum_{p=1}^\infty B_p \cos p\tau.$$
(36)

С помощью несложных, но громоздких преобразований можно получить выражения для коэффициентов разложения A_p и B_p :

$$A_{p} = 2\pi\nu\theta_{0}\int_{0}^{\infty}e^{-\nu\xi}\sin\left(\frac{p\xi}{2}\right)J_{p}\left(2U_{1}\sin\frac{\xi}{2}\right)d\xi,$$

$$B_{p} = 2\pi\nu\theta_{0}\int_{0}^{\infty}e^{-\nu\xi}\cos\left(\frac{p\xi}{2}\right)J_{p}\left(2U_{1}\sin\frac{\xi}{2}\right)d\xi,$$
(37)

где p = 2k + 1, $k = 0, 1, 2, 3, ..., J_p(x)$ — функции Бесселя. Поскольку в коэффициентах A_p , B_p под интегралами в (37) стоят произведения экспоненты на периодическую функцию, соответствующие интегралы в бесконечных пределах могут быть свернуты к интегралам по периоду:

$$A_{p} = \frac{2\pi\nu\theta_{0}}{1 - \exp(-4\pi\nu)} \int_{0}^{4\pi} e^{-\nu\xi} \sin\left(\frac{p\xi}{2}\right) J_{p}\left(2U_{1}\sin\frac{\xi}{2}\right) d\xi,$$

$$B_{p} = \frac{2\pi\nu\theta_{0}}{1 - \exp(-4\pi\nu)} \int_{0}^{4\pi} e^{-\nu\xi} \cos\left(\frac{p\xi}{2}\right) J_{p}\left(2U_{1}\sin\frac{\xi}{2}\right) d\xi.$$
(38)

В дальнейшем рассмотрим два предельных случая слабых (4 $\pi\nu \ll 1$) и сильных (4 $\pi\nu \gg 1$) соударений.

Редкие соударения. Пренебрегая малым изменением экспоненциального множителя в интервале $(0, 4\pi)$ в интегралах (38), для A_{2k+1} и B_{2k+1} получаем

$$A_{2k+1} = 2\theta_0 J_0(U_1) J_{2k+1}(U_1),$$

$$B_{2k+1} = 0.$$
(39)

Рис. 2. а) Зависимость амплитуды поля в сверхрешетке на первой гармонике, U_1 , от амплитуды падающей на структуру монохроматической волны, U_m , рассчитанная по формуле (41) для различных значений параметра $\theta_0 = 10, 20, 40.$ б) Зависимость коэффициента прохождения излучения на основной частоте, $T^{(1)}$, от амплитуды падающей волны, U_m , полученная из (41) и (46) для тех же значений θ_0

Подставим (35), (36) и (39) в (33). Имеем

$$U_{i}(\tau) = U_{1}\cos\tau + \sum_{k=1}^{\infty} a_{2k+1}\sin(2k+1)\tau + \sum_{k=1}^{\infty} b_{2k+1}\cos(2k+1)\tau + + 2\theta_{0}J_{0}(U_{1})\sum_{k=0}^{\infty} J_{2k+1}(U_{1})\sin(2k+1)\tau.$$
(40)

Обратим внимание на присутствие в нелинейном токе множителя ~ $J_0(U_1)$. Значения амплитуд $U_1^{(s)}$, соответствующих нулям функции Бесселя $J_0(U_1^{(s)}) = 0$, отвечают так называемой динамической локализации электронов, которая может быть интерпретирована как коллапс энергетической зоны в высокочастотном поле. Его можно также трактовать как специфический эффект перемешивания фаз отдельных электронов, в результате чего макроскопический ток исчезает. Разумеется, строгая локализация пропадает, если в подынтегральном выражении (33) учесть кроме основной и высшие гармоники. Роль высших гармоник возрастает по мере увеличения параметра θ_0 . К сожалению, написать аккуратный критерий применимости использованного представления не удается, однако характерную величину θ_0 , начиная с которой соответствующее приближение начинает рушиться, можно получить из результатов строгих численных расчетов, приведенных ниже.

Итак, выражение (40) дает возможность написать связь между амплитудой падающей волны и амплитудами гармоник в сверхрешетке:

$$U_m = \sqrt{U_1^2 + 4\theta_0^2 J_0^2(U_1) J_1^2(U_1)},$$
(41)

$$\varphi_i = \arccos \frac{U_1}{\sqrt{U_1^2 + 4\theta_0^2 J_0^2(U_1) J_1^2(U_1)}},$$

2256

(42)

$$a_{2k+1} = -2\theta_0 J_0(U_1) J_{2k+1}(U_1), \tag{43}$$

$$b_{2k+1} = 0, (44)$$

где φ_i — фазовый сдвиг между падающим полем и полем внутри сверхрешетки на основной частоте. Уравнение (41) дает обратную зависимость амплитуды поля в сверхрешетке на основной частоте от амплитуды падающего поля, а уравнение (43) (вместе с (41)) — соответствующую параметрическую зависимость для амплитуд гармоник. Построенные по формуле (41) кривые, отвечающие различным значениям параметра θ_0 , изображены на рис. 2*a*. Как можно видеть, существует критическое значение $\theta_0^{(C)} \sim 10$, начиная с которого зависимости $U_1(U_m)$ становятся неоднозначными, что соответствует возникновению би- или мультистабильности в системе. Положение точек перехода с одного квазистационарного периодического режима на другой (обозначенных на рис. 2*a* стрелками), а также число таких точек могут быть найдены из решения следующего трансцендентного уравнения

$$1 + \frac{2\theta_0^2}{U_1} \frac{\partial}{\partial U_1} \left\{ J_0^2(U_1) J_1^2(U_1) \right\} = 0,$$
(45)

в котором связь между U_1 и U_m дается с помощью (41).

Полученные формулы (41)–(44) позволяют написать выражения для коэффициента прохождения (T) излучения на основной частоте и коэффициентов трансформации (S_{2k+1}) в высшие гармоники:

$$T = \frac{4\sqrt{\varepsilon_s}}{\left(1 + \sqrt{\varepsilon_s}\right)^2} \frac{U_1^2}{U_1^2 + 4\theta_0^2 J_0^2(U_1) J_1^2(U_1)},$$
(46)

$$S_{2k+1} = \frac{16\theta_0^2 J_0^2(U_1) J_{2k+1}^2(U_1)}{U_1^2 + 4\theta_0^2 J_0^2(U_1) J_1^2(U_1)},$$
(47)

где амплитуда поля основной частоты в сверхрешетке связана с амплитудой поля падающей волны соотношением (41). Зависимость (46) изображена на рис. 26, зависимость (47) — на рис. 3 для третьей и пятой гармоник при различных значениях θ_0 . Наличие гистерезисов в связи $U_1(U_m)$ при $\theta_0 > \theta_0^{(C)}$ ведет к появлению неоднозначности и в функциях $T(U_m)$ и $S_{2k+1}(U_m)$.

Таким образом, в случае достаточно редких соударений, не нарушающих когерентности движения носителей тока в течение многих периодов высокочастотного поля, система демонстрирует достаточно сложное поведение, существенным образом зависящее от концентрации электронов. Взаимодействие мощного электромагнитного излучения с латеральной сверхрешеткой сопровождается эффектами самовоздействия, приводящими к появлению мультистабильной самоиндуцированной прозрачности, и генерацией нечетных гармоник, интенсивность которых немонотонно связана с амплитудой падающей волны.

Частые соударения. В другом предельном случае, $4\pi\nu \gg 1$, интегралы (38), дающие коэффициенты Фурье разложения тока в сверхрешетке, также могут быть приближенно вычислены путем разложения тригонометрических функций и функций Бесселя в

2257

Рис. 3. Зависимость коэффициента трансформации S_{2k+1} (47) от амплитуды падающей волны U_m : a — в третью гармонику, δ — в пятую гармонику при $\theta_0 = 10$ и $\theta_0 = 20$

подынтегральных выражениях в степенной ряд, ограничиваясь при этом первыми членами. В результате получаем

$$A_{2k+1} = \pi \theta_0 \frac{(k+1)(2k+1)U_1^{2k+1}}{2^{2k}\nu^{2(k+1)}},$$
(48)

$$B_{2k+1} = \pi \theta_0 \frac{U_1^{2k+1}}{2^{2k} \nu^{2k+1}} \,. \tag{49}$$

Гармоники нелинейного тока, описываемые (48), (49), являются монотонными функциями U_1 , что свидетельствует об отсутствии гистерезисного поведения. В принципе, в пределе очень частых соударений ($\nu \gg 1$) можно получить более строгое уравнение, описывающее динамику сверхрешетки. Для этого вместо интегрального оператора в правой части соотношения (33) мы должны подставить квазистационарную вольтамперную характеристику, которая получается при пренебрежении производными по времени в уравнениях (20). Тогда получаем локальную во времени алгебраическую связь поля падающей волны и поля внутри сверхрешетки:

$$U_i(\tau) = U(\tau) + \frac{\nu \theta_0 U(\tau)}{\nu^2 + U^2(\tau)}.$$
 (50)

Выражение (50) также описывает эффект самоиндуцированной прозрачности, обусловленный наличием падающего участка статической вольт-амперной характеристики.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ ИССЛЕДОВАНИЙ

Несомненно, что приведенные выше аналитические результаты не могут охватить всю картину взаимодействия падающего излучения с квантовой латеральной сверхрешеткой, поскольку получены для отдельных предельных случаев. Более полное представление о характере такого взаимодействия, по-видимому, невозможно составить без

Рис. 4. Осциллограммы скорости электронов для различных значений амплитуды падающей волны для $\theta_0 = 80$, $\nu_1 = 0.2$, $\nu_2 = 0.1$: $a - U_m < U_m^* \simeq 15$ (квазилинейный режим); $\delta - U_m \ge U_m^* \simeq 15$ (переход в режим просветления вблизи порога); $s - U_m \ge 18$ (переход в режим просветления); $\epsilon - U_m \ge 20$ (двухступенчатый переход в режим самоиндуцированной прозрачности через промежуточное метастабильное состояние)

применения численного моделирования, которое также может быть использовано для контроля точности аналитической модели. Численные расчеты, представленные ниже, основаны на решении системы уравнений (20) с нулевыми начальными условиями.

На рис. 4 представлены осциллограммы скорости электронов, иллюстрирующие переходные процессы в рассматриваемой системе при различных значениях параметра θ_0 и амплитудах падающего высокочастотного поля U_m . Расчет проводился для режима плавного включения внешнего поля, при котором скорость w на линейной стадии практически безынерционно «отслеживает» во времени изменение поля. Рисунок 4a демонстрирует допороговый и, как видим, почти линейный режим взаимодействия электромагнитного поля со сверхрешеткой. При превышении порога самоиндуцированной прозрачности U_m^* (рис. 46-е) динамика системы и характер переходных процессов существенным образом зависят от амплитуды падающего поля. В случае сравнительно небольшого превышения поля над пороговым значением амплитуда скорости электронов (а следовательно, и экранирующий ток) сравнительно быстро (за несколько периодов) уменьшается до некоторого стационарного значения и движение носителей тока приобретает ангармонический характер (рис. 46). С ростом амплитуды падающего поля время соответствующего переходного процесса уменьшается, а ангармонизм движения в установившемся режиме усиливается (рис. 4). При наличии мультистабильности в системе (что отвечает достаточно большому значению параметра θ_0) возможны многократные переключения в сильном падающем поле. На рис. 4г показан двухступенчатый переходный процесс с выходом на стационарный режим через промежуточное квазистационарное состояние.

На рис. 5 приведены зависимости коэффициентов прохождения волны на основной частоте от амплитуды падающего электрического поля. Соответствующие зависимости показаны для сверхрешеток с различными концентрациями свободных носителей и частотами релаксации. Обратим внимание на рис. 5*a*, на котором параметры (для кривой 1) соответствуют аналитическим расчетам (рис. 26). Как можно видеть, формула

ł

Рис. 5. Численно рассчитанные зависимости коэффициентов прохождения волны на основной частоте от амплитуды падающего поля для *a*) $\theta_0 = 20$ ($1 - \nu_1 = \nu_2 = 0.01$; $2 - \nu_1 = \nu_2 = 0.1$; $3 - \nu_1 = \nu_2 = 0.3$; $4 - \nu_1 = \nu_2 = 0.5$) и *b*) $\theta_0 = 80$ ($5 - \nu_1 = 0.2$, $\nu_2 = 0.1$; $6 - \nu_1 = \nu_2 = 0.3$; $7 - \nu_1 = \nu_2 = 1$

Рис. 6. Численно рассчитанные зависимости коэффициентов трансформации в третью и пятую гармоники от амплитуды падающего поля для $\theta_0 = 20$, $\nu_1 = \nu_2 = 0.1$

(46) хорошо предсказывает поведение системы вплоть до значения параметра $\theta_0 \sim 20$. Приведенные расчеты показывают, что особенностью эффекта самоиндуцированной прозрачности является многоступенчатый (по амплитуде падающей волны) характер просветления, обусловленный мультистабильностью системы, возникающей при достаточно больших концентрациях свободных электронов и малых частотах релаксации. В очень сильных полях (значительно превышающих порог просветления) экранирующее действие сверхрешетки становится несущественным и коэффициент прохождения асимптотически приближается к значению, отвечающему коэффициенту прохождения излучения в подложку без пленки на ее поверхности. Отметим, что зависимость коэффициента отражения от амплитуды падающего излучения, которая может быть найдена с помощью (15) и (41), имеет все те же особенности (многоступенчатость, гистерезисное поведение), что и соответствующие коэффициенты прохождения.

Между порогами просветления сверхрешетки наблюдается эффективная генерация высших (нечетных) гармоник излучения. Нами рассчитаны зависимости коэффициентов трансформации в (2k + 1)-гармонику от амплитуды падающей волны. На рис. 6,

Рис. 7. Численно рассчитанные зависимости коэффициентов трансформации в третью, пятую и седьмую гармоники от амплитуды падающего поля для $\theta_0 = 80$, $\nu_1 = \nu_2 = 0.1$

7 представлены результаты моделирования S_{2k+1} для 2k + 1 = 3, 5, 7 при значениях θ_0 и $\nu_{1,2}$, отвечающих рис. 5. Отметим особенность генерации высших гармоник в области гистерезиса $U_m < U_m^*$ (U_m^* — порог просветления), где с уменьшением амплитуды внешнего поля происходит такое перераспределение интенсивности гармоник, при котором максимальной становится третья, причем ее абсолютная величина при $U_m < U_m^*$ оказывается больше, чем в области $U_m > U_m^*$. Так, например, для $\theta_0 = 80$, $\nu_1 = 0.2$, $\nu_2 = 0, 1$ интенсивности пятой и седьмой гармоник уменьшаются, а интенсивность третьей гармоники при $U_m \approx 10 < U_m^*$ возрастает более чем вдвое по сравнению со запороговым значением (штриховая кривая на рис. 7).

В заключение на рис. 8 приведены зависимости порога просветления от частот столкновений (*a*) и концентрации (*b*). Следует обратить внимание на то, что при общей тенденции к снижению порога просветления при увеличении частоты упругих столкновений и (или) уменьшении концентрации свободных носителей тока относительное изменение коэффициента прохождения структуры уменьшается (см. кривые 3, 4 на рис. 5*a* и 7 на рис. 5*b*).

6. ЗАКЛЮЧЕНИЕ

Данная работа содержит результаты исследования эффектов самовоздействия и генерации гармоник излучения при взаимодействии электромагнитных волн с латеральными квантовыми полупроводниковыми сверхрешетками. Расчеты проводились в самосогласованной постановке на основе материальных уравнений, полученных в квазиклассическом приближении. Выявлен мультистабильный эффект самоиндуцированной прозрачности, сопровождающийся эффективной генерацией нечетных гармоник излучения и обусловленный влиянием нелинейного экранирующего тока, текущего по

Рис. 8. Зависимости порога просветления U^* от *a*) частот релаксации ($\theta_0 = 80: + -\nu_2 = 0.25;$ $\blacktriangle - \nu_2 = 0.15;$ $\blacksquare - \nu_2 = 0.01$ и $\theta_0 = 20:$ о $- \nu_2 = 0.1;$ $\Box - \nu_2 = 0.01)$ и *b*) концентрации свободных носителей ($1 - \nu_1 = \nu_2 = 0.1;$ $2 - \nu_1 = 0.2,$ $\nu_2 = 0.1;$ $3 - \nu_1 = 0.1,$ $\nu_2 = 0.01$

сверхрешетке. Найдены пороговые соотношения, определяющие область реализации соответствующих эффектов как по амплитуде падающего поля, так и по концентрации свободных носителей.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 97-02-17572).

Литература

- 1. A. A. Ignatov, J. Genzer, E. Schomburg et al., Ann. der Phys. 5, 173 (1995).
- 2. M. Hadjazi, J. F. Palmier, A. Sibille et al., Electr. Lett. 29, 648 (1993).
- M. L. Wanke, S. J. Allen, K. Maranowski et al., in *Physics of Semiconductors*, ed. by M. Scheffter and R. Zimmerman, World Scientific, Singapore (1996), p. 1791.
- 4. H. Schneider, K. Fujiwara, H. T.Grahn et al., Appl. Phys. Lett. 56, 605 (1990).
- 5. А. Я. Шик, ФТП **8**, 1841 (1974).
- 6. L. Esaki and L. L. Chang, Thin Solid Films 36, 285 (1976).
- 7. L. Esaki and R. Tsu, IBM J. Res. Devel. 14, 61 (1970).
- 8. A. A. Ignatov and Yu. A. Romanov, Phys. Stat. Sol. (b) 73, 327 (1976).
- 9. A. A. Ignatov, J. Genzer, K. F. Renk et al., Z. Phys. B 98, 187 (1995).
- 10. H. Noguchi, J. P. Leburton, and H. Sakaki, Inst. Phys. Conf. Ser. № 129, Ch. 5, 299 (1993).
- 11. A. A. Ignatov, E. P. Dodin, and V. I. Shashkin, Mod. Phys. Lett. 5, 1087 (1991).
- 12. A. Wacker and Antti-Pekka Jauho, Phys. Rev. Lett. 80, 369 (1998).